code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : int ) -> float:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = x
__UpperCAmelCase : List[Any] = y
for step in range(UpperCamelCase_ ): # noqa: B007
__UpperCAmelCase : List[str] = a * a - b * b + x
__UpperCAmelCase : Any = 2 * a * b + y
__UpperCAmelCase : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( _UpperCamelCase : float ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def lowerCamelCase ( _UpperCamelCase : float ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) )
def lowerCamelCase ( _UpperCamelCase : int = 8_0_0 , _UpperCamelCase : int = 6_0_0 , _UpperCamelCase : float = -0.6 , _UpperCamelCase : float = 0 , _UpperCamelCase : float = 3.2 , _UpperCamelCase : int = 5_0 , _UpperCamelCase : bool = True , ) -> Image.Image:
'''simple docstring'''
__UpperCAmelCase : Dict = Image.new("""RGB""" , (image_width, image_height) )
__UpperCAmelCase : Union[str, Any] = img.load()
# loop through the image-coordinates
for image_x in range(UpperCamelCase_ ):
for image_y in range(UpperCamelCase_ ):
# determine the figure-coordinates based on the image-coordinates
__UpperCAmelCase : Union[str, Any] = figure_width / image_width * image_height
__UpperCAmelCase : str = figure_center_x + (image_x / image_width - 0.5) * figure_width
__UpperCAmelCase : int = figure_center_y + (image_y / image_height - 0.5) * figure_height
__UpperCAmelCase : Union[str, Any] = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__UpperCAmelCase : Any = get_color_coded_rgb(UpperCamelCase_ )
else:
__UpperCAmelCase : Any = get_black_and_white_rgb(UpperCamelCase_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
UpperCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 115 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 0 |
import math
def lowerCamelCase_ ( _UpperCamelCase ) -> bool:
"""simple docstring"""
return math.sqrt(UpperCamelCase_ ) * math.sqrt(UpperCamelCase_ ) == num
def lowerCamelCase_ ( _UpperCamelCase ) -> bool:
"""simple docstring"""
snake_case_ : Union[str, Any] = 0
snake_case_ : List[str] = n
while left <= right:
snake_case_ : Dict = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
snake_case_ : Union[str, Any] = mid - 1
else:
snake_case_ : Optional[Any] = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 279 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 0 |
'''simple docstring'''
def UpperCamelCase_ ( A__ : int = 1 , A__ : int = 10_00 ):
'''simple docstring'''
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = 0
for divide_by_number in range(UpperCamelCase_ , digit + 1 ):
lowerCAmelCase_ : Dict = []
lowerCAmelCase_ : List[str] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(UpperCamelCase_ ):
lowerCAmelCase_ : List[Any] = len(UpperCamelCase_ )
lowerCAmelCase_ : int = divide_by_number
else:
has_been_divided.append(UpperCamelCase_ )
lowerCAmelCase_ : List[str] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 120 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 0 |
def lowerCamelCase__ ( ) -> int:
return 1
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int ) -> int:
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase_ )
def lowerCamelCase__ ( snake_case_ : int = 200 ) -> int:
return two_pound(UpperCamelCase_ )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 24 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase :Tuple = logging.get_logger(__name__)
_lowerCAmelCase :List[str] = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class _UpperCAmelCase ( _UpperCAmelCase ):
'''simple docstring'''
a__ ='''sew'''
def __init__( self , A=3_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A=2 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.1 , A=0.02 , A=1E-5 , A="group" , A="gelu" , A=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=1_2_8 , A=1_6 , A=True , A=0.05 , A=1_0 , A=2 , A=0.0 , A=1_0 , A=0 , A="mean" , A=False , A=False , A=2_5_6 , A=0 , A=1 , A=2 , **A , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_UpperCAmelCase : Union[str, Any] = hidden_size
_UpperCAmelCase : List[Any] = feat_extract_norm
_UpperCAmelCase : Optional[int] = feat_extract_activation
_UpperCAmelCase : Dict = list(__UpperCAmelCase )
_UpperCAmelCase : List[Any] = list(__UpperCAmelCase )
_UpperCAmelCase : Dict = list(__UpperCAmelCase )
_UpperCAmelCase : Tuple = conv_bias
_UpperCAmelCase : List[Any] = num_conv_pos_embeddings
_UpperCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups
_UpperCAmelCase : str = len(self.conv_dim )
_UpperCAmelCase : str = num_hidden_layers
_UpperCAmelCase : int = intermediate_size
_UpperCAmelCase : Any = squeeze_factor
_UpperCAmelCase : Dict = hidden_act
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : Any = hidden_dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Optional[Any] = feat_proj_dropout
_UpperCAmelCase : Optional[Any] = final_dropout
_UpperCAmelCase : Union[str, Any] = layerdrop
_UpperCAmelCase : Union[str, Any] = layer_norm_eps
_UpperCAmelCase : Optional[int] = initializer_range
_UpperCAmelCase : List[Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase : Optional[int] = apply_spec_augment
_UpperCAmelCase : int = mask_time_prob
_UpperCAmelCase : Dict = mask_time_length
_UpperCAmelCase : List[Any] = mask_time_min_masks
_UpperCAmelCase : Optional[Any] = mask_feature_prob
_UpperCAmelCase : Tuple = mask_feature_length
_UpperCAmelCase : List[str] = mask_feature_min_masks
# ctc loss
_UpperCAmelCase : List[Any] = ctc_loss_reduction
_UpperCAmelCase : List[Any] = ctc_zero_infinity
# sequence classification
_UpperCAmelCase : Dict = use_weighted_layer_sum
_UpperCAmelCase : List[str] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> str:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 263 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> Any:
__UpperCAmelCase : str = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Dict = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
__UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
__UpperCAmelCase : List[Any] = {
"do_resize": True,
"size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
__UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCamelCase ( self: Union[str, Any] , **__lowerCamelCase: List[str] ) -> Tuple:
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCamelCase ( self: str , **__lowerCamelCase: int ) -> int:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCamelCase ( self: List[str] ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
__UpperCAmelCase : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__UpperCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCamelCase ( self: Optional[Any] ) -> str:
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : int = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def _lowerCamelCase ( self: str ) -> int:
__UpperCAmelCase : List[Any] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
__UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : Any = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def _lowerCamelCase ( self: Any ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.prepare_image_inputs()
__UpperCAmelCase : List[str] = image_processor(__UpperCAmelCase , return_tensors="np" )
__UpperCAmelCase : str = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]:
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : int = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Any = "lower newer"
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _lowerCamelCase ( self: Union[str, Any] ) -> Any:
__UpperCAmelCase : int = self.get_image_processor()
__UpperCAmelCase : Optional[int] = self.get_tokenizer()
__UpperCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = "lower newer"
__UpperCAmelCase : Any = self.prepare_image_inputs()
__UpperCAmelCase : Dict = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def _lowerCamelCase ( self: Tuple ) -> Any:
__UpperCAmelCase : str = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : str = processor.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : Dict = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_image_processor()
__UpperCAmelCase : Dict = self.get_tokenizer()
__UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = "lower newer"
__UpperCAmelCase : Any = self.prepare_image_inputs()
__UpperCAmelCase : Any = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 157 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 0 |
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ) -> int:
'''simple docstring'''
if index == number_of_items:
return 0
A__ = 0
A__ = 0
A__ = knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 )
if weights[index] <= max_weight:
A__ = values[index] + knapsack(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_weight - weights[index] , index + 1 )
return max(UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 68 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = 1
a :Optional[int] = 3
a :List[Any] = (32, 32)
a :Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def SCREAMING_SNAKE_CASE__ ( self ):
torch.manual_seed(0 )
a :int = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self ):
torch.manual_seed(0 )
a :List[Any] = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self ):
torch.manual_seed(0 )
a :int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
return CLIPTextModel(__UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a :int = self.dummy_cond_unet_upscale
a :Dict = DDPMScheduler()
a :Optional[Any] = DDIMScheduler(prediction_type='''v_prediction''' )
a :str = self.dummy_vae
a :Tuple = self.dummy_text_encoder
a :Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
a :Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
a :Dict = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
a :Dict = StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , )
a :Union[str, Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a :int = '''A painting of a squirrel eating a burger'''
a :int = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a :Optional[int] = sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
a :str = output.images
a :List[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a :Union[str, Any] = sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__UpperCAmelCase , )[0]
a :Any = image[0, -3:, -3:, -1]
a :List[Any] = image_from_tuple[0, -3:, -3:, -1]
a :List[str] = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
a :Union[str, Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self ):
a :Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a :str = self.dummy_cond_unet_upscale
a :Optional[int] = DDPMScheduler()
a :Any = DDIMScheduler(prediction_type='''v_prediction''' )
a :Union[str, Any] = self.dummy_vae
a :List[Any] = self.dummy_text_encoder
a :Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
a :List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
a :str = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
a :Tuple = StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , )
a :Any = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a :List[str] = '''A painting of a squirrel eating a burger'''
a :Any = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
a :str = output.images
assert image.shape[0] == 2
a :Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a :Dict = sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
a :Tuple = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = self.dummy_cond_unet_upscale
a :str = DDPMScheduler()
a :str = DDIMScheduler(prediction_type='''v_prediction''' )
a :Any = self.dummy_vae
a :Any = self.dummy_text_encoder
a :Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
a :str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
a :List[str] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
a :Optional[int] = unet.half()
a :Optional[int] = text_encoder.half()
# make sure here that pndm scheduler skips prk
a :int = StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , )
a :List[str] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a :Optional[int] = '''A painting of a squirrel eating a burger'''
a :Optional[int] = torch.manual_seed(0 )
a :str = sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images
a :Dict = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
a :int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat.npy''' )
a :List[Any] = '''stabilityai/stable-diffusion-x4-upscaler'''
a :Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
a :str = '''a cat sitting on a park bench'''
a :Tuple = torch.manual_seed(0 )
a :Union[str, Any] = pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''np''' , )
a :Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
a :Dict = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat_fp16.npy''' )
a :int = '''stabilityai/stable-diffusion-x4-upscaler'''
a :Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
a :Union[str, Any] = '''a cat sitting on a park bench'''
a :List[str] = torch.manual_seed(0 )
a :str = pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''np''' , )
a :int = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def SCREAMING_SNAKE_CASE__ ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
a :Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
a :Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler'''
a :Tuple = StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
a :Dict = '''a cat sitting on a park bench'''
a :int = torch.manual_seed(0 )
a :List[Any] = pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type='''np''' , )
a :Optional[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 94 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 0 |
"""simple docstring"""
from __future__ import annotations
__SCREAMING_SNAKE_CASE : List[Any] = 8.9_88E9 # units = N * m^s * C^-2
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict[str, float]:
snake_case_ = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if distance < 0:
raise ValueError("""Distance cannot be negative""" )
if force == 0:
snake_case_ = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
snake_case_ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
snake_case_ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
snake_case_ = (COULOMBS_CONSTANT * charge_product / abs(UpperCamelCase_ )) ** 0.5
return {"distance": distance}
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 0 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
a__ : str = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Union[str, Any]:
__UpperCamelCase :Dict = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''')
__UpperCamelCase :Tuple = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2)
__UpperCamelCase :Tuple = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[str]:
for example in examples:
__UpperCamelCase :List[str] = video_classifier(__UpperCAmelCase)
self.assertEqual(
__UpperCAmelCase , [
{'''score''': ANY(__UpperCAmelCase), '''label''': ANY(__UpperCAmelCase)},
{'''score''': ANY(__UpperCAmelCase), '''label''': ANY(__UpperCAmelCase)},
] , )
@require_torch
def UpperCamelCase__ ( self) -> Optional[Any]:
__UpperCamelCase :Union[str, Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
__UpperCamelCase :List[Any] = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10})
__UpperCamelCase :List[str] = pipeline(
'''video-classification''' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4)
__UpperCamelCase :List[Any] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''')
__UpperCamelCase :Union[str, Any] = video_classifier(__UpperCAmelCase , top_k=2)
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4) , [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}] , )
__UpperCamelCase :Optional[int] = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4) , [
[{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}],
[{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def UpperCamelCase__ ( self) -> Any:
pass
| 43 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 0 |
"""simple docstring"""
_UpperCAmelCase = {
"""km/h""": 1.0,
"""m/s""": 3.6,
"""mph""": 1.6_0_9_3_4_4,
"""knot""": 1.8_5_2,
}
_UpperCAmelCase = {
"""km/h""": 1.0,
"""m/s""": 0.2_7_7_7_7_7_7_7_8,
"""mph""": 0.6_2_1_3_7_1_1_9_2,
"""knot""": 0.5_3_9_9_5_6_8_0_3,
}
def __magic_name__ ( lowercase , lowercase , lowercase ):
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
SCREAMING_SNAKE_CASE_: List[Any] =(
f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'''
f'''Valid values are: {", ".join(UpperCamelCase_ )}'''
)
raise ValueError(UpperCamelCase_ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 173 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 0 |
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int ) -> str:
'''simple docstring'''
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("""'float' object cannot be interpreted as an integer""" )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("""'str' object cannot be interpreted as an integer""" )
if num == 0:
return "0b0"
__UpperCAmelCase : List[str] = False
if num < 0:
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = -num
__UpperCAmelCase : Optional[Any] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary )
return "0b" + "".join(str(UpperCamelCase_ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 115 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 0 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowerCAmelCase_ = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
if args.student_type == "roberta":
snake_case_ : Optional[int] = False
elif args.student_type == "gpt2":
snake_case_ : str = False
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
if args.student_type == "roberta":
snake_case_ : Optional[Any] = False
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=UpperCamelCase_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=UpperCamelCase_ , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=UpperCamelCase_ , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=UpperCamelCase_ , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=UpperCamelCase_ , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=UpperCamelCase_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=UpperCamelCase_ , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=UpperCamelCase_ , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=UpperCamelCase_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=UpperCamelCase_ , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=UpperCamelCase_ , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=UpperCamelCase_ , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=UpperCamelCase_ , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=UpperCamelCase_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=UpperCamelCase_ , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=UpperCamelCase_ , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=UpperCamelCase_ , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=UpperCamelCase_ , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=UpperCamelCase_ , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=UpperCamelCase_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=UpperCamelCase_ , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=UpperCamelCase_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=UpperCamelCase_ , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=UpperCamelCase_ , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=UpperCamelCase_ , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=UpperCamelCase_ , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=UpperCamelCase_ , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=UpperCamelCase_ , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=UpperCamelCase_ , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=UpperCamelCase_ , default=4_000 , help='''Checkpoint interval.''' )
snake_case_ : Union[str, Any] = parser.parse_args()
sanity_checks(UpperCamelCase_ )
# ARGS #
init_gpu_params(UpperCamelCase_ )
set_seed(UpperCamelCase_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(f'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(UpperCamelCase_ ) , UpperCamelCase_ , indent=4 )
git_log(args.dump_path )
snake_case_ , snake_case_ , snake_case_ : str = MODEL_CLASSES[args.student_type]
snake_case_ , snake_case_ , snake_case_ : str = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
snake_case_ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name )
snake_case_ : List[Any] = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
snake_case_ : int = tokenizer.all_special_tokens.index(UpperCamelCase_ )
snake_case_ : Any = tokenizer.all_special_ids[idx]
logger.info(f'''Special tokens {special_tok_ids}''' )
snake_case_ : str = special_tok_ids
snake_case_ : Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
snake_case_ : List[Any] = pickle.load(UpperCamelCase_ )
if args.mlm:
logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
snake_case_ : List[Any] = pickle.load(UpperCamelCase_ )
snake_case_ : Optional[Any] = np.maximum(UpperCamelCase_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
snake_case_ : Any = 0.0 # do not predict special tokens
snake_case_ : Tuple = torch.from_numpy(UpperCamelCase_ )
else:
snake_case_ : Optional[Any] = None
snake_case_ : Tuple = LmSeqsDataset(params=UpperCamelCase_ , data=UpperCamelCase_ )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(f'''Loading student config from {args.student_config}''' )
snake_case_ : List[Any] = student_config_class.from_pretrained(args.student_config )
snake_case_ : List[Any] = True
if args.student_pretrained_weights is not None:
logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' )
snake_case_ : Tuple = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase_ )
else:
snake_case_ : Optional[int] = student_model_class(UpperCamelCase_ )
if args.n_gpu > 0:
student.to(f'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
snake_case_ : Union[str, Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase_ )
if args.n_gpu > 0:
teacher.to(f'''cuda:{args.local_rank}''' )
logger.info(f'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(UpperCamelCase_ , UpperCamelCase_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(UpperCamelCase_ , UpperCamelCase_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
snake_case_ : List[Any] = Distiller(
params=UpperCamelCase_ , dataset=UpperCamelCase_ , token_probs=UpperCamelCase_ , student=UpperCamelCase_ , teacher=UpperCamelCase_ )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 279 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 0 |
'''simple docstring'''
from graphs.minimum_spanning_tree_kruskal import kruskal
def UpperCamelCase_ ( ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = 9
lowerCAmelCase_ : int = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCAmelCase_ : Tuple = kruskal(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase_ : Any = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(UpperCamelCase_ ) == sorted(UpperCamelCase_ )
| 120 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 0 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : Optional[int] = 'char'
A_ : Dict = 'bpe'
A_ : Dict = 'wp'
snake_case_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : Union[str, Any] = ['image_processor', 'char_tokenizer']
A_ : List[Any] = 'ViTImageProcessor'
A_ : List[Any] = 'MgpstrTokenizer'
def __init__(self : int , a__ : Union[str, Any]=None , a__ : Any=None , **a__ : List[Any] ):
"""simple docstring"""
__snake_case = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __UpperCAmelCase , )
__snake_case = kwargs.pop('''feature_extractor''' )
__snake_case = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
__snake_case = tokenizer
__snake_case = AutoTokenizer.from_pretrained('''gpt2''' )
__snake_case = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__(self : Tuple , a__ : Tuple=None , a__ : Any=None , a__ : List[str]=None , **a__ : Dict ):
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
__snake_case = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
__snake_case = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
__snake_case = encodings['''input_ids''']
return inputs
def a (self : Any , a__ : Union[str, Any] ):
"""simple docstring"""
__snake_case , __snake_case , __snake_case = sequences
__snake_case = char_preds.size(0 )
__snake_case , __snake_case = self._decode_helper(__UpperCAmelCase , '''char''' )
__snake_case , __snake_case = self._decode_helper(__UpperCAmelCase , '''bpe''' )
__snake_case , __snake_case = self._decode_helper(__UpperCAmelCase , '''wp''' )
__snake_case = []
__snake_case = []
for i in range(__UpperCAmelCase ):
__snake_case = [char_scores[i], bpe_scores[i], wp_scores[i]]
__snake_case = [char_strs[i], bpe_strs[i], wp_strs[i]]
__snake_case = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__snake_case = {}
__snake_case = final_strs
__snake_case = final_scores
__snake_case = char_strs
__snake_case = bpe_strs
__snake_case = wp_strs
return out
def a (self : Any , a__ : Dict , a__ : Union[str, Any] ):
"""simple docstring"""
if format == DecodeType.CHARACTER:
__snake_case = self.char_decode
__snake_case = 1
__snake_case = '''[s]'''
elif format == DecodeType.BPE:
__snake_case = self.bpe_decode
__snake_case = 2
__snake_case = '''#'''
elif format == DecodeType.WORDPIECE:
__snake_case = self.wp_decode
__snake_case = 102
__snake_case = '''[SEP]'''
else:
raise ValueError(f"""Format {format} is not supported.""" )
