code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
def __snake_case ( lowerCAmelCase_ ) -> int:
SCREAMING_SNAKE_CASE__ = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __snake_case ( lowerCAmelCase_ = 1_0_0 ) -> int:
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
for i in range(2 , max_n + 1 ):
SCREAMING_SNAKE_CASE__ = pre_numerator
SCREAMING_SNAKE_CASE__ = 2 * i // 3 if i % 3 == 0 else 1
SCREAMING_SNAKE_CASE__ = cur_numerator
SCREAMING_SNAKE_CASE__ = e_cont * pre_numerator + temp
return sum_digits(lowerCAmelCase_ )
if __name__ == "__main__":
print(F'{solution() = }')
| 100 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =42
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : int ):
_a = [[] for _ in range(__a )]
_a = size
def __getitem__( self : int , __a : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase__ ( self : Dict ):
return self._size
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ):
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
lowerCAmelCase__ : List[Any] =logging.get_logger(__name__)
lowerCAmelCase__ : List[str] ={
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class __lowercase :
"""simple docstring"""
def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ):
"""simple docstring"""
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
SCREAMING_SNAKE_CASE_ : Any = model
SCREAMING_SNAKE_CASE_ : int = kwargs.get('model_save_dir' , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.get('latest_model_name' , lowerCAmelCase__ )
def __call__( self , **lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = {k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()}
return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ )
@staticmethod
def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ):
"""simple docstring"""
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
SCREAMING_SNAKE_CASE_ : Any = 'CPUExecutionProvider'
return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ )
def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name )
SCREAMING_SNAKE_CASE_ : List[str] = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ )
try:
shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
SCREAMING_SNAKE_CASE_ : int = self.model_save_dir.joinpath(lowerCAmelCase__ )
if src_path.exists():
SCREAMING_SNAKE_CASE_ : Dict = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ )
try:
shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ )
except shutil.SameFileError:
pass
def UpperCamelCase__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ):
"""simple docstring"""
if os.path.isfile(lowerCAmelCase__ ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
# saving model weights/files
self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
@classmethod
def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE_ : Optional[int] = OnnxRuntimeModel.load_model(
os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ )
SCREAMING_SNAKE_CASE_ : List[str] = Path(lowerCAmelCase__ )
# load model from hub
else:
# download model
SCREAMING_SNAKE_CASE_ : int = hf_hub_download(
repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , )
SCREAMING_SNAKE_CASE_ : Any = Path(lowerCAmelCase__ ).parent
SCREAMING_SNAKE_CASE_ : str = Path(lowerCAmelCase__ ).name
SCREAMING_SNAKE_CASE_ : Union[str, Any] = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ )
return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ )
@classmethod
def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = None
if len(str(lowerCAmelCase__ ).split('@' ) ) == 2:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = model_id.split('@' )
return cls._from_pretrained(
model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
| 101 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =FlaxAutoencoderKL
@property
def UpperCamelCase__ ( self : str ):
_a = 4
_a = 3
_a = (32, 32)
_a = jax.random.PRNGKey(0 )
_a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def UpperCamelCase__ ( self : List[Any] ):
_a = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_a = self.dummy_input
return init_dict, inputs_dict
| 692 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__magic_name__ : List[Any] = logging.get_logger(__name__)
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self , *_A , **_A ):
'''simple docstring'''
warnings.warn(
"""The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PoolFormerImageProcessor instead.""" , _A , )
super().__init__(*_A , **_A )
| 102 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase_ : List[Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase_ : Optional[int] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase_ : Any = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Tuple = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]:
for tf_name, hf_name in patterns:
_a = k.replace(lowercase , lowercase )
return k
def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration:
_a = BigBirdPegasusConfig(**lowercase )
_a = BigBirdPegasusForConditionalGeneration(lowercase )
_a = torch_model.state_dict()
_a = {}
# separating decoder weights
_a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = DECODER_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = REMAINING_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
_a = mapping["model.embed_positions.weight"]
_a = mapping.pop("model.embed_positions.weight" )
_a , _a = torch_model.load_state_dict(lowercase , strict=lowercase )
_a = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
_a = tf.train.list_variables(lowercase )
_a = {}
_a = ["global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
_a = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a = tf.train.load_variable(lowercase , lowercase )
_a = array
return tf_weights
def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]:
_a = get_tf_weights_as_numpy(lowercase )
_a = convert_bigbird_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 692 | 0 |
"""simple docstring"""
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
def __UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
_snake_case = SMALL_MODEL_IDENTIFIER
_snake_case = '''pt'''
_snake_case = '''tf'''
def __UpperCAmelCase ( self : int , __lowerCamelCase : Any ):
"""simple docstring"""
_snake_case = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__lowerCamelCase )
def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ):
"""simple docstring"""
_snake_case = TFAutoModel.from_pretrained(self.test_model , from_pt=__lowerCamelCase )
model_tf.save_pretrained(__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
_snake_case = '''mock_framework'''
# Framework provided - return whatever the user provides
_snake_case = FeaturesManager.determine_framework(self.test_model , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__lowerCamelCase )
_snake_case = FeaturesManager.determine_framework(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__lowerCamelCase )
_snake_case = FeaturesManager.determine_framework(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__lowerCamelCase )
_snake_case = FeaturesManager.determine_framework(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__lowerCamelCase )
_snake_case = FeaturesManager.determine_framework(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__lowerCamelCase ):
_snake_case = FeaturesManager.determine_framework(__lowerCamelCase )
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
_snake_case = MagicMock(return_value=__lowerCamelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __lowerCamelCase ):
_snake_case = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__lowerCamelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_snake_case = MagicMock(return_value=__lowerCamelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __lowerCamelCase ):
_snake_case = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__lowerCamelCase , self.framework_tf )
# Both in environment -> use PyTorch
_snake_case = MagicMock(return_value=__lowerCamelCase )
_snake_case = MagicMock(return_value=__lowerCamelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __lowerCamelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __lowerCamelCase ):
_snake_case = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__lowerCamelCase , self.framework_pt )
# Both not in environment -> raise error
_snake_case = MagicMock(return_value=__lowerCamelCase )
_snake_case = MagicMock(return_value=__lowerCamelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __lowerCamelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __lowerCamelCase ):
with self.assertRaises(__lowerCamelCase ):
_snake_case = FeaturesManager.determine_framework(self.test_model )
| 103 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 692 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"""google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class UpperCamelCase__ ( _lowerCAmelCase ):
"""simple docstring"""
A__ : Union[str, Any] = "canine"
def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=16384 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0xE000 , SCREAMING_SNAKE_CASE__=0xE001 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=16384 , SCREAMING_SNAKE_CASE__=128 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A__ = max_position_embeddings
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = type_vocab_size
A__ = layer_norm_eps
# Character config:
A__ = downsampling_rate
A__ = upsampling_kernel_size
A__ = num_hash_functions
A__ = num_hash_buckets
A__ = local_transformer_stride
| 104 |
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 692 | 0 |
from __future__ import annotations
import math
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase__ : List[str] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list[int]:
"""simple docstring"""
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError('n must be an integer' )
if n <= 0:
raise ValueError('n must be >= 0' )
SCREAMING_SNAKE_CASE_ : Dict = []
for num in range(len(lowerCamelCase_ ) ):
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while 2 * i * i <= odd_composites[num]:
SCREAMING_SNAKE_CASE_ : Dict = odd_composites[num] - 2 * i * i
if is_prime(lowerCamelCase_ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCamelCase_ ) == n:
return list_nums
return []
def __UpperCAmelCase ( ) -> int:
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 105 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 692 | 0 |
import random
from typing import Any
def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> list[Any]:
'''simple docstring'''
for _ in range(len(lowerCAmelCase__ ) ):
A = random.randint(0 , len(lowerCAmelCase__ ) - 1 )
A = random.randint(0 , len(lowerCAmelCase__ ) - 1 )
A , A = data[b], data[a]
return data
if __name__ == "__main__":
__snake_case :List[str] =[0, 1, 2, 3, 4, 5, 6, 7]
__snake_case :List[Any] =['python', 'says', 'hello', '!']
print('Fisher-Yates Shuffle:')
print('List', integers, strings)
print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings)) | 106 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]:
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
_a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"Number of resulting singleton clusters in the key "
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"files, respectively" )
return doc_coref_infos
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str:
_a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
_a = (conll / 3) * 100
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"conll_score": conll} )
return output_scores
def _lowerCamelCase ( lowercase : Any ) -> str:
_a = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ):
_a = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__a )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , )
return score
| 692 | 0 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
_UpperCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class lowercase_ :
"""simple docstring"""
__lowerCAmelCase = field(
default=1_2_8 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
@dataclass
class lowercase_ :
"""simple docstring"""
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__lowerCAmelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def _SCREAMING_SNAKE_CASE ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_xnli' , __snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(__snake_case )
datasets.utils.logging.set_verbosity(__snake_case )
transformers.utils.logging.set_verbosity(__snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
_A = load_dataset(
'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
_A = load_dataset(
'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
_A = train_dataset.features['label'].names
if training_args.do_eval:
_A = load_dataset(
'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
_A = eval_dataset.features['label'].names
if training_args.do_predict:
_A = load_dataset(
'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
_A = predict_dataset.features['label'].names
# Labels
_A = len(__snake_case )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , idalabel={str(__snake_case ): label for i, label in enumerate(__snake_case )} , labelaid={label: i for i, label in enumerate(__snake_case )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
_A = 'max_length'
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
_A = False
def preprocess_function(__snake_case : List[Any] ):
# Tokenize the texts
return tokenizer(
examples['premise'] , examples['hypothesis'] , padding=__snake_case , max_length=data_args.max_seq_length , truncation=__snake_case , )
if training_args.do_train:
if data_args.max_train_samples is not None:
_A = min(len(__snake_case ) , data_args.max_train_samples )
_A = train_dataset.select(range(__snake_case ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
_A = train_dataset.map(
__snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__snake_case ) ) , 3 ):
logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_A = min(len(__snake_case ) , data_args.max_eval_samples )
_A = eval_dataset.select(range(__snake_case ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
_A = eval_dataset.map(
__snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
_A = min(len(__snake_case ) , data_args.max_predict_samples )
_A = predict_dataset.select(range(__snake_case ) )
with training_args.main_process_first(desc='prediction dataset map pre-processing' ):
_A = predict_dataset.map(
__snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , )
# Get the metric function
_A = evaluate.load('xnli' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__snake_case : EvalPrediction ):
_A = p.predictions[0] if isinstance(p.predictions , __snake_case ) else p.predictions
_A = np.argmax(__snake_case , axis=1 )
return metric.compute(predictions=__snake_case , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
_A = default_data_collator
elif training_args.fpaa:
_A = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 )
else:
_A = None
# Initialize our Trainer
_A = Trainer(
model=__snake_case , args=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=__snake_case )
_A = train_result.metrics
_A = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case )
)
_A = min(__snake_case , len(__snake_case ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('train' , __snake_case )
trainer.save_metrics('train' , __snake_case )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_A = trainer.evaluate(eval_dataset=__snake_case )
_A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__snake_case )
_A = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('eval' , __snake_case )
trainer.save_metrics('eval' , __snake_case )
# Prediction
if training_args.do_predict:
logger.info('*** Predict ***' )
_A , _A , _A = trainer.predict(__snake_case , metric_key_prefix='predict' )
_A = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__snake_case )
)
_A = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('predict' , __snake_case )
trainer.save_metrics('predict' , __snake_case )
_A = np.argmax(__snake_case , axis=1 )
_A = os.path.join(training_args.output_dir , 'predictions.txt' )
if trainer.is_world_process_zero():
with open(__snake_case , 'w' ) as writer:
writer.write('index\tprediction\n' )
for index, item in enumerate(__snake_case ):
_A = label_list[item]
writer.write(F'{index}\t{item}\n' )
if __name__ == "__main__":
main()
| 107 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase ( lowercase : float = 0.1 ) -> int:
_a = 3
_a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowercase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__a: Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
_lowerCamelCase = ['''pixel_values''']
def __init__( self : Any , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowerCamelCase )
_UpperCAmelCase = size if size is not None else {"""height""": 384, """width""": 384}
_UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
_UpperCAmelCase = do_convert_rgb
def lowerCamelCase ( self : Any , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : str , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
_UpperCAmelCase = (size["""height"""], size["""width"""])
return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Union[str, Any]:
"""simple docstring"""
return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def lowerCamelCase ( self : Dict , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Dict[str, int]] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : bool = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ) -> PIL.Image.Image:
"""simple docstring"""
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
_UpperCAmelCase = make_list_of_images(lowerCamelCase )
if not valid_images(lowerCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images]
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images]
_UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase )
return encoded_outputs | 108 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(CMStochasticIterativeScheduler,)
__a =10
def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ):
_a = {
"num_train_timesteps": 2_01,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[Any] ):
_a = 10
_a = self.get_scheduler_config()
_a = self.scheduler_classes[0](**__a )
scheduler.set_timesteps(__a )
_a = scheduler.timesteps[0]
_a = scheduler.timesteps[1]
_a = self.dummy_sample
_a = 0.1 * sample
_a = scheduler.step(__a , __a , __a ).prev_sample
_a = scheduler.step(__a , __a , __a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self : Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : int ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = 1
scheduler.set_timesteps(__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(__a ):
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [1_06, 0]
scheduler.set_timesteps(timesteps=__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def UpperCamelCase__ ( self : List[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 15, 0]
with self.assertRaises(__a , msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 1, 0]
_a = len(__a )
with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=__a )
| 692 | 0 |
'''simple docstring'''
import math
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while num > 0:
__SCREAMING_SNAKE_CASE = num % 8
__SCREAMING_SNAKE_CASE = octal + (remainder * math.floor(math.pow(10 , __UpperCAmelCase ) ))
counter += 1
__SCREAMING_SNAKE_CASE = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__UpperCAmelCase )}"""
def __magic_name__ ( ) -> None:
'''simple docstring'''
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(65 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(216 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(512 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 109 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ):
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowerCamelCase_ , unittest.TestCase ):
A_ = ConsistencyModelPipeline
A_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
A_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
A_ = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def _lowerCAmelCase ( self : Tuple ):
snake_case__ : Any = UNetaDModel.from_pretrained(
'diffusers/consistency-models-test' , subfolder='test_unet' , )
return unet
@property
def _lowerCAmelCase ( self : int ):
snake_case__ : List[Any] = UNetaDModel.from_pretrained(
'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , )
return unet
def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str=False ):
if class_cond:
snake_case__ : List[Any] = self.dummy_cond_unet
else:
snake_case__ : Optional[int] = self.dummy_uncond_unet
# Default to CM multistep sampler
snake_case__ : List[str] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
snake_case__ : List[str] = {
'unet': unet,
'scheduler': scheduler,
}
return components
def _lowerCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str]=0 ):
if str(__a ).startswith('mps' ):
snake_case__ : int = torch.manual_seed(__a )
else:
snake_case__ : Tuple = torch.Generator(device=__a ).manual_seed(__a )
snake_case__ : str = {
'batch_size': 1,
'num_inference_steps': None,
'timesteps': [22, 0],
'generator': generator,
'output_type': 'np',
}
return inputs
def _lowerCAmelCase ( self : Tuple ):
snake_case__ : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case__ : str = self.get_dummy_components()
snake_case__ : Any = ConsistencyModelPipeline(**__a )
snake_case__ : Union[str, Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : Optional[Any] = self.get_dummy_inputs(__a )
snake_case__ : int = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
snake_case__ : int = image[0, -3:, -3:, -1]
snake_case__ : List[Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case__ : List[str] = self.get_dummy_components(class_cond=__a )
snake_case__ : List[Any] = ConsistencyModelPipeline(**__a )
snake_case__ : List[Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : Optional[int] = self.get_dummy_inputs(__a )
snake_case__ : Optional[Any] = 0
snake_case__ : Any = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
snake_case__ : int = image[0, -3:, -3:, -1]
snake_case__ : List[str] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowerCAmelCase ( self : int ):
snake_case__ : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case__ : List[str] = self.get_dummy_components()
snake_case__ : Union[str, Any] = ConsistencyModelPipeline(**__a )
snake_case__ : Union[str, Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : Optional[int] = self.get_dummy_inputs(__a )
snake_case__ : Optional[int] = 1
snake_case__ : Optional[Any] = None
snake_case__ : Optional[int] = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
snake_case__ : Optional[Any] = image[0, -3:, -3:, -1]
snake_case__ : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowerCAmelCase ( self : str ):
snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case__ : Dict = self.get_dummy_components(class_cond=__a )
snake_case__ : Optional[Any] = ConsistencyModelPipeline(**__a )
snake_case__ : Any = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : Tuple = self.get_dummy_inputs(__a )
snake_case__ : Optional[int] = 1
snake_case__ : List[str] = None
snake_case__ : int = 0
snake_case__ : Optional[int] = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
snake_case__ : Dict = image[0, -3:, -3:, -1]
snake_case__ : Optional[int] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
def _lowerCAmelCase ( self : int ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple=0 , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]="cpu" , __lowerCamelCase : List[Any]=torch.floataa , __lowerCamelCase : Union[str, Any]=(1, 3, 64, 64) ):
snake_case__ : Tuple = torch.manual_seed(__a )
snake_case__ : Any = {
'num_inference_steps': None,
'timesteps': [22, 0],
'class_labels': 0,
'generator': generator,
'output_type': 'np',
}
if get_fixed_latents:
snake_case__ : List[Any] = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a )
snake_case__ : Optional[int] = latents
return inputs
def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : Any=0 , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : Union[str, Any]=torch.floataa , __lowerCamelCase : List[Any]=(1, 3, 64, 64) ):
if type(__a ) == str:
snake_case__ : Tuple = torch.device(__a )
snake_case__ : int = torch.Generator(device=__a ).manual_seed(__a )
snake_case__ : Dict = randn_tensor(__a , generator=__a , device=__a , dtype=__a )
return latents
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
snake_case__ : Union[str, Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
snake_case__ : Any = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : int = self.get_inputs()
snake_case__ : Tuple = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
snake_case__ : int = image[0, -3:, -3:, -1]
snake_case__ : Tuple = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowerCAmelCase ( self : Union[str, Any] ):
snake_case__ : str = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
snake_case__ : Optional[int] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
snake_case__ : Any = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : int = self.get_inputs()
snake_case__ : List[str] = 1
snake_case__ : Optional[Any] = None
snake_case__ : str = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
snake_case__ : Any = image[0, -3:, -3:, -1]
snake_case__ : Dict = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
@require_torch_a
def _lowerCAmelCase ( self : Union[str, Any] ):
snake_case__ : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
snake_case__ : Union[str, Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
snake_case__ : Dict = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : List[str] = self.get_inputs(get_fixed_latents=__a , device=__a )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ):
snake_case__ : Dict = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
snake_case__ : Any = image[0, -3:, -3:, -1]
snake_case__ : str = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@require_torch_a
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : Any = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
snake_case__ : List[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
snake_case__ : Optional[int] = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__a )
snake_case__ : Optional[Any] = self.get_inputs(get_fixed_latents=__a , device=__a )
snake_case__ : List[str] = 1
snake_case__ : str = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ):
snake_case__ : str = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
snake_case__ : List[str] = image[0, -3:, -3:, -1]
snake_case__ : Union[str, Any] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 270 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='timesformer'
def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ):
super().__init__(**__a )
_a = image_size
_a = patch_size
_a = num_channels
_a = num_frames
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = qkv_bias
_a = attention_type
_a = drop_path_rate
| 692 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 96 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self : Dict ):
_a = 1
_a = 3
_a = (32, 32)
_a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ ( self : Dict ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__a )
@property
def UpperCamelCase__ ( self : str ):
def extract(*__a : Tuple , **__a : str ):
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict ):
_a = torch.ones([0] )
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
self.pixel_values.to(__a )
return self
return Out()
return extract
def UpperCamelCase__ ( self : Optional[int] ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
_a = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , )
_a = output.images
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
# put models in fp16
_a = unet.half()
_a = vae.half()
_a = bert.half()
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
_a = init_image.resize((7_60, 5_04) )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
_a = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_a = init_image.resize((7_68, 5_12) )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 692 | 0 |
"""simple docstring"""
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
def __get__( self : Dict , a_ : List[str] , a_ : Dict=None )-> Union[str, Any]:
"""simple docstring"""
if obj is None:
return self
if self.fget is None:
raise AttributeError("""unreadable attribute""" )
UpperCAmelCase_ : str = """__cached_""" + self.fget.__name__
UpperCAmelCase_ : List[Any] = getattr(__a , __a , __a )
if cached is None:
UpperCAmelCase_ : int = self.fget(__a )
setattr(__a , __a , __a )
return cached
def A_ ( lowercase ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : int = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def A_ ( lowercase ) -> Optional[Any]:
"""simple docstring"""
if is_torch_fx_proxy(lowercase ):
return True
if is_torch_available():
import torch
if isinstance(lowercase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(lowercase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(lowercase , (jnp.ndarray, Tracer) ):
return True
return isinstance(lowercase , np.ndarray )
def A_ ( lowercase ) -> str:
"""simple docstring"""
return isinstance(lowercase , np.ndarray )
def A_ ( lowercase ) -> Optional[int]:
"""simple docstring"""
return _is_numpy(lowercase )
def A_ ( lowercase ) -> List[str]:
"""simple docstring"""
import torch
return isinstance(lowercase , torch.Tensor )
def A_ ( lowercase ) -> int:
"""simple docstring"""
return False if not is_torch_available() else _is_torch(lowercase )
def A_ ( lowercase ) -> str:
"""simple docstring"""
import torch
return isinstance(lowercase , torch.device )
def A_ ( lowercase ) -> str:
"""simple docstring"""
return False if not is_torch_available() else _is_torch_device(lowercase )
def A_ ( lowercase ) -> Any:
"""simple docstring"""
import torch
if isinstance(lowercase , lowercase ):
if hasattr(lowercase , lowercase ):
UpperCAmelCase_ : Optional[Any] = getattr(lowercase , lowercase )
else:
return False
return isinstance(lowercase , torch.dtype )
def A_ ( lowercase ) -> Dict:
"""simple docstring"""
return False if not is_torch_available() else _is_torch_dtype(lowercase )
def A_ ( lowercase ) -> Tuple:
"""simple docstring"""
import tensorflow as tf
return isinstance(lowercase , tf.Tensor )
def A_ ( lowercase ) -> List[str]:
"""simple docstring"""
return False if not is_tf_available() else _is_tensorflow(lowercase )
def A_ ( lowercase ) -> Tuple:
"""simple docstring"""
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(lowercase , """is_symbolic_tensor""" ):
return tf.is_symbolic_tensor(lowercase )
return type(lowercase ) == tf.Tensor
def A_ ( lowercase ) -> Any:
"""simple docstring"""
return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase )
def A_ ( lowercase ) -> str:
"""simple docstring"""
import jax.numpy as jnp # noqa: F811
return isinstance(lowercase , jnp.ndarray )
def A_ ( lowercase ) -> Optional[Any]:
"""simple docstring"""
return False if not is_flax_available() else _is_jax(lowercase )
def A_ ( lowercase ) -> Any:
"""simple docstring"""
if isinstance(lowercase , (dict, UserDict) ):
return {k: to_py_obj(lowercase ) for k, v in obj.items()}
elif isinstance(lowercase , (list, tuple) ):
return [to_py_obj(lowercase ) for o in obj]
elif is_tf_tensor(lowercase ):
return obj.numpy().tolist()
elif is_torch_tensor(lowercase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(lowercase ):
return np.asarray(lowercase ).tolist()
elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def A_ ( lowercase ) -> List[str]:
"""simple docstring"""
if isinstance(lowercase , (dict, UserDict) ):
return {k: to_numpy(lowercase ) for k, v in obj.items()}
elif isinstance(lowercase , (list, tuple) ):
return np.array(lowercase )
elif is_tf_tensor(lowercase ):
return obj.numpy()
elif is_torch_tensor(lowercase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(lowercase ):
return np.asarray(lowercase )
else:
return obj
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
def a ( self : Optional[int] )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = fields(self )
# Safety and consistency checks
if not len(__a ):
raise ValueError(f'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase_ : int = getattr(self , class_fields[0].name )
UpperCAmelCase_ : Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__a ):
if isinstance(__a , __a ):
UpperCAmelCase_ : str = first_field.items()
UpperCAmelCase_ : Optional[int] = True
else:
try:
UpperCAmelCase_ : Optional[Any] = iter(__a )
UpperCAmelCase_ : Tuple = True
except TypeError:
UpperCAmelCase_ : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__a ):
if (
not isinstance(__a , (list, tuple) )
or not len(__a ) == 2
or not isinstance(element[0] , __a )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase_ : Optional[Any] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
UpperCAmelCase_ : Tuple = element[1]
elif first_field is not None:
UpperCAmelCase_ : List[Any] = first_field
else:
for field in class_fields:
UpperCAmelCase_ : Dict = getattr(self , field.name )
if v is not None:
UpperCAmelCase_ : Tuple = v
def __delitem__( self : Optional[Any] , *a_ : Optional[int] , **a_ : Tuple )-> str:
"""simple docstring"""
raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def a ( self : Any , *a_ : Optional[Any] , **a_ : int )-> Optional[Any]:
"""simple docstring"""
raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def a ( self : Optional[int] , *a_ : Union[str, Any] , **a_ : Dict )-> Tuple:
"""simple docstring"""
raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def a ( self : Tuple , *a_ : Union[str, Any] , **a_ : Any )-> Any:
"""simple docstring"""
raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : Tuple , a_ : Any )-> str:
"""simple docstring"""
if isinstance(__a , __a ):
UpperCAmelCase_ : List[str] = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : List[Any] , a_ : int , a_ : str )-> List[str]:
"""simple docstring"""
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__a , __a )
super().__setattr__(__a , __a )
def __setitem__( self : List[str] , a_ : Dict , a_ : Optional[int] )-> Optional[int]:
"""simple docstring"""
super().__setitem__(__a , __a )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__a , __a )
def a ( self : Optional[Any] )-> Dict:
"""simple docstring"""
return tuple(self[k] for k in self.keys() )
class UpperCAmelCase_ (lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
@classmethod
def a ( cls : Dict , a_ : str )-> Dict:
"""simple docstring"""
raise ValueError(
f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
UpperCamelCase_ : str = """longest"""
UpperCamelCase_ : str = """max_length"""
UpperCamelCase_ : int = """do_not_pad"""
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = """pt"""
UpperCamelCase_ : Optional[Any] = """tf"""
UpperCamelCase_ : Union[str, Any] = """np"""
UpperCamelCase_ : int = """jax"""
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[str] , a_ : List[ContextManager] )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = context_managers
UpperCAmelCase_ : Dict = ExitStack()
def __enter__( self : int )-> int:
"""simple docstring"""
for context_manager in self.context_managers:
self.stack.enter_context(__a )
def __exit__( self : List[Any] , *a_ : Optional[int] , **a_ : Union[str, Any] )-> Dict:
"""simple docstring"""
self.stack.__exit__(*__a , **__a )
def A_ ( lowercase ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = infer_framework(lowercase )
if framework == "tf":
UpperCAmelCase_ : str = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase_ : str = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase_ : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def A_ ( lowercase ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = model_class.__name__
UpperCAmelCase_ : Any = infer_framework(lowercase )
if framework == "tf":
UpperCAmelCase_ : str = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase_ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase_ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def A_ ( lowercase , lowercase = "" , lowercase = "." ) -> Tuple:
"""simple docstring"""
def _flatten_dict(lowercase , lowercase="" , lowercase="." ):
for k, v in d.items():
UpperCAmelCase_ : str = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k
if v and isinstance(lowercase , lowercase ):
yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items()
else:
yield key, v
return dict(_flatten_dict(lowercase , lowercase , lowercase ) )
@contextmanager
def A_ ( lowercase , lowercase = False ) -> Dict:
"""simple docstring"""
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def A_ ( lowercase , lowercase=None ) -> Optional[int]:
"""simple docstring"""
if is_numpy_array(lowercase ):
return np.transpose(lowercase , axes=lowercase )
elif is_torch_tensor(lowercase ):
return array.T if axes is None else array.permute(*lowercase )
elif is_tf_tensor(lowercase ):
import tensorflow as tf
return tf.transpose(lowercase , perm=lowercase )
elif is_jax_tensor(lowercase ):
return jnp.transpose(lowercase , axes=lowercase )
else:
raise ValueError(f'''Type not supported for transpose: {type(lowercase )}.''' )
def A_ ( lowercase , lowercase ) -> str:
"""simple docstring"""
if is_numpy_array(lowercase ):
return np.reshape(lowercase , lowercase )
elif is_torch_tensor(lowercase ):
return array.reshape(*lowercase )
elif is_tf_tensor(lowercase ):
import tensorflow as tf
return tf.reshape(lowercase , lowercase )
elif is_jax_tensor(lowercase ):
return jnp.reshape(lowercase , lowercase )
else:
raise ValueError(f'''Type not supported for reshape: {type(lowercase )}.''' )
def A_ ( lowercase , lowercase=None ) -> Union[str, Any]:
"""simple docstring"""
if is_numpy_array(lowercase ):
return np.squeeze(lowercase , axis=lowercase )
elif is_torch_tensor(lowercase ):
return array.squeeze() if axis is None else array.squeeze(dim=lowercase )
elif is_tf_tensor(lowercase ):
import tensorflow as tf
return tf.squeeze(lowercase , axis=lowercase )
elif is_jax_tensor(lowercase ):
return jnp.squeeze(lowercase , axis=lowercase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(lowercase )}.''' )
def A_ ( lowercase , lowercase ) -> Tuple:
"""simple docstring"""
if is_numpy_array(lowercase ):
return np.expand_dims(lowercase , lowercase )
elif is_torch_tensor(lowercase ):
return array.unsqueeze(dim=lowercase )
elif is_tf_tensor(lowercase ):
import tensorflow as tf
return tf.expand_dims(lowercase , axis=lowercase )
elif is_jax_tensor(lowercase ):
return jnp.expand_dims(lowercase , axis=lowercase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(lowercase )}.''' )
def A_ ( lowercase ) -> Any:
"""simple docstring"""
if is_numpy_array(lowercase ):
return np.size(lowercase )
elif is_torch_tensor(lowercase ):
return array.numel()
elif is_tf_tensor(lowercase ):
import tensorflow as tf
return tf.size(lowercase )
elif is_jax_tensor(lowercase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(lowercase )}.''' )
def A_ ( lowercase , lowercase ) -> Any:
"""simple docstring"""
for key, value in auto_map.items():
if isinstance(lowercase , (tuple, list) ):
UpperCAmelCase_ : Dict = [f'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase_ : str = f'''{repo_id}--{value}'''
return auto_map
def A_ ( lowercase ) -> str:
"""simple docstring"""
for base_class in inspect.getmro(lowercase ):
UpperCAmelCase_ : Union[str, Any] = base_class.__module__
UpperCAmelCase_ : Dict = base_class.__name__
if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("""torch""" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 470 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ):
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
A : Optional[int] = (3, 9, -11, 0, 7, 5, 1, -1)
A : int = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class a_ :
a : Optional[Any] = 4_2
a : Any = 4_2
class a_ :
def __init__( self , __UpperCamelCase ):
_lowercase = None
for i in sorted(__a , reverse=__a ):
_lowercase = Node(__a , self.head )
def __iter__( self ):
_lowercase = self.head
while node:
yield node.data
_lowercase = node.next_node
def __len__( self ):
return sum(1 for _ in self )
def __str__( self ):
return " -> ".join([str(__a ) for node in self] )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : SortedLinkedList , SCREAMING_SNAKE_CASE_ : SortedLinkedList ) -> SortedLinkedList:
return SortedLinkedList(list(SCREAMING_SNAKE_CASE_ ) + list(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Optional[int] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 287 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Tuple:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : str = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 692 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class _UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase):
_lowerCAmelCase : Optional[Any] = IFPipeline
_lowerCAmelCase : Dict = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""}
_lowerCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""}
def _snake_case ( self : Optional[int] ):
return self._get_dummy_components()
def _snake_case ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=0 ):
if str(__a ).startswith('''mps''' ):
snake_case_ : Dict = torch.manual_seed(__a )
else:
snake_case_ : int = torch.Generator(device=__a ).manual_seed(__a )
snake_case_ : Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self : List[str] ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def _snake_case ( self : List[Any] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _snake_case ( self : List[Any] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _snake_case ( self : Dict ):
self._test_save_load_local()
def _snake_case ( self : int ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def _snake_case ( self : Dict ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase):
def _snake_case ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : int ):
# if
snake_case_ : int = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa )
snake_case_ : Optional[int] = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__a , tokenizer=__a )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''' )
snake_case_, snake_case_ : str = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
snake_case_ : List[Any] = None
snake_case_ : Dict = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(__a , __a , __a , __a )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
snake_case_ : Any = IFImgaImgPipeline(**pipe_a.components )
snake_case_ : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(__a , __a , __a , __a )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
snake_case_ : Any = IFInpaintingPipeline(**pipe_a.components )
snake_case_ : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(__a , __a , __a , __a )
def _snake_case ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[int] ):
# pipeline 1
_start_torch_memory_measurement()
snake_case_ : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : Union[str, Any] = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , num_inference_steps=2 , generator=__a , output_type='''np''' , )
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
snake_case_ : Dict = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' )
assert_mean_pixel_difference(__a , __a )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Any = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , generator=__a , num_inference_steps=2 , output_type='''np''' , )
snake_case_ : List[str] = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(__a , __a )
def _snake_case ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] ):
# pipeline 1
_start_torch_memory_measurement()
snake_case_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a )
snake_case_ : int = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : Optional[int] = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , num_inference_steps=2 , generator=__a , output_type='''np''' , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
snake_case_ : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' )
assert_mean_pixel_difference(__a , __a )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Any = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , original_image=__a , generator=__a , num_inference_steps=2 , output_type='''np''' , )
snake_case_ : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(__a , __a )
def _snake_case ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple ):
# pipeline 1
_start_torch_memory_measurement()
snake_case_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__a )
snake_case_ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : List[Any] = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , mask_image=__a , num_inference_steps=2 , generator=__a , output_type='''np''' , )
snake_case_ : Optional[Any] = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
snake_case_ : Optional[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' )
assert_mean_pixel_difference(__a , __a )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__a )
snake_case_ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__a )
snake_case_ : Tuple = pipe_a(
prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , mask_image=__a , original_image=__a , generator=__a , num_inference_steps=2 , output_type='''np''' , )
snake_case_ : Any = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(__a , __a )
def __lowercase ( ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 123 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ : Any = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 692 | 0 |
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
A = Mapping[str, np.ndarray]
A = Mapping[str, Any] # Is a nested dict.
A = 0.01
@dataclasses.dataclass(frozen=lowerCamelCase_ )
class lowerCAmelCase__ :
'''simple docstring'''
lowerCAmelCase_ = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase_ = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase_ = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase_ = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase_ = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase_ = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase_ = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase_ = None
# Chain corresponding to each parent
lowerCAmelCase_ = None
def lowerCamelCase ( UpperCamelCase : str ) -> Protein:
_lowerCamelCase = R'(\[[A-Z]+\]\n)'
_lowerCamelCase = [tag.strip() for tag in re.split(UpperCamelCase , UpperCamelCase ) if len(UpperCamelCase ) > 0]
_lowerCamelCase = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] )
_lowerCamelCase = ['N', 'CA', 'C']
_lowerCamelCase = None
_lowerCamelCase = None
_lowerCamelCase = None
for g in groups:
if "[PRIMARY]" == g[0]:
_lowerCamelCase = g[1][0].strip()
for i in range(len(UpperCamelCase ) ):
if seq[i] not in residue_constants.restypes:
_lowerCamelCase = 'X' # FIXME: strings are immutable
_lowerCamelCase = np.array(
[residue_constants.restype_order.get(UpperCamelCase , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
_lowerCamelCase = []
for axis in range(3 ):
tertiary.append(list(map(UpperCamelCase , g[1][axis].split() ) ) )
_lowerCamelCase = np.array(UpperCamelCase )
_lowerCamelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(UpperCamelCase ):
_lowerCamelCase = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
_lowerCamelCase = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) )
_lowerCamelCase = np.zeros(
(
len(UpperCamelCase ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(UpperCamelCase ):
_lowerCamelCase = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=UpperCamelCase , atom_mask=UpperCamelCase , aatype=UpperCamelCase , residue_index=np.arange(len(UpperCamelCase ) ) , b_factors=UpperCamelCase , )
def lowerCamelCase ( UpperCamelCase : Protein , UpperCamelCase : int = 0 ) -> List[str]:
_lowerCamelCase = []
_lowerCamelCase = prot.remark
if remark is not None:
pdb_headers.append(F"""REMARK {remark}""" )
_lowerCamelCase = prot.parents
_lowerCamelCase = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
_lowerCamelCase = [p for i, p in zip(UpperCamelCase , UpperCamelCase ) if i == chain_id]
if parents is None or len(UpperCamelCase ) == 0:
_lowerCamelCase = ['N/A']
pdb_headers.append(F"""PARENT {" ".join(UpperCamelCase )}""" )
return pdb_headers
def lowerCamelCase ( UpperCamelCase : Protein , UpperCamelCase : str ) -> str:
_lowerCamelCase = []
_lowerCamelCase = pdb_str.split('\n' )
_lowerCamelCase = prot.remark
if remark is not None:
out_pdb_lines.append(F"""REMARK {remark}""" )
_lowerCamelCase = 42
if prot.parents is not None and len(prot.parents ) > 0:
_lowerCamelCase = []
if prot.parents_chain_index is not None:
_lowerCamelCase = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(UpperCamelCase ) , [] )
parent_dict[str(UpperCamelCase )].append(UpperCamelCase )
_lowerCamelCase = max([int(UpperCamelCase ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
_lowerCamelCase = parent_dict.get(str(UpperCamelCase ) , ['N/A'] )
parents_per_chain.append(UpperCamelCase )
else:
parents_per_chain.append(list(prot.parents ) )
else:
_lowerCamelCase = [['N/A']]
def make_parent_line(UpperCamelCase : Sequence[str] ) -> str:
return F"""PARENT {" ".join(UpperCamelCase )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
_lowerCamelCase = 0
for i, l in enumerate(UpperCamelCase ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(UpperCamelCase )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(UpperCamelCase ):
_lowerCamelCase = parents_per_chain[chain_counter]
else:
_lowerCamelCase = ['N/A']
out_pdb_lines.append(make_parent_line(UpperCamelCase ) )
return "\n".join(UpperCamelCase )
def lowerCamelCase ( UpperCamelCase : Protein ) -> str:
_lowerCamelCase = residue_constants.restypes + ['X']
def res_atoa(UpperCamelCase : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , 'UNK' )
_lowerCamelCase = residue_constants.atom_types
_lowerCamelCase = []
_lowerCamelCase = prot.atom_mask
_lowerCamelCase = prot.aatype
_lowerCamelCase = prot.atom_positions
_lowerCamelCase = prot.residue_index.astype(np.intaa )
_lowerCamelCase = prot.b_factors
_lowerCamelCase = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('Invalid aatypes.' )
_lowerCamelCase = get_pdb_headers(UpperCamelCase )
if len(UpperCamelCase ) > 0:
pdb_lines.extend(UpperCamelCase )
_lowerCamelCase = aatype.shape[0]
_lowerCamelCase = 1
_lowerCamelCase = 0
_lowerCamelCase = string.ascii_uppercase
_lowerCamelCase = None
# Add all atom sites.
for i in range(UpperCamelCase ):
_lowerCamelCase = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(UpperCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
_lowerCamelCase = 'ATOM'
_lowerCamelCase = atom_name if len(UpperCamelCase ) == 4 else F""" {atom_name}"""
_lowerCamelCase = ''
_lowerCamelCase = ''
_lowerCamelCase = 1.00
_lowerCamelCase = atom_name[0] # Protein supports only C, N, O, S, this works.
_lowerCamelCase = ''
_lowerCamelCase = 'A'
if chain_index is not None:
_lowerCamelCase = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
_lowerCamelCase = (
F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
F"""{res_name_a:>3} {chain_tag:>1}"""
F"""{residue_index[i]:>4}{insertion_code:>1} """
F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
F"""{occupancy:>6.2f}{b_factor:>6.2f} """
F"""{element:>2}{charge:>2}"""
)
pdb_lines.append(UpperCamelCase )
atom_index += 1
_lowerCamelCase = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
_lowerCamelCase = True
_lowerCamelCase = chain_index[i + 1]
if should_terminate:
# Close the chain.
_lowerCamelCase = 'TER'
_lowerCamelCase = (
F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(UpperCamelCase )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(UpperCamelCase , UpperCamelCase ) )
pdb_lines.append('END' )
pdb_lines.append('' )
return "\n".join(UpperCamelCase )
def lowerCamelCase ( UpperCamelCase : Protein ) -> np.ndarray:
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def lowerCamelCase ( UpperCamelCase : FeatureDict , UpperCamelCase : ModelOutput , UpperCamelCase : Optional[np.ndarray] = None , UpperCamelCase : Optional[np.ndarray] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Sequence[str]] = None , UpperCamelCase : Optional[Sequence[int]] = None , ) -> Protein:
return Protein(
aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=UpperCamelCase , remark=UpperCamelCase , parents=UpperCamelCase , parents_chain_index=UpperCamelCase , ) | 544 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] ):
_a = psutil.Process()
_a = False
def UpperCamelCase__ ( self : Tuple ):
_a = -1
while True:
_a = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def UpperCamelCase__ ( self : List[Any] ):
_a = True
_a = threading.Thread(target=self.peak_monitor )
_a = True
self.thread.start()
def UpperCamelCase__ ( self : Optional[int] ):
_a = False
self.thread.join()
return self.cpu_memory_peak
lowerCAmelCase_ : List[Any] = PeakCPUMemory()
def _lowerCamelCase ( ) -> Tuple:
# Time
_a = {"time": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = torch.cuda.memory_allocated(lowercase )
torch.cuda.reset_peak_memory_stats()
return measures
def _lowerCamelCase ( lowercase : Any ) -> int:
# Time
_a = {"time": time.time() - start_measures["time"]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
_a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
_a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
return measures
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str:
print(F'{description}:' )
print(F'- Time: {measures["time"]:.2f}s' )
for i in range(torch.cuda.device_count() ):
print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' )
_a = measures[F'{i}-peak']
print(F'- GPU {i} peak: {peak:.2f}MiB' )
print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' )
print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
| 692 | 0 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase( lowerCamelCase_ ):
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple=1_3 , SCREAMING_SNAKE_CASE : Optional[int]=7 , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : List[str]=9_9 , SCREAMING_SNAKE_CASE : Union[str, Any]=0 , SCREAMING_SNAKE_CASE : int=3_2 , SCREAMING_SNAKE_CASE : Optional[Any]=5 , SCREAMING_SNAKE_CASE : Optional[Any]=4 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE : int=1_2 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Union[str, Any]="last" , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None , ) -> Optional[int]:
'''simple docstring'''
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_lengths
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = gelu_activation
__snake_case = sinusoidal_embeddings
__snake_case = causal
__snake_case = asm
__snake_case = n_langs
__snake_case = vocab_size
__snake_case = n_special
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = summary_type
__snake_case = use_proj
__snake_case = scope
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case = None
if self.use_input_lengths:
__snake_case = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case = ids_tensor([self.batch_size] , 2 ).float()
__snake_case = ids_tensor([self.batch_size] , self.num_choices )
__snake_case = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , ) -> str:
'''simple docstring'''
__snake_case = FlaubertModel(config=__a )
model.to(__a )
model.eval()
__snake_case = model(__a , lengths=__a , langs=__a )
__snake_case = model(__a , langs=__a )
__snake_case = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Optional[Any]:
'''simple docstring'''
__snake_case = FlaubertWithLMHeadModel(__a )
model.to(__a )
model.eval()
__snake_case = model(__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]:
'''simple docstring'''
__snake_case = FlaubertForQuestionAnsweringSimple(__a )
model.to(__a )
model.eval()
__snake_case = model(__a )
__snake_case = model(__a , start_positions=__a , end_positions=__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = FlaubertForQuestionAnswering(__a )
model.to(__a )
model.eval()
__snake_case = model(__a )
__snake_case = model(
__a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , )
__snake_case = model(
__a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , )
((__snake_case ) , ) = result_with_labels.to_tuple()
__snake_case = model(__a , start_positions=__a , end_positions=__a )
((__snake_case ) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , ) -> str:
'''simple docstring'''
__snake_case = FlaubertForSequenceClassification(__a )
model.to(__a )
model.eval()
__snake_case = model(__a )
__snake_case = model(__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , ) -> Dict:
'''simple docstring'''
__snake_case = self.num_labels
__snake_case = FlaubertForTokenClassification(__a )
model.to(__a )
model.eval()
__snake_case = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , ) -> List[str]:
'''simple docstring'''
__snake_case = self.num_choices
__snake_case = FlaubertForMultipleChoice(config=__a )
model.to(__a )
model.eval()
__snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
snake_case_ : Dict = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
snake_case_ : List[Any] = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict=False ) -> List[Any]:
'''simple docstring'''
__snake_case = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__a )
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__a )
return inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
'''simple docstring'''
__snake_case = FlaubertModelTester(self )
__snake_case = ConfigTester(self , config_class=__a , emb_dim=3_7 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__a )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__a )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__a )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__a )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__a )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__a )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__a )
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any:
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = FlaubertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__snake_case = True
__snake_case = model_class(config=__a )
__snake_case = self._prepare_for_class(__a , __a )
__snake_case = torch.jit.trace(
__a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) )
__snake_case = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a )
loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) )
@require_torch
class UpperCamelCase( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
__snake_case = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
__snake_case = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
with torch.no_grad():
__snake_case = model(__a )[0]
__snake_case = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , __a )
__snake_case = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
| 371 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(DDIMParallelScheduler,)
__a =(('eta', 0.0), ('num_inference_steps', 50))
def UpperCamelCase__ ( self : Optional[int] , **__a : Any ):
_a = {
"num_train_timesteps": 10_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(**__a )
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
_a = self.dummy_model()
_a = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for t in scheduler.timesteps:
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a , __a ).prev_sample
return sample
def UpperCamelCase__ ( self : str ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : Dict ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__a )
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(steps_offset=1 )
_a = scheduler_class(**__a )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def UpperCamelCase__ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__a )
def UpperCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def UpperCamelCase__ ( self : Dict ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__a )
def UpperCamelCase__ ( self : Optional[int] ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__a )
def UpperCamelCase__ ( self : Optional[Any] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__a )
def UpperCamelCase__ ( self : List[Any] ):
self.check_over_configs(thresholding=__a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , )
def UpperCamelCase__ ( self : List[Any] ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=__a , num_inference_steps=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__a , eta=__a )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5
def UpperCamelCase__ ( self : List[str] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
scheduler.set_timesteps(__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(__a )[0:3, None].repeat(1 , __a )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def UpperCamelCase__ ( self : List[str] ):
_a = self.full_loop()
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def UpperCamelCase__ ( self : str ):
_a = self.full_loop(prediction_type="v_prediction" )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 692 | 0 |
def A__( __lowerCAmelCase ):
return "".join(chr(ord(__lowerCAmelCase ) - 32 ) if 'a' <= char <= 'z' else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 304 |
'''simple docstring'''
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _lowerCamelCase ( lowercase : Any ) -> List[str]:
return getitem, k
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any:
return setitem, k, v
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
return delitem, k
def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int:
try:
return fun(lowercase , *lowercase ), None
except Exception as e:
return None, e
lowerCAmelCase_ : Optional[Any] = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
lowerCAmelCase_ : Optional[int] = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
lowerCAmelCase_ : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
lowerCAmelCase_ : List[Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
_a = HashMap(initial_block_size=4 )
_a = {}
for _, (fun, *args) in enumerate(lowercase ):
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
assert my_res == py_res
assert str(lowercase ) == str(lowercase )
assert set(lowercase ) == set(lowercase )
assert len(lowercase ) == len(lowercase )
assert set(my.items() ) == set(py.items() )
def _lowerCamelCase ( ) -> str:
def is_public(lowercase : str ) -> bool:
return not name.startswith("_" )
_a = {name for name in dir({} ) if is_public(lowercase )}
_a = {name for name in dir(HashMap() ) if is_public(lowercase )}
assert dict_public_names > hash_public_names
| 692 | 0 |
from __future__ import annotations
SCREAMING_SNAKE_CASE__ : List[Any] = '#'
class UpperCAmelCase_ :
def __init__( self ):
UpperCAmelCase__ : Any = {}
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ : List[str] = self._trie
for char in text:
if char not in trie:
UpperCAmelCase__ : Optional[Any] = {}
UpperCAmelCase__ : str = trie[char]
UpperCAmelCase__ : List[Any] = True
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ : str = self._trie
for char in prefix:
if char in trie:
UpperCAmelCase__ : Optional[Any] = trie[char]
else:
return []
return self._elements(__a )
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = []
for c, v in d.items():
UpperCAmelCase__ : Optional[int] = [""" """] if c == END else [(c + s) for s in self._elements(__a )]
result.extend(__a )
return tuple(__a )
SCREAMING_SNAKE_CASE__ : Optional[int] = Trie()
SCREAMING_SNAKE_CASE__ : Tuple = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def _lowerCamelCase ( __lowerCamelCase ) -> tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def _lowerCamelCase ( ) -> None:
'''simple docstring'''
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 79 |
'''simple docstring'''
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =PhobertTokenizer
__a =False
def UpperCamelCase__ ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a = ["T@@", "i", "I", "R@@", "r", "e@@"]
_a = dict(zip(__a , range(len(__a ) ) ) )
_a = ["#version: 0.2", "l à</w>"]
_a = {"unk_token": "<unk>"}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(f'{token} {vocab_tokens[token]}\n' )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__a ) )
def UpperCamelCase__ ( self : str , **__a : List[str] ):
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
_a = "Tôi là VinAI Research"
_a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def UpperCamelCase__ ( self : Dict ):
_a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a = "Tôi là VinAI Research"
_a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
_a = tokenizer.tokenize(__a )
print(__a )
self.assertListEqual(__a , __a )
_a = tokens + [tokenizer.unk_token]
_a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
| 692 | 0 |
"""simple docstring"""
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _lowerCAmelCase :
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' )
torch.manual_seed(0 )
lowerCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' )
torch.manual_seed(0 )
lowerCAmelCase__ :Optional[int] = UNetaDConditionModel(
sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
lowerCAmelCase__ :List[str] = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=__a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0 )
lowerCAmelCase__ :Optional[int] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :Any = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' )
torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' )
torch.manual_seed(0 )
lowerCAmelCase__ :str = UNetaDConditionModel(
sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=__a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0 )
lowerCAmelCase__ :List[Any] = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , )
torch.manual_seed(0 )
lowerCAmelCase__ :Tuple = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.get_dummy_components()
lowerCAmelCase__ :Optional[int] = self.pipeline_class(**__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__a )
lowerCAmelCase__ :List[Any] = inputs['prompt']
lowerCAmelCase__ :Any = inputs['generator']
lowerCAmelCase__ :Any = inputs['num_inference_steps']
lowerCAmelCase__ :int = inputs['output_type']
if "image" in inputs:
lowerCAmelCase__ :Optional[Any] = inputs['image']
else:
lowerCAmelCase__ :Tuple = None
if "mask_image" in inputs:
lowerCAmelCase__ :str = inputs['mask_image']
else:
lowerCAmelCase__ :Dict = None
if "original_image" in inputs:
lowerCAmelCase__ :str = inputs['original_image']
else:
lowerCAmelCase__ :Dict = None
lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = pipe.encode_prompt(__a )
# inputs with prompt converted to embeddings
lowerCAmelCase__ :List[str] = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
lowerCAmelCase__ :Union[str, Any] = image
if mask_image is not None:
lowerCAmelCase__ :List[str] = mask_image
if original_image is not None:
lowerCAmelCase__ :Tuple = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(__a , __a , __a )
lowerCAmelCase__ :Dict = pipe(**__a )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__a )
lowerCAmelCase__ :int = self.pipeline_class.from_pretrained(__a )
pipe_loaded.to(__a )
pipe_loaded.set_progress_bar_config(disable=__a )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__a , __a ) is None , F"`{optional_component}` did not stay set to None after loading." , )
lowerCAmelCase__ :Any = self.get_dummy_inputs(__a )
lowerCAmelCase__ :int = inputs['generator']
lowerCAmelCase__ :Optional[Any] = inputs['num_inference_steps']
lowerCAmelCase__ :str = inputs['output_type']
# inputs with prompt converted to embeddings
lowerCAmelCase__ :str = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
lowerCAmelCase__ :Any = image
if mask_image is not None:
lowerCAmelCase__ :Optional[Any] = mask_image
if original_image is not None:
lowerCAmelCase__ :Optional[int] = original_image
lowerCAmelCase__ :List[Any] = pipe_loaded(**__a )[0]
lowerCAmelCase__ :Dict = np.abs(to_np(__a ) - to_np(__a ) ).max()
self.assertLess(__a , 1E-4 )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :str = self.get_dummy_components()
lowerCAmelCase__ :Any = self.pipeline_class(**__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
lowerCAmelCase__ :str = self.get_dummy_inputs(__a )
lowerCAmelCase__ :Any = pipe(**__a )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__a )
lowerCAmelCase__ :List[str] = self.pipeline_class.from_pretrained(__a )
pipe_loaded.to(__a )
pipe_loaded.set_progress_bar_config(disable=__a )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__a )
lowerCAmelCase__ :int = pipe_loaded(**__a )[0]
lowerCAmelCase__ :int = np.abs(to_np(__a ) - to_np(__a ) ).max()
self.assertLess(__a , 1E-4 )
| 93 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ):
super().__init__(*__a , **__a )
_a = eval_examples
_a = post_process_function
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ):
_a = self.eval_dataset if eval_dataset is None else eval_dataset
_a = self.get_eval_dataloader(__a )
_a = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_a = self.post_process_function(__a , __a , output.predictions )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
else:
_a = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ):
_a = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_a = self.post_process_function(__a , __a , output.predictions , "predict" )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 692 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = jnp.ones((batch_size, length) ) / length
return scores
def SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Dict = 2_0
_lowerCamelCase : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=__a )
# tweak scores to not be uniform anymore
_lowerCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
_lowerCamelCase : Any = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
_lowerCamelCase : Tuple = jax.nn.softmax(__a , axis=-1 )
_lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowerCamelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 )
_lowerCamelCase : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(__a , scores.copy() , cur_len=__a ) , axis=-1 )
_lowerCamelCase : Union[str, Any] = jax.nn.softmax(temp_dist_warper_smoother(__a , scores.copy() , cur_len=__a ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = 1_0
_lowerCamelCase : Optional[Any] = 2
# create ramp distribution
_lowerCamelCase : Tuple = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy()
_lowerCamelCase : Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size
_lowerCamelCase : Any = FlaxTopKLogitsWarper(3 )
_lowerCamelCase : int = top_k_warp(__a , __a , cur_len=__a )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
_lowerCamelCase : Union[str, Any] = 5
_lowerCamelCase : Any = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
_lowerCamelCase : int = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, length) ).copy()
_lowerCamelCase : Dict = top_k_warp_safety_check(__a , __a , cur_len=__a )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
_lowerCamelCase : Dict = None
_lowerCamelCase : str = 1_0
_lowerCamelCase : int = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
_lowerCamelCase : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
_lowerCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 )
_lowerCamelCase : List[str] = np.exp(top_p_warp(__a , __a , cur_len=__a ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
_lowerCamelCase : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) )
# check edge cases with negative and extreme logits
_lowerCamelCase : Any = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
_lowerCamelCase : Tuple = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
_lowerCamelCase : List[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
_lowerCamelCase : Any = top_p_warp(__a , __a , cur_len=__a )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : Any = 2_0
_lowerCamelCase : Union[str, Any] = 4
_lowerCamelCase : int = 0
_lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__a )
# check that min length is applied at length 5
_lowerCamelCase : str = ids_tensor((batch_size, 2_0) , vocab_size=2_0 )
_lowerCamelCase : Optional[int] = 5
_lowerCamelCase : Union[str, Any] = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Optional[int] = min_dist_processor(__a , __a , cur_len=__a )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
_lowerCamelCase : str = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Optional[Any] = 1_5
_lowerCamelCase : Any = min_dist_processor(__a , __a , cur_len=__a )
self.assertFalse(jnp.isinf(__a ).any() )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
_lowerCamelCase : Any = 2_0
_lowerCamelCase : Dict = 4
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a )
# check that all scores are -inf except the bos_token_id score
_lowerCamelCase : List[str] = ids_tensor((batch_size, 1) , vocab_size=2_0 )
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Any = logits_processor(__a , __a , cur_len=__a )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
_lowerCamelCase : int = 3
_lowerCamelCase : Optional[int] = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Optional[int] = logits_processor(__a , __a , cur_len=__a )
self.assertFalse(jnp.isinf(__a ).any() )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : List[str] = 2_0
_lowerCamelCase : Dict = 4
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : int = 5
_lowerCamelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a )
# check that all scores are -inf except the eos_token_id when max_length is reached
_lowerCamelCase : Dict = ids_tensor((batch_size, 4) , vocab_size=2_0 )
_lowerCamelCase : Dict = 4
_lowerCamelCase : int = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Union[str, Any] = logits_processor(__a , __a , cur_len=__a )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
_lowerCamelCase : Any = 3
_lowerCamelCase : Any = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Dict = logits_processor(__a , __a , cur_len=__a )
self.assertFalse(jnp.isinf(__a ).any() )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : int = 4
_lowerCamelCase : Tuple = 1_0
_lowerCamelCase : Union[str, Any] = 1_5
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Dict = 1_5
# dummy input_ids and scores
_lowerCamelCase : Any = ids_tensor((batch_size, sequence_length) , __a )
_lowerCamelCase : Dict = input_ids.copy()
_lowerCamelCase : List[str] = self._get_uniform_logits(__a , __a )
_lowerCamelCase : int = scores.copy()
# instantiate all dist processors
_lowerCamelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowerCamelCase : Tuple = FlaxTopKLogitsWarper(3 )
_lowerCamelCase : Any = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
_lowerCamelCase : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__a )
_lowerCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a )
_lowerCamelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a )
_lowerCamelCase : str = 1_0
# no processor list
_lowerCamelCase : Any = temp_dist_warp(__a , __a , cur_len=__a )
_lowerCamelCase : Union[str, Any] = top_k_warp(__a , __a , cur_len=__a )
_lowerCamelCase : Any = top_p_warp(__a , __a , cur_len=__a )
_lowerCamelCase : List[str] = min_dist_proc(__a , __a , cur_len=__a )
_lowerCamelCase : Dict = bos_dist_proc(__a , __a , cur_len=__a )
_lowerCamelCase : str = eos_dist_proc(__a , __a , cur_len=__a )
# with processor list
_lowerCamelCase : Optional[Any] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
_lowerCamelCase : str = processor(__a , __a , cur_len=__a )
# scores should be equal
self.assertTrue(jnp.allclose(__a , __a , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 4
_lowerCamelCase : List[str] = 1_0
_lowerCamelCase : Any = 1_5
_lowerCamelCase : Optional[int] = 2
_lowerCamelCase : int = 1
_lowerCamelCase : str = 1_5
# dummy input_ids and scores
_lowerCamelCase : Optional[int] = ids_tensor((batch_size, sequence_length) , __a )
_lowerCamelCase : Optional[Any] = input_ids.copy()
_lowerCamelCase : List[str] = self._get_uniform_logits(__a , __a )
_lowerCamelCase : Tuple = scores.copy()
# instantiate all dist processors
_lowerCamelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowerCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 )
_lowerCamelCase : int = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
_lowerCamelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__a )
_lowerCamelCase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a )
_lowerCamelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a )
_lowerCamelCase : Tuple = 1_0
# no processor list
def run_no_processor_list(__lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ):
_lowerCamelCase : Any = temp_dist_warp(__a , __a , cur_len=__a )
_lowerCamelCase : Any = top_k_warp(__a , __a , cur_len=__a )
_lowerCamelCase : Dict = top_p_warp(__a , __a , cur_len=__a )
_lowerCamelCase : Optional[int] = min_dist_proc(__a , __a , cur_len=__a )
_lowerCamelCase : Tuple = bos_dist_proc(__a , __a , cur_len=__a )
_lowerCamelCase : int = eos_dist_proc(__a , __a , cur_len=__a )
return scores
# with processor list
def run_processor_list(__lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any ):
_lowerCamelCase : Union[str, Any] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
_lowerCamelCase : int = processor(__a , __a , cur_len=__a )
return scores
_lowerCamelCase : Tuple = jax.jit(__a )
_lowerCamelCase : List[str] = jax.jit(__a )
_lowerCamelCase : Dict = jitted_run_no_processor_list(__a , __a , __a )