__snake_case , __snake_case = [], []
__snake_case = pred_logits.size(0 )
__snake_case = pred_logits.size(1 )
__snake_case , __snake_case = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
__snake_case = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
__snake_case = decoder(__UpperCAmelCase )
__snake_case , __snake_case = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
__snake_case = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
__snake_case = preds_str[index].find(__UpperCAmelCase )
__snake_case = preds_str[index][:pred_eos]
__snake_case = preds_index[index].cpu().tolist()
__snake_case = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
__snake_case = preds_max_prob[index][: pred_eos_index + 1]
__snake_case = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def a (self : str , a__ : str ):
"""simple docstring"""
__snake_case = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def a (self : List[str] , a__ : Union[str, Any] ):
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def a (self : List[str] , a__ : Any ):
"""simple docstring"""
__snake_case = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 24 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 0 |
"""simple docstring"""
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _UpperCAmelCase :
'''simple docstring'''
def __lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_UpperCAmelCase : int = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
torch.manual_seed(0 )
_UpperCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
torch.manual_seed(0 )
_UpperCAmelCase : int = UNetaDConditionModel(
sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[
'''ResnetDownsampleBlock2D''',
'''SimpleCrossAttnDownBlock2D''',
] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
_UpperCAmelCase : Any = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , )
torch.manual_seed(0 )
_UpperCAmelCase : List[str] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __lowerCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = UNetaDConditionModel(
sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[
'''ResnetDownsampleBlock2D''',
'''SimpleCrossAttnDownBlock2D''',
] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , )
torch.manual_seed(0 )
_UpperCAmelCase : int = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , )
torch.manual_seed(0 )
_UpperCAmelCase : Any = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __lowerCAmelCase ( self ) -> Dict:
_UpperCAmelCase : Any = self.get_dummy_components()
_UpperCAmelCase : str = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase )
_UpperCAmelCase : str = inputs['''prompt''']
_UpperCAmelCase : List[str] = inputs['''generator''']
_UpperCAmelCase : str = inputs['''num_inference_steps''']
_UpperCAmelCase : Optional[Any] = inputs['''output_type''']
if "image" in inputs:
_UpperCAmelCase : str = inputs['''image''']
else:
_UpperCAmelCase : List[str] = None
if "mask_image" in inputs:
_UpperCAmelCase : Optional[int] = inputs['''mask_image''']
else:
_UpperCAmelCase : Optional[int] = None
if "original_image" in inputs:
_UpperCAmelCase : int = inputs['''original_image''']
else:
_UpperCAmelCase : int = None
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = pipe.encode_prompt(__UpperCAmelCase )
# inputs with prompt converted to embeddings
_UpperCAmelCase : Optional[Any] = {
'''prompt_embeds''': prompt_embeds,
'''negative_prompt_embeds''': negative_prompt_embeds,
'''generator''': generator,
'''num_inference_steps''': num_inference_steps,
'''output_type''': output_type,
}
if image is not None:
_UpperCAmelCase : Any = image
if mask_image is not None:
_UpperCAmelCase : Any = mask_image
if original_image is not None:
_UpperCAmelCase : Union[str, Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_UpperCAmelCase : List[Any] = pipe(**__UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__UpperCAmelCase )
_UpperCAmelCase : int = self.pipeline_class.from_pretrained(__UpperCAmelCase )
pipe_loaded.to(__UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=__UpperCAmelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__UpperCAmelCase , __UpperCAmelCase ) is None , f'`{optional_component}` did not stay set to None after loading.' , )
_UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
_UpperCAmelCase : Dict = inputs['''generator''']
_UpperCAmelCase : Union[str, Any] = inputs['''num_inference_steps''']
_UpperCAmelCase : Any = inputs['''output_type''']
# inputs with prompt converted to embeddings
_UpperCAmelCase : str = {
'''prompt_embeds''': prompt_embeds,
'''negative_prompt_embeds''': negative_prompt_embeds,
'''generator''': generator,
'''num_inference_steps''': num_inference_steps,
'''output_type''': output_type,
}
if image is not None:
_UpperCAmelCase : int = image
if mask_image is not None:
_UpperCAmelCase : Optional[Any] = mask_image
if original_image is not None:
_UpperCAmelCase : Union[str, Any] = original_image
_UpperCAmelCase : int = pipe_loaded(**__UpperCAmelCase )[0]
_UpperCAmelCase : Any = np.abs(to_np(__UpperCAmelCase ) - to_np(__UpperCAmelCase ) ).max()
self.assertLess(__UpperCAmelCase , 1E-4 )
def __lowerCAmelCase ( self ) -> Tuple:
_UpperCAmelCase : Dict = self.get_dummy_components()
_UpperCAmelCase : List[Any] = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_UpperCAmelCase : int = self.get_dummy_inputs(__UpperCAmelCase )
_UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__UpperCAmelCase )
_UpperCAmelCase : int = self.pipeline_class.from_pretrained(__UpperCAmelCase )
pipe_loaded.to(__UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=__UpperCAmelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
_UpperCAmelCase : List[Any] = self.get_dummy_inputs(__UpperCAmelCase )
_UpperCAmelCase : Union[str, Any] = pipe_loaded(**__UpperCAmelCase )[0]
_UpperCAmelCase : Any = np.abs(to_np(__UpperCAmelCase ) - to_np(__UpperCAmelCase ) ).max()
self.assertLess(__UpperCAmelCase , 1E-4 )
| 263 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 0 |
_snake_case = {}
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int:
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__UpperCAmelCase : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__UpperCAmelCase : Union[str, Any] = _calculate(days - 1, UpperCamelCase_, late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__UpperCAmelCase : List[str] = _calculate(days - 1, absent + 1, 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__UpperCAmelCase : List[str] = _calculate(days - 1, UpperCamelCase_, 0 )
__UpperCAmelCase : Tuple = state_late + state_absent + state_ontime
__UpperCAmelCase : Tuple = prizestrings
return prizestrings
def _UpperCamelCase ( snake_case__ = 30 ) -> int:
return _calculate(UpperCamelCase_, absent=0, late=0 )
if __name__ == "__main__":
print(solution())
| 157 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 0 |
import numpy as np
import datasets
lowerCAmelCase__ = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
lowerCAmelCase__ = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
lowerCAmelCase__ = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def UpperCamelCase ( self , lowercase , lowercase ) -> int:
'''simple docstring'''
A__ = np.array(__UpperCAmelCase )
A__ = np.array(__UpperCAmelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
A__ = X - np.mean(__UpperCAmelCase )
A__ = np.cov(reference_distribution.T )
try:
A__ = np.linalg.inv(__UpperCAmelCase )
except np.linalg.LinAlgError:
A__ = np.linalg.pinv(__UpperCAmelCase )
A__ = np.dot(__UpperCAmelCase , __UpperCAmelCase )
A__ = np.dot(__UpperCAmelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 68 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 0 |
import sys
snake_case : List[str] = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def __lowerCamelCase ( UpperCAmelCase_ : str ):
"""simple docstring"""
a :Optional[int] = 1
for digit in s:
product *= int(UpperCamelCase_ )
return product
def __lowerCamelCase ( UpperCAmelCase_ : str = N ):
"""simple docstring"""
a :Optional[int] = -sys.maxsize - 1
a :List[str] = n[:13]
a :List[Any] = 13
while cur_index < len(UpperCamelCase_ ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
a :List[str] = substr[1:] + n[cur_index]
cur_index += 1
else:
a :Union[str, Any] = max(UpperCamelCase_ , str_eval(UpperCamelCase_ ) )
a :Optional[Any] = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F"""{solution() = }""")
| 94 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
snake_case_ = downstream_dict["""projector.weight"""]
snake_case_ = downstream_dict["""projector.bias"""]
snake_case_ = downstream_dict["""model.post_net.linear.weight"""]
snake_case_ = downstream_dict["""model.post_net.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
snake_case_ = downstream_dict["""model.linear.weight"""]
snake_case_ = downstream_dict["""model.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = UniSpeechSatForXVector.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
snake_case_ = downstream_dict["""connector.weight"""]
snake_case_ = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
snake_case_ = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
snake_case_ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
snake_case_ = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = torch.load(UpperCamelCase_ , map_location="""cpu""" )
snake_case_ = checkpoint["""Downstream"""]
snake_case_ = UniSpeechSatConfig.from_pretrained(UpperCamelCase_ )
snake_case_ = WavaVecaFeatureExtractor.from_pretrained(
UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , do_normalize=UpperCamelCase_ )
snake_case_ = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
snake_case_ = convert_classification(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
elif arch.endswith("""ForAudioFrameClassification""" ):
snake_case_ = convert_diarization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
elif arch.endswith("""ForXVector""" ):
snake_case_ = convert_xvector(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
snake_case_ = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(UpperCamelCase_ )
hf_model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
__SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 347 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 0 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
__lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase_ ( _UpperCAmelCase ):
'''simple docstring'''
def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any:
super().__init__()
self.register_modules(
vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , )
def UpperCamelCase__ ( self , __lowercase = "auto") -> List[str]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__UpperCamelCase :List[Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__UpperCAmelCase)
def UpperCamelCase__ ( self) -> Union[str, Any]:
self.enable_attention_slicing(__UpperCAmelCase)
@torch.no_grad()
def __call__( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , __lowercase = None , **__lowercase , ) -> Optional[Any]:
if isinstance(__UpperCAmelCase , __UpperCAmelCase):
__UpperCamelCase :Optional[Any] = 1
elif isinstance(__UpperCAmelCase , __UpperCAmelCase):
__UpperCamelCase :Tuple = len(__UpperCAmelCase)
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase)}""")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(__UpperCAmelCase)}.""")
# get prompt text embeddings
__UpperCamelCase :int = self.tokenizer(
__UpperCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
__UpperCamelCase :Union[str, Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__UpperCamelCase :Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""")
__UpperCamelCase :Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
__UpperCamelCase :str = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Union[str, Any] = text_embeddings.shape
__UpperCamelCase :Optional[Any] = text_embeddings.repeat(1 , __UpperCAmelCase , 1)
__UpperCamelCase :Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__UpperCamelCase :Union[str, Any] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__UpperCamelCase :int = 42
if negative_prompt is None:
__UpperCamelCase :Tuple = ['''''']
elif type(__UpperCAmelCase) is not type(__UpperCAmelCase):
raise TypeError(
f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase)} !="""
f""" {type(__UpperCAmelCase)}.""")
elif isinstance(__UpperCAmelCase , __UpperCAmelCase):
__UpperCamelCase :Optional[Any] = [negative_prompt]
elif batch_size != len(__UpperCAmelCase):
raise ValueError(
f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase)}, but `prompt`:"""
f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
''' the batch size of `prompt`.''')
else:
__UpperCamelCase :Optional[int] = negative_prompt
__UpperCamelCase :Dict = text_input_ids.shape[-1]
__UpperCamelCase :int = self.tokenizer(
__UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' , )
__UpperCamelCase :Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__UpperCamelCase :Tuple = uncond_embeddings.shape[1]
__UpperCamelCase :Any = uncond_embeddings.repeat(__UpperCAmelCase , __UpperCAmelCase , 1)
__UpperCamelCase :Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__UpperCamelCase :Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__UpperCamelCase :Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__UpperCamelCase :Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
__UpperCamelCase :int = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__UpperCamelCase :List[Any] = torch.randn(
__UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase).to(self.device)
__UpperCamelCase :Optional[Any] = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase).to(
self.device)
else:
__UpperCamelCase :List[Any] = torch.randn(
__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase)
__UpperCamelCase :Optional[int] = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase)
else:
if latents_reference.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""")
__UpperCamelCase :Dict = latents_reference.to(self.device)
__UpperCamelCase :Optional[Any] = latents.to(self.device)
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
__UpperCamelCase :List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2
__UpperCamelCase :int = (latents_shape[2] - latents_shape_reference[2]) // 2
__UpperCamelCase :Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
__UpperCamelCase :Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
__UpperCamelCase :Optional[int] = 0 if dx < 0 else dx
__UpperCamelCase :List[str] = 0 if dy < 0 else dy
__UpperCamelCase :Optional[Any] = max(-dx , 0)
__UpperCamelCase :int = max(-dy , 0)
# import pdb
# pdb.set_trace()
__UpperCamelCase :Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(__UpperCAmelCase)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__UpperCamelCase :List[Any] = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
__UpperCamelCase :Tuple = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__UpperCamelCase :str = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys())
__UpperCamelCase :Dict = {}
if accepts_eta:
__UpperCamelCase :Tuple = eta
for i, t in enumerate(self.progress_bar(__UpperCAmelCase)):
# expand the latents if we are doing classifier free guidance
__UpperCamelCase :Optional[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCamelCase :int = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase)
# predict the noise residual
__UpperCamelCase :Tuple = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase).sample
# perform guidance
if do_classifier_free_guidance:
__UpperCamelCase , __UpperCamelCase :List[str] = noise_pred.chunk(2)
__UpperCamelCase :Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__UpperCamelCase :Optional[Any] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)
__UpperCamelCase :Optional[Any] = 1 / 0.1_82_15 * latents
__UpperCamelCase :Tuple = self.vae.decode(__UpperCAmelCase).sample
__UpperCamelCase :Dict = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCamelCase :Tuple = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if self.safety_checker is not None:
__UpperCamelCase :Any = self.feature_extractor(self.numpy_to_pil(__UpperCAmelCase) , return_tensors='''pt''').to(
self.device)
__UpperCamelCase , __UpperCamelCase :List[str] = self.safety_checker(
images=__UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype))
else:
__UpperCamelCase :Any = None
if output_type == "pil":
__UpperCamelCase :Optional[int] = self.numpy_to_pil(__UpperCAmelCase)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase)
| 43 |
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340 | 0 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase = logging.get_logger(__name__)
def __magic_name__ ( lowercase , lowercase=False ):
SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("""head""" ):
SCREAMING_SNAKE_CASE_: Dict ="""segformer.encoder.""" + key
if key.startswith("""backbone""" ):
SCREAMING_SNAKE_CASE_: Optional[int] =key.replace("""backbone""" , """segformer.encoder""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
SCREAMING_SNAKE_CASE_: Tuple =key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
SCREAMING_SNAKE_CASE_: Tuple =key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(UpperCamelCase_ )-1}''' )
if "norm" in key:
SCREAMING_SNAKE_CASE_: str =key.replace("""norm""" , """layer_norm""" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
SCREAMING_SNAKE_CASE_: Tuple =key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )]
SCREAMING_SNAKE_CASE_: int =key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(UpperCamelCase_ )-1}''' )
if "layer_norm1" in key:
SCREAMING_SNAKE_CASE_: List[Any] =key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
SCREAMING_SNAKE_CASE_: List[Any] =key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
SCREAMING_SNAKE_CASE_: Tuple =key[key.find("""block""" ) + len("""block""" )]
SCREAMING_SNAKE_CASE_: Union[str, Any] =key.replace(f'''block{idx}''' , f'''block.{int(UpperCamelCase_ )-1}''' )
if "attn.q" in key:
SCREAMING_SNAKE_CASE_: Any =key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
SCREAMING_SNAKE_CASE_: int =key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
SCREAMING_SNAKE_CASE_: Tuple =key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
SCREAMING_SNAKE_CASE_: str =key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
SCREAMING_SNAKE_CASE_: Any =key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
SCREAMING_SNAKE_CASE_: Tuple =key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
SCREAMING_SNAKE_CASE_: List[str] =key.replace("""linear_fuse.conv""" , """linear_fuse""" )
SCREAMING_SNAKE_CASE_: Optional[Any] =key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
SCREAMING_SNAKE_CASE_: Union[str, Any] =key[key.find("""linear_c""" ) + len("""linear_c""" )]
SCREAMING_SNAKE_CASE_: Union[str, Any] =key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(UpperCamelCase_ )-1}''' )
if key.startswith("""head""" ):
SCREAMING_SNAKE_CASE_: List[Any] =key.replace("""head""" , """classifier""" )
SCREAMING_SNAKE_CASE_: List[str] =value
return new_state_dict
def __magic_name__ ( lowercase , lowercase ):
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
SCREAMING_SNAKE_CASE_: Dict =state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
SCREAMING_SNAKE_CASE_: str =state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE_: Optional[Any] =kv_weight[
: config.hidden_sizes[i], :
]
SCREAMING_SNAKE_CASE_: Tuple =kv_bias[: config.hidden_sizes[i]]
SCREAMING_SNAKE_CASE_: Union[str, Any] =kv_weight[
config.hidden_sizes[i] :, :
]
SCREAMING_SNAKE_CASE_: Tuple =kv_bias[
config.hidden_sizes[i] :
]
def __magic_name__ ( ):
SCREAMING_SNAKE_CASE_: List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return image
@torch.no_grad()
def __magic_name__ ( lowercase , lowercase , lowercase ):
SCREAMING_SNAKE_CASE_: List[Any] =SegformerConfig()
SCREAMING_SNAKE_CASE_: List[Any] =False
# set attributes based on model_name
SCREAMING_SNAKE_CASE_: str ="""huggingface/label-files"""
if "segformer" in model_name:
SCREAMING_SNAKE_CASE_: Tuple =model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2]
if "ade" in model_name:
SCREAMING_SNAKE_CASE_: Optional[int] =150
SCREAMING_SNAKE_CASE_: Any ="""ade20k-id2label.json"""
SCREAMING_SNAKE_CASE_: str =(1, 150, 128, 128)
elif "city" in model_name:
SCREAMING_SNAKE_CASE_: str =19
SCREAMING_SNAKE_CASE_: Union[str, Any] ="""cityscapes-id2label.json"""
SCREAMING_SNAKE_CASE_: Tuple =(1, 19, 128, 128)
else:
raise ValueError(f'''Model {model_name} not supported''' )
elif "mit" in model_name:
SCREAMING_SNAKE_CASE_: Optional[int] =True
SCREAMING_SNAKE_CASE_: int =model_name[4:6]
SCREAMING_SNAKE_CASE_: int =1000
SCREAMING_SNAKE_CASE_: str ="""imagenet-1k-id2label.json"""
SCREAMING_SNAKE_CASE_: Union[str, Any] =(1, 1000)
else:
raise ValueError(f'''Model {model_name} not supported''' )
# set config attributes
SCREAMING_SNAKE_CASE_: Optional[int] =json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE_: Optional[Any] ={int(UpperCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_: List[Any] =idalabel
SCREAMING_SNAKE_CASE_: List[str] ={v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
SCREAMING_SNAKE_CASE_: Dict =[64, 128, 320, 512]
SCREAMING_SNAKE_CASE_: Tuple =256
elif size == "b2":
SCREAMING_SNAKE_CASE_: Dict =[64, 128, 320, 512]
SCREAMING_SNAKE_CASE_: Tuple =768
SCREAMING_SNAKE_CASE_: Union[str, Any] =[3, 4, 6, 3]
elif size == "b3":
SCREAMING_SNAKE_CASE_: Tuple =[64, 128, 320, 512]
SCREAMING_SNAKE_CASE_: Tuple =768
SCREAMING_SNAKE_CASE_: Tuple =[3, 4, 18, 3]
elif size == "b4":
SCREAMING_SNAKE_CASE_: List[Any] =[64, 128, 320, 512]
SCREAMING_SNAKE_CASE_: Union[str, Any] =768
SCREAMING_SNAKE_CASE_: List[Any] =[3, 8, 27, 3]
elif size == "b5":
SCREAMING_SNAKE_CASE_: Union[str, Any] =[64, 128, 320, 512]
SCREAMING_SNAKE_CASE_: Optional[int] =768
SCREAMING_SNAKE_CASE_: str =[3, 6, 40, 3]
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor (only resize + normalize)
SCREAMING_SNAKE_CASE_: List[Any] =SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ )
# prepare image
SCREAMING_SNAKE_CASE_: str =prepare_img()
SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
SCREAMING_SNAKE_CASE_: Dict =torch.load(UpperCamelCase_ , map_location=torch.device("""cpu""" ) )
else:
SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.load(UpperCamelCase_ , map_location=torch.device("""cpu""" ) )["""state_dict"""]
# rename keys
SCREAMING_SNAKE_CASE_: Dict =rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(UpperCamelCase_ , UpperCamelCase_ )
# create HuggingFace model and load state dict
if encoder_only:
SCREAMING_SNAKE_CASE_: Tuple =False
SCREAMING_SNAKE_CASE_: Tuple =SegformerForImageClassification(UpperCamelCase_ )
else:
SCREAMING_SNAKE_CASE_: Dict =SegformerForSemanticSegmentation(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
# forward pass
SCREAMING_SNAKE_CASE_: int =model(UpperCamelCase_ )
SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
SCREAMING_SNAKE_CASE_: int =torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
SCREAMING_SNAKE_CASE_: Tuple =torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
SCREAMING_SNAKE_CASE_: Tuple =torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
SCREAMING_SNAKE_CASE_: List[str] =torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
SCREAMING_SNAKE_CASE_: List[str] =torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
SCREAMING_SNAKE_CASE_: Dict =torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
SCREAMING_SNAKE_CASE_: Optional[int] =torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Any =torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Dict =torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Tuple =torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
SCREAMING_SNAKE_CASE_: List[str] =logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you\'d like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_UpperCAmelCase = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 173 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=_UpperCAmelCase ):
"""simple docstring"""
__a = ["""torch""", """torchsde"""]
def __init__( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : int ):
'''simple docstring'''
requires_backends(self , ["""torch""", """torchsde"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
@classmethod
def lowerCamelCase__ ( cls : Optional[int] , *UpperCamelCase : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
| 115 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 0 |
import math
from numpy import inf
from scipy.integrate import quad
def lowerCamelCase_ ( _UpperCamelCase ) -> float:
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(UpperCamelCase_ , 0 , UpperCamelCase_ , args=(UpperCamelCase_) )[0]
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> float:
"""simple docstring"""
return math.pow(UpperCamelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 279 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 0 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def UpperCamelCase_ ( ):
'''simple docstring'''
lowerCAmelCase_ : int = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch """
"""helper utility that will spawn up """
"""multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=UpperCamelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=UpperCamelCase_ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=UpperCamelCase_ )
return parser.parse_args()
def UpperCamelCase_ ( ):
'''simple docstring'''
lowerCAmelCase_ : str = parse_args()