_lowerCamelCase : str = jitted_run_processor_list(__a , __a , __a )
# scores should be equal
self.assertTrue(jnp.allclose(__a , __a , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ):
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class lowercase_ ( unittest.TestCase ):
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : List[str] = SamImageProcessor()
snake_case__ : Tuple = SamProcessor(__a )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor
def _lowerCAmelCase ( self : Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case__ : List[str] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case__ : List[Any] = self.get_image_processor(do_normalize=__a , padding_value=1.0 )
snake_case__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __a )
def _lowerCAmelCase ( self : Any ):
snake_case__ : Union[str, Any] = self.get_image_processor()
snake_case__ : Optional[Any] = SamProcessor(image_processor=__a )
snake_case__ : int = self.prepare_image_inputs()
snake_case__ : Optional[Any] = image_processor(__a , return_tensors='np' )
snake_case__ : Union[str, Any] = processor(images=__a , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : List[Any] = self.get_image_processor()
snake_case__ : Tuple = SamProcessor(image_processor=__a )
snake_case__ : Dict = [torch.ones((1, 3, 5, 5) )]
snake_case__ : Union[str, Any] = [[1764, 2646]]
snake_case__ : Optional[int] = [[683, 1024]]
snake_case__ : Optional[int] = processor.post_process_masks(__a , __a , __a )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
snake_case__ : Optional[int] = processor.post_process_masks(
__a , torch.tensor(__a ) , torch.tensor(__a ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
snake_case__ : Optional[Any] = [np.ones((1, 3, 5, 5) )]
snake_case__ : str = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
snake_case__ : Union[str, Any] = [[1, 0], [0, 1]]
with self.assertRaises(__a ):
snake_case__ : Any = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) )
@require_vision
@require_tf
class lowercase_ ( unittest.TestCase ):
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : Tuple = SamImageProcessor()
snake_case__ : Optional[Any] = SamProcessor(__a )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor
def _lowerCAmelCase ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case__ : Optional[int] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case__ : Optional[int] = self.get_image_processor(do_normalize=__a , padding_value=1.0 )
snake_case__ : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __a )
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : int = self.get_image_processor()
snake_case__ : Any = SamProcessor(image_processor=__a )
snake_case__ : Dict = self.prepare_image_inputs()
snake_case__ : Optional[int] = image_processor(__a , return_tensors='np' )
snake_case__ : Optional[int] = processor(images=__a , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[int] ):
snake_case__ : Union[str, Any] = self.get_image_processor()
snake_case__ : int = SamProcessor(image_processor=__a )
snake_case__ : Dict = [tf.ones((1, 3, 5, 5) )]
snake_case__ : Union[str, Any] = [[1764, 2646]]
snake_case__ : List[Any] = [[683, 1024]]
snake_case__ : List[str] = processor.post_process_masks(__a , __a , __a , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
snake_case__ : List[Any] = processor.post_process_masks(
__a , tf.convert_to_tensor(__a ) , tf.convert_to_tensor(__a ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
snake_case__ : Optional[Any] = [np.ones((1, 3, 5, 5) )]
snake_case__ : Tuple = processor.post_process_masks(
__a , np.array(__a ) , np.array(__a ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
snake_case__ : Any = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
snake_case__ : Any = processor.post_process_masks(
__a , np.array(__a ) , np.array(__a ) , return_tensors='tf' )
@require_vision
@require_torchvision
class lowercase_ ( unittest.TestCase ):
def _lowerCAmelCase ( self : Optional[int] ):
snake_case__ : List[str] = tempfile.mkdtemp()
snake_case__ : str = SamImageProcessor()
snake_case__ : Union[str, Any] = SamProcessor(__a )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : List[Any] , **__lowerCamelCase : Dict ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor
def _lowerCAmelCase ( self : List[Any] ):
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : Tuple ):
snake_case__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case__ : Tuple = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : Optional[Any] = self.get_image_processor()
snake_case__ : Any = SamProcessor(image_processor=__a )
snake_case__ : Dict = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
snake_case__ : List[str] = [tf.convert_to_tensor(__a )]
snake_case__ : Dict = [torch.tensor(__a )]
snake_case__ : Dict = [[1764, 2646]]
snake_case__ : List[Any] = [[683, 1024]]
snake_case__ : List[str] = processor.post_process_masks(
__a , __a , __a , return_tensors='tf' )
snake_case__ : Any = processor.post_process_masks(
__a , __a , __a , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def _lowerCAmelCase ( self : Dict ):
snake_case__ : List[Any] = self.get_image_processor()
snake_case__ : Tuple = SamProcessor(image_processor=__a )
snake_case__ : str = self.prepare_image_inputs()
snake_case__ : Tuple = image_processor(__a , return_tensors='pt' )['pixel_values'].numpy()
snake_case__ : Optional[int] = processor(images=__a , return_tensors='pt' )['pixel_values'].numpy()
snake_case__ : Dict = image_processor(__a , return_tensors='tf' )['pixel_values'].numpy()
snake_case__ : List[Any] = processor(images=__a , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(__a , __a ) )
self.assertTrue(np.allclose(__a , __a ) )
self.assertTrue(np.allclose(__a , __a ) )
| 270 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ):
super().__init__()
_a = only_cross_attention
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'
f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_a = AdaLayerNorm(__a , __a )
elif self.use_ada_layer_norm_zero:
_a = AdaLayerNormZero(__a , __a )
else:
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = Attention(
query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_a = (
AdaLayerNorm(__a , __a )
if self.use_ada_layer_norm
else nn.LayerNorm(__a , elementwise_affine=__a )
)
_a = Attention(
query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none
else:
_a = None
_a = None
# 3. Feed-forward
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a )
# let chunk size default to None
_a = None
_a = 0
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ):
# Sets chunk feed-forward
_a = chunk_size
_a = dim
def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
_a = self.norma(__a , __a )
elif self.use_ada_layer_norm_zero:
_a , _a , _a , _a , _a = self.norma(
__a , __a , __a , hidden_dtype=hidden_states.dtype )
else:
_a = self.norma(__a )
_a = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_a = self.attna(
__a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , )
if self.use_ada_layer_norm_zero:
_a = gate_msa.unsqueeze(1 ) * attn_output
_a = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_a = (
self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a )
)
_a = self.attna(
__a , encoder_hidden_states=__a , attention_mask=__a , **__a , )
_a = attn_output + hidden_states
# 3. Feed-forward
_a = self.norma(__a )
if self.use_ada_layer_norm_zero:
_a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' )
_a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_a = torch.cat(
[self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_a = self.ff(__a )
if self.use_ada_layer_norm_zero:
_a = gate_mlp.unsqueeze(1 ) * ff_output
_a = ff_output + hidden_states
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ):
super().__init__()
_a = int(dim * mult )
_a = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_a = GELU(__a , __a )
if activation_fn == "gelu-approximate":
_a = GELU(__a , __a , approximate="tanh" )
elif activation_fn == "geglu":
_a = GEGLU(__a , __a )
elif activation_fn == "geglu-approximate":
_a = ApproximateGELU(__a , __a )
_a = nn.ModuleList([] )
# project in
self.net.append(__a )
# project dropout
self.net.append(nn.Dropout(__a ) )
# project out
self.net.append(nn.Linear(__a , __a ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__a ) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple ):
for module in self.net:
_a = module(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : int , __a : int , __a : str = "none" ):
super().__init__()
_a = nn.Linear(__a , __a )
_a = approximate
def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ):
if gate.device.type != "mps":
return F.gelu(__a , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : str , __a : Optional[int] ):
_a = self.proj(__a )
_a = self.gelu(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : str , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , dim_out * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ):
if gate.device.type != "mps":
return F.gelu(__a )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
_a , _a = self.proj(__a ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__a )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , __a )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ):
_a = self.proj(__a )
return x * torch.sigmoid(1.702 * x )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : str ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , embedding_dim * 2 )
_a = nn.LayerNorm(__a , elementwise_affine=__a )
def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ):
_a = self.linear(self.silu(self.emb(__a ) ) )
_a , _a = torch.chunk(__a , 2 )
_a = self.norm(__a ) * (1 + scale) + shift
return x
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : List[Any] , __a : Any ):
super().__init__()
_a = CombinedTimestepLabelEmbeddings(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , 6 * embedding_dim , bias=__a )
_a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ):
_a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) )
_a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 )
_a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ):
super().__init__()
_a = num_groups
_a = eps
if act_fn is None:
_a = None
else:
_a = get_activation(__a )
_a = nn.Linear(__a , out_dim * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ):
if self.act:
_a = self.act(__a )
_a = self.linear(__a )
_a = emb[:, :, None, None]
_a , _a = emb.chunk(2 , dim=1 )
_a = F.group_norm(__a , self.num_groups , eps=self.eps )
_a = x * (1 + scale) + shift
return x
| 692 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase = {
'configuration_upernet': ['UperNetConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'UperNetForSemanticSegmentation',
'UperNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 96 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =42
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : int ):
_a = [[] for _ in range(__a )]
_a = size
def __getitem__( self : int , __a : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase__ ( self : Dict ):
return self._size
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ):
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase_ = logging.get_logger(__name__)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , a_ : Dict , a_ : Union[str, Any] )-> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = question_encoder
UpperCAmelCase_ : Optional[int] = generator
UpperCAmelCase_ : int = self.question_encoder
def a ( self : Optional[Any] , a_ : Union[str, Any] )-> List[Any]:
"""simple docstring"""
if os.path.isfile(__a ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__a , exist_ok=__a )
UpperCAmelCase_ : Optional[int] = os.path.join(__a , """question_encoder_tokenizer""" )
UpperCAmelCase_ : Tuple = os.path.join(__a , """generator_tokenizer""" )
self.question_encoder.save_pretrained(__a )
self.generator.save_pretrained(__a )
@classmethod
def a ( cls : Any , a_ : Optional[Any] , **a_ : List[Any] )-> List[Any]:
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ : Optional[int] = kwargs.pop("""config""" , __a )
if config is None:
UpperCAmelCase_ : Union[str, Any] = RagConfig.from_pretrained(__a )
UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(
__a , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(
__a , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=__a , generator=__a )
def __call__( self : Union[str, Any] , *a_ : Dict , **a_ : List[str] )-> int:
"""simple docstring"""
return self.current_tokenizer(*__a , **__a )
def a ( self : Tuple , *a_ : Optional[int] , **a_ : List[Any] )-> Optional[int]:
"""simple docstring"""
return self.generator.batch_decode(*__a , **__a )
def a ( self : Union[str, Any] , *a_ : Any , **a_ : Optional[int] )-> int:
"""simple docstring"""
return self.generator.decode(*__a , **__a )
def a ( self : str )-> str:
"""simple docstring"""
UpperCAmelCase_ : int = self.question_encoder
def a ( self : Dict )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.generator
def a ( self : List[Any] , a_ : List[str] , a_ : Optional[List[str]] = None , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "longest" , a_ : str = None , a_ : bool = True , **a_ : int , )-> Union[str, Any]:
"""simple docstring"""
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , __a , )
if max_length is None:
UpperCAmelCase_ : Tuple = self.current_tokenizer.model_max_length
UpperCAmelCase_ : Union[str, Any] = self(
__a , add_special_tokens=__a , return_tensors=__a , max_length=__a , padding=__a , truncation=__a , **__a , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ : List[Any] = self.current_tokenizer.model_max_length
UpperCAmelCase_ : List[Any] = self(
text_target=__a , add_special_tokens=__a , return_tensors=__a , padding=__a , max_length=__a , truncation=__a , **__a , )
UpperCAmelCase_ : Tuple = labels["""input_ids"""]
return model_inputs
| 470 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =FlaxAutoencoderKL
@property
def UpperCamelCase__ ( self : str ):
_a = 4
_a = 3
_a = (32, 32)
_a = jax.random.PRNGKey(0 )
_a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def UpperCamelCase__ ( self : List[Any] ):
_a = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_a = self.dummy_input
return init_dict, inputs_dict
| 692 | 0 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def UpperCamelCase__ ( ) -> Optional[int]:
_lowercase = {
"""repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""],
"""path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""],
"""content""": ["""a """ * 20, """a """ * 30, """b """ * 7],
}
_lowercase = Dataset.from_dict(SCREAMING_SNAKE_CASE_ )
return dataset
class a_ ( lowerCamelCase_ ):
def UpperCamelCase_ ( self ):
_lowercase = get_dataset()
_lowercase = make_duplicate_clusters(__a , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCamelCase_ ( self ):
_lowercase = get_dataset()
_lowercase , _lowercase = deduplicate_dataset(__a )
self.assertEqual(len(__a ) , 2 )
print(__a )
self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 )
self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __a ) | 287 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase_ : List[Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase_ : Optional[int] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase_ : Any = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Tuple = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]:
for tf_name, hf_name in patterns:
_a = k.replace(lowercase , lowercase )
return k
def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration:
_a = BigBirdPegasusConfig(**lowercase )
_a = BigBirdPegasusForConditionalGeneration(lowercase )
_a = torch_model.state_dict()
_a = {}
# separating decoder weights
_a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = DECODER_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = REMAINING_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
_a = mapping["model.embed_positions.weight"]
_a = mapping.pop("model.embed_positions.weight" )
_a , _a = torch_model.load_state_dict(lowercase , strict=lowercase )
_a = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
_a = tf.train.list_variables(lowercase )
_a = {}
_a = ["global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
_a = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a = tf.train.load_variable(lowercase , lowercase )
_a = array
return tf_weights
def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]:
_a = get_tf_weights_as_numpy(lowercase )
_a = convert_bigbird_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 692 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase__ : Any = logging.get_logger(__name__)
lowercase__ : List[Any] = '▁'
lowercase__ : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
lowercase__ : Optional[Any] = {
'vocab_file': {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',
}
}
lowercase__ : List[Any] = {
'facebook/xglm-564M': 20_48,
}
class _UpperCAmelCase ( lowerCamelCase_):
_lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES
_lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : List[str] = ["""input_ids""", """attention_mask"""]
def __init__( self : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]="<s>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : Tuple="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ):
snake_case_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
snake_case_ : Union[str, Any] = 7
snake_case_ : List[str] = [f"<madeupword{i}>" for i in range(self.num_madeup_words )]
snake_case_ : Optional[int] = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__a ) )
snake_case_ : Dict = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
snake_case_ : Optional[int] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
snake_case_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
snake_case_ : Tuple = len(self.sp_model )
snake_case_ : Tuple = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(__a )
snake_case_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Tuple ):
snake_case_ : int = self.__dict__.copy()
snake_case_ : Dict = None
snake_case_ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[Any] , lowercase_ : Union[str, Any] ):
snake_case_ : Optional[int] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
snake_case_ : Optional[Any] = {}
snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
snake_case_ : List[str] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def _snake_case ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
if token_ids_a is None:
return [1] + ([0] * len(__a ))
return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a ))
def _snake_case ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
snake_case_ : Union[str, Any] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def _snake_case ( self : List[str] ):
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def _snake_case ( self : List[Any] ):
snake_case_ : Tuple = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self : Union[str, Any] , lowercase_ : str ):
return self.sp_model.encode(__a , out_type=__a )
def _snake_case ( self : Optional[Any] , lowercase_ : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
snake_case_ : List[str] = self.sp_model.PieceToId(__a )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self : int , lowercase_ : str ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self : Any , lowercase_ : List[str] ):
snake_case_ : Any = ''''''.join(__a ).replace(__a , ''' ''' ).strip()
return out_string
def _snake_case ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ):
if not os.path.isdir(__a ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
snake_case_ : Optional[int] = os.path.join(
__a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __a )
elif not os.path.isfile(self.vocab_file ):
with open(__a , '''wb''' ) as fi:
snake_case_ : List[str] = self.sp_model.serialized_model_proto()
fi.write(__a )
return (out_vocab_file,)
| 123 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 692 | 0 |
from collections import deque
from .hash_table import HashTable
class lowerCAmelCase__ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Any , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ) -> Optional[int]:
super().__init__(*__a , **__a )
def _snake_case ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Tuple ) -> Union[str, Any]:
_lowerCamelCase = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__a )
_lowerCamelCase = self.values[key]
def _snake_case ( self : Tuple ) -> str:
return (
sum(self.charge_factor - len(__a ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any=None ) -> Any:
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__a ) == 0
):
return key
return super()._collision_resolution(__a , __a ) | 544 |
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 692 | 0 |
from __future__ import annotations
def _lowerCAmelCase ( _lowerCAmelCase ) -> bool:
'''simple docstring'''
return len(set(_lowerCAmelCase ) ) == len(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 692 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase_ : Any = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : List[str] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 304 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]:
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
_a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"Number of resulting singleton clusters in the key "
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"files, respectively" )
return doc_coref_infos
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str:
_a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
_a = (conll / 3) * 100
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"conll_score": conll} )
return output_scores
def _lowerCamelCase ( lowercase : Any ) -> str:
_a = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ):
_a = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__a )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , )
return score
| 692 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCAmelCase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase__ : List[str] = """"""
else:
UpperCAmelCase__ : List[str] = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase__ : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase__ : Optional[int] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase__ : List[Any] = in_proj_bias[: config.hidden_size]
UpperCAmelCase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase__ : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase__ : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase__ : int = in_proj_bias[-config.hidden_size :]
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : Any = dct.pop(__lowerCamelCase )
UpperCAmelCase__ : str = val
def _lowerCamelCase ( ) -> str:
'''simple docstring'''
UpperCAmelCase__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase__ : Optional[int] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCAmelCase__ : Any = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase__ : List[Any] = 1000
UpperCAmelCase__ : Any = """huggingface/label-files"""
UpperCAmelCase__ : Optional[Any] = """imagenet-1k-id2label.json"""
UpperCAmelCase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase__ : Union[str, Any] = idalabel
UpperCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()}
UpperCAmelCase__ : int = int(deit_name[-6:-4] )
UpperCAmelCase__ : Optional[int] = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
UpperCAmelCase__ : List[Any] = 192
UpperCAmelCase__ : int = 768
UpperCAmelCase__ : Dict = 12
UpperCAmelCase__ : List[str] = 3
elif deit_name[9:].startswith("""small""" ):
UpperCAmelCase__ : Union[str, Any] = 384
UpperCAmelCase__ : Tuple = 1536
UpperCAmelCase__ : Dict = 12
UpperCAmelCase__ : Optional[int] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
UpperCAmelCase__ : List[Any] = 1024
UpperCAmelCase__ : Dict = 4096
UpperCAmelCase__ : str = 24
UpperCAmelCase__ : Optional[Any] = 16
# load original model from timm
UpperCAmelCase__ : str = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase__ : Tuple = timm_model.state_dict()
UpperCAmelCase__ : int = create_rename_keys(__lowerCamelCase , __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase__ : int = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCAmelCase__ : Dict = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCAmelCase__ : int = DeiTImageProcessor(size=__lowerCamelCase , crop_size=config.image_size )
UpperCAmelCase__ : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" )
UpperCAmelCase__ : Optional[Any] = encoding["""pixel_values"""]
UpperCAmelCase__ : List[Any] = model(__lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__lowerCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--deit_name""",
default="""vit_deit_base_distilled_patch16_224""",
type=str,
help="""Name of the DeiT timm model you\'d like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 79 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase ( lowercase : float = 0.1 ) -> int:
_a = 3
_a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowercase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCAmelCase ( lowerCamelCase_ ):
"""simple docstring"""
__magic_name__ :Tuple = ["""image_processor""", """tokenizer"""]
__magic_name__ :List[str] = """LayoutLMv3ImageProcessor"""
__magic_name__ :Dict = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , __a , )
lowerCAmelCase__ :Optional[Any] = kwargs.pop('feature_extractor' )
lowerCAmelCase__ :Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(__a , __a )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
lowerCAmelCase__ :Dict = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
lowerCAmelCase__ :Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ :Tuple = features['words']
lowerCAmelCase__ :Tuple = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
lowerCAmelCase__ :List[Any] = features.pop('pixel_values' )
if return_overflowing_tokens is True:
lowerCAmelCase__ :Optional[Any] = self.get_overflowing_images(__a , encoded_inputs['overflow_to_sample_mapping'] )
lowerCAmelCase__ :int = images
return encoded_inputs
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F" {len(__a )} and {len(__a )}" )
return images_with_overflow
def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__a , **__a )
def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__a , **__a )
@property
def snake_case ( self ):
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def snake_case ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , )
return self.image_processor_class
@property
def snake_case ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , )
return self.image_processor
| 93 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(CMStochasticIterativeScheduler,)
__a =10
def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ):
_a = {
"num_train_timesteps": 2_01,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[Any] ):
_a = 10
_a = self.get_scheduler_config()
_a = self.scheduler_classes[0](**__a )
scheduler.set_timesteps(__a )
_a = scheduler.timesteps[0]
_a = scheduler.timesteps[1]
_a = self.dummy_sample
_a = 0.1 * sample
_a = scheduler.step(__a , __a , __a ).prev_sample
_a = scheduler.step(__a , __a , __a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self : Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : int ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = 1
scheduler.set_timesteps(__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(__a ):
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [1_06, 0]
scheduler.set_timesteps(timesteps=__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def UpperCamelCase__ ( self : List[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 15, 0]
with self.assertRaises(__a , msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 1, 0]
_a = len(__a )
with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=__a )
| 692 | 0 |
"""simple docstring"""
import os
def snake_case_ ( A_ : str = "matrix.txt" ):
'''simple docstring'''
with open(os.path.join(os.path.dirname(A_ ), A_ ) ) as in_file:
_lowerCamelCase : Dict = in_file.read()
_lowerCamelCase : Union[str, Any] = [[int(A_ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()]
_lowerCamelCase : int = [[0 for cell in row] for row in grid]
_lowerCamelCase : str = len(grid[0] )
_lowerCamelCase : Tuple = [[0 for i in range(A_ )] for j in range(A_ )]
_lowerCamelCase : List[Any] = grid[0][0]
for i in range(1, A_ ):
_lowerCamelCase : Tuple = grid[0][i] + dp[0][i - 1]
for i in range(1, A_ ):
_lowerCamelCase : Optional[int] = grid[i][0] + dp[i - 1][0]
for i in range(1, A_ ):
for j in range(1, A_ ):
_lowerCamelCase : Union[str, Any] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ):
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Tuple:
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class lowercase_ ( lowerCamelCase_ ):
@staticmethod
def _lowerCAmelCase ( __lowerCamelCase : ArgumentParser ):
snake_case__ : Any = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=__a , default=__a , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=__a , help='Name of the model to download' )
download_parser.set_defaults(func=__a )
def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : bool , __lowerCamelCase : bool ):
snake_case__ : Tuple = model
snake_case__ : str = cache
snake_case__ : str = force
snake_case__ : Union[str, Any] = trust_remote_code
def _lowerCAmelCase ( self : List[Any] ):
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 270 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='timesformer'
def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ):
super().__init__(**__a )
_a = image_size
_a = patch_size
_a = num_channels
_a = num_frames
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = qkv_bias
_a = attention_type
_a = drop_path_rate
| 692 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 96 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self : Dict ):
_a = 1
_a = 3
_a = (32, 32)
_a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ ( self : Dict ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__a )
@property
def UpperCamelCase__ ( self : str ):
def extract(*__a : Tuple , **__a : str ):
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict ):
_a = torch.ones([0] )
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
self.pixel_values.to(__a )
return self
return Out()
return extract
def UpperCamelCase__ ( self : Optional[int] ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
_a = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , )
_a = output.images
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
# put models in fp16
_a = unet.half()
_a = vae.half()
_a = bert.half()
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
_a = init_image.resize((7_60, 5_04) )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
_a = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_a = init_image.resize((7_68, 5_12) )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 692 | 0 |
"""simple docstring"""
import math
def A_ ( lowercase = 100 ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = sum(i * i for i in range(1 , n + 1 ) )
UpperCAmelCase_ : List[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 470 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ):
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
a : Optional[Any] = 4_2
a : List[str] = 4_2
class a_ :
def __init__( self , __UpperCamelCase ):
_lowercase = [[] for _ in range(__a )]
_lowercase = size
def __getitem__( self , __UpperCamelCase ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase_ ( self ):
return self._size
def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ):
_lowercase = deque([start_vertex] )
_lowercase = [None] * self.size
_lowercase = 0
while queue:
_lowercase = queue.popleft()
_lowercase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_lowercase = current_distance + edge.weight
_lowercase = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_lowercase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod() | 287 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Tuple:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : str = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 692 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase):
_lowerCAmelCase : int = StableDiffusionPanoramaPipeline
_lowerCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_PARAMS
_lowerCAmelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCAmelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCAmelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def _snake_case ( self : int ):
torch.manual_seed(0 )
snake_case_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
snake_case_ : List[str] = DDIMScheduler()
torch.manual_seed(0 )
snake_case_ : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
snake_case_ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
snake_case_ : List[Any] = CLIPTextModel(__a )
snake_case_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case_ : int = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _snake_case ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any]=0 ):
snake_case_ : Optional[Any] = torch.manual_seed(__a )
snake_case_ : Any = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self : Optional[int] ):
snake_case_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : List[str] = self.get_dummy_components()
snake_case_ : List[str] = StableDiffusionPanoramaPipeline(**__a )
snake_case_ : Optional[Any] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
snake_case_ : List[str] = self.get_dummy_inputs(__a )
snake_case_ : Tuple = sd_pipe(**__a ).images
snake_case_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Union[str, Any] = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self : Any ):
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def _snake_case ( self : Union[str, Any] ):
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 )
def _snake_case ( self : Dict ):
snake_case_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Tuple = self.get_dummy_components()
snake_case_ : List[str] = StableDiffusionPanoramaPipeline(**__a )
snake_case_ : Optional[int] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
snake_case_ : Dict = self.get_dummy_inputs(__a )
snake_case_ : List[Any] = '''french fries'''
snake_case_ : Optional[int] = sd_pipe(**__a , negative_prompt=__a )
snake_case_ : Union[str, Any] = output.images
snake_case_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : int = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self : Optional[int] ):
snake_case_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : int = self.get_dummy_components()
snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline(**__a )
snake_case_ : Union[str, Any] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
snake_case_ : Optional[Any] = self.get_dummy_inputs(__a )
snake_case_ : Optional[Any] = sd_pipe(**__a , view_batch_size=2 )
snake_case_ : List[Any] = output.images
snake_case_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Any = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self : List[str] ):
snake_case_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : List[str] = self.get_dummy_components()
snake_case_ : int = EulerAncestralDiscreteScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' )
snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**__a )
snake_case_ : str = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
snake_case_ : str = self.get_dummy_inputs(__a )
snake_case_ : Dict = sd_pipe(**__a ).images
snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Dict = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self : Union[str, Any] ):
snake_case_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[int] = self.get_dummy_components()
snake_case_ : Any = PNDMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , skip_prk_steps=__a )
snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**__a )
snake_case_ : Optional[int] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
snake_case_ : Optional[Any] = self.get_dummy_inputs(__a )
snake_case_ : Union[str, Any] = sd_pipe(**__a ).images
snake_case_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : List[Any] = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase):
def _snake_case ( self : Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : List[Any] , lowercase_ : Union[str, Any]=0 ):
snake_case_ : List[Any] = torch.manual_seed(__a )
snake_case_ : Optional[int] = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self : int ):
snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : Optional[Any] = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''' )
snake_case_ : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
snake_case_ : List[str] = self.get_inputs()
snake_case_ : List[str] = pipe(**__a ).images
snake_case_ : Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
snake_case_ : List[str] = np.array(
[
0.36_96_83_92,
0.27_02_53_72,
0.32_44_67_66,
0.28_37_93_87,
0.36_36_32_74,
0.30_73_33_47,
0.27_10_00_27,
0.27_05_41_25,
0.25_53_60_96,
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-2
def _snake_case ( self : Optional[Any] ):
snake_case_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=__a )
snake_case_ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
snake_case_ : Dict = self.get_inputs()
snake_case_ : Union[str, Any] = pipe(**__a ).images
snake_case_ : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
snake_case_ : int = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def _snake_case ( self : List[Any] ):
snake_case_ : List[str] = 0
def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor ) -> None:
snake_case_ : Tuple = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
snake_case_ : str = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
snake_case_ : Optional[Any] = latents[0, -3:, -3:, -1]
snake_case_ : Tuple = np.array(
[
0.18_68_18_69,
0.33_90_78_16,
0.5_36_12_76,
0.14_43_28_65,
-0.02_85_66_11,
-0.73_94_11_23,
0.23_39_79_87,
0.47_32_26_82,
-0.37_82_31_64,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
snake_case_ : Any = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
snake_case_ : Optional[Any] = latents[0, -3:, -3:, -1]
snake_case_ : List[str] = np.array(
[
0.18_53_96_45,
0.33_98_72_48,
0.5_37_85_59,
0.14_43_71_42,
-0.02_45_52_61,
-0.7_33_83_17,
0.23_99_07_55,
0.47_35_62_72,
-0.3_78_65_05,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
snake_case_ : Any = False
snake_case_ : int = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : str = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''' )
snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a )
snake_case_ : List[Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
snake_case_ : Union[str, Any] = self.get_inputs()
pipe(**__a , callback=__a , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def _snake_case ( self : int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : Any = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''' )
snake_case_ : int = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a )
snake_case_ : Union[str, Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case_ : Dict = self.get_inputs()
snake_case_ : str = pipe(**__a )
snake_case_ : List[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 123 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ : Any = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 692 | 0 |
def lowerCamelCase ( UpperCamelCase : int = 1_00 ) -> int:
_lowerCamelCase = n * (n + 1) * (2 * n + 1) / 6
_lowerCamelCase = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'''{solution() = }''') | 544 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] ):
_a = psutil.Process()
_a = False
def UpperCamelCase__ ( self : Tuple ):
_a = -1
while True:
_a = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def UpperCamelCase__ ( self : List[Any] ):
_a = True
_a = threading.Thread(target=self.peak_monitor )
_a = True
self.thread.start()
def UpperCamelCase__ ( self : Optional[int] ):
_a = False
self.thread.join()
return self.cpu_memory_peak
lowerCAmelCase_ : List[Any] = PeakCPUMemory()
def _lowerCamelCase ( ) -> Tuple:
# Time
_a = {"time": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = torch.cuda.memory_allocated(lowercase )
torch.cuda.reset_peak_memory_stats()
return measures
def _lowerCamelCase ( lowercase : Any ) -> int:
# Time
_a = {"time": time.time() - start_measures["time"]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
_a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
_a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
return measures
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str:
print(F'{description}:' )
print(F'- Time: {measures["time"]:.2f}s' )
for i in range(torch.cuda.device_count() ):
print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' )
_a = measures[F'{i}-peak']
print(F'- GPU {i} peak: {peak:.2f}MiB' )
print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' )
print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
| 692 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
A : Union[str, Any] = 'bart'
A : Optional[int] = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def _lowerCAmelCase ( ) -> List[str]:
'''simple docstring'''
if LOAD_DENSE_INDEX:
__snake_case = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" )
__snake_case = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" )
__snake_case = qar_model.eval()
else:
__snake_case , __snake_case = (None, None)
if MODEL_TYPE == "bart":
__snake_case = AutoTokenizer.from_pretrained("yjernite/bart_eli5" )
__snake_case = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" )
__snake_case = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" )
sas_model.load_state_dict(save_dict["model"] )
__snake_case = sas_model.eval()
else:
__snake_case , __snake_case = make_qa_sas_model(
model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def _lowerCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
if LOAD_DENSE_INDEX:
__snake_case = faiss.StandardGpuResources()
__snake_case = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"]
__snake_case = np.memmap(
"wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , )
__snake_case = faiss.IndexFlatIP(128 )
__snake_case = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__snake_case , __snake_case = (None, None)
__snake_case = Elasticsearch([{"host": "localhost", "port": "9200"}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def _lowerCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
__snake_case = datasets.load_dataset("eli5" , name="LFQA_reddit" )
__snake_case = elia["train_eli5"]
__snake_case = np.memmap(
"eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) )
__snake_case = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
A : Any = load_indexes()
A : Optional[int] = load_models()
A : str = load_train_data()
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase=10 ) -> Optional[Any]:
'''simple docstring'''
__snake_case = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__snake_case = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ) -> Optional[int]:
'''simple docstring'''
if source == "none":
__snake_case , __snake_case = (" <P> ".join(["" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__snake_case , __snake_case = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__snake_case , __snake_case = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="english_wiki40b_snippets_100w" , n_results=_lowerCAmelCase , )
__snake_case = [
(res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst
]
__snake_case = "question: {} context: {}".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ) -> Any:
'''simple docstring'''
with torch.no_grad():
__snake_case = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="cuda:0" , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
A : List[str] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
A : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
A : List[str] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
A : Tuple = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
A : int = st.sidebar.checkbox('Demo options')
if demo_options:
A : int = st.sidebar.selectbox(
'',
action_list,
index=3,
)
A : Tuple = action_list.index(action_st)
A : List[Any] = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
A : List[str] = show_type == 'Show full text of passages'
else:
A : List[str] = 3
A : Optional[Any] = True
A : Union[str, Any] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
A : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
A : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
A : List[Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
A : Tuple = 'wiki40b'
A : int = 'dense'
A : List[Any] = 'beam'
A : Dict = 2
A : Tuple = 64
A : int = 256
A : Optional[Any] = None
A : Union[str, Any] = None
A : List[str] = st.sidebar.checkbox('Generation options')
if generate_options:
A : str = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
A : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
A : Optional[int] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
A : str = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
A : Optional[Any] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
A : Any = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
A : str = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
A : Optional[int] = None
# start main text
A : Tuple = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
A : Tuple = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
A : Any = st.text_input('Enter your question here:', '')
else:
A : Union[str, Any] = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
A : str = make_support(question, source=wiki_source, method='dense', n_results=10)
A : Tuple = make_support(question, source=wiki_source, method='sparse', n_results=10)
A : Any = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
A : str = support_list[:10]
A : List[Any] = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
A : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
A : Optional[int] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
A : Union[str, Any] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
A : List[str] = res[1].strip()
if sec_titles == "":
A : List[Any] = '[{}]({})'.format(res[0], wiki_url)
else:
A : List[Any] = sec_titles.split(' & ')
A : str = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
A : Union[str, Any] = find_nearest_training(question)
A : int = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
A : Tuple = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
A : int = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 371 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(DDIMParallelScheduler,)
__a =(('eta', 0.0), ('num_inference_steps', 50))
def UpperCamelCase__ ( self : Optional[int] , **__a : Any ):
_a = {
"num_train_timesteps": 10_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(**__a )
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
_a = self.dummy_model()
_a = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for t in scheduler.timesteps:
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a , __a ).prev_sample
return sample
def UpperCamelCase__ ( self : str ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : Dict ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__a )
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(steps_offset=1 )
_a = scheduler_class(**__a )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def UpperCamelCase__ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__a )
def UpperCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def UpperCamelCase__ ( self : Dict ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__a )
def UpperCamelCase__ ( self : Optional[int] ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__a )
def UpperCamelCase__ ( self : Optional[Any] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__a )
def UpperCamelCase__ ( self : List[Any] ):
self.check_over_configs(thresholding=__a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , )
def UpperCamelCase__ ( self : List[Any] ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=__a , num_inference_steps=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__a , eta=__a )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5
def UpperCamelCase__ ( self : List[str] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
scheduler.set_timesteps(__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(__a )[0:3, None].repeat(1 , __a )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def UpperCamelCase__ ( self : List[str] ):
_a = self.full_loop()
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def UpperCamelCase__ ( self : str ):
_a = self.full_loop(prediction_type="v_prediction" )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 692 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase_ : Dict = logging.get_logger(__name__)
class lowercase ( lowerCamelCase_ ):
"""simple docstring"""
_UpperCamelCase : List[Any] = ["pixel_values"]
def __init__( self : List[str] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 2_55 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(**__a )
_snake_case : str = size if size is not None else {'height': 3_84, 'width': 3_84}
_snake_case : List[str] = get_size_dict(__a , default_to_square=__a )
_snake_case : List[str] = do_resize
_snake_case : int = size
_snake_case : int = resample
_snake_case : int = do_rescale
_snake_case : int = rescale_factor
_snake_case : Optional[Any] = do_normalize
_snake_case : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_snake_case : str = image_std if image_std is not None else OPENAI_CLIP_STD
_snake_case : Optional[int] = do_convert_rgb
def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] , ):
'''simple docstring'''
_snake_case : Dict = get_size_dict(__a , default_to_square=__a )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
_snake_case : int = (size['height'], size['width'])
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self : str , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[int, float] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Any , ):
'''simple docstring'''
return rescale(__a , scale=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self : Any , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[str] , ):
'''simple docstring'''
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ : List[str] , ):
'''simple docstring'''
_snake_case : str = do_resize if do_resize is not None else self.do_resize
_snake_case : int = resample if resample is not None else self.resample
_snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize
_snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean
_snake_case : int = image_std if image_std is not None else self.image_std
_snake_case : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_snake_case : Any = size if size is not None else self.size
_snake_case : str = get_size_dict(__a , default_to_square=__a )
_snake_case : Tuple = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_snake_case : str = [convert_to_rgb(__a ) for image in images]
# All transformations expect numpy arrays.
_snake_case : Union[str, Any] = [to_numpy_array(__a ) for image in images]
if do_resize:
_snake_case : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_rescale:
_snake_case : Tuple = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
_snake_case : Union[str, Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
_snake_case : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images]
_snake_case : Union[str, Any] = BatchFeature(data={'pixel_values': images} , tensor_type=__a )
return encoded_outputs
| 304 |
'''simple docstring'''
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _lowerCamelCase ( lowercase : Any ) -> List[str]:
return getitem, k
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any:
return setitem, k, v
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
return delitem, k
def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int:
try:
return fun(lowercase , *lowercase ), None
except Exception as e:
return None, e
lowerCAmelCase_ : Optional[Any] = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
lowerCAmelCase_ : Optional[int] = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
lowerCAmelCase_ : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
lowerCAmelCase_ : List[Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
_a = HashMap(initial_block_size=4 )
_a = {}
for _, (fun, *args) in enumerate(lowercase ):
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
assert my_res == py_res
assert str(lowercase ) == str(lowercase )
assert set(lowercase ) == set(lowercase )
assert len(lowercase ) == len(lowercase )
assert set(my.items() ) == set(py.items() )
def _lowerCamelCase ( ) -> str:
def is_public(lowercase : str ) -> bool:
return not name.startswith("_" )
_a = {name for name in dir({} ) if is_public(lowercase )}
_a = {name for name in dir(HashMap() ) if is_public(lowercase )}
assert dict_public_names > hash_public_names
| 692 | 0 |
def _lowerCamelCase ( __lowerCamelCase = 3 , __lowerCamelCase = 7 , __lowerCamelCase = 100_0000 ) -> int:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = 0
UpperCAmelCase__ : Any = 1
for current_denominator in range(1 , limit + 1 ):
UpperCAmelCase__ : List[str] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
UpperCAmelCase__ : Any = current_numerator
UpperCAmelCase__ : Optional[Any] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_00_00_00))
| 79 |
'''simple docstring'''
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =PhobertTokenizer
__a =False
def UpperCamelCase__ ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a = ["T@@", "i", "I", "R@@", "r", "e@@"]
_a = dict(zip(__a , range(len(__a ) ) ) )
_a = ["#version: 0.2", "l à</w>"]
_a = {"unk_token": "<unk>"}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(f'{token} {vocab_tokens[token]}\n' )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__a ) )
def UpperCamelCase__ ( self : str , **__a : List[str] ):
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
_a = "Tôi là VinAI Research"
_a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def UpperCamelCase__ ( self : Dict ):
_a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a = "Tôi là VinAI Research"
_a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
_a = tokenizer.tokenize(__a )
print(__a )
self.assertListEqual(__a , __a )
_a = tokens + [tokenizer.unk_token]
_a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
| 692 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _lowerCAmelCase ( lowerCamelCase_ ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = """camembert"""
def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
lowerCAmelCase__ :Optional[Any] = vocab_size
lowerCAmelCase__ :Optional[Any] = hidden_size
lowerCAmelCase__ :Optional[Any] = num_hidden_layers
lowerCAmelCase__ :int = num_attention_heads
lowerCAmelCase__ :Optional[Any] = hidden_act
lowerCAmelCase__ :str = intermediate_size
lowerCAmelCase__ :Optional[int] = hidden_dropout_prob
lowerCAmelCase__ :str = attention_probs_dropout_prob
lowerCAmelCase__ :Union[str, Any] = max_position_embeddings
lowerCAmelCase__ :List[Any] = type_vocab_size
lowerCAmelCase__ :str = initializer_range
lowerCAmelCase__ :List[Any] = layer_norm_eps
lowerCAmelCase__ :Dict = position_embedding_type
lowerCAmelCase__ :int = use_cache
lowerCAmelCase__ :Union[str, Any] = classifier_dropout
class _lowerCAmelCase ( lowerCamelCase_ ):
"""simple docstring"""
@property
def snake_case ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCAmelCase__ :Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase__ :List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 93 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ):
super().__init__(*__a , **__a )
_a = eval_examples
_a = post_process_function
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ):
_a = self.eval_dataset if eval_dataset is None else eval_dataset
_a = self.get_eval_dataloader(__a )
_a = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_a = self.post_process_function(__a , __a , output.predictions )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
else:
_a = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ):
_a = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_a = self.post_process_function(__a , __a , output.predictions , "predict" )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 692 | 0 |
"""simple docstring"""
def snake_case_ ( A_ : int ):
'''simple docstring'''
if n == 1 or not isinstance(A_, A_ ):
return 0
elif n == 2:
return 1
else:
_lowerCamelCase : Any = [0, 1]
for i in range(2, n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def snake_case_ ( A_ : int ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : str = 2
while digits < n:
index += 1
_lowerCamelCase : int = len(str(fibonacci(A_ ) ) )
return index
def snake_case_ ( A_ : int = 10_00 ):
'''simple docstring'''
return fibonacci_digits_index(A_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ):
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import sys
A_ = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> int:
snake_case__ : str = 1
for digit in s:
product *= int(__SCREAMING_SNAKE_CASE )
return product
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE = N ) -> int:
snake_case__ : Dict = -sys.maxsize - 1
snake_case__ : str = n[:13]
snake_case__ : List[Any] = 13
while cur_index < len(__SCREAMING_SNAKE_CASE ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
snake_case__ : Optional[int] = substr[1:] + n[cur_index]
cur_index += 1
else:
snake_case__ : str = max(__SCREAMING_SNAKE_CASE , str_eval(__SCREAMING_SNAKE_CASE ) )
snake_case__ : str = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F'{solution() = }')
| 270 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ):
super().__init__()
_a = only_cross_attention
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'
f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_a = AdaLayerNorm(__a , __a )
elif self.use_ada_layer_norm_zero:
_a = AdaLayerNormZero(__a , __a )
else:
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = Attention(
query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_a = (
AdaLayerNorm(__a , __a )
if self.use_ada_layer_norm
else nn.LayerNorm(__a , elementwise_affine=__a )
)
_a = Attention(
query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none
else:
_a = None
_a = None
# 3. Feed-forward
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a )
# let chunk size default to None
_a = None
_a = 0
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ):
# Sets chunk feed-forward
_a = chunk_size
_a = dim
def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
_a = self.norma(__a , __a )
elif self.use_ada_layer_norm_zero:
_a , _a , _a , _a , _a = self.norma(
__a , __a , __a , hidden_dtype=hidden_states.dtype )
else:
_a = self.norma(__a )
_a = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_a = self.attna(
__a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , )
if self.use_ada_layer_norm_zero:
_a = gate_msa.unsqueeze(1 ) * attn_output
_a = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_a = (
self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a )
)
_a = self.attna(
__a , encoder_hidden_states=__a , attention_mask=__a , **__a , )
_a = attn_output + hidden_states
# 3. Feed-forward
_a = self.norma(__a )
if self.use_ada_layer_norm_zero:
_a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' )
_a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_a = torch.cat(
[self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_a = self.ff(__a )
if self.use_ada_layer_norm_zero:
_a = gate_mlp.unsqueeze(1 ) * ff_output
_a = ff_output + hidden_states
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ):
super().__init__()
_a = int(dim * mult )
_a = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_a = GELU(__a , __a )
if activation_fn == "gelu-approximate":
_a = GELU(__a , __a , approximate="tanh" )
elif activation_fn == "geglu":
_a = GEGLU(__a , __a )
elif activation_fn == "geglu-approximate":
_a = ApproximateGELU(__a , __a )
_a = nn.ModuleList([] )
# project in
self.net.append(__a )
# project dropout
self.net.append(nn.Dropout(__a ) )
# project out
self.net.append(nn.Linear(__a , __a ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__a ) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple ):
for module in self.net:
_a = module(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : int , __a : int , __a : str = "none" ):
super().__init__()
_a = nn.Linear(__a , __a )
_a = approximate
def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ):
if gate.device.type != "mps":
return F.gelu(__a , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : str , __a : Optional[int] ):
_a = self.proj(__a )
_a = self.gelu(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : str , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , dim_out * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ):
if gate.device.type != "mps":
return F.gelu(__a )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
_a , _a = self.proj(__a ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__a )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , __a )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ):
_a = self.proj(__a )
return x * torch.sigmoid(1.702 * x )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : str ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , embedding_dim * 2 )
_a = nn.LayerNorm(__a , elementwise_affine=__a )
def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ):
_a = self.linear(self.silu(self.emb(__a ) ) )
_a , _a = torch.chunk(__a , 2 )
_a = self.norm(__a ) * (1 + scale) + shift
return x
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : List[Any] , __a : Any ):
super().__init__()
_a = CombinedTimestepLabelEmbeddings(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , 6 * embedding_dim , bias=__a )
_a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ):
_a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) )
_a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 )
_a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ):
super().__init__()
_a = num_groups
_a = eps
if act_fn is None:
_a = None
else:
_a = get_activation(__a )
_a = nn.Linear(__a , out_dim * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ):
if self.act:
_a = self.act(__a )
_a = self.linear(__a )
_a = emb[:, :, None, None]
_a , _a = emb.chunk(2 , dim=1 )
_a = F.group_norm(__a , self.num_groups , eps=self.eps )
_a = x * (1 + scale) + shift
return x
| 692 | 0 |
"""simple docstring"""
import os
import time
import numpy as np
import onnxruntime as ort
__lowerCamelCase = '1'
__lowerCamelCase = '0'
__lowerCamelCase = '1'
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print('Create inference session...')
__lowerCamelCase = ['TensorrtExecutionProvider', 'CUDAExecutionProvider']
__lowerCamelCase = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider)
__lowerCamelCase = ort.RunOptions()
__lowerCamelCase = 1_28
__lowerCamelCase = 1
__lowerCamelCase = np.ones((batch, sequence), dtype=np.intaa)
__lowerCamelCase = np.ones((batch, sequence), dtype=np.intaa)
__lowerCamelCase = np.ones((batch, sequence), dtype=np.intaa)
print('Warm up phase...')
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('Start inference...')