# Import training_script as a module.
lowerCAmelCase_ : Optional[int] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowerCAmelCase_ : List[str] = script_fpath.stem
lowerCAmelCase_ : Tuple = importlib.import_module(UpperCamelCase_ )
# Patch sys.argv
lowerCAmelCase_ : Optional[int] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 120 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
snake_case_ = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
snake_case_ = TaTokenizerFast
snake_case_ = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
snake_case_ = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 24 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_lowerCAmelCase :Any = logging.get_logger(__name__)
class _UpperCAmelCase ( _UpperCAmelCase ):
'''simple docstring'''
def __init__( self , *A , **A ) -> None:
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 263 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 0 |
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]:
if not head:
return True
# split the list to two parts
__UpperCAmelCase , __UpperCAmelCase : str = head.next, head
while fast and fast.next:
__UpperCAmelCase : List[str] = fast.next.next
__UpperCAmelCase : Optional[int] = slow.next
__UpperCAmelCase : Tuple = slow.next
__UpperCAmelCase : Tuple = None # Don't forget here! But forget still works!
# reverse the second part
__UpperCAmelCase : Union[str, Any] = None
while second:
__UpperCAmelCase : Optional[Any] = second.next
__UpperCAmelCase : Union[str, Any] = node
__UpperCAmelCase : List[str] = second
__UpperCAmelCase : Union[str, Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
__UpperCAmelCase : List[str] = node.next
__UpperCAmelCase : int = head.next
return True
def _UpperCamelCase ( snake_case__ ) -> int:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
__UpperCAmelCase : List[str] = head
while fast and fast.next:
__UpperCAmelCase , __UpperCAmelCase : int = fast.next.next, slow.next
# 2. Push the second half into the stack
__UpperCAmelCase : List[Any] = [slow.val]
while slow.next:
__UpperCAmelCase : Optional[Any] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
__UpperCAmelCase : int = cur.next
return True
def _UpperCamelCase ( snake_case__ ) -> str:
if not head or not head.next:
return True
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Optional[int] = 0
while head:
if head.val in d:
d[head.val].append(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = [pos]
__UpperCAmelCase : Tuple = head.next
pos += 1
__UpperCAmelCase : Optional[int] = pos - 1
__UpperCAmelCase : Optional[int] = 0
for v in d.values():
if len(UpperCamelCase_ ) % 2 != 0:
middle += 1
else:
__UpperCAmelCase : Optional[int] = 0
for i in range(0, len(UpperCamelCase_ ) ):
if v[i] + v[len(UpperCamelCase_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 157 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 0 |
import logging
from transformers.configuration_utils import PretrainedConfig
lowerCAmelCase__ = logging.getLogger(__name__)
class a__ ( _UpperCAmelCase ):
"""simple docstring"""
__lowerCamelCase = 'masked_bert'
def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase="topK" , lowercase="constant" , lowercase=0.0 , **lowercase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = layer_norm_eps
A__ = pruning_method
A__ = mask_init
A__ = mask_scale
| 68 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 0 |
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
snake_case : List[str] = [
'''word_embeddings_layernorm.weight''',
'''word_embeddings_layernorm.bias''',
'''input_layernorm.weight''',
'''input_layernorm.bias''',
'''post_attention_layernorm.weight''',
'''post_attention_layernorm.bias''',
'''self_attention.dense.bias''',
'''mlp.dense_4h_to_h.bias''',
'''ln_f.weight''',
'''ln_f.bias''',
]
snake_case : Optional[Any] = [
'''mlp.dense_4h_to_h.weight''',
'''self_attention.dense.weight''',
]
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
a :Optional[Any] = {
'''word_embeddings.weight''': '''word_embeddings.weight''',
'''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''',
'''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''',
'''weight''': '''ln_f.weight''',
'''bias''': '''ln_f.bias''',
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
a :Union[str, Any] = int(re.match(R'''.*layer_(\d*).*''' , UpperCamelCase_ )[1] )
layer_number -= 3
return F'''h.{layer_number}.''' + key
def __lowerCamelCase ( UpperCAmelCase_ : Tuple ):
"""simple docstring"""
if dtype == torch.bool:
return 1 / 8
a :List[Any] = re.search(R'''[^\d](\d+)$''' , str(UpperCamelCase_ ) )
if bit_search is None:
raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' )
a :Any = int(bit_search.groups()[0] )
return bit_size // 8
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ):
"""simple docstring"""
if bloom_config_file == "":
a :List[Any] = BloomConfig()
else:
a :Any = BloomConfig.from_json_file(UpperCamelCase_ )
if shard_model:
a :Optional[Any] = os.listdir(UpperCamelCase_ )
a :Optional[int] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('''layer''' ) and "model_00" in s , UpperCamelCase_ ) )
a :List[Any] = {'''weight_map''': {}, '''metadata''': {}}
a :Any = 0
a :List[Any] = None
a :List[str] = BloomConfig()
for j, file in enumerate(UpperCamelCase_ ):
print('''Processing file: {}'''.format(UpperCamelCase_ ) )
a :List[Any] = None
for i in range(UpperCamelCase_ ):
# load all TP files
a :Tuple = file.replace('''model_00''' , F'''model_0{i}''' )
a :Tuple = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , map_location='''cpu''' )
# Rename keys in the transformers names
a :Optional[int] = list(temp.keys() )
for key in keys:
a :Optional[Any] = temp.pop(UpperCamelCase_ )
if tensors is None:
a :List[str] = temp
else:
for key in tensors.keys():
if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
a :Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
a :str = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
a :Tuple = tensors[key] / pretraining_tp
torch.save(
UpperCamelCase_ , os.path.join(
UpperCamelCase_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase_ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
a :str = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
a :str = '''pytorch_model_{}-of-{}.bin'''.format(
str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase_ ) ).zfill(5 ) )
a :int = BloomConfig()
a :List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
a :int = total_size
with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
with open(os.path.join(UpperCamelCase_ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f:
a :Tuple = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + '''\n'''
f.write(UpperCamelCase_ )
else:
a :Union[str, Any] = BloomModel(UpperCamelCase_ )
a :Dict = os.listdir(UpperCamelCase_ )
a :List[Any] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('''layer''' ) and "model_00" in s , UpperCamelCase_ ) )
a :Union[str, Any] = None
for i, file in enumerate(UpperCamelCase_ ):
a :Optional[Any] = None
for i in range(UpperCamelCase_ ):
# load all TP files
a :Union[str, Any] = file.replace('''model_00''' , F'''model_0{i}''' )
a :List[str] = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , map_location='''cpu''' )
# Rename keys in the transformers names
a :List[Any] = list(temp.keys() )
for key in keys:
a :List[str] = temp.pop(UpperCamelCase_ )
if tensors is None:
a :Tuple = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
a :Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
a :Optional[int] = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
a :Optional[int] = tensors[key] / pretraining_tp
a :List[Any] = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected'''
if missing_keys is None:
a :Optional[Any] = set(other_keys.missing_keys )
else:
a :List[str] = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F'''The keys {missing_keys} are missing'''
# Save pytorch-model
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
a :Optional[int] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a :str = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' )
if config.torch_dtype is not None:
a :Tuple = model.to(config.torch_dtype )
torch.save(model.state_dict() , UpperCamelCase_ )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
snake_case : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bloom_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path to the Megatron-LM checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--bloom_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--shard_model''',
action='''store_true''',
help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''',
)
parser.add_argument(
'''--pretraining_tp''',
default=4,
type=int,
help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''',
)
snake_case : List[Any] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 94 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class __A (_UpperCAmelCase):
'''simple docstring'''
__lowercase: List[Any] = """donut-swin"""
__lowercase: List[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[Any] , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[int]=96 , UpperCAmelCase_ : Optional[int]=[2, 2, 6, 2] , UpperCAmelCase_ : int=[3, 6, 12, 24] , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Optional[Any]=4.0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Tuple=1E-5 , **UpperCAmelCase_ : Any , ) ->int:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = depths
snake_case_ = len(__UpperCAmelCase )
snake_case_ = num_heads
snake_case_ = window_size
snake_case_ = mlp_ratio
snake_case_ = qkv_bias
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = hidden_act
snake_case_ = use_absolute_embeddings
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case_ = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
| 347 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 0 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {
'''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''',
'''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''',
'''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''',
}
class lowerCamelCase_ ( _UpperCAmelCase ):
'''simple docstring'''
a__ : int = """owlvit_text_model"""
def __init__( self , __lowercase=49_408 , __lowercase=512 , __lowercase=2_048 , __lowercase=12 , __lowercase=8 , __lowercase=16 , __lowercase="quick_gelu" , __lowercase=1E-5 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1.0 , __lowercase=0 , __lowercase=49_406 , __lowercase=49_407 , **__lowercase , ) -> Optional[Any]:
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase)
__UpperCamelCase :Optional[int] = vocab_size
__UpperCamelCase :int = hidden_size
__UpperCamelCase :List[str] = intermediate_size
__UpperCamelCase :Dict = num_hidden_layers
__UpperCamelCase :str = num_attention_heads
__UpperCamelCase :List[Any] = max_position_embeddings
__UpperCamelCase :Union[str, Any] = hidden_act
__UpperCamelCase :Optional[int] = layer_norm_eps
__UpperCamelCase :Optional[Any] = attention_dropout
__UpperCamelCase :str = initializer_range
__UpperCamelCase :Any = initializer_factor
@classmethod
def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> "PretrainedConfig":
cls._set_token_in_kwargs(__UpperCAmelCase)
__UpperCamelCase , __UpperCamelCase :List[str] = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase)
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''') == "owlvit":
__UpperCamelCase :Any = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase)
class lowerCamelCase_ ( _UpperCAmelCase ):
'''simple docstring'''
a__ : Union[str, Any] = """owlvit_vision_model"""
def __init__( self , __lowercase=768 , __lowercase=3_072 , __lowercase=12 , __lowercase=12 , __lowercase=3 , __lowercase=768 , __lowercase=32 , __lowercase="quick_gelu" , __lowercase=1E-5 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1.0 , **__lowercase , ) -> List[str]:
super().__init__(**__UpperCAmelCase)
__UpperCamelCase :Optional[int] = hidden_size
__UpperCamelCase :Any = intermediate_size
__UpperCamelCase :List[Any] = num_hidden_layers
__UpperCamelCase :str = num_attention_heads
__UpperCamelCase :List[Any] = num_channels
__UpperCamelCase :Tuple = image_size
__UpperCamelCase :Dict = patch_size
__UpperCamelCase :Any = hidden_act
__UpperCamelCase :Union[str, Any] = layer_norm_eps
__UpperCamelCase :int = attention_dropout
__UpperCamelCase :Any = initializer_range
__UpperCamelCase :Dict = initializer_factor
@classmethod
def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> "PretrainedConfig":
cls._set_token_in_kwargs(__UpperCAmelCase)
__UpperCamelCase , __UpperCamelCase :Dict = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase)
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''') == "owlvit":
__UpperCamelCase :int = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase)
class lowerCamelCase_ ( _UpperCAmelCase ):
'''simple docstring'''
a__ : Optional[int] = """owlvit"""
a__ : int = True
def __init__( self , __lowercase=None , __lowercase=None , __lowercase=512 , __lowercase=2.65_92 , __lowercase=True , **__lowercase , ) -> List[str]:
super().__init__(**__UpperCAmelCase)
if text_config is None:
__UpperCamelCase :Any = {}
logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''')
if vision_config is None:
__UpperCamelCase :Optional[int] = {}
logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''')
__UpperCamelCase :Union[str, Any] = OwlViTTextConfig(**__UpperCAmelCase)
__UpperCamelCase :Dict = OwlViTVisionConfig(**__UpperCAmelCase)
__UpperCamelCase :int = projection_dim
__UpperCamelCase :Optional[int] = logit_scale_init_value
__UpperCamelCase :Optional[Any] = return_dict
__UpperCamelCase :Optional[int] = 1.0
@classmethod
def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> "PretrainedConfig":
cls._set_token_in_kwargs(__UpperCAmelCase)
__UpperCamelCase , __UpperCamelCase :str = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase)
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase)
@classmethod
def UpperCamelCase__ ( cls , __lowercase , __lowercase , **__lowercase) -> Union[str, Any]:
__UpperCamelCase :List[Any] = {}
__UpperCamelCase :str = text_config
__UpperCamelCase :Dict = vision_config
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase)
def UpperCamelCase__ ( self) -> Any:
__UpperCamelCase :Union[str, Any] = copy.deepcopy(self.__dict__)
__UpperCamelCase :List[Any] = self.text_config.to_dict()
__UpperCamelCase :str = self.vision_config.to_dict()
__UpperCamelCase :Optional[Any] = self.__class__.model_type
return output
class lowerCamelCase_ ( _UpperCAmelCase ):
'''simple docstring'''
@property
def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
])
@property
def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''logits_per_image''', {0: '''batch'''}),
('''logits_per_text''', {0: '''batch'''}),
('''text_embeds''', {0: '''batch'''}),
('''image_embeds''', {0: '''batch'''}),
])
@property
def UpperCamelCase__ ( self) -> float:
return 1E-4
def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase :List[str] = super().generate_dummy_inputs(
processor.tokenizer , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , framework=__UpperCAmelCase)
__UpperCamelCase :Dict = super().generate_dummy_inputs(
processor.image_processor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase)
return {**text_input_dict, **image_input_dict}
@property
def UpperCamelCase__ ( self) -> int:
return 14
| 43 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 0 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class a ( _UpperCAmelCase ):
def __init__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str=13 , lowerCAmelCase : Tuple=7 , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Dict=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : List[str]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[int]="None" , lowerCAmelCase : str=3 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : List[Any]=None , ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: str =parent
SCREAMING_SNAKE_CASE_: str =batch_size
SCREAMING_SNAKE_CASE_: Dict =seq_length
SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training
SCREAMING_SNAKE_CASE_: Any =use_input_mask
SCREAMING_SNAKE_CASE_: Dict =use_token_type_ids
SCREAMING_SNAKE_CASE_: Tuple =use_labels
SCREAMING_SNAKE_CASE_: Tuple =vocab_size
SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_size
SCREAMING_SNAKE_CASE_: Dict =num_hidden_layers
SCREAMING_SNAKE_CASE_: Tuple =num_attention_heads
SCREAMING_SNAKE_CASE_: int =intermediate_size
SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_act
SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob
SCREAMING_SNAKE_CASE_: Any =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_: Tuple =max_position_embeddings
SCREAMING_SNAKE_CASE_: Any =type_vocab_size
SCREAMING_SNAKE_CASE_: Optional[int] =type_sequence_label_size
SCREAMING_SNAKE_CASE_: Dict =initializer_range
SCREAMING_SNAKE_CASE_: Union[str, Any] =num_labels
SCREAMING_SNAKE_CASE_: Union[str, Any] =num_choices
SCREAMING_SNAKE_CASE_: Tuple =relative_attention
SCREAMING_SNAKE_CASE_: Tuple =position_biased_input
SCREAMING_SNAKE_CASE_: int =pos_att_type
SCREAMING_SNAKE_CASE_: List[str] =scope
def lowerCamelCase__ ( self : int ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE_: List[Any] =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_: Any =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
SCREAMING_SNAKE_CASE_: Dict =None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_: Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE_: List[str] =None
SCREAMING_SNAKE_CASE_: Any =None
SCREAMING_SNAKE_CASE_: Any =None
if self.use_labels:
SCREAMING_SNAKE_CASE_: Any =ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_: int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE_: Tuple =ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE_: Any =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase__ ( self : List[Any] ) -> str:
'''simple docstring'''
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def lowerCamelCase__ ( self : Dict , lowerCAmelCase : List[Any] ) -> Tuple:
'''simple docstring'''
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Optional[int] =DebertaVaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: Union[str, Any] =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0]
SCREAMING_SNAKE_CASE_: Union[str, Any] =model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0]
SCREAMING_SNAKE_CASE_: Any =model(__UpperCAmelCase )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: str =DebertaVaForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: Any =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Dict =self.num_labels
SCREAMING_SNAKE_CASE_: Optional[int] =DebertaVaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: Dict =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(__UpperCAmelCase )
def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: str =self.num_labels
SCREAMING_SNAKE_CASE_: Optional[int] =DebertaVaForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: str =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : str ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Optional[Any] =DebertaVaForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: Tuple =model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: str =DebertaVaForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
SCREAMING_SNAKE_CASE_: Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_: List[str] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_: Dict =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_: List[Any] =model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Union[str, Any] =self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
): Union[str, Any] =config_and_inputs
SCREAMING_SNAKE_CASE_: List[Any] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class a ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
UpperCamelCase : Any = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCamelCase : Any = (
{
'feature-extraction': DebertaVaModel,
'fill-mask': DebertaVaForMaskedLM,
'question-answering': DebertaVaForQuestionAnswering,
'text-classification': DebertaVaForSequenceClassification,
'token-classification': DebertaVaForTokenClassification,
'zero-shot': DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase : Tuple = True
UpperCamelCase : Union[str, Any] = False
UpperCamelCase : Tuple = False
UpperCamelCase : List[Any] = False
UpperCamelCase : Any = False
def lowerCamelCase__ ( self : Any ) -> Any:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Optional[int] =DebertaVaModelTester(self )
SCREAMING_SNAKE_CASE_: Optional[Any] =ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def lowerCamelCase__ ( self : Tuple ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase )
def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase )
def lowerCamelCase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase )
def lowerCamelCase__ ( self : Any ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase )
def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase )
def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*__UpperCAmelCase )
@slow
def lowerCamelCase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_: int =DebertaVaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class a ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@slow
def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Dict =DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" )
SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE_: Union[str, Any] =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE_: List[str] =torch.tensor(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
| 173 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 0 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : int = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'}
UpperCAmelCase : str = {
'vocab_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt',
},
'emoji_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json',
},
}
UpperCAmelCase : Dict = {
'abeja/gpt-neox-japanese-2.7b': 2048,
}
def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Tuple:
'''simple docstring'''
with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f:
__UpperCAmelCase : Union[str, Any] = json.loads(f.read() )
__UpperCAmelCase : Optional[int] = collections.OrderedDict()
__UpperCAmelCase : Optional[int] = collections.OrderedDict()
__UpperCAmelCase : List[Any] = collections.OrderedDict()
with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f:
__UpperCAmelCase : str = f.readlines()
__UpperCAmelCase : str = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(UpperCamelCase_ ):
__UpperCAmelCase : int = b
__UpperCAmelCase : Optional[Any] = idx
for wd in b:
__UpperCAmelCase : Tuple = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class lowerCamelCase__ ( _UpperCAmelCase ):
"""simple docstring"""
__a = VOCAB_FILES_NAMES
__a = PRETRAINED_VOCAB_FILES_MAP
__a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a = ["""input_ids""", """attention_mask"""]
def __init__( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str="<|endoftext|>" , UpperCamelCase : Union[str, Any]="<|endoftext|>" , UpperCamelCase : int="<|startoftext|>" , UpperCamelCase : Optional[Any]="<|endoftext|>" , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(
unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , do_clean_text=__UpperCAmelCase , **__UpperCAmelCase , )
if not os.path.isfile(__UpperCAmelCase ):
raise ValueError(
f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
if not os.path.isfile(__UpperCAmelCase ):
raise ValueError(
f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
__UpperCAmelCase : List[str] = do_clean_text
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = load_vocab_and_emoji(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Dict = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return len(self.raw_vocab )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return dict(self.raw_vocab , **self.added_tokens_encoder )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return self.subword_tokenizer.tokenize(__UpperCAmelCase , clean=self.do_clean_text )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str ):
'''simple docstring'''
return self.vocab.get(__UpperCAmelCase , self.vocab.get(self.unk_token ) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(__UpperCAmelCase )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """""".join(__UpperCAmelCase ).strip()
return out_string
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
__UpperCAmelCase : Tuple = input_ids[-self.model_max_length :]
return input_ids
def lowerCamelCase__ ( self : str , UpperCamelCase : Dict , UpperCamelCase : List[str] = None ):
'''simple docstring'''
__UpperCAmelCase : Dict = 0
if os.path.isdir(__UpperCAmelCase ):
__UpperCAmelCase : int = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : List[str] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] )
else:
__UpperCAmelCase : int = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
__UpperCAmelCase : List[str] = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__UpperCAmelCase : Optional[int] = token_index
writer.write(""",""".join(__UpperCAmelCase ) + """\n""" )
index += 1
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
json.dump(self.emoji , __UpperCAmelCase )
return vocab_file, emoji_file
class lowerCamelCase__ ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = vocab # same as swe
__UpperCAmelCase : Optional[int] = ids_to_tokens # same as bpe
__UpperCAmelCase : Optional[Any] = emoji
__UpperCAmelCase : Optional[Any] = np.max([len(__UpperCAmelCase ) for w in self.vocab.keys()] )
__UpperCAmelCase : Union[str, Any] = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" )
__UpperCAmelCase : Any = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" )
__UpperCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" )
__UpperCAmelCase : Union[str, Any] = re.compile(
R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
__UpperCAmelCase : Tuple = re.compile(
R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
__UpperCAmelCase : Tuple = re.compile(
R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" )
__UpperCAmelCase : Optional[int] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
__UpperCAmelCase : Any = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
__UpperCAmelCase : Optional[Any] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} )
def __len__( self : int ):
'''simple docstring'''
return len(self.ids_to_tokens )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Any = self.content_repattera.sub("""<URL>""" , __UpperCAmelCase )
__UpperCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , __UpperCAmelCase )
__UpperCAmelCase : Tuple = self.content_repattera.sub("""<TEL>""" , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase )
__UpperCAmelCase : Dict = self.content_repattera.sub("""<PRICE>""" , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
__UpperCAmelCase : Any = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" )
return content
def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=False ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = text.replace(""" """ , """<SP>""" )
__UpperCAmelCase : Dict = text.replace(""" """ , """<SP>""" )
__UpperCAmelCase : Optional[Any] = text.replace("""\r\n""" , """<BR>""" )
__UpperCAmelCase : List[str] = text.replace("""\n""" , """<BR>""" )
__UpperCAmelCase : Optional[int] = text.replace("""\r""" , """<BR>""" )
__UpperCAmelCase : Optional[int] = text.replace("""\t""" , """<TAB>""" )
__UpperCAmelCase : Tuple = text.replace("""—""" , """ー""" )
__UpperCAmelCase : Optional[Any] = text.replace("""−""" , """ー""" )
for k, v in self.emoji["emoji"].items():
if k in text:
__UpperCAmelCase : List[str] = text.replace(__UpperCAmelCase , __UpperCAmelCase )
if clean:
__UpperCAmelCase : Optional[Any] = self.clean_text(__UpperCAmelCase )
def check_simbol(UpperCamelCase : Optional[Any] ):
__UpperCAmelCase : Any = x.encode()
if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 2:
__UpperCAmelCase : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC2_A1 and c <= 0xC2_BF)
or (c >= 0xC7_80 and c <= 0xC7_83)
or (c >= 0xCA_B9 and c <= 0xCB_BF)
or (c >= 0xCC_80 and c <= 0xCD_A2)
):
return True
return False
def checkuae(UpperCamelCase : int ):
__UpperCAmelCase : List[Any] = x.encode()
if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 3:
__UpperCAmelCase : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE2_80_80 and c <= 0xE2_B0_7F:
return True
return False
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : List[Any] = []
while pos < len(__UpperCAmelCase ):
__UpperCAmelCase : Dict = min(len(__UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3
__UpperCAmelCase : Union[str, Any] = [] # (token_id, token, pos)
for e in range(__UpperCAmelCase , __UpperCAmelCase , -1 ):
__UpperCAmelCase : Dict = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__UpperCAmelCase ) > 2:
__UpperCAmelCase : Any = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__UpperCAmelCase ) > 0:
# the smallest token_id is adopted
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = sorted(__UpperCAmelCase , key=lambda UpperCamelCase : x[0] )[0]
result.append(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = e
else:
__UpperCAmelCase : Optional[int] = pos + 1
__UpperCAmelCase : Optional[int] = text[pos:end]
if check_simbol(__UpperCAmelCase ):
result.append("""<KIGOU>""" )
elif checkuae(__UpperCAmelCase ):
result.append("""<U2000U2BFF>""" )
else:
for i in wd.encode("""utf-8""" ):
result.append("""<|byte%d|>""" % i )
__UpperCAmelCase : Optional[int] = end
return result
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str="\n" ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = []
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : List[str] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__UpperCAmelCase ) > 0:
words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) )
__UpperCAmelCase : Optional[Any] = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word] )
elif word == "<SP>":
words.append(""" """ )
elif word == "<BR>":
words.append(__UpperCAmelCase )
elif word == "<TAB>":
words.append("""\t""" )
elif word == "<BLOCK>":
words.append("""▀""" )
elif word == "<KIGOU>":
words.append("""ǀ""" )
elif word == "<U2000U2BFF>":
words.append("""‖""" )
else:
words.append(__UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) )
__UpperCAmelCase : Union[str, Any] = """""".join(__UpperCAmelCase )
return text
| 115 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 0 |
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__'''
lowerCAmelCase_ = '''Dummy User'''
lowerCAmelCase_ = '''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'''
lowerCAmelCase_ = '''https://hub-ci.huggingface.co'''
lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Dict:
"""simple docstring"""
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , UpperCamelCase_ )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , UpperCamelCase_ )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , UpperCamelCase_ )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , UpperCamelCase_ )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
HfFolder.save_token(UpperCamelCase_ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
return HfApi(endpoint=UpperCamelCase_ )
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Optional[int] = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_ )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> str:
"""simple docstring"""
def _cleanup_repo(_UpperCamelCase ):
hf_api.delete_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]:
"""simple docstring"""
@contextmanager
def _temporary_repo(_UpperCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_ )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
snake_case_ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10E3 )}'''
snake_case_ : Tuple = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' , private=UpperCamelCase_ )
hf_api.upload_file(
token=UpperCamelCase_ , path_or_fileobj=str(UpperCamelCase_ ) , path_in_repo='''data/text_data.txt''' , repo_id=UpperCamelCase_ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
"""simple docstring"""
snake_case_ : List[str] = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}'''
snake_case_ : Any = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' , private=UpperCamelCase_ )
hf_api.upload_file(
token=UpperCamelCase_ , path_or_fileobj=str(UpperCamelCase_ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase_ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[Any] = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}'''
snake_case_ : Optional[Any] = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' , private=UpperCamelCase_ )
hf_api.upload_file(
token=UpperCamelCase_ , path_or_fileobj=str(UpperCamelCase_ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase_ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_ , token=UpperCamelCase_ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
return hf_private_dataset_repo_zipped_img_data_
| 279 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 0 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__A : Dict = (720, 1280) # Height, Width
__A : str = (0.4, 0.6) # if height or width lower than this scale, drop it.
__A : Optional[int] = 1 / 100
__A : Dict = ""
__A : List[str] = ""
__A : int = ""
__A : str = 250
def UpperCamelCase_ ( ):
'''simple docstring'''
lowerCAmelCase_, lowerCAmelCase_ : Dict = get_dataset(UpperCamelCase_ , UpperCamelCase_ )
for index in range(UpperCamelCase_ ):
lowerCAmelCase_ : List[str] = random.sample(range(len(UpperCamelCase_ ) ) , 4 )
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : str = update_image_and_anno(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , filter_scale=UpperCamelCase_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowerCAmelCase_ : int = random_chars(32 )
lowerCAmelCase_ : Optional[Any] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
lowerCAmelCase_ : Dict = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
lowerCAmelCase_ : Optional[int] = []
for anno in new_annos:
lowerCAmelCase_ : Optional[int] = anno[3] - anno[1]
lowerCAmelCase_ : Optional[Any] = anno[4] - anno[2]
lowerCAmelCase_ : Tuple = anno[1] + width / 2
lowerCAmelCase_ : List[str] = anno[2] + height / 2
lowerCAmelCase_ : str = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(UpperCamelCase_ )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def UpperCamelCase_ ( A__ : str , A__ : str ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = []
lowerCAmelCase_ : str = []
for label_file in glob.glob(os.path.join(UpperCamelCase_ , """*.txt""" ) ):
lowerCAmelCase_ : Any = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(UpperCamelCase_ ) as in_file:
lowerCAmelCase_ : Optional[Any] = in_file.readlines()
lowerCAmelCase_ : Any = os.path.join(UpperCamelCase_ , f'{label_name}.jpg' )
lowerCAmelCase_ : Any = []
for obj_list in obj_lists:
lowerCAmelCase_ : Tuple = obj_list.rstrip("""\n""" ).split(""" """ )
lowerCAmelCase_ : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2
lowerCAmelCase_ : Tuple = float(obj[2] ) - float(obj[4] ) / 2
lowerCAmelCase_ : List[Any] = float(obj[1] ) + float(obj[3] ) / 2
lowerCAmelCase_ : Union[str, Any] = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(UpperCamelCase_ )
labels.append(UpperCamelCase_ )
return img_paths, labels
def UpperCamelCase_ ( A__ : list , A__ : list , A__ : list[int] , A__ : tuple[int, int] , A__ : tuple[float, float] , A__ : float = 0.0 , ):
'''simple docstring'''
lowerCAmelCase_ : Dict = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
lowerCAmelCase_ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase_ : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase_ : Optional[Any] = int(scale_x * output_size[1] )
lowerCAmelCase_ : List[Any] = int(scale_y * output_size[0] )
lowerCAmelCase_ : List[Any] = []
lowerCAmelCase_ : Optional[int] = []
for i, index in enumerate(UpperCamelCase_ ):
lowerCAmelCase_ : Tuple = all_img_list[index]
path_list.append(UpperCamelCase_ )
lowerCAmelCase_ : Any = all_annos[index]
lowerCAmelCase_ : Union[str, Any] = cva.imread(UpperCamelCase_ )
if i == 0: # top-left
lowerCAmelCase_ : Tuple = cva.resize(UpperCamelCase_ , (divid_point_x, divid_point_y) )
lowerCAmelCase_ : List[Any] = img
for bbox in img_annos:
lowerCAmelCase_ : int = bbox[1] * scale_x
lowerCAmelCase_ : List[str] = bbox[2] * scale_y
lowerCAmelCase_ : str = bbox[3] * scale_x
lowerCAmelCase_ : Tuple = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
lowerCAmelCase_ : Union[str, Any] = cva.resize(UpperCamelCase_ , (output_size[1] - divid_point_x, divid_point_y) )
lowerCAmelCase_ : Union[str, Any] = img
for bbox in img_annos:
lowerCAmelCase_ : List[str] = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase_ : int = bbox[2] * scale_y
lowerCAmelCase_ : str = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase_ : List[Any] = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
lowerCAmelCase_ : int = cva.resize(UpperCamelCase_ , (divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase_ : Dict = img
for bbox in img_annos:
lowerCAmelCase_ : Dict = bbox[1] * scale_x
lowerCAmelCase_ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase_ : int = bbox[3] * scale_x
lowerCAmelCase_ : Dict = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
lowerCAmelCase_ : Optional[int] = cva.resize(
UpperCamelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase_ : int = img
for bbox in img_annos:
lowerCAmelCase_ : Dict = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase_ : List[str] = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase_ : List[str] = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase_ : Dict = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
lowerCAmelCase_ : str = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def UpperCamelCase_ ( A__ : int ):
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
lowerCAmelCase_ : int = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 120 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 0 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
snake_case_ = {'tokenization_byt5': ['ByT5Tokenizer']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 24 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 0 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_ (UpperCamelCase__ : int ):
_UpperCAmelCase : Union[str, Any] = 1
_UpperCAmelCase : Dict = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def lowerCamelCase_ ():
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase,_lowerCAmelCase :str = 10, 9
_lowerCAmelCase :Any = defaultdict(list)
_lowerCAmelCase :Optional[int] = {}
_lowerCAmelCase :Union[str, Any] = []
_lowerCAmelCase :List[str] = 0
_lowerCAmelCase :List[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 263 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 0 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _snake_case :
def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any=13 , __lowerCamelCase: List[Any]=30 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Dict=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Optional[Any]=37 , __lowerCamelCase: Optional[Any]="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: str=0.02 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=2 , ) -> List[str]:
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : str = image_size
__UpperCAmelCase : Tuple = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : int = is_training
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : List[str] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : List[str] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : str = scope
__UpperCAmelCase : List[Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__UpperCAmelCase : Optional[Any] = (image_size // patch_size) ** 2
__UpperCAmelCase : Any = num_patches + 2
def _lowerCamelCase ( self: int ) -> Optional[Any]:
__UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : str = None
if self.use_labels:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: str ) -> Optional[int]:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _lowerCamelCase ( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Tuple ) -> str:
__UpperCAmelCase : Tuple = TFDeiTModel(config=__UpperCAmelCase )
__UpperCAmelCase : Tuple = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple ) -> str:
__UpperCAmelCase : Optional[Any] = TFDeiTForMaskedImageModeling(config=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : Dict = TFDeiTForMaskedImageModeling(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ) -> Union[str, Any]:
__UpperCAmelCase : Tuple = self.type_sequence_label_size
__UpperCAmelCase : List[str] = TFDeiTForImageClassification(__UpperCAmelCase )
__UpperCAmelCase : Dict = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Tuple = TFDeiTForImageClassification(__UpperCAmelCase )
__UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowerCamelCase__: Any = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
lowerCamelCase__: Dict = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
lowerCamelCase__: Any = False
lowerCamelCase__: Tuple = False
lowerCamelCase__: Any = False
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = TFDeiTModelTester(self )
__UpperCAmelCase : int = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _lowerCamelCase ( self: Tuple ) -> Any:
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: int ) -> Tuple:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__UpperCAmelCase : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , tf.keras.layers.Dense ) )
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = model_class(__UpperCAmelCase )
__UpperCAmelCase : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _lowerCamelCase ( self: Dict ) -> Tuple:
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCamelCase ( self: Dict ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _lowerCamelCase ( self: Dict ) -> int:
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = TFDeiTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _UpperCamelCase ( ) -> Optional[Any]:
__UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Any ) -> Dict:
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
__UpperCAmelCase : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__UpperCAmelCase : Union[str, Any] = self.default_image_processor
__UpperCAmelCase : Any = prepare_img()
__UpperCAmelCase : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="tf" )
# forward pass
__UpperCAmelCase : str = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 157 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 0 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
_snake_case = 11
_snake_case = int("""1""" + """0""" * digit_len )
for num in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
solutions.append(f"""{num}/{den}""" )
den += 1
num += 1
_snake_case = 10
return solutions
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 2 ):
_snake_case = 1.0
for fraction in fraction_list(_SCREAMING_SNAKE_CASE ):
_snake_case = Fraction(_SCREAMING_SNAKE_CASE )
result *= frac.denominator / frac.numerator
return int(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(solution()) | 341 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase (self ) -> Any:
_snake_case = 1
_snake_case = 3
_snake_case = (32, 32)
_snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase )
return image
@property
def lowercase (self ) -> Dict:
torch.manual_seed(0 )
_snake_case = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def lowercase (self ) -> List[str]:
torch.manual_seed(0 )
_snake_case = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def lowercase (self ) -> List[Any]:
torch.manual_seed(0 )
_snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
return CLIPTextModel(UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator
_snake_case = self.dummy_cond_unet_upscale
_snake_case = DDPMScheduler()
_snake_case = DDIMScheduler(prediction_type="""v_prediction""" )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_snake_case = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , )
_snake_case = sd_pipe.to(UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase )
_snake_case = """A painting of a squirrel eating a burger"""
_snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_snake_case = output.images
_snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCAmelCase , )[0]
_snake_case = image[0, -3:, -3:, -1]
_snake_case = image_from_tuple[0, -3:, -3:, -1]
_snake_case = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_snake_case = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase (self ) -> Any:
_snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator
_snake_case = self.dummy_cond_unet_upscale
_snake_case = DDPMScheduler()
_snake_case = DDIMScheduler(prediction_type="""v_prediction""" )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_snake_case = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , )
_snake_case = sd_pipe.to(UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase )
_snake_case = """A painting of a squirrel eating a burger"""
_snake_case = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_snake_case = output.images
assert image.shape[0] == 2
_snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_snake_case = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def lowercase (self ) -> Optional[Any]:
_snake_case = self.dummy_cond_unet_upscale
_snake_case = DDPMScheduler()
_snake_case = DDIMScheduler(prediction_type="""v_prediction""" )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_snake_case = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_snake_case = unet.half()
_snake_case = text_encoder.half()
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , )
_snake_case = sd_pipe.to(UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase )
_snake_case = """A painting of a squirrel eating a burger"""
_snake_case = torch.manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_snake_case = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase (self ) -> str:
_snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_snake_case = """stabilityai/stable-diffusion-x4-upscaler"""
_snake_case = StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
pipe.enable_attention_slicing()
_snake_case = """a cat sitting on a park bench"""
_snake_case = torch.manual_seed(0 )
_snake_case = pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type="""np""" , )
_snake_case = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def lowercase (self ) -> Optional[int]:
_snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_snake_case = """stabilityai/stable-diffusion-x4-upscaler"""
_snake_case = StableDiffusionUpscalePipeline.from_pretrained(
UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
pipe.enable_attention_slicing()
_snake_case = """a cat sitting on a park bench"""
_snake_case = torch.manual_seed(0 )
_snake_case = pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type="""np""" , )
_snake_case = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def lowercase (self ) -> str:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_snake_case = """stabilityai/stable-diffusion-x4-upscaler"""
_snake_case = StableDiffusionUpscalePipeline.from_pretrained(
UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_snake_case = """a cat sitting on a park bench"""
_snake_case = torch.manual_seed(0 )
_snake_case = pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_snake_case = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9 | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = False ) -> int:
_snake_case = scheduler
_snake_case = optimizers if isinstance(UpperCAmelCase , (list, tuple) ) else [optimizers]
_snake_case = split_batches
_snake_case = step_with_optimizer
_snake_case = GradientState()
def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_snake_case = AcceleratorState().num_processes
for _ in range(UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , """total_steps""" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
else:
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
def lowercase (self ) -> Tuple:
return self.scheduler.get_last_lr()
def lowercase (self ) -> Optional[int]:
return self.scheduler.state_dict()
def lowercase (self , UpperCAmelCase ) -> List[str]:
self.scheduler.load_state_dict(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
return self.scheduler.get_lr()
def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
return self.scheduler.print_lr(*UpperCAmelCase , **UpperCAmelCase ) | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
__lowerCAmelCase = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = graph
# mapping node to its parent in resulting breadth first tree
_snake_case = {}
_snake_case = source_vertex
def lowercase (self ) -> None:
_snake_case = {self.source_vertex}
_snake_case = None
_snake_case = [self.source_vertex] # first in first out queue
while queue:
_snake_case = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(UpperCAmelCase )
_snake_case = vertex
queue.append(UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> str:
if target_vertex == self.source_vertex:
return self.source_vertex
_snake_case = self.parent.get(UpperCAmelCase )
if target_vertex_parent is None:
_snake_case = (
f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(UpperCAmelCase )
return self.shortest_path(UpperCAmelCase ) + f"""->{target_vertex}"""
if __name__ == "__main__":
__lowerCAmelCase = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo')) | 341 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
__lowerCAmelCase = input('Enter image url: ').strip()
print(f'''Downloading image from {url} ...''')
__lowerCAmelCase = BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
__lowerCAmelCase = soup.find('meta', {'property': 'og:image'})['content']
__lowerCAmelCase = requests.get(image_url).content
__lowerCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(f'''Done. Image saved to disk as {file_name}.''') | 341 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__lowerCAmelCase = 50_003
__lowerCAmelCase = 50_002
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = PLBartTokenizer
lowerCAmelCase_ = None
lowerCAmelCase_ = False
def lowercase (self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
_snake_case = PLBartTokenizer(UpperCAmelCase , language_codes="""base""" , keep_accents=UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase (self ) -> Union[str, Any]:
_snake_case = PLBartTokenizer(UpperCAmelCase , language_codes="""base""" , keep_accents=UpperCAmelCase )
_snake_case = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_snake_case = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_snake_case = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
_snake_case = tokenizer.vocab_size
_snake_case = [tokenizer.convert_ids_to_tokens(UpperCAmelCase ) for x in range(end - 4 , UpperCAmelCase )]
self.assertListEqual(UpperCAmelCase , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
_snake_case = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
_snake_case = tokenizer(UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) , UpperCAmelCase , )
def lowercase (self ) -> List[Any]:
_snake_case = PLBartTokenizer(UpperCAmelCase , language_codes="""multi""" , keep_accents=UpperCAmelCase )
_snake_case = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_snake_case = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_snake_case = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
_snake_case = tokenizer.vocab_size
_snake_case = [tokenizer.convert_ids_to_tokens(UpperCAmelCase ) for x in range(end - 7 , UpperCAmelCase )]
self.assertListEqual(
UpperCAmelCase , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
_snake_case = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
_snake_case = tokenizer(UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) , UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = "uclanlp/plbart-python-en_XX"
lowerCAmelCase_ = [
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
]
lowerCAmelCase_ = [
"Returns the maximum value of a b c.",
"Sums the values of a b c.",
]
lowerCAmelCase_ = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase (cls ) -> Optional[int]:
_snake_case = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
_snake_case = 1
return cls
def lowercase (self ) -> Union[str, Any]:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 50003 )
def lowercase (self ) -> Union[str, Any]:
_snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase )
def lowercase (self ) -> Tuple:
self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids )
_snake_case = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
_snake_case = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
_snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase )
def lowercase (self ) -> Union[str, Any]:
_snake_case = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , UpperCAmelCase )
_snake_case = 10
_snake_case = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , UpperCAmelCase )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
def lowercase (self ) -> Tuple:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [50004, 50001] )
def lowercase (self ) -> Optional[Any]:
_snake_case = tempfile.mkdtemp()
_snake_case = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(UpperCAmelCase )
_snake_case = PLBartTokenizer.from_pretrained(UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase )
@require_torch
def lowercase (self ) -> Dict:
_snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors="""pt""" )
_snake_case = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase (self ) -> int:
_snake_case = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
_snake_case = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
_snake_case = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase (self ) -> Optional[Any]:
_snake_case = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors="""pt""" )
_snake_case = self.tokenizer(
text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=10 , return_tensors="""pt""" )
_snake_case = targets["""input_ids"""]
_snake_case = shift_tokens_right(UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase (self ) -> Tuple:
_snake_case = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , {
# A, test, EOS, en_XX
"""input_ids""": [[150, 242, 2, 50003]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 50001,
} , ) | 341 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 1 |
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
__lowerCAmelCase = logging.getLogger(__name__)
__lowerCAmelCase = 50 # max width of layer names
__lowerCAmelCase = 70 # max width of quantizer names
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = parser.add_argument_group("""quant_trainer arguments""" )
group.add_argument("""--wprec""" , type=_SCREAMING_SNAKE_CASE , default=8 , help="""weight precision""" )
group.add_argument("""--aprec""" , type=_SCREAMING_SNAKE_CASE , default=8 , help="""activation precision""" )
group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" )
group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" )
group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" )
group.add_argument("""--quant-disable-keyword""" , type=_SCREAMING_SNAKE_CASE , nargs="""+""" , help="""disable quantizers by keyword""" )
group.add_argument("""--quant-disable-layer-module""" , type=_SCREAMING_SNAKE_CASE , help="""disable quantizers by keyword under layer.""" )
group.add_argument("""--quant-enable-layer-module""" , type=_SCREAMING_SNAKE_CASE , help="""enable quantizers by keyword under layer""" )
group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" )
group.add_argument("""--percentile""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""percentile for PercentileCalibrator""" )
group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" )
group.add_argument("""--clip-gelu""" , metavar="""N""" , type=_SCREAMING_SNAKE_CASE , help="""clip gelu output maximum value to N""" )
group.add_argument(
"""--recalibrate-weights""" , action="""store_true""" , help=(
"""recalibrate weight amaxes by taking the max of the weights."""
""" amaxes will be computed with the current quantization granularity (axis)."""
) , )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if args.calibrator == "max":
_snake_case = """max"""
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("""Specify --percentile when using percentile calibrator""" )
_snake_case = """histogram"""
elif args.calibrator == "mse":
_snake_case = """histogram"""
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
_snake_case = QuantDescriptor(num_bits=args.aprec , calib_method=_SCREAMING_SNAKE_CASE )
_snake_case = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_SCREAMING_SNAKE_CASE )
quant_nn.QuantLinear.set_default_quant_desc_weight(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
logger.info("""Configuring Model for Quantization""" )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_SCREAMING_SNAKE_CASE , ["""embeddings"""] , which="""weight""" , _disabled=_SCREAMING_SNAKE_CASE )
if args.quant_disable:
set_quantizer_by_name(_SCREAMING_SNAKE_CASE , [""""""] , _disabled=_SCREAMING_SNAKE_CASE )
if args.quant_disable_keyword:
set_quantizer_by_name(_SCREAMING_SNAKE_CASE , args.quant_disable_keyword , _disabled=_SCREAMING_SNAKE_CASE )
if args.quant_disable_layer_module:
set_quantizer_by_name(_SCREAMING_SNAKE_CASE , [R"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=_SCREAMING_SNAKE_CASE )
if args.quant_enable_layer_module:
set_quantizer_by_name(_SCREAMING_SNAKE_CASE , [R"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=_SCREAMING_SNAKE_CASE )
if args.recalibrate_weights:
recalibrate_weights(_SCREAMING_SNAKE_CASE )
if args.fuse_qkv:
fuse_qkv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if args.clip_gelu:
clip_gelu(_SCREAMING_SNAKE_CASE , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
logger.info("""Enabling Calibration""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
logger.info("""Loading calibrated amax""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("""percentile""" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
def fusea(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for mod in [qq, qk, qv]:
if not hasattr(_SCREAMING_SNAKE_CASE , """_amax""" ):
print(""" WARNING: NO AMAX BUFFER""" )
return
_snake_case = qq._amax.detach().item()
_snake_case = qk._amax.detach().item()
_snake_case = qv._amax.detach().item()
_snake_case = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
qq._amax.fill_(_SCREAMING_SNAKE_CASE )
qk._amax.fill_(_SCREAMING_SNAKE_CASE )
qv._amax.fill_(_SCREAMING_SNAKE_CASE )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith(""".attention.self""" ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for name, mod in model.named_modules():
if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ):
_snake_case = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_SCREAMING_SNAKE_CASE )
_snake_case = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
for name, mod in model.named_modules():
if hasattr(_SCREAMING_SNAKE_CASE , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None:
_snake_case = mod.weight.shape[0]
_snake_case = mod._weight_quantizer._amax.detach()
_snake_case = torch.ones(_SCREAMING_SNAKE_CASE , dtype=amax.dtype , device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
for name, mod in model.named_modules():
if hasattr(_SCREAMING_SNAKE_CASE , """_weight_quantizer""" ):
if not hasattr(mod.weight_quantizer , """_amax""" ):
print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_snake_case = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_snake_case = set(range(len(mod.weight.size() ) ) ) - axis_set
_snake_case = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_SCREAMING_SNAKE_CASE , keepdims=_SCREAMING_SNAKE_CASE ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
_snake_case = amax
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE=180 , _SCREAMING_SNAKE_CASE=None ):
if ignore is None:
_snake_case = []
elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = [ignore]
_snake_case = 0
for name, mod in model.named_modules():
if not hasattr(_SCREAMING_SNAKE_CASE , """weight""" ):
continue
_snake_case = max(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) )
for name, mod in model.named_modules():
_snake_case = getattr(_SCREAMING_SNAKE_CASE , """_input_quantizer""" , _SCREAMING_SNAKE_CASE )
_snake_case = getattr(_SCREAMING_SNAKE_CASE , """_weight_quantizer""" , _SCREAMING_SNAKE_CASE )
if not hasattr(_SCREAMING_SNAKE_CASE , """weight""" ):
continue
if type(_SCREAMING_SNAKE_CASE ) in ignore:
continue
if [True for s in ignore if type(_SCREAMING_SNAKE_CASE ) is str and s in name]:
continue
_snake_case = f"""Act:{input_q.extra_repr()}"""
_snake_case = f"""Wgt:{weight_q.extra_repr()}"""
_snake_case = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_SCREAMING_SNAKE_CASE ) <= line_width:
logger.info(_SCREAMING_SNAKE_CASE )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{" ":{name_width}} {wgt_str}""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = 0
for name, mod in model.named_modules():
if isinstance(_SCREAMING_SNAKE_CASE , pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if quantizer_mod is not None:
assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="both" , **_SCREAMING_SNAKE_CASE ):
_snake_case = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """_input_quantizer""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if which in ["weight", "both"]:
set_quantizer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """_weight_quantizer""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
for name, mod in model.named_modules():
if hasattr(_SCREAMING_SNAKE_CASE , """_input_quantizer""" ) or hasattr(_SCREAMING_SNAKE_CASE , """_weight_quantizer""" ):
for n in names:
if re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
set_quantizers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
elif name.endswith("""_quantizer""" ):
for n in names:
if re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info(_SCREAMING_SNAKE_CASE ) | 341 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=224 , UpperCAmelCase=1000 , UpperCAmelCase=[3, 3, 6, 4] , UpperCAmelCase=[48, 56, 112, 220] , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = num_channels
_snake_case = is_training
_snake_case = use_labels
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = num_labels
_snake_case = image_size
_snake_case = layer_depths
_snake_case = embed_dims
def lowercase (self ) -> Any:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.num_labels )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> int:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCAmelCase , layer_scale_init_value=1e-5 , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
_snake_case = SwiftFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
_snake_case = self.num_labels
_snake_case = SwiftFormerForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
_snake_case = SwiftFormerForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase (self ) -> Dict:
((_snake_case), (_snake_case), (_snake_case)) = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Union[str, Any]:
_snake_case = SwiftFormerModelTester(self )
_snake_case = ConfigTester(
self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowercase (self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" )
def lowercase (self ) -> List[str]:
pass
def lowercase (self ) -> Any:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def lowercase (self ) -> int:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> Union[str, Any]:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@slow
def lowercase (self ) -> List[str]:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = SwiftFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skip(reason="""SwiftFormer does not output attentions""" )
def lowercase (self ) -> Optional[Any]:
pass
def lowercase (self ) -> Optional[int]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.hidden_states
_snake_case = 8
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(UpperCAmelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
def _config_zero_init(UpperCAmelCase ):
_snake_case = copy.deepcopy(UpperCAmelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(UpperCAmelCase , UpperCAmelCase , 1e-1_0 )
if isinstance(getattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ):
_snake_case = _config_zero_init(getattr(UpperCAmelCase , UpperCAmelCase ) )
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return configs_no_init
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Any:
pass
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Dict:
return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None
@slow
def lowercase (self ) -> Any:
_snake_case = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# verify the logits
_snake_case = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def __SCREAMING_SNAKE_CASE ( ):
print("""Making key files...""" )
make_key_files("""rsa""" , 1024 )
print("""Key files generation successful.""" )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
print("""Generating prime p...""" )
_snake_case = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE )
print("""Generating prime q...""" )
_snake_case = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE )
_snake_case = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
_snake_case = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
_snake_case = cryptoMath.find_mod_inverse(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) )
_snake_case = (n, e)
_snake_case = (n, d)
return (public_key, private_key)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print("""\nWARNING:""" )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
_snake_case, _snake_case = generate_key(_SCREAMING_SNAKE_CASE )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , """w""" ) as out_file:
out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , """w""" ) as out_file:
out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main() | 341 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 1 |
'''simple docstring'''
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
_snake_case = flax_key_tuple[:-1] + ("""weight""",)
_snake_case = torch.permute(_SCREAMING_SNAKE_CASE , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(_SCREAMING_SNAKE_CASE ):
# linear layer
_snake_case = flax_key_tuple[:-1] + ("""weight""",)
_snake_case = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
_snake_case = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if "metadata" in layer:
_snake_case = layer.split("""metadata""" )
_snake_case = """""".join(split_layer[0] )[:-1]
_snake_case = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
_snake_case = layer.split("""kvstore""" )
_snake_case = """""".join(split_layer[0] )[:-1]
_snake_case = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
_snake_case = layer.split("""/""" )
_snake_case = """/""".join(split_layer[:-1] )
_snake_case = (split_layer[-1],)
if "kvstore/path" in layer:
_snake_case = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
_snake_case = """file"""
else:
_snake_case = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = rename_keys(_SCREAMING_SNAKE_CASE )
_snake_case = {}
for k, v in current_block.items():
_snake_case = v
_snake_case = new_current_block
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = WEIGHTS_NAME ):
_snake_case = convert_file_size_to_int(_SCREAMING_SNAKE_CASE )
_snake_case = []
_snake_case = {}
_snake_case = 0
_snake_case = 0
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
_snake_case = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
_snake_case = flatten_dict(_SCREAMING_SNAKE_CASE , sep="""/""" )
_snake_case = {}
for layer in checkpoint_info.keys():
_snake_case, _snake_case, _snake_case = get_key_and_tensorstore_dict(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if curr_real_layer_name in all_layers:
_snake_case = content
else:
_snake_case = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
_snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
_snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
_snake_case, _snake_case = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _SCREAMING_SNAKE_CASE )
_snake_case = """/""".join(_SCREAMING_SNAKE_CASE )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
_snake_case = os.path.join(
_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) )
rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
sharded_state_dicts.append(current_block.keys() )
del current_block
_snake_case = {}
_snake_case = 0
_snake_case = raw_weights.to(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) )
rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(_SCREAMING_SNAKE_CASE ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
_snake_case = {}
_snake_case = {}
for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ):
_snake_case = weights_name.replace(
""".bin""" , f"""-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d}
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_snake_case = shard
for key in shard:
_snake_case = shard_file
# Add the metadata
_snake_case = {"""total_size""": total_size}
_snake_case = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" , encoding="""utf-8""" ) as f:
_snake_case = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + """\n"""
f.write(_SCREAMING_SNAKE_CASE )
return metadata, index
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__lowerCAmelCase = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __SCREAMING_SNAKE_CASE ( ):
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
_snake_case = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
_snake_case = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
_snake_case = TaTokenizer.from_pretrained("""t5-small""" )
_snake_case = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
_snake_case = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids
_snake_case = model.generate(_SCREAMING_SNAKE_CASE , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) ) | 341 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class _lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase_ = LEDConfig
lowerCAmelCase_ = {}
lowerCAmelCase_ = "gelu"
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=20 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=4 , ) -> Any:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def lowercase (self ) -> Tuple:
_snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case = prepare_led_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = tf.concat(
[tf.zeros_like(UpperCAmelCase )[:, :-1], tf.ones_like(UpperCAmelCase )[:, -1:]] , axis=-1 , )
_snake_case = global_attention_mask
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
_snake_case = TFLEDModel(config=UpperCAmelCase ).get_decoder()
_snake_case = inputs_dict["""input_ids"""]
_snake_case = input_ids[:1, :]
_snake_case = inputs_dict["""attention_mask"""][:1, :]
_snake_case = 1
# first forward pass
_snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase )
_snake_case, _snake_case = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0]
_snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case = output_from_no_past[:, -3:, random_slice_idx]
_snake_case = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
lowerCAmelCase_ = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase_ = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ = True
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = TFLEDModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase )
def lowercase (self ) -> Tuple:
self.config_tester.run_common_tests()
def lowercase (self ) -> Optional[int]:
_snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = tf.zeros_like(inputs_dict["""attention_mask"""] )
_snake_case = 2
_snake_case = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , )
_snake_case = True
_snake_case = self.model_tester.seq_length
_snake_case = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(UpperCAmelCase ):
_snake_case = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(UpperCAmelCase ):
_snake_case = [t.numpy() for t in outputs.encoder_attentions]
_snake_case = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case = True
_snake_case = False
_snake_case = False
_snake_case = model_class(UpperCAmelCase )
_snake_case = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
_snake_case = model_class(UpperCAmelCase )
_snake_case = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
_snake_case = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
_snake_case = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" )
def lowercase (self ) -> Union[str, Any]:
pass
def lowercase (self ) -> Optional[int]:
# TODO: Head-masking not yet implement
pass
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
return tf.constant(_SCREAMING_SNAKE_CASE , dtype=tf.intaa )
__lowerCAmelCase = 1E-4
@slow
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> List[Any]:
_snake_case = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led
# change to intended input here
_snake_case = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
_snake_case = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
_snake_case = prepare_led_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )[0]
_snake_case = (1, 1024, 768)
self.assertEqual(output.shape , UpperCAmelCase )
# change to expected output here
_snake_case = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-3 )
def lowercase (self ) -> Optional[int]:
_snake_case = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" )
# change to intended input here
_snake_case = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
_snake_case = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
_snake_case = prepare_led_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )[0]
_snake_case = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , UpperCAmelCase )
# change to expected output here
_snake_case = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-3 , rtol=1e-3 ) | 341 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase = {
'configuration_clipseg': [
'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP',
'CLIPSegConfig',
'CLIPSegTextConfig',
'CLIPSegVisionConfig',
],
'processing_clipseg': ['CLIPSegProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST',
'CLIPSegModel',
'CLIPSegPreTrainedModel',
'CLIPSegTextModel',
'CLIPSegVisionModel',
'CLIPSegForImageSegmentation',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {'vocab_file': 'spiece.model'}
__lowerCAmelCase = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<eop>", "<eod>"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
_snake_case = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
_snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
_snake_case = 3
_snake_case = do_lower_case
_snake_case = remove_space
_snake_case = keep_accents
_snake_case = vocab_file
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
_snake_case = jieba
_snake_case = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def lowercase (self ) -> List[Any]:
return len(self.sp_model )
def lowercase (self ) -> Optional[int]:
_snake_case = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__(self ) -> List[Any]:
_snake_case = self.__dict__.copy()
_snake_case = None
return state
def __setstate__(self , UpperCAmelCase ) -> Optional[Any]:
_snake_case = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_snake_case = {}
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase (self , UpperCAmelCase ) -> Optional[Any]:
if self.remove_space:
_snake_case = """ """.join(inputs.strip().split() )
else:
_snake_case = inputs
_snake_case = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_snake_case = unicodedata.normalize("""NFKD""" , UpperCAmelCase )
_snake_case = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase )] )
if self.do_lower_case:
_snake_case = outputs.lower()
return outputs
def lowercase (self , UpperCAmelCase ) -> List[str]:
_snake_case = self.preprocess_text(UpperCAmelCase )
_snake_case = self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
_snake_case = []
for piece in pieces:
if len(UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_snake_case = cur_pieces[1:]
else:
_snake_case = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase )
else:
new_pieces.append(UpperCAmelCase )
return new_pieces
def lowercase (self , UpperCAmelCase ) -> str:
return self.sp_model.PieceToId(UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> List[Any]:
return self.sp_model.IdToPiece(UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> List[str]:
_snake_case = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip()
return out_string
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_snake_case = [self.sep_token_id]
_snake_case = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1, 1]
return ([0] * len(UpperCAmelCase )) + [1, 1]
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_snake_case = [self.sep_token_id]
_snake_case = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_snake_case = os.path.join(
UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , """wb""" ) as fi:
_snake_case = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
_snake_case = super()._decode(*UpperCAmelCase , **UpperCAmelCase )
_snake_case = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text | 341 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 1 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowerCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
__lowerCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
def remove_articles(_SCREAMING_SNAKE_CASE ):
_snake_case = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE )
return re.sub(_SCREAMING_SNAKE_CASE , """ """ , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE ):
_snake_case = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = [rgram for rgrams in rgramslist for rgram in rgrams]
_snake_case = Counter(_SCREAMING_SNAKE_CASE )
_snake_case = Counter(_SCREAMING_SNAKE_CASE )
_snake_case = Counter()
for sgram, scount in sgramcounter.items():
_snake_case = scount * numref
_snake_case = Counter(_SCREAMING_SNAKE_CASE )
_snake_case = Counter()
for cgram, ccount in cgramcounter.items():
_snake_case = ccount * numref
# KEEP
_snake_case = sgramcounter_rep & cgramcounter_rep
_snake_case = keepgramcounter_rep & rgramcounter
_snake_case = sgramcounter_rep & rgramcounter
_snake_case = 0
_snake_case = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_snake_case = 1
_snake_case = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = keeptmpscorea / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_snake_case = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_snake_case = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_snake_case = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_snake_case = sgramcounter_rep - cgramcounter_rep
_snake_case = delgramcounter_rep - rgramcounter
_snake_case = sgramcounter_rep - rgramcounter
_snake_case = 0
_snake_case = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_snake_case = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = deltmpscorea / len(_SCREAMING_SNAKE_CASE )
# ADDITION
_snake_case = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_snake_case = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE )
_snake_case = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_snake_case = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_snake_case = 1
_snake_case = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = addtmpscore / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = addtmpscore / len(_SCREAMING_SNAKE_CASE )
_snake_case = 0
if addscore_precision > 0 or addscore_recall > 0:
_snake_case = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = len(_SCREAMING_SNAKE_CASE )
_snake_case = ssent.split(""" """ )
_snake_case = csent.split(""" """ )
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
_snake_case = []
for rsent in rsents:
_snake_case = rsent.split(""" """ )
_snake_case = []
_snake_case = []
_snake_case = []
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_snake_case = ragrams[i] + """ """ + ragrams[i + 1]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_snake_case = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_snake_case = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3]
ragrams.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_snake_case = sagrams[i] + """ """ + sagrams[i + 1]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_snake_case = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_snake_case = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3]
sagrams.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_snake_case = cagrams[i] + """ """ + cagrams[i + 1]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_snake_case = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_snake_case = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3]
cagrams.append(_SCREAMING_SNAKE_CASE )
((_snake_case), (_snake_case), (_snake_case)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_snake_case), (_snake_case), (_snake_case)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_snake_case), (_snake_case), (_snake_case)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_snake_case), (_snake_case), (_snake_case)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_snake_case = sum([delascore, delascore, delascore, delascore] ) / 4
_snake_case = sum([addascore, addascore, addascore, addascore] ) / 4
_snake_case = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "13a" , _SCREAMING_SNAKE_CASE = True ):
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
_snake_case = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_snake_case = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE )
else:
_snake_case = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
_snake_case = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
_snake_case = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE )
else:
_snake_case = sentence
if not return_str:
_snake_case = normalized_sent.split()
return normalized_sent
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )):
raise ValueError("""Sources length must match predictions and references lengths.""" )
_snake_case = 0
for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] )
_snake_case = sari_score / len(_SCREAMING_SNAKE_CASE )
return 100 * sari_score
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="exp" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ):
_snake_case = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
_snake_case = sacrebleu.corpus_bleu(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=[
"""https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""",
"""https://github.com/cocoxu/simplification/blob/master/SARI.py""",
"""https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""",
"""https://github.com/mjpost/sacreBLEU""",
] , reference_urls=[
"""https://www.aclweb.org/anthology/Q16-1029.pdf""",
"""https://github.com/mjpost/sacreBLEU""",
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]:
_snake_case = {}
result.update({"""sari""": compute_sari(sources=UpperCAmelCase , predictions=UpperCAmelCase , references=UpperCAmelCase )} )
result.update({"""sacrebleu""": compute_sacrebleu(predictions=UpperCAmelCase , references=UpperCAmelCase )} )
result.update({"""exact""": compute_em(predictions=UpperCAmelCase , references=UpperCAmelCase )} )
return result | 341 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) < k or k < 0:
raise ValueError("""Invalid Input""" )
_snake_case = _snake_case = sum(array[:k] )
for i in range(len(_SCREAMING_SNAKE_CASE ) - k ):
_snake_case = current_sum - array[i] + array[i + k]
_snake_case = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
__lowerCAmelCase = [randint(-1_000, 1_000) for i in range(100)]
__lowerCAmelCase = randint(0, 110)
print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''') | 341 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_snake_case = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_snake_case = [[0.0, 0.0], [0.0, 0.0]]
_snake_case, _snake_case = matrix[1][1], matrix[0][0]
_snake_case, _snake_case = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_SCREAMING_SNAKE_CASE ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_snake_case = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_snake_case = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_snake_case = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_snake_case = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_snake_case = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_snake_case = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_snake_case = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_snake_case = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_snake_case = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_snake_case = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_snake_case = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_snake_case = array(_SCREAMING_SNAKE_CASE )
for i in range(3 ):
for j in range(3 ):
_snake_case = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_snake_case = array(_SCREAMING_SNAKE_CASE )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_SCREAMING_SNAKE_CASE )
# Calculate the inverse of the matrix
return [[float(d(_SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" ) | 341 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 1 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
__lowerCAmelCase = 'src/transformers'
# Matches is_xxx_available()
__lowerCAmelCase = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__lowerCAmelCase = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__lowerCAmelCase = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__lowerCAmelCase = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__lowerCAmelCase = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__lowerCAmelCase = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__lowerCAmelCase = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__lowerCAmelCase = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__lowerCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__lowerCAmelCase = re.compile(r'^\s*try:')
# Catches a line with else:
__lowerCAmelCase = re.compile(r'^\s*else:')
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None:
return None
_snake_case = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_snake_case = f.readlines()
_snake_case = 0
while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
_snake_case = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
_snake_case = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ):
_snake_case = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0]
_snake_case = re.findall(R"""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
_snake_case = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
_snake_case = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
_snake_case = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
_snake_case = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
_snake_case = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
_snake_case = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
_snake_case = lines[line_index]
if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None:
_snake_case = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
_snake_case = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None:
_snake_case = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
_snake_case = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
_snake_case = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
_snake_case = []
while (
line_index < len(_SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
_snake_case = lines[line_index]
_snake_case = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
_snake_case = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(_SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
_snake_case = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
_snake_case = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
_snake_case = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
_snake_case = lines[line_index]
_snake_case = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
_snake_case = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
def find_duplicates(_SCREAMING_SNAKE_CASE ):
return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
_snake_case = []
for key in import_dict_objects.keys():
_snake_case = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
_snake_case = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
_snake_case = """base imports""" if key == """none""" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = []
for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" )
_snake_case = parse_init(_SCREAMING_SNAKE_CASE )
if objects is not None:
_snake_case = analyze_results(*_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = []
for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(_SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0:
continue
_snake_case = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) )
_snake_case = short_path.replace(os.path.sep , """.""" )
submodules.append(_SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
_snake_case = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) )
_snake_case = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(_SCREAMING_SNAKE_CASE )
return submodules
__lowerCAmelCase = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def __SCREAMING_SNAKE_CASE ( ):
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
_snake_case = direct_transformers_import(_SCREAMING_SNAKE_CASE )
_snake_case = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" ) as f:
_snake_case = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _SCREAMING_SNAKE_CASE ) ) )
_snake_case = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(_SCREAMING_SNAKE_CASE ) > 0:
_snake_case = """\n""".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
f"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules() | 341 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json',
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "gpt_neox"
def __init__(self , UpperCAmelCase=50432 , UpperCAmelCase=6144 , UpperCAmelCase=44 , UpperCAmelCase=64 , UpperCAmelCase=24576 , UpperCAmelCase="gelu" , UpperCAmelCase=0.25 , UpperCAmelCase=10000 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=2048 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]:
super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
_snake_case = vocab_size
_snake_case = max_position_embeddings
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = rotary_pct
_snake_case = rotary_emb_base
_snake_case = attention_dropout
_snake_case = hidden_dropout
_snake_case = classifier_dropout
_snake_case = initializer_range
_snake_case = layer_norm_eps
_snake_case = use_cache
_snake_case = tie_word_embeddings
_snake_case = use_parallel_residual
_snake_case = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"""The hidden size is not divisble by the number of attention heads! Make sure to update them!""" )
def lowercase (self ) -> Union[str, Any]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"""got {self.rope_scaling}""" )
_snake_case = self.rope_scaling.get("""type""" , UpperCAmelCase )
_snake_case = self.rope_scaling.get("""factor""" , UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(UpperCAmelCase , UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" ) | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "gpt_bigcode"
lowerCAmelCase_ = ["past_key_values"]
lowerCAmelCase_ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , UpperCAmelCase=50257 , UpperCAmelCase=1024 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=None , UpperCAmelCase="gelu_pytorch_tanh" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=50256 , UpperCAmelCase=50256 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]:
_snake_case = vocab_size
_snake_case = n_positions
_snake_case = n_embd
_snake_case = n_layer
_snake_case = n_head
_snake_case = n_inner
_snake_case = activation_function
_snake_case = resid_pdrop
_snake_case = embd_pdrop
_snake_case = attn_pdrop
_snake_case = layer_norm_epsilon
_snake_case = initializer_range
_snake_case = scale_attn_weights
_snake_case = use_cache
_snake_case = attention_softmax_in_fpaa
_snake_case = scale_attention_softmax_in_fpaa
_snake_case = multi_query
_snake_case = bos_token_id
_snake_case = eos_token_id
super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = int(_SCREAMING_SNAKE_CASE )
if decimal in (0, 1): # Exit cases for the recursion
return str(_SCREAMING_SNAKE_CASE )
_snake_case, _snake_case = divmod(_SCREAMING_SNAKE_CASE , 2 )
return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = str(_SCREAMING_SNAKE_CASE ).strip()
if not number:
raise ValueError("""No input value was provided""" )
_snake_case = """-""" if number.startswith("""-""" ) else """"""
_snake_case = number.lstrip("""-""" )
if not number.isnumeric():
raise ValueError("""Input value is not an integer""" )
return f"""{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod() | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None:
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase ) | 341 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {'vocab_file': 'vocab.txt'}
__lowerCAmelCase = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__lowerCAmelCase = {
'facebook/esm2_t6_8M_UR50D': 1_024,
'facebook/esm2_t12_35M_UR50D': 1_024,
}
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.read().splitlines()
return [l.strip() for l in lines]
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = ["input_ids", "attention_mask"]
def __init__(self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> Any:
super().__init__(**UpperCAmelCase )
_snake_case = load_vocab_file(UpperCAmelCase )
_snake_case = dict(enumerate(self.all_tokens ) )
_snake_case = {tok: ind for ind, tok in enumerate(self.all_tokens )}
_snake_case = unk_token
_snake_case = cls_token
_snake_case = pad_token
_snake_case = mask_token
_snake_case = eos_token
_snake_case = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def lowercase (self , UpperCAmelCase ) -> str:
return self._id_to_token.get(UpperCAmelCase , self.unk_token )
def lowercase (self , UpperCAmelCase ) -> int:
return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowercase (self , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
return text.split()
def lowercase (self , UpperCAmelCase=False ) -> List[str]:
return len(self._id_to_token )
def lowercase (self ) -> Dict:
return {token: i for i, token in enumerate(self.all_tokens )}
def lowercase (self , UpperCAmelCase ) -> int:
return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowercase (self , UpperCAmelCase ) -> str:
return self._id_to_token.get(UpperCAmelCase , self.unk_token )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_snake_case = [self.cls_token_id]
_snake_case = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
_snake_case = [1] + ([0] * len(UpperCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(UpperCAmelCase ) + [1]
return mask
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]:
_snake_case = os.path.join(UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" )
with open(UpperCAmelCase , """w""" ) as f:
f.write("""\n""".join(self.all_tokens ) )
return (vocab_file,)
@property
def lowercase (self ) -> int:
return self.get_vocab_size(with_added_tokens=UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase ) | 341 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
_snake_case = features.copy() if features else default_expected_features
_snake_case = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
_snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read()
_check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = text_path
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = [text_path]
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
_snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=("train",) ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for split in splits:
_snake_case = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case = TextDatasetReader({"""train""": text_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = tmp_path / """cache"""
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
_snake_case = {"""text""": """string"""}
_snake_case = features.copy() if features else default_expected_features
_snake_case = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case = TextDatasetReader({"""train""": text_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if split:
_snake_case = {split: text_path}
else:
_snake_case = """train"""
_snake_case = {"""train""": text_path, """test""": text_path}
_snake_case = tmp_path / """cache"""
_snake_case = {"""text""": """string"""}
_snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() ) | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 1 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__lowerCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__lowerCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__lowerCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__lowerCAmelCase = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
__lowerCAmelCase = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__lowerCAmelCase = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
__lowerCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__lowerCAmelCase = np.expand_dims(test_image, axis=0)
__lowerCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__lowerCAmelCase = 'Normal'
if result[0][0] == 1:
__lowerCAmelCase = 'Abnormality detected' | 341 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__lowerCAmelCase = 16
__lowerCAmelCase = 32
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ):
_snake_case = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_snake_case = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(_SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
_snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_snake_case = datasets.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_snake_case = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
_snake_case = DataLoader(
tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
_snake_case = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
model.eval()
_snake_case = 0
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_snake_case = model(**_SCREAMING_SNAKE_CASE )
_snake_case = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
_snake_case, _snake_case = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_SCREAMING_SNAKE_CASE ) - 1:
_snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_snake_case = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , )
_snake_case = metric.compute()
return eval_metric["accuracy"]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Initialize accelerator
_snake_case = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_snake_case = config["""lr"""]
_snake_case = int(config["""num_epochs"""] )
_snake_case = int(config["""seed"""] )
_snake_case = int(config["""batch_size"""] )
_snake_case = args.model_name_or_path
set_seed(_SCREAMING_SNAKE_CASE )
_snake_case, _snake_case = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_snake_case = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE )
# Instantiate optimizer
_snake_case = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
_snake_case = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE )
if accelerator.state.deepspeed_plugin is not None:
_snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
_snake_case = 1
_snake_case = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
_snake_case = get_linear_schedule_with_warmup(
optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , )
else:
_snake_case = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = accelerator.prepare(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# We need to keep track of how many total steps we have iterated over
_snake_case = 0
# We also need to keep track of the stating epoch so files are named properly
_snake_case = 0
_snake_case = evaluate.load("""glue""" , """mrpc""" )
_snake_case = num_epochs
if args.partial_train_epoch is not None:
_snake_case = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
_snake_case = args.resume_from_checkpoint.split("""epoch_""" )[1]
_snake_case = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
_snake_case = int(_SCREAMING_SNAKE_CASE ) + 1
_snake_case = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
accelerator.print("""resumed checkpoint performance:""" , _SCREAMING_SNAKE_CASE )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f:
_snake_case = json.load(_SCREAMING_SNAKE_CASE )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
_snake_case = {}
for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
_snake_case = model(**_SCREAMING_SNAKE_CASE )
_snake_case = outputs.loss
_snake_case = loss / gradient_accumulation_steps
accelerator.backward(_SCREAMING_SNAKE_CASE )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
_snake_case = f"""epoch_{epoch}"""
_snake_case = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
accelerator.save_state(_SCREAMING_SNAKE_CASE )
_snake_case = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = accuracy
_snake_case = lr_scheduler.get_lr()[0]
_snake_case = optimizer.param_groups[0]["""lr"""]
_snake_case = epoch