__lowerCamelCase = time.time()
__lowerCamelCase = 20_00
__lowerCamelCase = {}
for iter in range(max_iters):
__lowerCamelCase = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 10_00 / max_iters))
| 96 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =42
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : int ):
_a = [[] for _ in range(__a )]
_a = size
def __getitem__( self : int , __a : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase__ ( self : Dict ):
return self._size
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ):
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def A_ ( lowercase , lowercase ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[str] = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def A_ ( lowercase , lowercase ) -> Any:
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
UpperCAmelCase_ : List[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase_ : List[str] = in_proj_weight[
: encoder_config.hidden_size, :
]
UpperCAmelCase_ : Optional[int] = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
UpperCAmelCase_ : List[Any] = in_proj_weight[
-encoder_config.hidden_size :, :
]
def A_ ( lowercase , lowercase , lowercase ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = dct.pop(lowercase )
UpperCAmelCase_ : Dict = val
def A_ ( lowercase ) -> Any:
"""simple docstring"""
if "handwritten" in checkpoint_url:
UpperCAmelCase_ : Any = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
UpperCAmelCase_ : List[str] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
UpperCAmelCase_ : Tuple = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def A_ ( lowercase , lowercase ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ViTConfig(image_size=384 , qkv_bias=lowercase )
UpperCAmelCase_ : Optional[int] = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
UpperCAmelCase_ : List[Any] = 768
elif "large" in checkpoint_url:
# use ViT-large encoder
UpperCAmelCase_ : str = 1024
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Union[str, Any] = 24
UpperCAmelCase_ : Optional[int] = 16
UpperCAmelCase_ : int = 1024
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Dict = """relu"""
UpperCAmelCase_ : str = 1024
UpperCAmelCase_ : Dict = True
UpperCAmelCase_ : Any = False
UpperCAmelCase_ : Optional[int] = False
# load HuggingFace model
UpperCAmelCase_ : List[Any] = ViTModel(lowercase , add_pooling_layer=lowercase )
UpperCAmelCase_ : Any = TrOCRForCausalLM(lowercase )
UpperCAmelCase_ : Union[str, Any] = VisionEncoderDecoderModel(encoder=lowercase , decoder=lowercase )
model.eval()
# load state_dict of original model, rename some keys
UpperCAmelCase_ : str = torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" , check_hash=lowercase )["""model"""]
UpperCAmelCase_ : Union[str, Any] = create_rename_keys(lowercase , lowercase )
for src, dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
read_in_q_k_v(lowercase , lowercase )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
UpperCAmelCase_ : Optional[int] = state_dict.pop(lowercase )
if key.startswith("""decoder""" ) and "output_projection" not in key:
UpperCAmelCase_ : Optional[Any] = val
else:
UpperCAmelCase_ : List[Any] = val
# load state dict
model.load_state_dict(lowercase )
# Check outputs on an image
UpperCAmelCase_ : Optional[int] = ViTImageProcessor(size=encoder_config.image_size )
UpperCAmelCase_ : List[Any] = RobertaTokenizer.from_pretrained("""roberta-large""" )
UpperCAmelCase_ : Union[str, Any] = TrOCRProcessor(lowercase , lowercase )
UpperCAmelCase_ : List[Any] = processor(images=prepare_img(lowercase ) , return_tensors="""pt""" ).pixel_values
# verify logits
UpperCAmelCase_ : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
UpperCAmelCase_ : Tuple = model(pixel_values=lowercase , decoder_input_ids=lowercase )
UpperCAmelCase_ : Tuple = outputs.logits
UpperCAmelCase_ : Optional[Any] = torch.Size([1, 1, 5_0265] )
if "trocr-base-handwritten" in checkpoint_url:
UpperCAmelCase_ : Union[str, Any] = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] )
elif "trocr-large-handwritten" in checkpoint_url:
UpperCAmelCase_ : int = torch.tensor(
[-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] )
elif "trocr-base-printed" in checkpoint_url:
UpperCAmelCase_ : Any = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] )
elif "trocr-large-printed" in checkpoint_url:
UpperCAmelCase_ : Any = torch.tensor(
[-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10] , lowercase , atol=1E-3 ), "First elements of logits not as expected"
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 470 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =FlaxAutoencoderKL
@property
def UpperCamelCase__ ( self : str ):
_a = 4
_a = 3
_a = (32, 32)
_a = jax.random.PRNGKey(0 )
_a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def UpperCamelCase__ ( self : List[Any] ):
_a = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_a = self.dummy_input
return init_dict, inputs_dict
| 692 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = ['GLPNFeatureExtractor']
A : Tuple = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 287 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase_ : List[Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase_ : Optional[int] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase_ : Any = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Tuple = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]:
for tf_name, hf_name in patterns:
_a = k.replace(lowercase , lowercase )
return k
def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration:
_a = BigBirdPegasusConfig(**lowercase )
_a = BigBirdPegasusForConditionalGeneration(lowercase )
_a = torch_model.state_dict()
_a = {}
# separating decoder weights
_a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = DECODER_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = REMAINING_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
_a = mapping["model.embed_positions.weight"]
_a = mapping.pop("model.embed_positions.weight" )
_a , _a = torch_model.load_state_dict(lowercase , strict=lowercase )
_a = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
_a = tf.train.list_variables(lowercase )
_a = {}
_a = ["global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
_a = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a = tf.train.load_variable(lowercase , lowercase )
_a = array
return tf_weights
def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]:
_a = get_tf_weights_as_numpy(lowercase )
_a = convert_bigbird_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 692 | 0 |
"""simple docstring"""
from math import factorial
lowercase__ : str = {str(d): factorial(d) for d in range(10)}
def __lowercase ( _a ):
return sum(DIGIT_FACTORIAL[d] for d in str(_a ) )
def __lowercase ( ):
snake_case_ : Dict = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , _a ) if sum_of_digit_factorial(_a ) == i )
if __name__ == "__main__":
print(f'{solution() = }')
| 123 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 692 | 0 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowerCAmelCase__ ( lowerCamelCase_ ):
'''simple docstring'''
@staticmethod
@abstractmethod
def _snake_case ( snake_case__ : ArgumentParser ) -> List[str]:
raise NotImplementedError()
@abstractmethod
def _snake_case ( self : Optional[int] ) -> Any:
raise NotImplementedError() | 544 |
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 692 | 0 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
A : List[str] = logging.get_logger()
@dataclass
class UpperCamelCase:
snake_case_ : List[str] = 42
snake_case_ : Tuple = field(default_factory=lowerCamelCase_ )
snake_case_ : Any = field(default_factory=lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Tensor ) -> str:
'''simple docstring'''
__snake_case = len(list(m.modules() ) ) == 1 or isinstance(__a , nn.Convad ) or isinstance(__a , nn.BatchNormad )
if has_not_submodules:
self.traced.append(__a )
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE : Tensor ) -> Any:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(__a )
[x.remove() for x in self.handles]
return self
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return list(filter(lambda SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class UpperCamelCase:
snake_case_ : Optional[int] = 42
snake_case_ : Optional[Any] = 42
snake_case_ : Any = 1
snake_case_ : str = field(default_factory=lowerCamelCase_ )
snake_case_ : Any = field(default_factory=lowerCamelCase_ )
snake_case_ : Tuple = True
def __call__( self : Any , SCREAMING_SNAKE_CASE : Tensor ) -> Optional[int]:
'''simple docstring'''
__snake_case = Tracker(self.dest )(__a ).parametrized
__snake_case = Tracker(self.src )(__a ).parametrized
__snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : type(__a ) not in self.src_skip , __a ) )
__snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : type(__a ) not in self.dest_skip , __a ) )
if len(__a ) != len(__a ) and self.raise_if_mismatch:
raise Exception(
f'''Numbers of operations are different. Source module has {len(__a )} operations while'''
f''' destination module has {len(__a )}.''' )
for dest_m, src_m in zip(__a , __a ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'''Transfered from={src_m} to={dest_m}''' )
class UpperCamelCase( nn.Module ):
def __init__( self : int , SCREAMING_SNAKE_CASE : nn.Module ) -> Dict:
'''simple docstring'''
super().__init__()
__snake_case = []
# - get the stem
feature_blocks.append(("conv1", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block" ), f'''Unexpected layer name {k}'''
__snake_case = len(__a ) + 1
feature_blocks.append((f'''res{block_index}''', v) )
__snake_case = nn.ModuleDict(__a )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Tensor ) -> Union[str, Any]:
'''simple docstring'''
return get_trunk_forward_outputs(
__a , out_feat_keys=__a , feature_blocks=self._feature_blocks , )
class UpperCamelCase( lowerCamelCase_ ):
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : str ) -> Any:
'''simple docstring'''
__snake_case = x.split("-" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Any , SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
'''simple docstring'''
if x not in self:
__snake_case = self.convert_name_to_timm(__a )
__snake_case = partial(lambda: (timm.create_model(__a , pretrained=__a ).eval(), None) )
else:
__snake_case = super().__getitem__(__a )
return val
class UpperCamelCase( lowerCamelCase_ ):
def __getitem__( self : Dict , SCREAMING_SNAKE_CASE : str ) -> str:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
__snake_case = RegNetModel
else:
__snake_case = RegNetForImageClassification
return val
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
for from_key, to_key in keys:
__snake_case = from_state_dict[from_key].clone()
print(F'''Copied key={from_key} to={to_key}''' )
return to_state_dict
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> int:
'''simple docstring'''
print(F'''Converting {name}...''' )
with torch.no_grad():
__snake_case , __snake_case = from_model_func()
__snake_case = our_model_func(_lowerCAmelCase ).eval()
__snake_case = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase , raise_if_mismatch=_lowerCAmelCase )
__snake_case = torch.randn((1, 3, 224, 224) )
module_transfer(_lowerCAmelCase )
if from_state_dict is not None:
__snake_case = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
__snake_case = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
__snake_case = manually_copy_vissl_head(_lowerCAmelCase , our_model.state_dict() , _lowerCAmelCase )
our_model.load_state_dict(_lowerCAmelCase )
__snake_case = our_model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
__snake_case = (
our_outputs.logits if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else our_outputs.last_hidden_state
)
__snake_case = from_model(_lowerCAmelCase )
__snake_case = from_output[-1] if type(_lowerCAmelCase ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
__snake_case = our_outputs.hidden_states[-1]
assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , )
__snake_case = 224 if "seer" not in name else 384
# we can use the convnext one
__snake_case = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_lowerCAmelCase )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , )
print(F'''Pushed {name}''' )
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ) -> Optional[Any]:
'''simple docstring'''
__snake_case = "imagenet-1k-id2label.json"
__snake_case = 1000
__snake_case = (1, num_labels)
__snake_case = "huggingface/label-files"
__snake_case = num_labels
__snake_case = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) ) , "r" ) )
__snake_case = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
__snake_case = idalabel
__snake_case = {v: k for k, v in idalabel.items()}
__snake_case = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase )
__snake_case = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ),
}
__snake_case = NameToOurModelFuncMap()
__snake_case = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(_lowerCAmelCase , _lowerCAmelCase ) -> Tuple[nn.Module, Dict]:
__snake_case = torch.hub.load_state_dict_from_url(_lowerCAmelCase , model_dir=str(_lowerCAmelCase ) , map_location="cpu" )
__snake_case = model_func()
# check if we have a head, if yes add it
__snake_case = files["classy_state_dict"]["base_model"]["model"]
__snake_case = model_state_dict["trunk"]
model.load_state_dict(_lowerCAmelCase )
return model.eval(), model_state_dict["heads"]
# pretrained
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
# IN1K finetuned
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__snake_case = partial(
_lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
if model_name:
convert_weight_and_push(
_lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
_lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
return config, expected_shape
if __name__ == "__main__":
A : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported regnet* architecture,'
' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
A : str = parser.parse_args()
A : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 371 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 692 | 0 |
def A__( __lowerCAmelCase = 10**9 ):
_snake_case : Optional[int] = 1
_snake_case : Optional[int] = 2
_snake_case : int = 0
_snake_case : List[Any] = 0
_snake_case : int = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 304 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]:
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
_a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"Number of resulting singleton clusters in the key "
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"files, respectively" )
return doc_coref_infos
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str:
_a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
_a = (conll / 3) * 100
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"conll_score": conll} )
return output_scores
def _lowerCamelCase ( lowercase : Any ) -> str:
_a = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ):
_a = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__a )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , )
return score
| 692 | 0 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class UpperCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
UpperCAmelCase__ : Any = parent
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : str = seq_length
UpperCAmelCase__ : int = is_training
UpperCAmelCase__ : Optional[Any] = use_input_mask
UpperCAmelCase__ : Union[str, Any] = use_token_type_ids
UpperCAmelCase__ : Dict = use_labels
UpperCAmelCase__ : Tuple = vocab_size
UpperCAmelCase__ : Optional[int] = hidden_size
UpperCAmelCase__ : Tuple = num_hidden_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : List[Any] = intermediate_size
UpperCAmelCase__ : List[str] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase__ : Dict = max_position_embeddings
UpperCAmelCase__ : Tuple = type_vocab_size
UpperCAmelCase__ : List[Any] = type_sequence_label_size
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : Optional[Any] = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Optional[Any] = scope
UpperCAmelCase__ : Optional[int] = vocab_size - 1
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : str = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self ):
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase__ : List[str] = True
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : str = GPTNeoXModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : List[Any] = model(__a , attention_mask=__a )
UpperCAmelCase__ : List[Any] = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Optional[Any] = True
UpperCAmelCase__ : Union[str, Any] = GPTNeoXModel(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : List[str] = model(__a , attention_mask=__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Optional[int] = GPTNeoXForCausalLM(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Optional[int] = self.num_labels
UpperCAmelCase__ : int = GPTNeoXForQuestionAnswering(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : int = model(__a , attention_mask=__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Dict = self.num_labels
UpperCAmelCase__ : str = GPTNeoXForSequenceClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : str = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Dict = self.num_labels
UpperCAmelCase__ : Union[str, Any] = GPTNeoXForTokenClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ : Dict = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : int = True
UpperCAmelCase__ : Any = GPTNeoXForCausalLM(config=__a )
model.to(__a )
model.eval()
# first forward pass
UpperCAmelCase__ : Tuple = model(__a , attention_mask=__a , use_cache=__a )
UpperCAmelCase__ : List[str] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase__ : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase__ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase__ : Optional[int] = model(__a , attention_mask=__a , output_hidden_states=__a )
UpperCAmelCase__ : Tuple = output_from_no_past["""hidden_states"""][0]
UpperCAmelCase__ : Dict = model(
__a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase__ : int = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase__ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs
UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
__lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
__lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
__lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : List[Any] = GPTNeoXModelTester(self )
UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__a , __a , __a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__a , __a , __a )
def __UpperCAmelCase ( self ):
# This regression test was failing with PyTorch < 1.3
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCAmelCase__ : List[str] = None
self.model_tester.create_and_check_model_as_decoder(__a , __a , __a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def __UpperCAmelCase ( self ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : str = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase__ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase__ : List[Any] = GPTNeoXModel(__a )
original_model.to(__a )
original_model.eval()
UpperCAmelCase__ : Tuple = original_model(__a ).last_hidden_state
UpperCAmelCase__ : List[Any] = original_model(__a ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase__ : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase__ : Union[str, Any] = GPTNeoXModel(__a )
scaled_model.to(__a )
scaled_model.eval()
UpperCAmelCase__ : Tuple = scaled_model(__a ).last_hidden_state
UpperCAmelCase__ : str = scaled_model(__a ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
UpperCAmelCase__ : str = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(__a )
UpperCAmelCase__ : str = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__a )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
UpperCAmelCase__ : Optional[Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
UpperCAmelCase__ : Dict = model.generate(**__a , do_sample=__a , max_new_tokens=20 )
UpperCAmelCase__ : Optional[int] = tokenizer.batch_decode(__a )[0]
self.assertEqual(__a , __a )
| 79 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase ( lowercase : float = 0.1 ) -> int:
_a = 3
_a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowercase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__A = 50_0000
__A = os.path.split(__file__)
__A = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def __A (_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Tuple:
"""simple docstring"""
lowerCAmelCase__ :Dict = dataset.map(**_SCREAMING_SNAKE_CASE )
@get_duration
def __A (_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->List[str]:
"""simple docstring"""
lowerCAmelCase__ :Optional[Any] = dataset.filter(**_SCREAMING_SNAKE_CASE )
def __A () ->int:
"""simple docstring"""
lowerCAmelCase__ :Optional[int] = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ :Optional[Any] = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
lowerCAmelCase__ :str = generate_example_dataset(
os.path.join(_SCREAMING_SNAKE_CASE , 'dataset.arrow' ) , _SCREAMING_SNAKE_CASE , num_examples=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :int = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_SCREAMING_SNAKE_CASE )
def tokenize(_SCREAMING_SNAKE_CASE ):
return tokenizer(examples['text'] )
lowerCAmelCase__ :List[Any] = map(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[Any] = map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :int = map(_SCREAMING_SNAKE_CASE , function=lambda _SCREAMING_SNAKE_CASE : None , batched=_SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='numpy' ):
lowerCAmelCase__ :List[Any] = map(_SCREAMING_SNAKE_CASE , function=lambda _SCREAMING_SNAKE_CASE : None , batched=_SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='pandas' ):
lowerCAmelCase__ :List[Any] = map(_SCREAMING_SNAKE_CASE , function=lambda _SCREAMING_SNAKE_CASE : None , batched=_SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='torch' , columns='numbers' ):
lowerCAmelCase__ :List[Any] = map(_SCREAMING_SNAKE_CASE , function=lambda _SCREAMING_SNAKE_CASE : None , batched=_SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
lowerCAmelCase__ :Tuple = map(_SCREAMING_SNAKE_CASE , function=lambda _SCREAMING_SNAKE_CASE : None , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :str = map(_SCREAMING_SNAKE_CASE , function=_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :str = filter(_SCREAMING_SNAKE_CASE )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(_SCREAMING_SNAKE_CASE , 'wb' ) as f:
f.write(json.dumps(_SCREAMING_SNAKE_CASE ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 93 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(CMStochasticIterativeScheduler,)
__a =10
def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ):
_a = {
"num_train_timesteps": 2_01,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[Any] ):
_a = 10
_a = self.get_scheduler_config()
_a = self.scheduler_classes[0](**__a )
scheduler.set_timesteps(__a )
_a = scheduler.timesteps[0]
_a = scheduler.timesteps[1]
_a = self.dummy_sample
_a = 0.1 * sample
_a = scheduler.step(__a , __a , __a ).prev_sample
_a = scheduler.step(__a , __a , __a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self : Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : int ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = 1
scheduler.set_timesteps(__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(__a ):
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [1_06, 0]
scheduler.set_timesteps(timesteps=__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def UpperCamelCase__ ( self : List[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 15, 0]
with self.assertRaises(__a , msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 1, 0]
_a = len(__a )
with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=__a )
| 692 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class __snake_case ( lowerCamelCase_):
def __init__( self : Optional[Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : List[Any] ):
"""simple docstring"""
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __a , )
super().__init__(*__a , **__a )
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ):
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import numpy
# List of input, output pairs
A_ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A_ = (((515, 22, 13), 555), ((61, 35, 49), 150))
A_ = [2, 4, 1, 5]
A_ = len(train_data)
A_ = 0.0_09
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="train" ) -> Optional[Any]:
return calculate_hypothesis_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - output(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> str:
snake_case__ : Optional[int] = 0
for i in range(len(__SCREAMING_SNAKE_CASE ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=m ) -> int:
snake_case__ : Union[str, Any] = 0
for i in range(__SCREAMING_SNAKE_CASE ):
if index == -1:
summation_value += _error(__SCREAMING_SNAKE_CASE )
else:
summation_value += _error(__SCREAMING_SNAKE_CASE ) * train_data[i][0][index]
return summation_value
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case__ : Union[str, Any] = summation_of_cost_derivative(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) / m
return cost_derivative_value
def UpperCamelCase__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
snake_case__ : Any = 0.000002
snake_case__ : int = 0
snake_case__ : Union[str, Any] = 0
while True:
j += 1
snake_case__ : Optional[int] = [0, 0, 0, 0]
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) ):
snake_case__ : Any = get_cost_derivative(i - 1 )
snake_case__ : int = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE , rtol=__SCREAMING_SNAKE_CASE , ):
break
snake_case__ : int = temp_parameter_vector
print(('Number of iterations:', j) )
def UpperCamelCase__ ( ) -> Union[str, Any]:
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
print(('Actual output value:', output(__SCREAMING_SNAKE_CASE , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(__SCREAMING_SNAKE_CASE , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 270 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='timesformer'
def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ):
super().__init__(**__a )
_a = image_size
_a = patch_size
_a = num_channels
_a = num_frames
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = qkv_bias
_a = attention_type
_a = drop_path_rate
| 692 | 0 |
"""simple docstring"""
class __A :
def __init__( self : Tuple ) -> Optional[Any]:
__magic_name__: Tuple = {} # Mapping from char to TrieNode
__magic_name__: Optional[Any] = False
def lowerCamelCase__ ( self : Tuple , __snake_case : list[str] ) -> List[Any]:
for word in words:
self.insert(__a )
def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str ) -> Union[str, Any]:
__magic_name__: List[Any] = self
for char in word:
if char not in curr.nodes:
__magic_name__: str = TrieNode()
__magic_name__: int = curr.nodes[char]
__magic_name__: int = True
def lowerCamelCase__ ( self : str , __snake_case : str ) -> List[str]:
__magic_name__: List[str] = self
for char in word:
if char not in curr.nodes:
return False
__magic_name__: str = curr.nodes[char]
return curr.is_leaf
def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str ) -> Any:
def _delete(__snake_case : TrieNode , __snake_case : str , __snake_case : int ) -> bool:
if index == len(__a ):
# If word does not exist
if not curr.is_leaf:
return False
__magic_name__: str = False
return len(curr.nodes ) == 0
__magic_name__: List[Any] = word[index]
__magic_name__: Tuple = curr.nodes.get(__a )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
__magic_name__: Optional[int] = _delete(__a , __a , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , __a , 0 )
def a ( __UpperCAmelCase : TrieNode , __UpperCAmelCase : str ) -> None:
if node.is_leaf:
print(__UpperCAmelCase , end=""" """ )
for key, value in node.nodes.items():
print_words(__UpperCAmelCase , word + key )
def a ( ) -> bool:
__magic_name__: Tuple = """banana bananas bandana band apple all beast""".split()
__magic_name__: List[str] = TrieNode()
root.insert_many(__UpperCAmelCase )
# print_words(root, "")
assert all(root.find(__UpperCAmelCase ) for word in words )
assert root.find("""banana""" )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
assert root.find("""apple""" )
assert root.find("""all""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def a ( __UpperCAmelCase : str , __UpperCAmelCase : bool ) -> None:
print(str(__UpperCAmelCase ) , """works!""" if passes else """doesn't work :(""" )
def a ( ) -> None:
assert test_trie()
def a ( ) -> None:
print_results("""Testing trie functionality""" , test_trie() )
if __name__ == "__main__":
main()
| 96 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self : Dict ):
_a = 1
_a = 3
_a = (32, 32)
_a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ ( self : Dict ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__a )
@property
def UpperCamelCase__ ( self : str ):
def extract(*__a : Tuple , **__a : str ):
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict ):
_a = torch.ones([0] )
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
self.pixel_values.to(__a )
return self
return Out()
return extract
def UpperCamelCase__ ( self : Optional[int] ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
_a = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , )
_a = output.images
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
# put models in fp16
_a = unet.half()
_a = vae.half()
_a = bert.half()
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
_a = init_image.resize((7_60, 5_04) )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
_a = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_a = init_image.resize((7_68, 5_12) )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 692 | 0 |
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[Any] , a_ : List[Any] , a_ : List[Any]=13 , a_ : Optional[Any]=7 , a_ : str=True , a_ : Optional[Any]=True , a_ : List[str]=False , a_ : Optional[int]=True , a_ : str=99 , a_ : int=32 , a_ : int=5 , a_ : Optional[int]=4 , a_ : List[Any]=37 , a_ : Dict="gelu" , a_ : List[Any]=0.1 , a_ : Optional[int]=0.1 , a_ : Optional[Any]=5_12 , a_ : int=16 , a_ : str=2 , a_ : Union[str, Any]=0.02 , a_ : List[str]=3 , a_ : Tuple=4 , a_ : Tuple=None , )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : str = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : int = use_input_mask
UpperCAmelCase_ : Union[str, Any] = use_token_type_ids
UpperCAmelCase_ : Optional[Any] = use_labels
UpperCAmelCase_ : List[str] = vocab_size
UpperCAmelCase_ : Tuple = hidden_size
UpperCAmelCase_ : int = num_hidden_layers
UpperCAmelCase_ : List[str] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Tuple = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : Any = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Union[str, Any] = scope
def a ( self : Union[str, Any] )-> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : int = None
if self.use_token_type_ids:
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : int = None
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self : Tuple )-> Optional[int]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
def a ( self : Union[str, Any] , a_ : Dict , a_ : Any , a_ : Any , a_ : int , a_ : Tuple , a_ : List[Any] , a_ : Tuple )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase_ : Optional[int] = model(__a , attention_mask=__a )
UpperCAmelCase_ : Union[str, Any] = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self : Dict , a_ : Dict , a_ : Union[str, Any] , a_ : str , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] , a_ : List[Any] , a_ : Union[str, Any] , a_ : str , )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptForCausalLM(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase_ : str = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : Union[str, Any] , a_ : Dict , a_ : List[str] , a_ : Any , a_ : Dict , a_ : Optional[int] , *a_ : Union[str, Any] )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptModel(config=__a )
model.to(__a )
model.eval()
# create attention mask
UpperCAmelCase_ : Any = torch.ones(input_ids.shape , dtype=torch.long , device=__a )
UpperCAmelCase_ : List[Any] = self.seq_length // 2
UpperCAmelCase_ : Any = 0
# first forward pass
UpperCAmelCase_ ,UpperCAmelCase_ : Union[str, Any] = model(__a , attention_mask=__a ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[Any] = ids_tensor((1,) , __a ).item() + 1
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : List[Any] = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : int = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : Dict = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Optional[int] = model(__a , attention_mask=__a )["""last_hidden_state"""]
UpperCAmelCase_ : Optional[int] = model(__a , past_key_values=__a , attention_mask=__a )["""last_hidden_state"""]
# select random slice
UpperCAmelCase_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : int = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) )
def a ( self : Optional[int] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[str] , a_ : Union[str, Any] , *a_ : Dict )-> int:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BioGptModel(config=__a ).to(__a ).eval()
UpperCAmelCase_ : str = torch.ones(input_ids.shape , dtype=torch.long , device=__a )
# first forward pass
UpperCAmelCase_ : List[Any] = model(__a , attention_mask=__a , use_cache=__a )
UpperCAmelCase_ ,UpperCAmelCase_ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__a , attention_mask=__a )["""last_hidden_state"""]
UpperCAmelCase_ : Dict = model(__a , attention_mask=__a , past_key_values=__a )[
"""last_hidden_state"""
]
# select random slice
UpperCAmelCase_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) )
def a ( self : List[Any] , a_ : Optional[int] , a_ : Optional[int] , a_ : List[Any] , a_ : int , a_ : Optional[Any] , *a_ : Tuple , a_ : List[str]=False )-> int:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__a )
model.to(__a )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : str = model(__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def a ( self : Any , a_ : List[str] , *a_ : Dict )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = BioGptModel(__a )
UpperCAmelCase_ : List[Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def a ( self : Any , a_ : int , a_ : str , a_ : str , a_ : Union[str, Any] , a_ : Tuple , *a_ : Any )-> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.num_labels
UpperCAmelCase_ : Union[str, Any] = BioGptForTokenClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase_ : str = model(__a , attention_mask=__a , token_type_ids=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self : Optional[int] )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,(
UpperCAmelCase_
) ,
) : List[str] = config_and_inputs
UpperCAmelCase_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
UpperCamelCase_ : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
UpperCamelCase_ : Dict = (
{
"""feature-extraction""": BioGptModel,
"""text-classification""": BioGptForSequenceClassification,
"""text-generation""": BioGptForCausalLM,
"""token-classification""": BioGptForTokenClassification,
"""zero-shot""": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
def a ( self : Tuple )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BioGptModelTester(self )
UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=__a , hidden_size=37 )
def a ( self : List[Any] )-> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a ( self : List[Any] )-> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def a ( self : List[Any] )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Dict = type
self.model_tester.create_and_check_model(*__a )
def a ( self : Union[str, Any] )-> str:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a )
def a ( self : Tuple )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a )
def a ( self : Dict )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a )
def a ( self : int )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__a )
def a ( self : Optional[Any] )-> Any:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__a )
@slow
def a ( self : List[Any] )-> Any:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(__a )
UpperCAmelCase_ : Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
UpperCAmelCase_ : Union[str, Any] = """left"""
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : str = tokenizer.eos_token
UpperCAmelCase_ : Optional[int] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Any = [
"""Hello, my dog is a little""",
"""Today, I""",
]
UpperCAmelCase_ : Dict = tokenizer(__a , return_tensors="""pt""" , padding=__a )
UpperCAmelCase_ : int = inputs["""input_ids"""].to(__a )
UpperCAmelCase_ : List[Any] = model.generate(
input_ids=__a , attention_mask=inputs["""attention_mask"""].to(__a ) , )
UpperCAmelCase_ : Any = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(__a )
UpperCAmelCase_ : Optional[Any] = model.generate(input_ids=__a )
UpperCAmelCase_ : Any = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
UpperCAmelCase_ : Tuple = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(__a )
UpperCAmelCase_ : Optional[int] = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : Optional[Any] = tokenizer.batch_decode(__a , skip_special_tokens=__a )
UpperCAmelCase_ : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a )
UpperCAmelCase_ : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a )
UpperCAmelCase_ : List[Any] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , [non_padded_sentence, padded_sentence] )
@slow
def a ( self : Union[str, Any] )-> Tuple:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Dict = BioGptModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def a ( self : Optional[Any] )-> Dict:
"""simple docstring"""
UpperCAmelCase_ ,UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Tuple = 3
UpperCAmelCase_ : Optional[int] = input_dict["""input_ids"""]
UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(__a )
UpperCAmelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = BioGptForSequenceClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase_ : str = model(__a , attention_mask=__a , labels=__a )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a ( self : Optional[Any] )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Dict = """multi_label_classification"""
UpperCAmelCase_ : Any = input_dict["""input_ids"""]
UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(__a )
UpperCAmelCase_ : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : str = BioGptForSequenceClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase_ : List[str] = model(__a , attention_mask=__a , labels=__a )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def a ( self : Tuple )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
UpperCAmelCase_ : Tuple = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : int = model(__a )[0]
UpperCAmelCase_ : Optional[Any] = 4_23_84