_snake_case = overall_step
accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , )
parser.add_argument(
"""--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=2 , help="""Number of train epochs.""" , )
_snake_case = parser.parse_args()
_snake_case = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main() | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" )
_snake_case = parser.add_subparsers(help="""transformers-cli command helpers""" )
# Register commands
ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
DownloadCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
RunCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
ServeCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
UserCommands.register_subcommand(_SCREAMING_SNAKE_CASE )
AddNewModelCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
AddNewModelLikeCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
LfsCommands.register_subcommand(_SCREAMING_SNAKE_CASE )
PTtoTFCommand.register_subcommand(_SCREAMING_SNAKE_CASE )
# Let's go
_snake_case = parser.parse_args()
if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ):
parser.print_help()
exit(1 )
# Run
_snake_case = args.func(_SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main() | 341 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 1 |
'''simple docstring'''
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class _lowerCAmelCase ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = RoFormerTokenizer
lowerCAmelCase_ = RoFormerTokenizerFast
lowerCAmelCase_ = True
lowerCAmelCase_ = True
def lowercase (self ) -> Tuple:
super().setUp()
def lowercase (self , **UpperCAmelCase ) -> Optional[Any]:
return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase )
def lowercase (self , **UpperCAmelCase ) -> Tuple:
return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case = """永和服装饰品有限公司,今天天气非常好"""
_snake_case = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好"""
return input_text, output_text
def lowercase (self ) -> int:
_snake_case = self.get_tokenizer()
_snake_case, _snake_case = self.get_chinese_input_output_texts()
_snake_case = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , output_text.split() )
_snake_case = tokens + [tokenizer.unk_token]
_snake_case = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def lowercase (self ) -> str:
_snake_case = self.get_rust_tokenizer()
_snake_case, _snake_case = self.get_chinese_input_output_texts()
_snake_case = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , output_text.split() )
_snake_case = tokens + [tokenizer.unk_token]
_snake_case = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def lowercase (self ) -> Dict:
pass
def lowercase (self ) -> List[Any]:
pass
def lowercase (self ) -> Union[str, Any]:
pass | 341 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 1 |
'''simple docstring'''
__lowerCAmelCase = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
__lowerCAmelCase = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = from_type.lower().strip("""s""" )
_snake_case = to_type.lower().strip("""s""" )
_snake_case = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if from_sanitized not in METRIC_CONVERSION:
_snake_case = (
f"""Invalid 'from_type' value: {from_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
if to_sanitized not in METRIC_CONVERSION:
_snake_case = (
f"""Invalid 'to_type' value: {to_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
_snake_case = METRIC_CONVERSION[from_sanitized]
_snake_case = METRIC_CONVERSION[to_sanitized]
_snake_case = 1
if from_exponent > to_exponent:
_snake_case = from_exponent - to_exponent
else:
_snake_case = -(to_exponent - from_exponent)
return value * pow(10 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
from doctest import testmod
testmod() | 341 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = str(_SCREAMING_SNAKE_CASE )
return n == n[::-1]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 100_0000 ):
_snake_case = 0
for i in range(1 , _SCREAMING_SNAKE_CASE ):
if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip())))) | 341 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__lowerCAmelCase = {
'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'],
'configuration_data2vec_text': [
'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecTextConfig',
'Data2VecTextOnnxConfig',
],
'configuration_data2vec_vision': [
'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecVisionConfig',
'Data2VecVisionOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecAudioForAudioFrameClassification',
'Data2VecAudioForCTC',
'Data2VecAudioForSequenceClassification',
'Data2VecAudioForXVector',
'Data2VecAudioModel',
'Data2VecAudioPreTrainedModel',
]
__lowerCAmelCase = [
'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecTextForCausalLM',
'Data2VecTextForMaskedLM',
'Data2VecTextForMultipleChoice',
'Data2VecTextForQuestionAnswering',
'Data2VecTextForSequenceClassification',
'Data2VecTextForTokenClassification',
'Data2VecTextModel',
'Data2VecTextPreTrainedModel',
]
__lowerCAmelCase = [
'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecVisionForImageClassification',
'Data2VecVisionForMaskedImageModeling',
'Data2VecVisionForSemanticSegmentation',
'Data2VecVisionModel',
'Data2VecVisionPreTrainedModel',
]
if is_tf_available():
__lowerCAmelCase = [
'TFData2VecVisionForImageClassification',
'TFData2VecVisionForSemanticSegmentation',
'TFData2VecVisionModel',
'TFData2VecVisionPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowerCAmelCase ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = MgpstrTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = {}
lowerCAmelCase_ = False
def lowercase (self ) -> Tuple:
super().setUp()
# fmt: off
_snake_case = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_snake_case = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
_snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + """\n""" )
def lowercase (self , **UpperCAmelCase ) -> Optional[Any]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> List[Any]:
_snake_case = """tester"""
_snake_case = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def lowercase (self ) -> Dict:
pass
def lowercase (self ) -> Tuple:
_snake_case = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_snake_case = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
_snake_case = tokenizer.encode([special_token] , add_special_tokens=UpperCAmelCase )
self.assertEqual(len(UpperCAmelCase ) , 1 )
_snake_case = tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def lowercase (self ) -> List[str]:
_snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_snake_case, _snake_case = self.get_input_output_texts(UpperCAmelCase )
_snake_case = tokenizer.tokenize(UpperCAmelCase )
_snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
_snake_case = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
_snake_case = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertNotEqual(len(UpperCAmelCase ) , 0 )
_snake_case = tokenizer.decode(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def lowercase (self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def lowercase (self ) -> Tuple:
pass | 341 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 1 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = [0] * len(_SCREAMING_SNAKE_CASE )
_snake_case = []
_snake_case = [1] * len(_SCREAMING_SNAKE_CASE )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
if indegree[i] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
while queue:
_snake_case = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
_snake_case = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
print(max(_SCREAMING_SNAKE_CASE ) )
# Adjacency list of Graph
__lowerCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph) | 341 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 1 |
'''simple docstring'''
__lowerCAmelCase = 'Input must be a string of 8 numbers plus letter'
__lowerCAmelCase = 'TRWAGMYFPDXBNJZSQVHLCKE'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
_snake_case = int(spanish_id_clean[0:8] )
_snake_case = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = [90, 23, 6, 33, 21, 65, 123, 3_4423]
_snake_case = math.log(len(_SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = os.path.join(args.tf_model_dir , """parameters.json""" )
_snake_case = json.loads(open(_SCREAMING_SNAKE_CASE ).read() )
if not params:
raise ValueError(
f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith(""".pt""" ):
_snake_case = args.output + """.pt"""
_snake_case = OrderedDict()
with tf.device("""/CPU:0""" ):
_snake_case = tf.train.load_checkpoint(args.tf_model_dir )
_snake_case = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
_snake_case = reader.get_tensor(_SCREAMING_SNAKE_CASE ).astype(np.floataa )
if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ):
continue
if key_name.startswith("""pasts/""" ):
if key_name.startswith("""pasts/mlp""" ):
_snake_case = int(key_name[9] )
elif key_name.startswith("""pasts/out""" ):
_snake_case = 8
_snake_case = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/moe""" ):
_snake_case = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/switch_gating/kernel""" ):
_snake_case = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/softmlp/kernel""" ):
_snake_case = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ):
_snake_case = key_name[-9:-7]
for i in range(16 ):
_snake_case = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer)
_snake_case = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/mlp""" ):
_snake_case = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/p1/kernel""" ):
_snake_case = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/p1/bias""" ):
_snake_case = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/p2/kernel""" ):
_snake_case = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/p2/bias""" ):
_snake_case = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/ln""" ):
_snake_case = int(key_name[8:].split("""/""" )[0] )
if key_name.endswith("""/b""" ):
_snake_case = """model.blocks.%d.feed_forward.norm.bias""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/g""" ):
_snake_case = """model.blocks.%d.feed_forward.norm.weight""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/att""" ):
_snake_case = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/qkv/kernel""" ):
_snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
_snake_case = state[:, 0, :, :]
_snake_case = state[:, 1, :, :]
_snake_case = state[:, 2, :, :]
_snake_case = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_snake_case = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_snake_case = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_snake_case = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
_snake_case = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
_snake_case = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/o/kernel""" ):
_snake_case = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player
_snake_case = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/an""" ):
_snake_case = int(key_name[8:].split("""/""" )[0] )
if key_name.endswith("""/b""" ):
_snake_case = """model.blocks.%d.self_attn.norm.bias""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith("""/g""" ):
_snake_case = """model.blocks.%d.self_attn.norm.weight""" % player
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif (
key_name.startswith("""model/wte""" )
or key_name.startswith("""model/wpe""" )
or key_name.startswith("""model/ete""" )
):
_snake_case = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[
key_name[-3:]
]
_snake_case = """model.%s.weight""" % nlayer
_snake_case = vnp.copy() # same in embedded
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
if key_name.startswith("""model/wte""" ):
_snake_case = """lm_head.weight"""
_snake_case = vnp.copy() # same in embedded
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith("""model/wob""" ):
_snake_case = """final_logits_bias"""
_snake_case = vnp.copy() # same in embedded
_snake_case = state.reshape((1, -1) )
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name == "model/dense/kernel":
_snake_case = """model.last_project.weight"""
_snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name == "model/dense_1/bias":
_snake_case = """model.last_project.bias"""
_snake_case = vnp.copy() # same because it is one dimensional
_snake_case = torch.tensor(_SCREAMING_SNAKE_CASE )
torch.save(_SCREAMING_SNAKE_CASE , args.output )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser(
description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model')
parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model')
__lowerCAmelCase = parser.parse_args()
convert_tf_gptsan_to_pt(args) | 341 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "beit"
def __init__(self , UpperCAmelCase=8192 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=224 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=True , UpperCAmelCase=[3, 5, 7, 11] , UpperCAmelCase=[1, 2, 3, 6] , UpperCAmelCase=True , UpperCAmelCase=0.4 , UpperCAmelCase=256 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=255 , **UpperCAmelCase , ) -> str:
super().__init__(**UpperCAmelCase )
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = initializer_range
_snake_case = layer_norm_eps
_snake_case = image_size
_snake_case = patch_size
_snake_case = num_channels
_snake_case = use_mask_token
_snake_case = use_absolute_position_embeddings
_snake_case = use_relative_position_bias
_snake_case = use_shared_relative_position_bias
_snake_case = layer_scale_init_value
_snake_case = drop_path_rate
_snake_case = use_mean_pooling
# decode head attributes (semantic segmentation)
_snake_case = out_indices
_snake_case = pool_scales
# auxiliary head attributes (semantic segmentation)
_snake_case = use_auxiliary_head
_snake_case = auxiliary_loss_weight
_snake_case = auxiliary_channels
_snake_case = auxiliary_num_convs
_snake_case = auxiliary_concat_input
_snake_case = semantic_loss_ignore_index
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = version.parse("1.11" )
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase (self ) -> float:
return 1e-4 | 341 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
return [ord(_SCREAMING_SNAKE_CASE ) - 96 for elem in plain]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
return "".join(chr(elem + 96 ) for elem in encoded )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = encode(input("""-> """ ).strip().lower() )
print("""Encoded: """ , _SCREAMING_SNAKE_CASE )
print("""Decoded:""" , decode(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
main() | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
from heapq import heappop, heappush
import numpy as np
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
_snake_case, _snake_case = grid.shape
_snake_case = [-1, 1, 0, 0]
_snake_case = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
_snake_case, _snake_case = [(0, source)], set()
_snake_case = np.full((rows, cols) , np.inf )
_snake_case = 0
_snake_case = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE )
_snake_case = None
while queue:
((_snake_case), (_snake_case)) = heappop(_SCREAMING_SNAKE_CASE )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
_snake_case = []
while (x, y) != source:
path.append((x, y) )
_snake_case, _snake_case = predecessors[x, y]
path.append(_SCREAMING_SNAKE_CASE ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_snake_case, _snake_case = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
_snake_case = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) )
_snake_case = dist + 1
_snake_case = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ):
_snake_case = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_snake_case = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="""train""" , **_SCREAMING_SNAKE_CASE )
_snake_case = tok.pad_token_id
def get_lens(_SCREAMING_SNAKE_CASE ):
_snake_case = tqdm(
DataLoader(_SCREAMING_SNAKE_CASE , batch_size=512 , num_workers=8 , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_snake_case = []
for batch in dl:
_snake_case = batch["""input_ids"""].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist()
_snake_case = batch["""labels"""].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
max_lens.append(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
else:
max_lens.extend(_SCREAMING_SNAKE_CASE )
return max_lens
_snake_case = get_lens(_SCREAMING_SNAKE_CASE )
_snake_case = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="""val""" , **_SCREAMING_SNAKE_CASE )
_snake_case = get_lens(_SCREAMING_SNAKE_CASE )
pickle_save(_SCREAMING_SNAKE_CASE , train_ds.len_file )
pickle_save(_SCREAMING_SNAKE_CASE , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file) | 341 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 1 |
'''simple docstring'''
__lowerCAmelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.602176634E-19,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355818,
}
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
_snake_case = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = """ZinengTang/tvlt-base"""
_snake_case = tempfile.mkdtemp()
def lowercase (self , **UpperCAmelCase ) -> str:
return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase )
def lowercase (self , **UpperCAmelCase ) -> List[Any]:
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase )
def lowercase (self ) -> List[Any]:
shutil.rmtree(self.tmpdirname )
def lowercase (self ) -> Any:
_snake_case = self.get_image_processor()
_snake_case = self.get_feature_extractor()
_snake_case = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_snake_case = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , UpperCAmelCase )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def lowercase (self ) -> str:
_snake_case = self.get_image_processor()
_snake_case = self.get_feature_extractor()
_snake_case = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase )
_snake_case = np.ones([12000] )
_snake_case = feature_extractor(UpperCAmelCase , return_tensors="""np""" )
_snake_case = processor(audio=UpperCAmelCase , return_tensors="""np""" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase (self ) -> int:
_snake_case = self.get_image_processor()
_snake_case = self.get_feature_extractor()
_snake_case = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase )
_snake_case = np.ones([3, 224, 224] )
_snake_case = image_processor(UpperCAmelCase , return_tensors="""np""" )
_snake_case = processor(images=UpperCAmelCase , return_tensors="""np""" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase (self ) -> Union[str, Any]:
_snake_case = self.get_image_processor()
_snake_case = self.get_feature_extractor()
_snake_case = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase )
_snake_case = np.ones([12000] )
_snake_case = np.ones([3, 224, 224] )
_snake_case = processor(audio=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def lowercase (self ) -> str:
_snake_case = self.get_image_processor()
_snake_case = self.get_feature_extractor()
_snake_case = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , ) | 341 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
f"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
f"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
f"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
f"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = []
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") )
return token
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = """imagenet-1k-id2label.json"""
_snake_case = 1000
_snake_case = """huggingface/label-files"""
_snake_case = num_labels
_snake_case = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) ) , """r""" ) )
_snake_case = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
_snake_case = idalabel
_snake_case = {v: k for k, v in idalabel.items()}
_snake_case = _snake_case = CvtConfig(num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
_snake_case = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
_snake_case = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
_snake_case = [2, 2, 20]
_snake_case = [3, 12, 16]
_snake_case = [192, 768, 1024]
_snake_case = CvtForImageClassification(_SCREAMING_SNAKE_CASE )
_snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
_snake_case = image_size
_snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) )
_snake_case = OrderedDict()
_snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
_snake_case = list_of_state_dict + cls_token(_SCREAMING_SNAKE_CASE )
_snake_case = list_of_state_dict + embeddings(_SCREAMING_SNAKE_CASE )
for cnt in range(config.depth[idx] ):
_snake_case = list_of_state_dict + attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=384,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__lowerCAmelCase = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path) | 341 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 1 |
'''simple docstring'''
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
__lowerCAmelCase = logging.getLogger(__name__)
__lowerCAmelCase = 'pytorch_model.bin'
@dataclasses.dataclass
class _lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase_ = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class _lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase_ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
lowerCAmelCase_ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "A csv or a json file containing the validation data."} )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "The name of the task to train on."} , )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class _lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase_ = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
lowerCAmelCase_ = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
lowerCAmelCase_ = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
lowerCAmelCase_ = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
lowerCAmelCase_ = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
lowerCAmelCase_ = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
lowerCAmelCase_ = dataclasses.field(
default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
lowerCAmelCase_ = dataclasses.field(
default=__snake_case , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_snake_case = dataset.filter(lambda _SCREAMING_SNAKE_CASE : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_snake_case = int(eval_result * len(_SCREAMING_SNAKE_CASE ) )
print(_SCREAMING_SNAKE_CASE )
_snake_case = dataset.sort("""probability""" , reverse=_SCREAMING_SNAKE_CASE )
_snake_case = dataset.select(range(_SCREAMING_SNAKE_CASE ) )
_snake_case = dataset.remove_columns(["""label""", """probability"""] )
_snake_case = dataset.rename_column("""prediction""" , """label""" )
_snake_case = dataset.map(lambda _SCREAMING_SNAKE_CASE : {"label": idalabel[example["label"]]} )
_snake_case = dataset.shuffle(seed=args.seed )
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , f"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE )
else:
dataset.to_json(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
_snake_case = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_snake_case = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE )
_snake_case = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE )
_snake_case = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE )
_snake_case = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(_SCREAMING_SNAKE_CASE ).items():
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for key, value in kwargs.items():
if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Sanity checks
_snake_case = {}
_snake_case = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_snake_case = args.train_file
_snake_case = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_snake_case = args.eval_file
for key in data_files:
_snake_case = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_snake_case = extension
else:
assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_snake_case = f"""{args.output_dir}/self-train_iter-{{}}""".format
_snake_case = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE )
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
_snake_case = None
_snake_case = None
_snake_case = 0
_snake_case = False
# Show the progress bar
_snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_snake_case = data_dir_format(_SCREAMING_SNAKE_CASE )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """stage-1""" )
_snake_case = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
arguments_dict.update({key: value} )
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """best-checkpoint""" , _SCREAMING_SNAKE_CASE )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , _SCREAMING_SNAKE_CASE )
finetune(**_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , _SCREAMING_SNAKE_CASE )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """best-checkpoint""" )
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """stage-2""" )
# Update arguments_dict
_snake_case = model_path
_snake_case = data_files["""train"""]
_snake_case = current_output_dir
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """best-checkpoint""" , _SCREAMING_SNAKE_CASE )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , _SCREAMING_SNAKE_CASE )
finetune(**_SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , _SCREAMING_SNAKE_CASE )
_snake_case = iteration
_snake_case = data_dir_format(iteration + 1 )
_snake_case = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , """best-checkpoint""" ) )
_snake_case = config.idalabel
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """eval_results_best-checkpoint.json""" )
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """test_results_best-checkpoint.json""" )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = float(json.load(_SCREAMING_SNAKE_CASE )[args.eval_metric] )
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(_SCREAMING_SNAKE_CASE )