UpperCAmelCase_ : Optional[Any] = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __a )
UpperCAmelCase_ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
@slow
def a ( self : Tuple )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
UpperCAmelCase_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(__a )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(__a )
UpperCAmelCase_ : Dict = model.generate(
**__a , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__a , )
UpperCAmelCase_ : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=__a )
UpperCAmelCase_ : str = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(__a , __a )
| 470 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ):
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
A : Union[str, Any] = False
class a_ ( unittest.TestCase ):
def UpperCamelCase_ ( self , __UpperCamelCase=32 ):
set_seed(0 )
_lowercase = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 )
_lowercase = torch.optim.SGD(model.parameters() , lr=0.00_01 )
return model, optimizer
@slow
def UpperCamelCase_ ( self ):
_lowercase = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
_lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__a , )
_lowercase = DDIMScheduler(
num_train_timesteps=1_000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__a , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
_lowercase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )]
_lowercase = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )]
_lowercase = [torch.randint(0 , 1_000 , (4,) ).long().to(__a ) for _ in range(4 )]
# train with a DDPM scheduler
_lowercase , _lowercase = self.get_model_optimizer(resolution=32 )
model.train().to(__a )
for i in range(4 ):
optimizer.zero_grad()
_lowercase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
_lowercase = model(__a , timesteps[i] ).sample
_lowercase = torch.nn.functional.mse_loss(__a , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
_lowercase , _lowercase = self.get_model_optimizer(resolution=32 )
model.train().to(__a )
for i in range(4 ):
optimizer.zero_grad()
_lowercase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
_lowercase = model(__a , timesteps[i] ).sample
_lowercase = torch.nn.functional.mse_loss(__a , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) )
self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) | 287 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Tuple:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : str = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 692 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowercase__ : Union[str, Any] = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Any = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Union[str, Any] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowercase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 123 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ : Any = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 692 | 0 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class lowerCAmelCase__ ( lowerCamelCase_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = FlaxAutoencoderKL
@property
def _snake_case ( self : str ) -> Optional[int]:
_lowerCamelCase = 4
_lowerCamelCase = 3
_lowerCamelCase = (3_2, 3_2)
_lowerCamelCase = jax.random.PRNGKey(0 )
_lowerCamelCase = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def _snake_case ( self : List[Any] ) -> Tuple:
_lowerCamelCase = {
'block_out_channels': [3_2, 6_4],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 4,
}
_lowerCamelCase = self.dummy_input
return init_dict, inputs_dict | 544 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] ):
_a = psutil.Process()
_a = False
def UpperCamelCase__ ( self : Tuple ):
_a = -1
while True:
_a = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def UpperCamelCase__ ( self : List[Any] ):
_a = True
_a = threading.Thread(target=self.peak_monitor )
_a = True
self.thread.start()
def UpperCamelCase__ ( self : Optional[int] ):
_a = False
self.thread.join()
return self.cpu_memory_peak
lowerCAmelCase_ : List[Any] = PeakCPUMemory()
def _lowerCamelCase ( ) -> Tuple:
# Time
_a = {"time": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = torch.cuda.memory_allocated(lowercase )
torch.cuda.reset_peak_memory_stats()
return measures
def _lowerCamelCase ( lowercase : Any ) -> int:
# Time
_a = {"time": time.time() - start_measures["time"]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
_a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
_a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
return measures
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str:
print(F'{description}:' )
print(F'- Time: {measures["time"]:.2f}s' )
for i in range(torch.cuda.device_count() ):
print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' )
_a = measures[F'{i}-peak']
print(F'- GPU {i} peak: {peak:.2f}MiB' )
print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' )
print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
| 692 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A : Optional[Any] = {
'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[Any] = [
'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoForCausalLM',
'GPTNeoForQuestionAnswering',
'GPTNeoForSequenceClassification',
'GPTNeoForTokenClassification',
'GPTNeoModel',
'GPTNeoPreTrainedModel',
'load_tf_weights_in_gpt_neo',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
'FlaxGPTNeoForCausalLM',
'FlaxGPTNeoModel',
'FlaxGPTNeoPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 371 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(DDIMParallelScheduler,)
__a =(('eta', 0.0), ('num_inference_steps', 50))
def UpperCamelCase__ ( self : Optional[int] , **__a : Any ):
_a = {
"num_train_timesteps": 10_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(**__a )
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
_a = self.dummy_model()
_a = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for t in scheduler.timesteps:
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a , __a ).prev_sample
return sample
def UpperCamelCase__ ( self : str ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : Dict ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__a )
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(steps_offset=1 )
_a = scheduler_class(**__a )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def UpperCamelCase__ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__a )
def UpperCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def UpperCamelCase__ ( self : Dict ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__a )
def UpperCamelCase__ ( self : Optional[int] ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__a )
def UpperCamelCase__ ( self : Optional[Any] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__a )
def UpperCamelCase__ ( self : List[Any] ):
self.check_over_configs(thresholding=__a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , )
def UpperCamelCase__ ( self : List[Any] ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=__a , num_inference_steps=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__a , eta=__a )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5
def UpperCamelCase__ ( self : List[str] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
scheduler.set_timesteps(__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(__a )[0:3, None].repeat(1 , __a )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def UpperCamelCase__ ( self : List[str] ):
_a = self.full_loop()
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def UpperCamelCase__ ( self : str ):
_a = self.full_loop(prediction_type="v_prediction" )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 692 | 0 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def A__( ):
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_snake_case : Dict = '__test_patch_submodule_mock__'
with patch_submodule(_test_patching , 'os.path.join' , __lowerCAmelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def A__( ):
assert _test_patching.open is open
_snake_case : Optional[Any] = '__test_patch_submodule_builtin_mock__'
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , 'open' , __lowerCAmelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def A__( ):
# pandas.read_csv is not present in _test_patching
_snake_case : int = '__test_patch_submodule_missing_mock__'
with patch_submodule(_test_patching , 'pandas.read_csv' , __lowerCAmelCase ):
pass
def A__( ):
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
_snake_case : Optional[int] = '__test_patch_submodule_missing_builtin_mock__'
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , 'len' , __lowerCAmelCase ) is None
with patch_submodule(_test_patching , 'len' , __lowerCAmelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def A__( ):
_snake_case : Tuple = '__test_patch_submodule_start_and_stop_mock__'
_snake_case : Optional[int] = patch_submodule(_test_patching , 'open' , __lowerCAmelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def A__( ):
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_snake_case : Tuple = '__test_patch_submodule_successive_join__'
_snake_case : Tuple = '__test_patch_submodule_successive_dirname__'
_snake_case : List[Any] = '__test_patch_submodule_successive_rename__'
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , 'os.path.join' , __lowerCAmelCase ):
with patch_submodule(_test_patching , 'os.rename' , __lowerCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , __lowerCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , 'os.rename' , __lowerCAmelCase ):
with patch_submodule(_test_patching , 'os.path.join' , __lowerCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , __lowerCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def A__( ):
_snake_case : Optional[int] = '__test_patch_submodule_doesnt_exist_mock__'
with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , __lowerCAmelCase ):
pass
with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , __lowerCAmelCase ):
pass
| 304 |
'''simple docstring'''
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _lowerCamelCase ( lowercase : Any ) -> List[str]:
return getitem, k
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any:
return setitem, k, v
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
return delitem, k
def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int:
try:
return fun(lowercase , *lowercase ), None
except Exception as e:
return None, e
lowerCAmelCase_ : Optional[Any] = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
lowerCAmelCase_ : Optional[int] = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
lowerCAmelCase_ : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
lowerCAmelCase_ : List[Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
_a = HashMap(initial_block_size=4 )
_a = {}
for _, (fun, *args) in enumerate(lowercase ):
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
assert my_res == py_res
assert str(lowercase ) == str(lowercase )
assert set(lowercase ) == set(lowercase )
assert len(lowercase ) == len(lowercase )
assert set(my.items() ) == set(py.items() )
def _lowerCamelCase ( ) -> str:
def is_public(lowercase : str ) -> bool:
return not name.startswith("_" )
_a = {name for name in dir({} ) if is_public(lowercase )}
_a = {name for name in dir(HashMap() ) if is_public(lowercase )}
assert dict_public_names > hash_public_names
| 692 | 0 |
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float:
'''simple docstring'''
UpperCAmelCase__ : List[str] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCamelCase ( ) -> Tuple:
'''simple docstring'''
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 79 |
'''simple docstring'''
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =PhobertTokenizer
__a =False
def UpperCamelCase__ ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a = ["T@@", "i", "I", "R@@", "r", "e@@"]
_a = dict(zip(__a , range(len(__a ) ) ) )
_a = ["#version: 0.2", "l à</w>"]
_a = {"unk_token": "<unk>"}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(f'{token} {vocab_tokens[token]}\n' )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__a ) )
def UpperCamelCase__ ( self : str , **__a : List[str] ):
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
_a = "Tôi là VinAI Research"
_a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def UpperCamelCase__ ( self : Dict ):
_a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a = "Tôi là VinAI Research"
_a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
_a = tokenizer.tokenize(__a )
print(__a )
self.assertListEqual(__a , __a )
_a = tokens + [tokenizer.unk_token]
_a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
| 692 | 0 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=1_0_0_0 , __UpperCAmelCase=[3, 3, 6, 4] , __UpperCAmelCase=[4_8, 5_6, 1_1_2, 2_2_0] , ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = parent
lowerCAmelCase__ :Dict = batch_size
lowerCAmelCase__ :Optional[Any] = num_channels
lowerCAmelCase__ :Tuple = is_training
lowerCAmelCase__ :Tuple = use_labels
lowerCAmelCase__ :int = hidden_dropout_prob
lowerCAmelCase__ :Dict = attention_probs_dropout_prob
lowerCAmelCase__ :List[str] = num_labels
lowerCAmelCase__ :List[Any] = image_size
lowerCAmelCase__ :Any = layer_depths
lowerCAmelCase__ :List[str] = embed_dims
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ :Dict = None
if self.use_labels:
lowerCAmelCase__ :Any = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase__ :Dict = self.get_config()
return config, pixel_values, labels
def snake_case ( self ):
'''simple docstring'''
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__a , layer_scale_init_value=1E-5 , )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = SwiftFormerModel(config=__a )
model.to(__a )
model.eval()
lowerCAmelCase__ :Optional[int] = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :int = self.num_labels
lowerCAmelCase__ :Tuple = SwiftFormerForImageClassification(__a )
model.to(__a )
model.eval()
lowerCAmelCase__ :str = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
lowerCAmelCase__ :Optional[int] = SwiftFormerForImageClassification(__a )
model.to(__a )
model.eval()
lowerCAmelCase__ :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ :List[Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case ( self ):
'''simple docstring'''
((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) :Union[str, Any] = self.prepare_config_and_inputs()
lowerCAmelCase__ :List[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ :Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__magic_name__ :int = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__magic_name__ :Dict = False
__magic_name__ :List[str] = False
__magic_name__ :Optional[int] = False
__magic_name__ :Dict = False
__magic_name__ :List[Any] = False
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = SwiftFormerModelTester(self )
lowerCAmelCase__ :Any = ConfigTester(
self , config_class=__a , has_text_modality=__a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , )
def snake_case ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='SwiftFormer does not use inputs_embeds' )
def snake_case ( self ):
'''simple docstring'''
pass
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ :List[str] = model_class(__a )
lowerCAmelCase__ :Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ :int = model_class(__a )
lowerCAmelCase__ :int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ :Optional[Any] = [*signature.parameters.keys()]
lowerCAmelCase__ :str = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def snake_case ( self ):
'''simple docstring'''
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ :Any = SwiftFormerModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@unittest.skip(reason='SwiftFormer does not output attentions' )
def snake_case ( self ):
'''simple docstring'''
pass
def snake_case ( self ):
'''simple docstring'''
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ :List[Any] = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
lowerCAmelCase__ :List[Any] = model(**self._prepare_for_class(__a , __a ) )
lowerCAmelCase__ :Optional[int] = outputs.hidden_states
lowerCAmelCase__ :Any = 8
self.assertEqual(len(__a ) , __a ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(__a ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ :Any = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase__ :str = True
check_hidden_states_output(__a , __a , __a )
def snake_case ( self ):
'''simple docstring'''
def _config_zero_init(__UpperCAmelCase ):
lowerCAmelCase__ :Any = copy.deepcopy(__a )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(__a , __a , 1E-10 )
if isinstance(getattr(__a , __a , __a ) , __a ):
lowerCAmelCase__ :Optional[Any] = _config_zero_init(getattr(__a , __a ) )
setattr(__a , __a , __a )
return configs_no_init
lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ :Optional[int] = _config_zero_init(__a )
for model_class in self.all_model_classes:
lowerCAmelCase__ :List[str] = model_class(config=__a )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case ( self ):
'''simple docstring'''
pass
def __A () ->List[str]:
"""simple docstring"""
lowerCAmelCase__ :str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case ( self ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None
@slow
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__a )
lowerCAmelCase__ :Optional[Any] = self.default_image_processor
lowerCAmelCase__ :Tuple = prepare_img()
lowerCAmelCase__ :Tuple = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
lowerCAmelCase__ :Tuple = model(**__a )
# verify the logits
lowerCAmelCase__ :List[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __a )
lowerCAmelCase__ :List[Any] = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 93 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ):
super().__init__(*__a , **__a )
_a = eval_examples
_a = post_process_function
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ):
_a = self.eval_dataset if eval_dataset is None else eval_dataset
_a = self.get_eval_dataloader(__a )
_a = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_a = self.post_process_function(__a , __a , output.predictions )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
else:
_a = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ):
_a = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_a = self.post_process_function(__a , __a , output.predictions , "predict" )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 692 | 0 |
"""simple docstring"""
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def snake_case_ ( A_ : Optional[int], A_ : Tuple, A_ : int ):
'''simple docstring'''
_lowerCamelCase : List[str] = AlbertConfig.from_json_file(A_ )
print(F'''Building PyTorch model from configuration: {config}''' )
_lowerCamelCase : str = AlbertForPreTraining(A_ )
# Load weights from tf checkpoint
load_tf_weights_in_albert(A_, A_, A_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(), A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ):
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import math
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> int:
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = f"Input value of [number={number}] must be an integer"
raise TypeError(__SCREAMING_SNAKE_CASE )
if number < 1:
snake_case__ : Any = f"Input value of [number={number}] must be > 0"
raise ValueError(__SCREAMING_SNAKE_CASE )
elif number == 1:
return 3
elif number == 2:
return 5
else:
snake_case__ : Tuple = int(math.log(number // 3 , 2 ) ) + 2
snake_case__ : int = [3, 5]
snake_case__ : Any = 2
snake_case__ : Optional[int] = 3
for block in range(1 , __SCREAMING_SNAKE_CASE ):
for _ in range(__SCREAMING_SNAKE_CASE ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
A_ = 0
try:
A_ = proth(number)
except ValueError:
print(F'ValueError: there is no {number}th Proth number')
continue
print(F'The {number}th Proth number: {value}')
| 270 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ):
super().__init__()
_a = only_cross_attention
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'
f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_a = AdaLayerNorm(__a , __a )
elif self.use_ada_layer_norm_zero:
_a = AdaLayerNormZero(__a , __a )
else:
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = Attention(
query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_a = (
AdaLayerNorm(__a , __a )
if self.use_ada_layer_norm
else nn.LayerNorm(__a , elementwise_affine=__a )
)
_a = Attention(
query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none
else:
_a = None
_a = None
# 3. Feed-forward
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a )
# let chunk size default to None
_a = None
_a = 0
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ):
# Sets chunk feed-forward
_a = chunk_size
_a = dim
def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
_a = self.norma(__a , __a )
elif self.use_ada_layer_norm_zero:
_a , _a , _a , _a , _a = self.norma(
__a , __a , __a , hidden_dtype=hidden_states.dtype )
else:
_a = self.norma(__a )
_a = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_a = self.attna(
__a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , )
if self.use_ada_layer_norm_zero:
_a = gate_msa.unsqueeze(1 ) * attn_output
_a = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_a = (
self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a )
)
_a = self.attna(
__a , encoder_hidden_states=__a , attention_mask=__a , **__a , )
_a = attn_output + hidden_states
# 3. Feed-forward
_a = self.norma(__a )
if self.use_ada_layer_norm_zero:
_a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' )
_a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_a = torch.cat(
[self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_a = self.ff(__a )
if self.use_ada_layer_norm_zero:
_a = gate_mlp.unsqueeze(1 ) * ff_output
_a = ff_output + hidden_states
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ):
super().__init__()
_a = int(dim * mult )
_a = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_a = GELU(__a , __a )
if activation_fn == "gelu-approximate":
_a = GELU(__a , __a , approximate="tanh" )
elif activation_fn == "geglu":
_a = GEGLU(__a , __a )
elif activation_fn == "geglu-approximate":
_a = ApproximateGELU(__a , __a )
_a = nn.ModuleList([] )
# project in
self.net.append(__a )
# project dropout
self.net.append(nn.Dropout(__a ) )
# project out
self.net.append(nn.Linear(__a , __a ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__a ) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple ):
for module in self.net:
_a = module(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : int , __a : int , __a : str = "none" ):
super().__init__()
_a = nn.Linear(__a , __a )
_a = approximate
def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ):
if gate.device.type != "mps":
return F.gelu(__a , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : str , __a : Optional[int] ):
_a = self.proj(__a )
_a = self.gelu(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : str , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , dim_out * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ):
if gate.device.type != "mps":
return F.gelu(__a )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
_a , _a = self.proj(__a ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__a )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , __a )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ):
_a = self.proj(__a )
return x * torch.sigmoid(1.702 * x )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : str ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , embedding_dim * 2 )
_a = nn.LayerNorm(__a , elementwise_affine=__a )
def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ):
_a = self.linear(self.silu(self.emb(__a ) ) )
_a , _a = torch.chunk(__a , 2 )
_a = self.norm(__a ) * (1 + scale) + shift
return x
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : List[Any] , __a : Any ):
super().__init__()
_a = CombinedTimestepLabelEmbeddings(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , 6 * embedding_dim , bias=__a )
_a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ):
_a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) )
_a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 )
_a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ):
super().__init__()
_a = num_groups
_a = eps
if act_fn is None:
_a = None
else:
_a = get_activation(__a )
_a = nn.Linear(__a , out_dim * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ):
if self.act:
_a = self.act(__a )
_a = self.linear(__a )
_a = emb[:, :, None, None]
_a , _a = emb.chunk(2 , dim=1 )
_a = F.group_norm(__a , self.num_groups , eps=self.eps )
_a = x * (1 + scale) + shift
return x
| 692 | 0 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.17.0.dev0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
__lowerCamelCase = logging.getLogger(__name__)
@dataclass
class __A :
UpperCAmelCase__ = field(
default="tab_fact" ,metadata={"help": "The name of the dataset to use (via the datasets library)."} )
UpperCAmelCase__ = field(
default="tab_fact" ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ,)
UpperCAmelCase__ = field(
default=1_0_2_4 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "A csv or a json file containing the training data."} )
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "A csv or a json file containing the validation data."} )
UpperCAmelCase__ = field(default=lowerCamelCase_ ,metadata={"help": "A csv or a json file containing the test data."} )
def lowerCamelCase__ ( self : Any ) -> Dict:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__magic_name__: Optional[Any] = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__magic_name__: Optional[int] = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __A :
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,)
UpperCAmelCase__ = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
UpperCAmelCase__ = field(
default=lowerCamelCase_ ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
def a ( ) -> Any:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__magic_name__: Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__magic_name__, __magic_name__, __magic_name__: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__magic_name__, __magic_name__, __magic_name__: Union[str, Any] = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__magic_name__: Optional[Any] = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__magic_name__: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__magic_name__: Union[str, Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__magic_name__: Any = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__magic_name__: Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__magic_name__: List[str] = data_args.train_file.split(""".""" )[-1]
__magic_name__: Tuple = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__magic_name__: Optional[int] = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__magic_name__: List[str] = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__magic_name__: Optional[int] = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__magic_name__: Dict = raw_datasets["""train"""].features["""label"""].names
__magic_name__: str = len(__UpperCAmelCase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__magic_name__: Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__magic_name__: Union[str, Any] = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , )
__magic_name__: Dict = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__magic_name__: Dict = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__magic_name__: Union[str, Any] = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__magic_name__: List[str] = {"""Refused""": 0, """Entailed""": 1}
__magic_name__: List[Any] = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__magic_name__: Dict = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__UpperCAmelCase : List[str] ):
# Tokenize the texts
def _convert_table_text_to_pandas(__UpperCAmelCase : int ):
__magic_name__: int = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__magic_name__: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__magic_name__: int = examples["""statement"""]
__magic_name__: str = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__magic_name__: Dict = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase )
__magic_name__: Optional[int] = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__magic_name__: Optional[int] = raw_datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__magic_name__: List[str] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__magic_name__: Any = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__magic_name__: int = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__magic_name__: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__magic_name__: Any = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__magic_name__: Dict = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__UpperCAmelCase : EvalPrediction ):
__magic_name__: List[Any] = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions
__magic_name__: Optional[Any] = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__magic_name__: Optional[int] = default_data_collator
elif training_args.fpaa:
__magic_name__: Optional[int] = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 )
else:
__magic_name__: Any = None
# Initialize our Trainer
__magic_name__: Optional[Any] = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , )
# Training
if training_args.do_train:
__magic_name__: Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
__magic_name__: int = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__magic_name__: List[str] = last_checkpoint
__magic_name__: int = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
__magic_name__: List[Any] = train_result.metrics
__magic_name__: str = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__magic_name__: List[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __UpperCAmelCase )
trainer.save_metrics("""train""" , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__magic_name__: str = trainer.evaluate(eval_dataset=__UpperCAmelCase )
__magic_name__: List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__magic_name__: Union[str, Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics("""eval""" , __UpperCAmelCase )
trainer.save_metrics("""eval""" , __UpperCAmelCase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__magic_name__: Optional[Any] = predict_dataset.remove_columns("""label""" )
__magic_name__: Union[str, Any] = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions
__magic_name__: int = np.argmax(__UpperCAmelCase , axis=1 )
__magic_name__: Dict = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__UpperCAmelCase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__UpperCAmelCase ):
__magic_name__: int = label_list[item]
writer.write(f'{index}\t{item}\n' )
__magic_name__: Dict = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def a ( __UpperCAmelCase : Dict ) -> int:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 96 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =42
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : int ):
_a = [[] for _ in range(__a )]
_a = size
def __getitem__( self : int , __a : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase__ ( self : Dict ):
return self._size
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ):
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
UpperCamelCase_ : str = 42
UpperCamelCase_ : List[str] = 42
UpperCamelCase_ : Tuple = None
class UpperCAmelCase_ (lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
UpperCamelCase_ : List[str] = 2
@register_to_config
def __init__( self : Union[str, Any] , a_ : float = 0.02 , a_ : float = 1_00 , a_ : float = 1.007 , a_ : float = 80 , a_ : float = 0.05 , a_ : float = 50 , )-> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = sigma_max
# setable values
UpperCAmelCase_ : str = None
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Optional[Any] = None # sigma(t_i)
def a ( self : Any , a_ : torch.FloatTensor , a_ : Optional[int] = None )-> Any:
"""simple docstring"""
return sample
def a ( self : List[Any] , a_ : int , a_ : Union[str, torch.device] = None )-> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Any = num_inference_steps
UpperCAmelCase_ : Any = np.arange(0 , self.num_inference_steps )[::-1].copy()
UpperCAmelCase_ : List[str] = torch.from_numpy(__a ).to(__a )
UpperCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
UpperCAmelCase_ : str = torch.tensor(__a , dtype=torch.floataa , device=__a )
def a ( self : Dict , a_ : torch.FloatTensor , a_ : float , a_ : Optional[torch.Generator] = None )-> int:
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
UpperCAmelCase_ : Optional[int] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
UpperCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
UpperCAmelCase_ : str = self.config.s_noise * randn_tensor(sample.shape , generator=__a ).to(sample.device )
UpperCAmelCase_ : Dict = sigma + gamma * sigma
UpperCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def a ( self : int , a_ : torch.FloatTensor , a_ : float , a_ : float , a_ : torch.FloatTensor , a_ : bool = True , )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = sample_hat + sigma_hat * model_output
UpperCAmelCase_ : str = (sample_hat - pred_original_sample) / sigma_hat
UpperCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__a , derivative=__a , pred_original_sample=__a )
def a ( self : Dict , a_ : torch.FloatTensor , a_ : float , a_ : float , a_ : torch.FloatTensor , a_ : torch.FloatTensor , a_ : torch.FloatTensor , a_ : bool = True , )-> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = sample_prev + sigma_prev * model_output
UpperCAmelCase_ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev
UpperCAmelCase_ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__a , derivative=__a , pred_original_sample=__a )
def a ( self : Optional[Any] , a_ : Dict , a_ : Optional[Any] , a_ : Tuple )-> Union[str, Any]:
"""simple docstring"""
raise NotImplementedError()
| 470 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =FlaxAutoencoderKL
@property
def UpperCamelCase__ ( self : str ):
_a = 4
_a = 3
_a = (32, 32)
_a = jax.random.PRNGKey(0 )
_a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def UpperCamelCase__ ( self : List[Any] ):
_a = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_a = self.dummy_input
return init_dict, inputs_dict
| 692 | 0 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
A : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
A : Dict = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(10_000):
out_file.write(data)
A : Dict = BeautifulSoup(res.text, '''html.parser''')
A : Optional[int] = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(F'https://google.com{link.get("href")}') | 287 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase_ : List[Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase_ : Optional[int] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase_ : Any = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Tuple = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]:
for tf_name, hf_name in patterns:
_a = k.replace(lowercase , lowercase )
return k
def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration:
_a = BigBirdPegasusConfig(**lowercase )
_a = BigBirdPegasusForConditionalGeneration(lowercase )
_a = torch_model.state_dict()
_a = {}
# separating decoder weights
_a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = DECODER_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = REMAINING_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
_a = mapping["model.embed_positions.weight"]
_a = mapping.pop("model.embed_positions.weight" )
_a , _a = torch_model.load_state_dict(lowercase , strict=lowercase )
_a = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
_a = tf.train.list_variables(lowercase )
_a = {}
_a = ["global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
_a = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a = tf.train.load_variable(lowercase , lowercase )
_a = array
return tf_weights
def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]:
_a = get_tf_weights_as_numpy(lowercase )
_a = convert_bigbird_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 692 | 0 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowercase__ : List[str] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
lowercase__ : int = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
lowercase__ : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
_lowerCAmelCase : Union[str, Any] = field(
default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""})
_lowerCAmelCase : int = field(
default=lowerCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""})
_lowerCAmelCase : Dict = field(
default=lowerCamelCase_ , metadata={"""help""": """The column name of the images in the files. If not set, will try to use \'image\' or \'img\'."""} , )
_lowerCAmelCase : Dict = field(default=lowerCamelCase_ , metadata={"""help""": """A folder containing the training data."""})
_lowerCAmelCase : int = field(default=lowerCamelCase_ , metadata={"""help""": """A folder containing the validation data."""})
_lowerCAmelCase : Any = field(
default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""})
_lowerCAmelCase : Optional[int] = field(default=3_2 , metadata={"""help""": """The size of the square patches to use for masking."""})
_lowerCAmelCase : Optional[Any] = field(
default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , )
_lowerCAmelCase : List[str] = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
_lowerCAmelCase : Optional[int] = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def _snake_case ( self : Union[str, Any] ):
snake_case_ : Any = {}
if self.train_dir is not None:
snake_case_ : List[str] = self.train_dir
if self.validation_dir is not None:
snake_case_ : str = self.validation_dir
snake_case_ : Optional[int] = data_files if data_files else None
@dataclass
class _UpperCAmelCase :
_lowerCAmelCase : int = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """
"""checkpoint identifier on the hub. """
"""Don\'t set if you want to train a model from scratch."""
)
} , )
_lowerCAmelCase : List[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCamelCase_)} , )
_lowerCAmelCase : Dict = field(
default=lowerCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
_lowerCAmelCase : Dict = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
_lowerCAmelCase : Union[str, Any] = field(
default=lowerCamelCase_ , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , )
_lowerCAmelCase : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
_lowerCAmelCase : List[Any] = field(default=lowerCamelCase_ , metadata={"""help""": """Name or path of preprocessor config."""})
_lowerCAmelCase : str = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
_lowerCAmelCase : Optional[int] = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""The size (resolution) of each image. If not specified, will use `image_size` of the configuration."""
)
} , )
_lowerCAmelCase : Dict = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."""