# Loading the dataset from local csv or json files.
_snake_case = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_snake_case = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(_SCREAMING_SNAKE_CASE ):
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
_snake_case = os.path.join(_SCREAMING_SNAKE_CASE , f"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_snake_case = eval_result
if best_iteration is None:
_snake_case = new_iteration
_snake_case = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_snake_case = new_iteration
_snake_case = new_eval_result
_snake_case = 0
else:
if new_eval_result == best_eval_result:
_snake_case = new_iteration
_snake_case = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_snake_case = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , _SCREAMING_SNAKE_CASE )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(_SCREAMING_SNAKE_CASE , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(_SCREAMING_SNAKE_CASE , """eval_results_best-iteration.json""" ) , ) | 341 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 1 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Load configuration defined in the metadata file
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
_snake_case = json.load(_SCREAMING_SNAKE_CASE )
_snake_case = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata["""model_config"""] )
# Load in the weights from the checkpoint_path
_snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""module"""]
# Load the entity vocab file
_snake_case = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_snake_case = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_snake_case = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] )
# Add special tokens to the token vocabulary for downstream tasks
_snake_case = AddedToken("""<ent>""" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
_snake_case = AddedToken("""<ent2>""" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , """tokenizer_config.json""" ) , """r""" ) as f:
_snake_case = json.load(_SCREAMING_SNAKE_CASE )
_snake_case = """MLukeTokenizer"""
with open(os.path.join(_SCREAMING_SNAKE_CASE , """tokenizer_config.json""" ) , """w""" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_snake_case = tokenizer.convert_tokens_to_ids(["""@"""] )[0]
_snake_case = tokenizer.convert_tokens_to_ids(["""#"""] )[0]
_snake_case = state_dict["""embeddings.word_embeddings.weight"""]
_snake_case = word_emb[ent_init_index].unsqueeze(0 )
_snake_case = word_emb[enta_init_index].unsqueeze(0 )
_snake_case = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_snake_case = state_dict[bias_name]
_snake_case = decoder_bias[ent_init_index].unsqueeze(0 )
_snake_case = decoder_bias[enta_init_index].unsqueeze(0 )
_snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_snake_case = f"""encoder.layer.{layer_index}.attention.self."""
_snake_case = state_dict[prefix + matrix_name]
_snake_case = state_dict[prefix + matrix_name]
_snake_case = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_snake_case = state_dict["""entity_embeddings.entity_embeddings.weight"""]
_snake_case = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 )
_snake_case = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_snake_case = state_dict["""entity_predictions.bias"""]
_snake_case = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 )
_snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] )
_snake_case = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop("""entity_predictions.decoder.weight""" )
state_dict.pop("""lm_head.decoder.weight""" )
state_dict.pop("""lm_head.decoder.bias""" )
_snake_case = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )):
_snake_case = state_dict[key]
else:
_snake_case = state_dict[key]
_snake_case, _snake_case = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_snake_case = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task="""entity_classification""" )
_snake_case = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."""
_snake_case = (0, 9)
_snake_case = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="""pt""" )
_snake_case = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_snake_case = torch.Size((1, 33, 768) )
_snake_case = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_snake_case = torch.Size((1, 1, 768) )
_snake_case = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
_snake_case = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_snake_case = """Tokyo is the capital of <mask>."""
_snake_case = (24, 30)
_snake_case = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="""pt""" )
_snake_case = model(**_SCREAMING_SNAKE_CASE )
_snake_case = encoding["""input_ids"""][0].tolist()
_snake_case = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) )
_snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
_snake_case = outputs.entity_logits[0][0].argmax().item()
_snake_case = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("""Saving PyTorch model to {}""".format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = ["""[MASK]""", """[PAD]""", """[UNK]"""]
_snake_case = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
_snake_case = {}
for entry in data:
_snake_case = entry["""id"""]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_snake_case = entity_id
break
_snake_case = f"""{language}:{entity_name}"""
_snake_case = entity_id
return new_mapping
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
__lowerCAmelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
) | 341 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 1 |
'''simple docstring'''
import math
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 ):
_snake_case = end or len(_SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = i
_snake_case = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_snake_case = array[temp_index - 1]
temp_index -= 1
_snake_case = temp_index_value
return array
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Max Heap
_snake_case = index
_snake_case = 2 * index + 1 # Left Node
_snake_case = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_snake_case = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_snake_case = right_index
if largest != index:
_snake_case, _snake_case = array[largest], array[index]
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = len(_SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_snake_case, _snake_case = array[0], array[i]
heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE )
return array
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = low
_snake_case = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_snake_case, _snake_case = array[j], array[i]
i += 1
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return array
_snake_case = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) )
_snake_case = 16
return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(_SCREAMING_SNAKE_CASE )
max_depth -= 1
_snake_case = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_snake_case = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = p
return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase = input('Enter numbers separated by a comma : ').strip()
__lowerCAmelCase = [float(item) for item in user_input.split(',')]
print(sort(unsorted)) | 341 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_SCREAMING_SNAKE_CASE )
_snake_case = parser.add_subparsers(help="""accelerate command helpers""" )
# Register commands
get_config_parser(subparsers=_SCREAMING_SNAKE_CASE )
env_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
launch_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
tpu_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
test_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
# Let's go
_snake_case = parser.parse_args()
if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ):
parser.print_help()
exit(1 )
# Run
args.func(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main() | 341 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 1 |
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="attention" ):
_snake_case = _snake_case = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
_snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
_snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
_snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
_snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
if split_mlp_wi:
_snake_case = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
_snake_case = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
_snake_case = (wi_a, wi_a)
else:
_snake_case = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
_snake_case = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , *, _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ):
_snake_case = traverse_util.flatten_dict(variables["""target"""] )
_snake_case = {"""/""".join(_SCREAMING_SNAKE_CASE ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
_snake_case = """encoder/encoder/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , _SCREAMING_SNAKE_CASE )
_snake_case = collections.OrderedDict()
# Shared embeddings.
_snake_case = old["""token_embedder/embedding"""]
# Encoder.
for i in range(_SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
_snake_case = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """encoder""" , """pre_attention_layer_norm""" )
_snake_case, _snake_case, _snake_case, _snake_case = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """encoder""" , """attention""" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 1 (MLP).
_snake_case = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """encoder""" , """pre_mlp_layer_norm""" )
_snake_case, _snake_case = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """encoder""" , _SCREAMING_SNAKE_CASE )
_snake_case = layer_norm
if split_mlp_wi:
_snake_case = wi[0].T
_snake_case = wi[1].T
else:
_snake_case = wi.T
_snake_case = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_snake_case = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """encoder""" ).T
_snake_case = old["""encoder/encoder_norm/scale"""]
if not scalable_attention:
_snake_case = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , 0 , """encoder""" ).T
_snake_case = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , 0 , """decoder""" ).T
if not is_encoder_only:
# Decoder.
for i in range(_SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
_snake_case = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , """pre_self_attention_layer_norm""" )
_snake_case, _snake_case, _snake_case, _snake_case = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , """self_attention""" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 1 (Cross Attention).
_snake_case = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , """pre_cross_attention_layer_norm""" )
_snake_case, _snake_case, _snake_case, _snake_case = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , """encoder_decoder_attention""" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 2 (MLP).
_snake_case = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , """pre_mlp_layer_norm""" )
_snake_case, _snake_case = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" , _SCREAMING_SNAKE_CASE )
_snake_case = layer_norm
if split_mlp_wi:
_snake_case = wi[0].T
_snake_case = wi[1].T
else:
_snake_case = wi.T
_snake_case = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_snake_case = tax_relpos_bias_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """decoder""" ).T
_snake_case = old["""decoder/decoder_norm/scale"""]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
_snake_case = old["""decoder/logits_dense/kernel"""].T
return new
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
_snake_case = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
_snake_case = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
_snake_case = state_dict["""shared.weight"""]
return state_dict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE )
_snake_case = convert_tax_to_pytorch(
_SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=_SCREAMING_SNAKE_CASE , scalable_attention=_SCREAMING_SNAKE_CASE )
_snake_case = make_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , ):
_snake_case = MTaConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
_snake_case = UMTaEncoderModel(_SCREAMING_SNAKE_CASE )
else:
_snake_case = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tax_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
# Verify that we can load the checkpoint.
model.from_pretrained(_SCREAMING_SNAKE_CASE )
print("""Done""" )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
parser.add_argument(
'--scalable_attention',
action='store_true',
help='Whether the model uses scaled attention (umt5 model)',
default=False,
)
__lowerCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
) | 341 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 1 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase = tuple[int, int]
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Dict:
_snake_case = []
_snake_case = set()
def lowercase (self ) -> Dict:
if not self.empty():
return self.elements[0][0]
else:
return float("""inf""" )
def lowercase (self ) -> Any:
return len(self.elements ) == 0
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Any:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(UpperCAmelCase )
else:
# update
# print("update", item)
_snake_case = []
((_snake_case), (_snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((_snake_case), (_snake_case)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowercase (self , UpperCAmelCase ) -> str:
if item in self.set:
self.set.remove(UpperCAmelCase )
_snake_case = []
((_snake_case), (_snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((_snake_case), (_snake_case)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowercase (self ) -> Any:
return self.elements[0][1]
def lowercase (self ) -> str:
((_snake_case), (_snake_case)) = heapq.heappop(self.elements )
self.set.remove(UpperCAmelCase )
return (priority, item)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# euclidean distance
_snake_case = np.array(_SCREAMING_SNAKE_CASE )
_snake_case = np.array(_SCREAMING_SNAKE_CASE )
return np.linalg.norm(a - b )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# integer division by time variable
return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return ans
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = np.chararray((n, n) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_snake_case = """*"""
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, (n - 1) - i) in blocks:
_snake_case = """#"""
_snake_case = """-"""
_snake_case = back_pointer[goal]
while x != start:
((_snake_case), (_snake_case)) = x
# print(x)
_snake_case = """-"""
_snake_case = back_pointer[x]
_snake_case = """-"""
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=""" """ )
print("""<-- End position""" , end=""" """ )
else:
print(grid[i][j] , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
print("""PATH TAKEN BY THE ALGORITHM IS:-""" )
_snake_case = back_pointer[goal]
while x != start:
print(_SCREAMING_SNAKE_CASE , end=""" """ )
_snake_case = back_pointer[x]
print(_SCREAMING_SNAKE_CASE )
sys.exit()
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
for itera in range(_SCREAMING_SNAKE_CASE ):
open_list[itera].remove_element(_SCREAMING_SNAKE_CASE )
# print("s", s)
# print("j", j)
((_snake_case), (_snake_case)) = s
_snake_case = (x - 1, y)
_snake_case = (x + 1, y)
_snake_case = (x, y + 1)
_snake_case = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(_SCREAMING_SNAKE_CASE )
_snake_case = -1
_snake_case = float("""inf""" )
if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1:
_snake_case = g_function[s] + 1
_snake_case = s
if neighbours not in close_list_anchor:
open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if neighbours not in close_list_inad:
for var in range(1 , _SCREAMING_SNAKE_CASE ):
if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
open_list[j].put(
_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase = make_common_ground()
__lowerCAmelCase = blocks_blk
# hyper parameters
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 20
__lowerCAmelCase = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase = (0, 0)
__lowerCAmelCase = (n - 1, n - 1)
__lowerCAmelCase = 1
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = {start: 0, goal: float("""inf""" )}
_snake_case = {start: -1, goal: -1}
_snake_case = []
_snake_case = set()
for i in range(_SCREAMING_SNAKE_CASE ):
open_list.append(PriorityQueue() )
open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_snake_case = []
_snake_case = []
while open_list[0].minkey() < float("""inf""" ):
for i in range(1 , _SCREAMING_SNAKE_CASE ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("""inf""" ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_snake_case, _snake_case = open_list[i].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_inad.append(_SCREAMING_SNAKE_CASE )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("""inf""" ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_snake_case = open_list[0].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_anchor.append(_SCREAMING_SNAKE_CASE )
print("""No path found to goal""" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, i) in blocks:
print("""#""" , end=""" """ )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("""*""" , end=""" """ )
else:
print("""-""" , end=""" """ )
else:
print("""*""" , end=""" """ )
if (j, i) == (n - 1, n - 1):
print("""<-- End position""" , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic) | 341 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 1 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {'vocab_file': 'spiece.model'}
__lowerCAmelCase = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__lowerCAmelCase = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 2
__lowerCAmelCase = 3
__lowerCAmelCase = 4
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = "left"
def __init__(self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<eop>", "<eod>"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_snake_case = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
_snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
_snake_case = 3
_snake_case = do_lower_case
_snake_case = remove_space
_snake_case = keep_accents
_snake_case = vocab_file
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase )
@property
def lowercase (self ) -> Optional[int]:
return len(self.sp_model )
def lowercase (self ) -> Optional[Any]:
_snake_case = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__(self ) -> Any:
_snake_case = self.__dict__.copy()
_snake_case = None
return state
def __setstate__(self , UpperCAmelCase ) -> Tuple:
_snake_case = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_snake_case = {}
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase (self , UpperCAmelCase ) -> List[str]:
if self.remove_space:
_snake_case = """ """.join(inputs.strip().split() )
else:
_snake_case = inputs
_snake_case = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_snake_case = unicodedata.normalize("""NFKD""" , UpperCAmelCase )
_snake_case = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase )] )
if self.do_lower_case:
_snake_case = outputs.lower()
return outputs
def lowercase (self , UpperCAmelCase ) -> List[str]:
_snake_case = self.preprocess_text(UpperCAmelCase )
_snake_case = self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
_snake_case = []
for piece in pieces:
if len(UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_snake_case = cur_pieces[1:]
else:
_snake_case = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase )
else:
new_pieces.append(UpperCAmelCase )
return new_pieces
def lowercase (self , UpperCAmelCase ) -> int:
return self.sp_model.PieceToId(UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
return self.sp_model.IdToPiece(UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Tuple:
_snake_case = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip()
return out_string
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ) -> str:
_snake_case = kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase )
_snake_case = self.convert_ids_to_tokens(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_snake_case = []
_snake_case = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) )
_snake_case = []
sub_texts.append(UpperCAmelCase )
else:
current_sub_text.append(UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_snake_case = """""".join(UpperCAmelCase )
_snake_case = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_snake_case = self.clean_up_tokenization(UpperCAmelCase )
return clean_text
else:
return text
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_snake_case = [self.sep_token_id]
_snake_case = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1, 1]
return ([0] * len(UpperCAmelCase )) + [1, 1]
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_snake_case = [self.sep_token_id]
_snake_case = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_snake_case = os.path.join(
UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , """wb""" ) as fi:
_snake_case = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,) | 341 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 1 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__lowerCAmelCase = datasets.logging.get_logger(__name__)
__lowerCAmelCase = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__lowerCAmelCase = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__lowerCAmelCase = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="dummy_doc" ):
_snake_case = {doc: key_lines}
_snake_case = {doc: sys_lines}
_snake_case = {}
_snake_case = 0
_snake_case = 0
_snake_case = 0
_snake_case = 0
_snake_case = 0
_snake_case = 0
_snake_case, _snake_case = reader.get_doc_mentions(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE )
key_singletons_num += singletons_num
if NP_only or min_span:
_snake_case = reader.set_annotated_parse_trees(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case, _snake_case = reader.get_doc_mentions(_SCREAMING_SNAKE_CASE , sys_doc_lines[doc] , _SCREAMING_SNAKE_CASE )
sys_singletons_num += singletons_num
if NP_only or min_span:
_snake_case = reader.set_annotated_parse_trees(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if remove_nested:
_snake_case, _snake_case = reader.remove_nested_coref_mentions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_snake_case, _snake_case = reader.remove_nested_coref_mentions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_snake_case = reader.get_mention_assignments(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = reader.get_mention_assignments(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" )
logger.info(
"""Number of resulting singleton clusters in the key """
f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" )
if not keep_singletons:
logger.info(
f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """
"""files, respectively""" )
return doc_coref_infos
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = get_coref_infos(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = {}
_snake_case = 0
_snake_case = 0
for name, metric in metrics:
_snake_case, _snake_case, _snake_case = evaluator.evaluate_documents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} )
logger.info(
name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , )
if conll_subparts_num == 3:
_snake_case = (conll / 3) * 100
logger.info(f"""CoNLL score: {conll:.2f}""" )
output_scores.update({"""conll_score""": conll} )
return output_scores
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_snake_case = line.split()[5]
if not parse_col == "-":
_snake_case = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ) -> List[Any]:
_snake_case = [
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_snake_case = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_snake_case = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score | 341 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.