)
} , )
_lowerCAmelCase : Optional[int] = field(
default=lowerCamelCase_ , metadata={"""help""": """Stride to use for the encoder."""} , )
class _UpperCAmelCase :
def __init__( self : List[str] , lowercase_ : Dict=192 , lowercase_ : int=32 , lowercase_ : Any=4 , lowercase_ : Any=0.6 ):
snake_case_ : int = input_size
snake_case_ : Tuple = mask_patch_size
snake_case_ : Optional[int] = model_patch_size
snake_case_ : Optional[Any] = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError('''Input size must be divisible by mask patch size''' )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError('''Mask patch size must be divisible by model patch size''' )
snake_case_ : List[Any] = self.input_size // self.mask_patch_size
snake_case_ : List[Any] = self.mask_patch_size // self.model_patch_size
snake_case_ : Dict = self.rand_size**2
snake_case_ : str = int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self : List[Any] ):
snake_case_ : int = np.random.permutation(self.token_count )[: self.mask_count]
snake_case_ : Optional[int] = np.zeros(self.token_count , dtype=__a )
snake_case_ : str = 1
snake_case_ : List[Any] = mask.reshape((self.rand_size, self.rand_size) )
snake_case_ : Optional[int] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def __lowercase ( _a ):
snake_case_ : Union[str, Any] = torch.stack([example['''pixel_values'''] for example in examples] )
snake_case_ : Optional[int] = torch.stack([example['''mask'''] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def __lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_, snake_case_, snake_case_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_, snake_case_, snake_case_ : Any = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_mim''' , _a , _a )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
snake_case_ : Dict = training_args.get_process_log_level()
logger.setLevel(_a )
transformers.utils.logging.set_verbosity(_a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
snake_case_ : List[str] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
snake_case_ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset.
snake_case_ : Optional[int] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
snake_case_ : Optional[int] = None if '''validation''' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0:
snake_case_ : Optional[Any] = ds['''train'''].train_test_split(data_args.train_val_split )
snake_case_ : Any = split['''train''']
snake_case_ : Any = split['''test''']
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : List[Any] = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
snake_case_ : int = AutoConfig.from_pretrained(model_args.config_name_or_path , **_a )
elif model_args.model_name_or_path:
snake_case_ : Optional[int] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_a )
else:
snake_case_ : Any = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(f"New config: {config}" )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(_a , '''decoder_type''' ):
snake_case_ : Tuple = '''simmim'''
# adapt config
snake_case_ : Tuple = model_args.image_size if model_args.image_size is not None else config.image_size
snake_case_ : Tuple = model_args.patch_size if model_args.patch_size is not None else config.patch_size
snake_case_ : Tuple = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
'''image_size''': model_args.image_size,
'''patch_size''': model_args.patch_size,
'''encoder_stride''': model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_a )
elif model_args.model_name_or_path:
snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_a )
else:
snake_case_ : Dict = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
snake_case_ : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
snake_case_ : Union[str, Any] = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
snake_case_ : Optional[Any] = AutoModelForMaskedImageModeling.from_config(_a )
if training_args.do_train:
snake_case_ : Optional[int] = ds['''train'''].column_names
else:
snake_case_ : Any = ds['''validation'''].column_names
if data_args.image_column_name is not None:
snake_case_ : Optional[Any] = data_args.image_column_name
elif "image" in column_names:
snake_case_ : str = '''image'''
elif "img" in column_names:
snake_case_ : Optional[Any] = '''img'''
else:
snake_case_ : str = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
snake_case_ : Optional[int] = Compose(
[
Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
snake_case_ : Tuple = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(_a ):
snake_case_ : int = [transforms(_a ) for image in examples[image_column_name]]
snake_case_ : List[Any] = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
snake_case_ : Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_a )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
snake_case_ : Union[str, Any] = (
ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_a )
# Initialize our trainer
snake_case_ : List[str] = Trainer(
model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , )
# Training
if training_args.do_train:
snake_case_ : int = None
if training_args.resume_from_checkpoint is not None:
snake_case_ : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
snake_case_ : List[str] = last_checkpoint
snake_case_ : Optional[int] = trainer.train(resume_from_checkpoint=_a )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
snake_case_ : Union[str, Any] = trainer.evaluate()
trainer.log_metrics('''eval''' , _a )
trainer.save_metrics('''eval''' , _a )
# Write model card and (optionally) push to hub
snake_case_ : int = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''masked-image-modeling''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''masked-image-modeling'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_a )
else:
trainer.create_model_card(**_a )
if __name__ == "__main__":
main()
| 123 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 692 | 0 |
A = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowerCamelCase ( UpperCamelCase : str ) -> int:
_lowerCamelCase = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
_lowerCamelCase = Stack()
_lowerCamelCase = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(UpperCamelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(UpperCamelCase )
elif i == ")":
# RULE 4
_lowerCamelCase = operator_stack.peek()
operator_stack.pop()
_lowerCamelCase = operand_stack.peek()
operand_stack.pop()
_lowerCamelCase = operand_stack.peek()
operand_stack.pop()
_lowerCamelCase = operators[opr](UpperCamelCase , UpperCamelCase )
operand_stack.push(UpperCamelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''') | 544 |
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 692 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A : str = logging.get_logger(__name__)
A : List[str] = {
'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json',
}
class UpperCamelCase( lowerCamelCase_ , lowerCamelCase_ ):
snake_case_ : Tuple = """focalnet"""
def __init__( self : str , SCREAMING_SNAKE_CASE : str=2_2_4 , SCREAMING_SNAKE_CASE : Optional[Any]=4 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Dict=9_6 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Dict=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , SCREAMING_SNAKE_CASE : List[str]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE : Optional[Any]=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE : Optional[int]=[3, 3, 3, 3] , SCREAMING_SNAKE_CASE : str="gelu" , SCREAMING_SNAKE_CASE : Tuple=4.0 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Dict=1e-4 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : int=1e-5 , SCREAMING_SNAKE_CASE : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Tuple=None , **SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**__a )
__snake_case = image_size
__snake_case = patch_size
__snake_case = num_channels
__snake_case = embed_dim
__snake_case = use_conv_embed
__snake_case = hidden_sizes
__snake_case = depths
__snake_case = focal_levels
__snake_case = focal_windows
__snake_case = hidden_act
__snake_case = mlp_ratio
__snake_case = hidden_dropout_prob
__snake_case = drop_path_rate
__snake_case = use_layerscale
__snake_case = layerscale_value
__snake_case = use_post_layernorm
__snake_case = use_post_layernorm_in_modulation
__snake_case = normalize_modulator
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = encoder_stride
__snake_case = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
__snake_case , __snake_case = get_aligned_output_features_output_indices(
out_features=__a , out_indices=__a , stage_names=self.stage_names )
| 371 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 692 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=2 , lowerCamelCase_ : str=8 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[str]=99 , lowerCamelCase_ : List[str]=16 , lowerCamelCase_ : Tuple=5 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=36 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : int=5_12 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : str=2 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=None , ):
'''simple docstring'''
_snake_case : List[Any] = parent
_snake_case : List[Any] = batch_size
_snake_case : Dict = seq_length
_snake_case : List[Any] = is_training
_snake_case : Tuple = use_input_mask
_snake_case : Any = use_token_type_ids
_snake_case : int = use_labels
_snake_case : Any = vocab_size
_snake_case : Union[str, Any] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Any = num_attention_heads
_snake_case : List[str] = intermediate_size
_snake_case : Optional[Any] = hidden_act
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : Tuple = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Dict = type_sequence_label_size
_snake_case : Tuple = initializer_range
_snake_case : Tuple = num_labels
_snake_case : Optional[int] = num_choices
_snake_case : Optional[int] = scope
def __UpperCAmelCase ( self : str ):
'''simple docstring'''
_snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : int = None
if self.use_input_mask:
_snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
_snake_case : List[Any] = None
if self.use_token_type_ids:
_snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_snake_case : Union[str, Any] = None
_snake_case : Union[str, Any] = None
_snake_case : List[str] = None
if self.use_labels:
_snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_snake_case : Any = ids_tensor([self.batch_size] , self.num_choices )
_snake_case : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self : str ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self : Any ):
'''simple docstring'''
_snake_case : Tuple = self.get_config()
_snake_case : Optional[int] = 3_00
return config
def __UpperCAmelCase ( self : List[str] ):
'''simple docstring'''
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : Any = self.prepare_config_and_inputs()
_snake_case : List[str] = True
_snake_case : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
_snake_case : int = MraModel(config=__a )
model.to(__a )
model.eval()
_snake_case : Optional[Any] = model(__a , attention_mask=__a , token_type_ids=__a )
_snake_case : List[Any] = model(__a , token_type_ids=__a )
_snake_case : str = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , ):
'''simple docstring'''
_snake_case : Any = True
_snake_case : Any = MraModel(__a )
model.to(__a )
model.eval()
_snake_case : Optional[Any] = model(
__a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )
_snake_case : str = model(
__a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , )
_snake_case : List[str] = model(__a , attention_mask=__a , token_type_ids=__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
_snake_case : Any = MraForMaskedLM(config=__a )
model.to(__a )
model.eval()
_snake_case : Any = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = MraForQuestionAnswering(config=__a )
model.to(__a )
model.eval()
_snake_case : int = model(
__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
_snake_case : List[str] = self.num_labels
_snake_case : Dict = MraForSequenceClassification(__a )
model.to(__a )
model.eval()
_snake_case : Optional[int] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
_snake_case : int = self.num_labels
_snake_case : int = MraForTokenClassification(config=__a )
model.to(__a )
model.eval()
_snake_case : str = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ):
'''simple docstring'''
_snake_case : Optional[Any] = self.num_choices
_snake_case : Dict = MraForMultipleChoice(config=__a )
model.to(__a )
model.eval()
_snake_case : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case : str = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self : List[str] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : Optional[int] = config_and_inputs
_snake_case : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
_UpperCamelCase : int = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_UpperCamelCase : Union[str, Any] = False
_UpperCamelCase : Tuple = False
_UpperCamelCase : List[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Any = ()
def __UpperCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = MraModelTester(self )
_snake_case : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 )
def __UpperCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Tuple ):
'''simple docstring'''
_snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def __UpperCAmelCase ( self : Any ):
'''simple docstring'''
_snake_case : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_snake_case : Tuple = type
self.model_tester.create_and_check_model(*__a )
def __UpperCAmelCase ( self : List[str] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def __UpperCAmelCase ( self : Tuple ):
'''simple docstring'''
_snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def __UpperCAmelCase ( self : Optional[int] ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def __UpperCAmelCase ( self : Dict ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def __UpperCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def __UpperCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = MraModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@unittest.skip(reason='MRA does not output attentions' )
def __UpperCAmelCase ( self : Any ):
'''simple docstring'''
return
@require_torch
class lowercase ( unittest.TestCase ):
"""simple docstring"""
@slow
def __UpperCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case : Any = MraModel.from_pretrained('uw-madison/mra-base-512-4' )
_snake_case : int = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
_snake_case : Optional[int] = model(__a )[0]
_snake_case : int = torch.Size((1, 2_56, 7_68) )
self.assertEqual(output.shape , __a )
_snake_case : Union[str, Any] = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self : List[Any] ):
'''simple docstring'''
_snake_case : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' )
_snake_case : str = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
_snake_case : int = model(__a )[0]
_snake_case : int = 5_02_65
_snake_case : Union[str, Any] = torch.Size((1, 2_56, vocab_size) )
self.assertEqual(output.shape , __a )
_snake_case : Optional[int] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self : Any ):
'''simple docstring'''
_snake_case : str = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' )
_snake_case : Union[str, Any] = torch.arange(40_96 ).unsqueeze(0 )
with torch.no_grad():
_snake_case : Dict = model(__a )[0]
_snake_case : str = 5_02_65
_snake_case : Optional[int] = torch.Size((1, 40_96, vocab_size) )
self.assertEqual(output.shape , __a )
_snake_case : List[str] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
| 304 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]:
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
_a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"Number of resulting singleton clusters in the key "
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"files, respectively" )
return doc_coref_infos
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str:
_a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
_a = (conll / 3) * 100
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"conll_score": conll} )
return output_scores
def _lowerCamelCase ( lowercase : Any ) -> str:
_a = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ):
_a = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__a )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , )
return score
| 692 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( lowerCamelCase_ ):
__lowerCamelCase = (DDIMParallelScheduler,)
__lowerCamelCase = (('eta', 0.0), ('num_inference_steps', 50))
def __UpperCAmelCase ( self , **_lowerCAmelCase ):
UpperCAmelCase__ : Optional[Any] = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**__a )
return config
def __UpperCAmelCase ( self , **_lowerCAmelCase ):
UpperCAmelCase__ : int = self.scheduler_classes[0]
UpperCAmelCase__ : int = self.get_scheduler_config(**__a )
UpperCAmelCase__ : int = scheduler_class(**__a )
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = 10, 0.0
UpperCAmelCase__ : Union[str, Any] = self.dummy_model()
UpperCAmelCase__ : str = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for t in scheduler.timesteps:
UpperCAmelCase__ : str = model(__a , __a )
UpperCAmelCase__ : str = scheduler.step(__a , __a , __a , __a ).prev_sample
return sample
def __UpperCAmelCase ( self ):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=__a )
def __UpperCAmelCase ( self ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__a )
UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0]
UpperCAmelCase__ : List[str] = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ : Any = scheduler_class(**__a )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __UpperCAmelCase ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def __UpperCAmelCase ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__a )
def __UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def __UpperCAmelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__a )
def __UpperCAmelCase ( self ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__a )
def __UpperCAmelCase ( self ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__a )
def __UpperCAmelCase ( self ):
self.check_over_configs(thresholding=__a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , )
def __UpperCAmelCase ( self ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__a )
def __UpperCAmelCase ( self ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=__a , num_inference_steps=__a )
def __UpperCAmelCase ( self ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__a , eta=__a )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = self.scheduler_classes[0]
UpperCAmelCase__ : str = self.get_scheduler_config()
UpperCAmelCase__ : int = scheduler_class(**__a )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1e-5
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Tuple = self.scheduler_classes[0]
UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config()
UpperCAmelCase__ : int = scheduler_class(**__a )
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = 10, 0.0
scheduler.set_timesteps(__a )
UpperCAmelCase__ : int = self.dummy_model()
UpperCAmelCase__ : List[str] = self.dummy_sample_deter
UpperCAmelCase__ : Union[str, Any] = self.dummy_sample_deter + 0.1
UpperCAmelCase__ : Dict = self.dummy_sample_deter - 0.1
UpperCAmelCase__ : Optional[int] = samplea.shape[0]
UpperCAmelCase__ : Any = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase__ : str = torch.arange(__a )[0:3, None].repeat(1 , __a )
UpperCAmelCase__ : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase__ : Optional[int] = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a )
UpperCAmelCase__ : List[str] = torch.sum(torch.abs(__a ) )
UpperCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2
assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Optional[int] = self.full_loop()
UpperCAmelCase__ : List[Any] = torch.sum(torch.abs(__a ) )
UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2
assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : List[str] = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(__a ) )
UpperCAmelCase__ : Tuple = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2
assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3
def __UpperCAmelCase ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase__ : List[Any] = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 )
UpperCAmelCase__ : List[str] = torch.sum(torch.abs(__a ) )
UpperCAmelCase__ : Tuple = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2
assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3
def __UpperCAmelCase ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase__ : List[Any] = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 )
UpperCAmelCase__ : Tuple = torch.sum(torch.abs(__a ) )
UpperCAmelCase__ : Dict = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2
assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
| 79 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase ( lowercase : float = 0.1 ) -> int:
_a = 3
_a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowercase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
class _lowerCAmelCase ( lowerCamelCase_ ):
"""simple docstring"""
__magic_name__ :Optional[int] = ["""pixel_values"""]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__a )
lowerCAmelCase__ :str = size if size is not None else {'height': 2_5_6, 'width': 2_5_6}
lowerCAmelCase__ :str = get_size_dict(__a )
lowerCAmelCase__ :List[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4}
lowerCAmelCase__ :Any = get_size_dict(__a , param_name='crop_size' )
lowerCAmelCase__ :int = do_resize
lowerCAmelCase__ :Dict = size
lowerCAmelCase__ :Dict = resample
lowerCAmelCase__ :Tuple = do_center_crop
lowerCAmelCase__ :Optional[int] = crop_size
lowerCAmelCase__ :str = do_rescale
lowerCAmelCase__ :Dict = rescale_factor
lowerCAmelCase__ :List[str] = do_normalize
lowerCAmelCase__ :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase__ :List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :str = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}" )
return resize(
__a , size=(size['height'], size['width']) , resample=__a , data_format=__a , **__a )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :str = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}" )
return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
return rescale(__a , scale=__a , data_format=__a , **__a )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase__ :Any = resample if resample is not None else self.resample
lowerCAmelCase__ :Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase__ :List[str] = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase__ :Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase__ :str = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase__ :Dict = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase__ :Tuple = image_std if image_std is not None else self.image_std
lowerCAmelCase__ :Any = size if size is not None else self.size
lowerCAmelCase__ :Optional[int] = get_size_dict(__a )
lowerCAmelCase__ :Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase__ :Union[str, Any] = get_size_dict(__a , param_name='crop_size' )
lowerCAmelCase__ :Dict = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase__ :Dict = [to_numpy_array(__a ) for image in images]
if do_resize:
lowerCAmelCase__ :Dict = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_center_crop:
lowerCAmelCase__ :Tuple = [self.center_crop(image=__a , size=__a ) for image in images]
if do_rescale:
lowerCAmelCase__ :Optional[int] = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
lowerCAmelCase__ :int = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
lowerCAmelCase__ :Dict = [to_channel_dimension_format(__a , __a ) for image in images]
lowerCAmelCase__ :List[str] = {'pixel_values': images}
return BatchFeature(data=__a , tensor_type=__a )
| 93 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(CMStochasticIterativeScheduler,)
__a =10
def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ):
_a = {
"num_train_timesteps": 2_01,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[Any] ):
_a = 10
_a = self.get_scheduler_config()
_a = self.scheduler_classes[0](**__a )
scheduler.set_timesteps(__a )
_a = scheduler.timesteps[0]
_a = scheduler.timesteps[1]
_a = self.dummy_sample
_a = 0.1 * sample
_a = scheduler.step(__a , __a , __a ).prev_sample
_a = scheduler.step(__a , __a , __a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self : Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : int ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = 1
scheduler.set_timesteps(__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(__a ):
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [1_06, 0]
scheduler.set_timesteps(timesteps=__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def UpperCamelCase__ ( self : List[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 15, 0]
with self.assertRaises(__a , msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 1, 0]
_a = len(__a )
with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=__a )
| 692 | 0 |
"""simple docstring"""
class __snake_case :
def __init__( self : Tuple , __lowerCAmelCase : list[int] ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = len(__a )
_lowerCamelCase : str = [0] * len_array
if len_array > 0:
_lowerCamelCase : Dict = array[0]
for i in range(1 , __a ):
_lowerCamelCase : Any = self.prefix_sum[i - 1] + array[i]
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : int ):
"""simple docstring"""
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int ):
"""simple docstring"""
_lowerCamelCase : List[Any] = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__a )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ):
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if inductance < 0:
raise ValueError('Inductance cannot be negative' )
if frequency < 0:
raise ValueError('Frequency cannot be negative' )
if reactance < 0:
raise ValueError('Inductive reactance cannot be negative' )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 270 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='timesformer'
def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ):
super().__init__(**__a )
_a = image_size
_a = patch_size
_a = num_channels
_a = num_frames
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = qkv_bias
_a = attention_type
_a = drop_path_rate
| 692 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__lowerCamelCase = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 96 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self : Dict ):
_a = 1
_a = 3
_a = (32, 32)
_a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ ( self : Dict ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__a )
@property
def UpperCamelCase__ ( self : str ):
def extract(*__a : Tuple , **__a : str ):
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict ):
_a = torch.ones([0] )
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
self.pixel_values.to(__a )
return self
return Out()
return extract
def UpperCamelCase__ ( self : Optional[int] ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
_a = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , )
_a = output.images
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
# put models in fp16
_a = unet.half()
_a = vae.half()
_a = bert.half()
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
_a = init_image.resize((7_60, 5_04) )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
_a = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_a = init_image.resize((7_68, 5_12) )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 692 | 0 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
lowercase_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
lowercase_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
lowercase_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def a ( self : Dict )-> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def a ( self : Any )-> int:
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def a ( self : List[str] , a_ : Optional[int] , a_ : Optional[int] , a_ : List[str]=None , a_ : Optional[int]="uniform_average" , a_ : List[Any]=True )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : int = mean_squared_error(
__a , __a , sample_weight=__a , multioutput=__a , squared=__a )
return {"mse": mse}
| 470 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ):
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
A : Dict = 4
A : List[Any] = 3
class a_ ( lowerCamelCase_ ):
pass
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]:
for shard in shards:
for i in range(SCREAMING_SNAKE_CASE_ ):
yield {"i": i, "shard": shard}
def UpperCamelCase__ ( ) -> List[str]:
_lowercase = int(os.environ["""RANK"""] )
_lowercase = int(os.environ["""WORLD_SIZE"""] )
_lowercase = ArgumentParser()
parser.add_argument("""--streaming""" , type=SCREAMING_SNAKE_CASE_ )
parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE_ )
parser.add_argument("""--num_workers""" , type=SCREAMING_SNAKE_CASE_ , default=0 )
_lowercase = parser.parse_args()
_lowercase = args.streaming
_lowercase = args.num_workers
_lowercase = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(SCREAMING_SNAKE_CASE_ )]}
_lowercase = IterableDataset.from_generator(SCREAMING_SNAKE_CASE_ , gen_kwargs=SCREAMING_SNAKE_CASE_ )
if not streaming:
_lowercase = Dataset.from_list(list(SCREAMING_SNAKE_CASE_ ) )
_lowercase = split_dataset_by_node(SCREAMING_SNAKE_CASE_ , rank=SCREAMING_SNAKE_CASE_ , world_size=SCREAMING_SNAKE_CASE_ )
_lowercase = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ )
_lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
_lowercase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
_lowercase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main() | 287 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Tuple:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : str = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 692 | 0 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
lowercase__ : Dict = logging.get_logger(__name__)
lowercase__ : int = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
lowercase__ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __lowercase ( _a , _a , _a , _a , _a ):
for attribute in key.split('''.''' ):
snake_case_ : Optional[Any] = getattr(_a , _a )
if weight_type is not None:
snake_case_ : Optional[int] = getattr(_a , _a ).shape
else:
snake_case_ : Union[str, Any] = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
snake_case_ : List[Any] = value
elif weight_type == "weight_g":
snake_case_ : Union[str, Any] = value
elif weight_type == "weight_v":
snake_case_ : Any = value
elif weight_type == "bias":
snake_case_ : List[str] = value
else:
snake_case_ : int = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def __lowercase ( _a , _a ):
snake_case_ : Any = []
snake_case_ : Any = fairseq_model.state_dict()
snake_case_ : List[str] = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
snake_case_ : Optional[Any] = None
for name, value in fairseq_dict.items():
snake_case_ : Dict = False
if "conv_layers" in name:
load_conv_layer(
_a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , )
snake_case_ : Optional[Any] = True
elif name.split('''.''' )[0] == "proj":
snake_case_ : Optional[int] = fairseq_model.proj
snake_case_ : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
snake_case_ : str = True
if "*" in mapped_key:
snake_case_ : str = name.split(_a )[0].split('''.''' )[-2]
snake_case_ : Any = mapped_key.replace('''*''' , _a )
if "weight_g" in name:
snake_case_ : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
snake_case_ : List[Any] = '''weight_v'''
elif "bias" in name:
snake_case_ : Optional[int] = '''bias'''
elif "weight" in name:
snake_case_ : Any = '''weight'''
else:
snake_case_ : str = None
set_recursively(_a , _a , _a , _a , _a )
continue
if not is_used:
unused_weights.append(_a )
logger.warning(f"Unused weights: {unused_weights}" )
return proj_weight
def __lowercase ( _a , _a , _a , _a , _a ):
snake_case_ : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
snake_case_ : Optional[Any] = name.split('''.''' )
snake_case_ : Any = int(items[0] )
snake_case_ : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
snake_case_ : Union[str, Any] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
snake_case_ : Dict = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
snake_case_ : Any = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
snake_case_ : Optional[int] = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(_a )
def __lowercase ( _a ):
snake_case_, snake_case_ : Optional[Any] = emb.weight.shape
snake_case_ : str = nn.Linear(_a , _a , bias=_a )
snake_case_ : List[Any] = emb.weight.data
return lin_layer
def __lowercase ( _a ):
with open(_a , '''r''' , encoding='''utf-8''' ) as f:
snake_case_ : Optional[Any] = f.readlines()
snake_case_ : List[Any] = [line.split(''' ''' )[0] for line in lines]
snake_case_ : Any = len(_a )
snake_case_ : str = {
'''<s>''': 0,
'''<pad>''': 1,
'''</s>''': 2,
'''<unk>''': 3,
}
vocab_dict.update(dict(zip(_a , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __lowercase ( _a , _a , _a , _a , _a , _a , _a , ):
snake_case_ : Union[str, Any] = WavaVecaConfig.from_pretrained(_a )
snake_case_ : Any = SpeechaTextaConfig.from_pretrained(
_a , vocab_size=_a , decoder_layers=_a , do_stable_layer_norm=_a )
snake_case_ : Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_a , return_attention_mask=_a , )
snake_case_, snake_case_, snake_case_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
snake_case_ : Any = model[0].eval()
# set weights for wav2vec2 encoder
snake_case_ : Tuple = WavaVecaModel(_a )
snake_case_ : Optional[int] = recursively_load_weights_wavaveca(model.encoder , _a )
snake_case_ : List[str] = SpeechaTextaForCausalLM(_a )
snake_case_, snake_case_ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_a )
# set output linear layer
unexpected_keys.remove('''embed_out''' )
snake_case_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" )
logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" )
snake_case_ : Dict = SpeechEncoderDecoderModel(encoder=_a , decoder=_a )
snake_case_ : List[Any] = False
# add projection layer
snake_case_ : List[Any] = nn.Parameter(projection_layer.weight )
snake_case_ : Optional[Any] = nn.Parameter(projection_layer.bias )
snake_case_ : Any = create_vocab_dict(_a )
with open(os.path.join(_a , '''vocab.json''' ) , '''w''' ) as fp:
json.dump(_a , _a )
snake_case_ : Optional[Any] = SpeechaTextaTokenizer(os.path.join(_a , '''vocab.json''' ) )
tokenizer.save_pretrained(_a )
snake_case_ : Any = hf_wavavec.config.to_dict()
snake_case_ : Optional[int] = tokenizer.pad_token_id
snake_case_ : Tuple = tokenizer.bos_token_id
snake_case_ : Tuple = tokenizer.eos_token_id
snake_case_ : Union[str, Any] = '''speech_to_text_2'''
snake_case_ : List[Any] = '''wav2vec2'''
snake_case_ : Optional[int] = SpeechEncoderDecoderConfig.from_dict(_a )
hf_wavavec.save_pretrained(_a )
feature_extractor.save_pretrained(_a )
if __name__ == "__main__":
lowercase__ : List[Any] = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument(
'''--encoder_config_path''',
default='''facebook/wav2vec2-large-lv60''',
type=str,
help='''Path to hf encoder wav2vec2 checkpoint config''',
)
parser.add_argument(
'''--decoder_config_path''',
default='''facebook/s2t-small-mustc-en-fr-st''',
type=str,
help='''Path to hf decoder s2t checkpoint config''',
)
parser.add_argument('''--vocab_size''', default=1_02_24, type=int, help='''Vocab size of decoder''')
parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''')
lowercase__ : List[Any] = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 123 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ : Any = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 692 | 0 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
A = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str ) -> Union[str, Any]:
if "xprophetnet" in prophetnet_checkpoint_path:
_lowerCamelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase )
_lowerCamelCase , _lowerCamelCase = XLMProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase , output_loading_info=UpperCamelCase )
else:
_lowerCamelCase = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase )
_lowerCamelCase , _lowerCamelCase = ProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase , output_loading_info=UpperCamelCase )
_lowerCamelCase = ['key_proj', 'value_proj', 'query_proj']
_lowerCamelCase = {
'self_attn': 'ngram_self_attn',
'cross_attn': 'encoder_attn',
'cross_attn_layer_norm': 'encoder_attn_layer_norm',
'feed_forward_layer_norm': 'final_layer_norm',
'feed_forward': '',
'intermediate': 'fc1',
'output': 'fc2',
'key_proj': 'k_proj',
'query_proj': 'q_proj',
'value_proj': 'v_proj',
'word_embeddings': 'embed_tokens',
'embeddings_layer_norm': 'emb_layer_norm',
'relative_pos_embeddings': 'relative_linear',
'ngram_embeddings': 'ngram_input_embed',
'position_embeddings': 'embed_positions',
}
for key in loading_info["missing_keys"]:
_lowerCamelCase = key.split('.' )
if attributes[0] == "lm_head":
_lowerCamelCase = prophet
_lowerCamelCase = prophet_old
else:
_lowerCamelCase = prophet.prophetnet
_lowerCamelCase = prophet_old.model
_lowerCamelCase = False
for attribute in attributes:
if attribute in mapping:
_lowerCamelCase = mapping[attribute]
if not hasattr(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0:
_lowerCamelCase = attribute
elif hasattr(UpperCamelCase , UpperCamelCase ):
_lowerCamelCase = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
_lowerCamelCase = old_model.weight
logger.info(F"""{attribute} is initialized.""" )
_lowerCamelCase = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
_lowerCamelCase = old_model.bias
logger.info(F"""{attribute} is initialized""" )
_lowerCamelCase = True
break
elif attribute in special_keys and hasattr(UpperCamelCase , 'in_proj_weight' ):
_lowerCamelCase = old_model.in_proj_weight.shape[0] // 3
_lowerCamelCase = getattr(UpperCamelCase , UpperCamelCase )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
_lowerCamelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
_lowerCamelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
_lowerCamelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
_lowerCamelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
_lowerCamelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
_lowerCamelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
_lowerCamelCase = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings."
_lowerCamelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] )
_lowerCamelCase = True
break
if attribute.isdigit():
_lowerCamelCase = model[int(UpperCamelCase )]
_lowerCamelCase = old_model[int(UpperCamelCase )]
else:
_lowerCamelCase = getattr(UpperCamelCase , UpperCamelCase )
if old_attribute == "":
_lowerCamelCase = old_model
else:
if not hasattr(UpperCamelCase , UpperCamelCase ):
raise ValueError(F"""{old_model} does not have {old_attribute}""" )
_lowerCamelCase = getattr(UpperCamelCase , UpperCamelCase )
if not is_key_init:
raise ValueError(F"""{key} was not correctly initialized!""" )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
prophet.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
A = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path) | 544 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] ):
_a = psutil.Process()
_a = False
def UpperCamelCase__ ( self : Tuple ):
_a = -1
while True:
_a = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def UpperCamelCase__ ( self : List[Any] ):
_a = True
_a = threading.Thread(target=self.peak_monitor )
_a = True
self.thread.start()
def UpperCamelCase__ ( self : Optional[int] ):
_a = False
self.thread.join()
return self.cpu_memory_peak
lowerCAmelCase_ : List[Any] = PeakCPUMemory()
def _lowerCamelCase ( ) -> Tuple:
# Time
_a = {"time": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = torch.cuda.memory_allocated(lowercase )
torch.cuda.reset_peak_memory_stats()
return measures
def _lowerCamelCase ( lowercase : Any ) -> int:
# Time
_a = {"time": time.time() - start_measures["time"]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
_a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
_a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
_a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
_a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20
return measures
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str:
print(F'{description}:' )
print(F'- Time: {measures["time"]:.2f}s' )
for i in range(torch.cuda.device_count() ):
print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' )
_a = measures[F'{i}-peak']
print(F'- GPU {i} peak: {peak:.2f}MiB' )
print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' )
print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
| 692 | 0 |
from __future__ import annotations
from typing import Generic, TypeVar
A : Optional[Any] = TypeVar('T')
class UpperCamelCase( Generic[T] ):
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : T ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = data
__snake_case = self
__snake_case = 0
class UpperCamelCase( Generic[T] ):
def __init__( self : Dict ) -> Dict:
'''simple docstring'''
__snake_case = {}
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : T ) -> Dict:
'''simple docstring'''
__snake_case = DisjointSetTreeNode(__a )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : T ) -> str:
'''simple docstring'''
__snake_case = self.map[data]
if elem_ref != elem_ref.parent:
__snake_case = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] , SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] ) -> List[Any]:
'''simple docstring'''
if nodea.rank > nodea.rank:
__snake_case = nodea
else:
__snake_case = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : T ) -> str:
'''simple docstring'''
self.link(self.find_set(__a ) , self.find_set(__a ) )
class UpperCamelCase( Generic[T] ):
def __init__( self : Tuple ) -> int:
'''simple docstring'''
__snake_case = {}
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : T ) -> Dict:
'''simple docstring'''
if node not in self.connections:
__snake_case = {}
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : int ) -> int:
'''simple docstring'''
self.add_node(__a )
self.add_node(__a )
__snake_case = weight
__snake_case = weight
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
__snake_case = []
__snake_case = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda SCREAMING_SNAKE_CASE : x[2] )
# creating the disjoint set
__snake_case = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__a )
# MST generation
__snake_case = 0
__snake_case = 0
__snake_case = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
__snake_case , __snake_case , __snake_case = edges[index]
index += 1
__snake_case = disjoint_set.find_set(__a )
__snake_case = disjoint_set.find_set(__a )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__a , __a , __a )
disjoint_set.union(__a , __a )
return graph
| 371 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(DDIMParallelScheduler,)
__a =(('eta', 0.0), ('num_inference_steps', 50))
def UpperCamelCase__ ( self : Optional[int] , **__a : Any ):
_a = {
"num_train_timesteps": 10_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(**__a )
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
_a = self.dummy_model()
_a = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for t in scheduler.timesteps:
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a , __a ).prev_sample
return sample
def UpperCamelCase__ ( self : str ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : Dict ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__a )
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(steps_offset=1 )
_a = scheduler_class(**__a )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def UpperCamelCase__ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__a )
def UpperCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def UpperCamelCase__ ( self : Dict ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__a )
def UpperCamelCase__ ( self : Optional[int] ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__a )
def UpperCamelCase__ ( self : Optional[Any] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__a )
def UpperCamelCase__ ( self : List[Any] ):
self.check_over_configs(thresholding=__a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , )
def UpperCamelCase__ ( self : List[Any] ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=__a , num_inference_steps=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__a , eta=__a )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5
def UpperCamelCase__ ( self : List[str] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a , _a = 10, 0.0
scheduler.set_timesteps(__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(__a )[0:3, None].repeat(1 , __a )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def UpperCamelCase__ ( self : List[str] ):
_a = self.full_loop()
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def UpperCamelCase__ ( self : str ):
_a = self.full_loop(prediction_type="v_prediction" )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def UpperCamelCase__ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 )
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 692 | 0 |
import math
lowercase_ : Tuple = 10
lowercase_ : Tuple = 7
lowercase_ : int = BALLS_PER_COLOUR * NUM_COLOURS
def A__( __lowerCAmelCase = 20 ):
_snake_case : Optional[int] = math.comb(__lowerCAmelCase , __lowerCAmelCase )
_snake_case : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCAmelCase )
_snake_case : Optional[int] = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 304 |
'''simple docstring'''
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _lowerCamelCase ( lowercase : Any ) -> List[str]:
return getitem, k
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any:
return setitem, k, v
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
return delitem, k
def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int:
try:
return fun(lowercase , *lowercase ), None
except Exception as e:
return None, e
lowerCAmelCase_ : Optional[Any] = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
lowerCAmelCase_ : Optional[int] = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
lowerCAmelCase_ : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
lowerCAmelCase_ : List[Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
lowerCAmelCase_ : str = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
_a = HashMap(initial_block_size=4 )
_a = {}
for _, (fun, *args) in enumerate(lowercase ):
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
_a , _a = _run_operation(lowercase , lowercase , *lowercase )
assert my_res == py_res
assert str(lowercase ) == str(lowercase )
assert set(lowercase ) == set(lowercase )
assert len(lowercase ) == len(lowercase )
assert set(my.items() ) == set(py.items() )
def _lowerCamelCase ( ) -> str:
def is_public(lowercase : str ) -> bool:
return not name.startswith("_" )
_a = {name for name in dir({} ) if is_public(lowercase )}
_a = {name for name in dir(HashMap() ) if is_public(lowercase )}
assert dict_public_names > hash_public_names
| 692 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__)
class UpperCAmelCase_ ( lowerCamelCase_ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , __a , )
super().__init__(*__a , **__a )
| 79 |
'''simple docstring'''
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =PhobertTokenizer
__a =False
def UpperCamelCase__ ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a = ["T@@", "i", "I", "R@@", "r", "e@@"]
_a = dict(zip(__a , range(len(__a ) ) ) )
_a = ["#version: 0.2", "l à</w>"]
_a = {"unk_token": "<unk>"}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(f'{token} {vocab_tokens[token]}\n' )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__a ) )
def UpperCamelCase__ ( self : str , **__a : List[str] ):
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
_a = "Tôi là VinAI Research"
_a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def UpperCamelCase__ ( self : Dict ):
_a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a = "Tôi là VinAI Research"
_a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
_a = tokenizer.tokenize(__a )
print(__a )
self.assertListEqual(__a , __a )
_a = tokens + [tokenizer.unk_token]
_a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
| 692 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCAmelCase ( lowerCamelCase_ ):
"""simple docstring"""
__magic_name__ :Tuple = ["""image_processor""", """tokenizer"""]
__magic_name__ :Optional[Any] = """BlipImageProcessor"""
__magic_name__ :List[Any] = """AutoTokenizer"""
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Tuple = False
super().__init__(__a , __a )
lowerCAmelCase__ :Union[str, Any] = self.image_processor
def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None:
lowerCAmelCase__ :Tuple = self.tokenizer
lowerCAmelCase__ :Dict = self.tokenizer(
text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
return text_encoding
# add pixel_values
lowerCAmelCase__ :Union[str, Any] = self.image_processor(__a , return_tensors=__a )
if text is not None:
lowerCAmelCase__ :Dict = self.tokenizer(
text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
else:
lowerCAmelCase__ :Optional[int] = None
if text_encoding is not None:
encoding_image_processor.update(__a )
return encoding_image_processor
def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__a , **__a )
def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__a , **__a )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.tokenizer.model_input_names
lowerCAmelCase__ :Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 93 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ):
super().__init__(*__a , **__a )
_a = eval_examples
_a = post_process_function
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ):
_a = self.eval_dataset if eval_dataset is None else eval_dataset
_a = self.get_eval_dataloader(__a )
_a = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_a = self.post_process_function(__a , __a , output.predictions )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
else:
_a = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ):
_a = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
_a = self.compute_metrics
_a = None
_a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_a = time.time()
try:
_a = eval_loop(
__a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
_a = compute_metrics
_a = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_a = self.post_process_function(__a , __a , output.predictions , "predict" )
_a = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
_a = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 692 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __snake_case ( lowerCamelCase_):
snake_case__ : Any = "gptj"
snake_case__ : Any = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Tuple , __lowerCAmelCase : str=5_0_4_0_0 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Tuple=4_0_9_6 , __lowerCAmelCase : int=2_8 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Dict=6_4 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[int]="gelu_new" , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=5_0_2_5_6 , __lowerCAmelCase : Dict=5_0_2_5_6 , __lowerCAmelCase : List[str]=False , **__lowerCAmelCase : str , ):
"""simple docstring"""
_lowerCamelCase : Dict = vocab_size
_lowerCamelCase : List[str] = n_positions
_lowerCamelCase : Union[str, Any] = n_embd
_lowerCamelCase : Optional[int] = n_layer
_lowerCamelCase : List[str] = n_head
_lowerCamelCase : Optional[Any] = n_inner
_lowerCamelCase : Optional[int] = rotary_dim
_lowerCamelCase : Dict = activation_function
_lowerCamelCase : List[str] = resid_pdrop
_lowerCamelCase : Optional[int] = embd_pdrop
_lowerCamelCase : Optional[int] = attn_pdrop
_lowerCamelCase : Dict = layer_norm_epsilon
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : List[str] = use_cache
_lowerCamelCase : Dict = bos_token_id
_lowerCamelCase : str = eos_token_id
super().__init__(
bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a )
class __snake_case ( lowerCamelCase_):
def __init__( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" , __lowerCAmelCase : List[PatchingSpec] = None , __lowerCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__(__a , task=__a , patching_specs=__a , use_past=__a )
if not getattr(self._config , '''pad_token_id''' , __a ):
# TODO: how to do that better?
_lowerCamelCase : int = 0
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : Dict = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__a , direction='''inputs''' )
_lowerCamelCase : List[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_lowerCamelCase : Any = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return self._config.n_layer
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return self._config.n_head
def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ):
"""simple docstring"""
_lowerCamelCase : Any = super(__a , self ).generate_dummy_inputs(
__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a )
# We need to order the input in the way they appears in the forward()
_lowerCamelCase : Optional[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_lowerCamelCase , _lowerCamelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_lowerCamelCase : Tuple = seqlen + 2
_lowerCamelCase : List[str] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_lowerCamelCase : Tuple = [
(torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers )
]
_lowerCamelCase : Tuple = common_inputs['''attention_mask''']
if self.use_past:
_lowerCamelCase : List[Any] = ordered_inputs['''attention_mask'''].dtype
_lowerCamelCase : Optional[int] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__a , __a , dtype=__a )] , dim=1 )
return ordered_inputs
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return 1_3
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ):
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
A_ = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
A_ = {
'169M': 768,
'430M': 1024,
'1B5': 2048,
'3B': 2560,
'7B': 4096,
'14B': 5120,
}
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Dict:
snake_case__ : Tuple = list(state_dict.keys() )
for name in state_dict_keys:
snake_case__ : Tuple = state_dict.pop(__SCREAMING_SNAKE_CASE )
# emb -> embedding
if name.startswith('emb.' ):
snake_case__ : str = name.replace('emb.' , 'embeddings.' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0' ):
snake_case__ : List[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' )
# att -> attention
snake_case__ : Union[str, Any] = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , __SCREAMING_SNAKE_CASE )
# ffn -> feed_forward
snake_case__ : str = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , __SCREAMING_SNAKE_CASE )
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k' ):
snake_case__ : Union[str, Any] = name.replace('.time_mix_k' , '.time_mix_key' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v' ):
snake_case__ : List[Any] = name.replace('.time_mix_v' , '.time_mix_value' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r' ):
snake_case__ : Union[str, Any] = name.replace('.time_mix_r' , '.time_mix_receptance' )
if name != "head.weight":
snake_case__ : List[Any] = 'rwkv.' + name
snake_case__ : Union[str, Any] = weight
return state_dict
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.' )
snake_case__ : str = 5_0277
snake_case__ : str = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' )
else:
snake_case__ : Optional[int] = PreTrainedTokenizerFast(tokenizer_file=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = len(__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
# 2. Build the config
snake_case__ : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
snake_case__ : Optional[int] = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.' )
if size not in possible_sizes:
raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." )
snake_case__ : int = RwkvConfig(
vocab_size=__SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
# 3. Download model file then convert state_dict
snake_case__ : Tuple = hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )
snake_case__ : Dict = convert_state_dict(__SCREAMING_SNAKE_CASE )
# 4. Split in shards and save
snake_case__ , snake_case__ : Optional[int] = shard_checkpoint(__SCREAMING_SNAKE_CASE )
for shard_file, shard in shards.items():
torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if index is not None:
snake_case__ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Save the index as well
with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
snake_case__ : Any = json.dumps(__SCREAMING_SNAKE_CASE , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE ) + '\n'
f.write(__SCREAMING_SNAKE_CASE )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' )
snake_case__ : Tuple = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
snake_case__ : List[Any] = torch.load(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.' )
snake_case__ : List[Any] = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
model.push_to_hub(__SCREAMING_SNAKE_CASE , max_shard_size='2GB' )
tokenizer.push_to_hub(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint."
)
parser.add_argument(
"--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo."
)
parser.add_argument(
"--output_dir", default=None, type=str, required=True, help="Where to save the converted model."
)
parser.add_argument(
"--tokenizer_file",
default=None,
type=str,
help="Path to the tokenizer file to use (if not provided, only the model is converted).",
)
parser.add_argument(
"--size",
default=None,
type=str,
help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Push to the Hub the converted model.",
)
parser.add_argument(
"--model_name",
default=None,
type=str,
help="Name of the pushed model on the Hub, including the username / organization.",
)
A_ = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 270 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ):
super().__init__()
_a = only_cross_attention
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
_a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'
f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_a = AdaLayerNorm(__a , __a )
elif self.use_ada_layer_norm_zero:
_a = AdaLayerNormZero(__a , __a )
else:
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = Attention(
query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_a = (
AdaLayerNorm(__a , __a )
if self.use_ada_layer_norm
else nn.LayerNorm(__a , elementwise_affine=__a )
)
_a = Attention(
query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none
else:
_a = None
_a = None
# 3. Feed-forward
_a = nn.LayerNorm(__a , elementwise_affine=__a )
_a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a )
# let chunk size default to None
_a = None
_a = 0
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ):
# Sets chunk feed-forward
_a = chunk_size
_a = dim
def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
_a = self.norma(__a , __a )
elif self.use_ada_layer_norm_zero:
_a , _a , _a , _a , _a = self.norma(
__a , __a , __a , hidden_dtype=hidden_states.dtype )
else:
_a = self.norma(__a )
_a = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_a = self.attna(
__a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , )
if self.use_ada_layer_norm_zero:
_a = gate_msa.unsqueeze(1 ) * attn_output
_a = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_a = (
self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a )
)
_a = self.attna(
__a , encoder_hidden_states=__a , attention_mask=__a , **__a , )
_a = attn_output + hidden_states
# 3. Feed-forward
_a = self.norma(__a )
if self.use_ada_layer_norm_zero:
_a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' )
_a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_a = torch.cat(
[self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_a = self.ff(__a )
if self.use_ada_layer_norm_zero:
_a = gate_mlp.unsqueeze(1 ) * ff_output
_a = ff_output + hidden_states
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ):
super().__init__()
_a = int(dim * mult )
_a = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_a = GELU(__a , __a )
if activation_fn == "gelu-approximate":
_a = GELU(__a , __a , approximate="tanh" )
elif activation_fn == "geglu":
_a = GEGLU(__a , __a )
elif activation_fn == "geglu-approximate":
_a = ApproximateGELU(__a , __a )
_a = nn.ModuleList([] )
# project in
self.net.append(__a )
# project dropout
self.net.append(nn.Dropout(__a ) )
# project out
self.net.append(nn.Linear(__a , __a ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__a ) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple ):
for module in self.net:
_a = module(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : int , __a : int , __a : str = "none" ):
super().__init__()
_a = nn.Linear(__a , __a )
_a = approximate
def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ):
if gate.device.type != "mps":
return F.gelu(__a , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : str , __a : Optional[int] ):
_a = self.proj(__a )
_a = self.gelu(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : str , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , dim_out * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ):
if gate.device.type != "mps":
return F.gelu(__a )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
_a , _a = self.proj(__a ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__a )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : int , __a : int ):
super().__init__()
_a = nn.Linear(__a , __a )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ):
_a = self.proj(__a )
return x * torch.sigmoid(1.702 * x )
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : str ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , embedding_dim * 2 )
_a = nn.LayerNorm(__a , elementwise_affine=__a )
def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ):
_a = self.linear(self.silu(self.emb(__a ) ) )
_a , _a = torch.chunk(__a , 2 )
_a = self.norm(__a ) * (1 + scale) + shift
return x
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __a : List[Any] , __a : Any ):
super().__init__()
_a = CombinedTimestepLabelEmbeddings(__a , __a )
_a = nn.SiLU()
_a = nn.Linear(__a , 6 * embedding_dim , bias=__a )
_a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ):
_a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) )
_a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 )
_a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ):
super().__init__()
_a = num_groups
_a = eps
if act_fn is None:
_a = None
else:
_a = get_activation(__a )
_a = nn.Linear(__a , out_dim * 2 )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ):
if self.act:
_a = self.act(__a )
_a = self.linear(__a )
_a = emb[:, :, None, None]
_a , _a = emb.chunk(2 , dim=1 )
_a = F.group_norm(__a , self.num_groups , eps=self.eps )
_a = x * (1 + scale) + shift
return x
| 692 | 0 |
"""simple docstring"""
def a ( __UpperCAmelCase : int=2_8_1_2_3 ) -> List[Any]:
__magic_name__: Any = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
__magic_name__: int = set()
__magic_name__: Union[str, Any] = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(__UpperCAmelCase )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 96 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =42
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : int ):
_a = [[] for _ in range(__a )]
_a = size
def __getitem__( self : int , __a : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase__ ( self : Dict ):
return self._size
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__a , __a ) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ):
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(__a , __a )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
lowercase_ = object()
# For specifying empty leaf dict `{}`
lowercase_ = object()
def A_ ( lowercase , lowercase ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(lowercase ) - len(lowercase ) + 1 ):
UpperCAmelCase_ : Optional[Any] = [x.match(lowercase ) for x, y in zip(lowercase , ks[i:] )]
if matches and all(lowercase ):
return True
return False
def A_ ( lowercase ) -> List[Any]:
"""simple docstring"""
def replace(lowercase , lowercase ):
for rule, replacement in rules:
if _match(lowercase , lowercase ):
return replacement
return val
return replace
def A_ ( ) -> Optional[int]:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""" , lowercase )),
(("transformer", "wte", "embedding"), P("""mp""" , lowercase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowercase , """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""" , lowercase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(lowercase , """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""" , lowercase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def A_ ( lowercase ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Dict = _get_partition_rules()
UpperCAmelCase_ : str = _replacement_rules(lowercase )
UpperCAmelCase_ : str = {k: _unmatched for k in flatten_dict(lowercase )}
UpperCAmelCase_ : List[Any] = {k: replace(lowercase , lowercase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(lowercase ) )
| 470 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =FlaxAutoencoderKL
@property
def UpperCamelCase__ ( self : str ):
_a = 4
_a = 3
_a = (32, 32)
_a = jax.random.PRNGKey(0 )
_a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def UpperCamelCase__ ( self : List[Any] ):
_a = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_a = self.dummy_input
return init_dict, inputs_dict
| 692 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A : Union[str, Any] = {
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = ['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = [
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = [
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 287 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase_ : List[Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase_ : Optional[int] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase_ : Any = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Tuple = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase_ : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]:
for tf_name, hf_name in patterns:
_a = k.replace(lowercase , lowercase )
return k
def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration:
_a = BigBirdPegasusConfig(**lowercase )
_a = BigBirdPegasusForConditionalGeneration(lowercase )
_a = torch_model.state_dict()
_a = {}
# separating decoder weights
_a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = DECODER_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
_a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE]
if any(lowercase ):
continue
_a = REMAINING_PATTERNS
_a = rename_state_dict_key(lowercase , lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_a = v.T
_a = torch.from_numpy(lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
_a = mapping["model.embed_positions.weight"]
_a = mapping.pop("model.embed_positions.weight" )
_a , _a = torch_model.load_state_dict(lowercase , strict=lowercase )
_a = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
_a = tf.train.list_variables(lowercase )
_a = {}
_a = ["global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
_a = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a = tf.train.load_variable(lowercase , lowercase )
_a = array
return tf_weights
def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]:
_a = get_tf_weights_as_numpy(lowercase )
_a = convert_bigbird_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 692 | 0 |
"""simple docstring"""
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def __lowercase ( _a , _a , _a , _a=5 ):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('''<mask>''' ) == 1
snake_case_ : List[Any] = torch.tensor(tokenizer.encode(_a , add_special_tokens=_a ) ).unsqueeze(0 ) # Batch size 1
snake_case_ : Optional[int] = model(_a )[0] # The last hidden-state is the first element of the output tuple
snake_case_ : str = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
snake_case_ : int = logits[0, masked_index, :]
snake_case_ : List[Any] = logits.softmax(dim=0 )
snake_case_, snake_case_ : List[Any] = prob.topk(k=_a , dim=0 )
snake_case_ : Dict = ''' '''.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_a ) )] )
snake_case_ : List[str] = tokenizer.mask_token
snake_case_ : int = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ):
snake_case_ : str = predicted_token_bpe.replace('''\u2581''' , ''' ''' )
if " {0}".format(_a ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(''' {0}'''.format(_a ) , _a ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(_a , _a ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
lowercase__ : int = CamembertTokenizer.from_pretrained('''camembert-base''')
lowercase__ : Optional[Any] = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
lowercase__ : Dict = 'Le camembert est <mask> :)'
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 123 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 692 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A = logging.get_logger(__name__)
A = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class lowerCAmelCase__ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ = 'beit'
def __init__( self : Optional[int] , snake_case__ : Union[str, Any]=8_1_9_2 , snake_case__ : List[Any]=7_6_8 , snake_case__ : List[str]=1_2 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : Optional[Any]=3_0_7_2 , snake_case__ : Optional[Any]="gelu" , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : str=0.02 , snake_case__ : List[Any]=1e-12 , snake_case__ : Optional[int]=2_2_4 , snake_case__ : Dict=1_6 , snake_case__ : Tuple=3 , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=False , snake_case__ : int=False , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Optional[Any]=True , snake_case__ : int=[3, 5, 7, 1_1] , snake_case__ : Any=[1, 2, 3, 6] , snake_case__ : List[Any]=True , snake_case__ : List[str]=0.4 , snake_case__ : int=2_5_6 , snake_case__ : str=1 , snake_case__ : Union[str, Any]=False , snake_case__ : Any=2_5_5 , **snake_case__ : List[str] , ) -> List[str]:
super().__init__(**__a )
_lowerCamelCase = vocab_size
_lowerCamelCase = hidden_size
_lowerCamelCase = num_hidden_layers
_lowerCamelCase = num_attention_heads
_lowerCamelCase = intermediate_size
_lowerCamelCase = hidden_act
_lowerCamelCase = hidden_dropout_prob
_lowerCamelCase = attention_probs_dropout_prob
_lowerCamelCase = initializer_range
_lowerCamelCase = layer_norm_eps
_lowerCamelCase = image_size
_lowerCamelCase = patch_size
_lowerCamelCase = num_channels
_lowerCamelCase = use_mask_token
_lowerCamelCase = use_absolute_position_embeddings
_lowerCamelCase = use_relative_position_bias
_lowerCamelCase = use_shared_relative_position_bias
_lowerCamelCase = layer_scale_init_value
_lowerCamelCase = drop_path_rate
_lowerCamelCase = use_mean_pooling
# decode head attributes (semantic segmentation)
_lowerCamelCase = out_indices
_lowerCamelCase = pool_scales
# auxiliary head attributes (semantic segmentation)
_lowerCamelCase = use_auxiliary_head
_lowerCamelCase = auxiliary_loss_weight
_lowerCamelCase = auxiliary_channels
_lowerCamelCase = auxiliary_num_convs
_lowerCamelCase = auxiliary_concat_input
_lowerCamelCase = semantic_loss_ignore_index
class lowerCAmelCase__ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ = version.parse('1.11' )
@property
def _snake_case ( self : List[Any] ) -> Optional[Any]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _snake_case ( self : List[Any] ) -> Tuple:
return 1e-4 | 544 |
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 692 | 0 |
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
def update_area_of_max_square(_lowerCAmelCase , _lowerCAmelCase ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__snake_case = update_area_of_max_square(_lowerCAmelCase , col + 1 )
__snake_case = update_area_of_max_square(row + 1 , col + 1 )
__snake_case = update_area_of_max_square(row + 1 , _lowerCAmelCase )
if mat[row][col]:
__snake_case = 1 + min([right, diagonal, down] )
__snake_case = max(largest_square_area[0] , _lowerCAmelCase )
return sub_problem_sol
else:
return 0
__snake_case = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
def update_area_of_max_square_using_dp_array(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__snake_case = update_area_of_max_square_using_dp_array(_lowerCAmelCase , col + 1 , _lowerCAmelCase )
__snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCAmelCase )
__snake_case = update_area_of_max_square_using_dp_array(row + 1 , _lowerCAmelCase , _lowerCAmelCase )
if mat[row][col]:
__snake_case = 1 + min([right, diagonal, down] )
__snake_case = max(largest_square_area[0] , _lowerCAmelCase )
__snake_case = sub_problem_sol
return sub_problem_sol
else:
return 0
__snake_case = [0]
__snake_case = [[-1] * cols for _ in range(_lowerCAmelCase )]
update_area_of_max_square_using_dp_array(0 , 0 , _lowerCAmelCase )
return largest_square_area[0]
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
__snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )]
__snake_case = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__snake_case = dp_array[row][col + 1]
__snake_case = dp_array[row + 1][col + 1]
__snake_case = dp_array[row + 1][col]
if mat[row][col] == 1:
__snake_case = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case = max(dp_array[row][col] , _lowerCAmelCase )
else:
__snake_case = 0
return largest_square_area
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
__snake_case = [0] * (cols + 1)
__snake_case = [0] * (cols + 1)
__snake_case = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__snake_case = current_row[col + 1]
__snake_case = next_row[col + 1]
__snake_case = next_row[col]
if mat[row][col] == 1:
__snake_case = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case = max(current_row[col] , _lowerCAmelCase )
else:
__snake_case = 0
__snake_case = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 371 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 692 | 0 |
from math import loga
def A__( __lowerCAmelCase ):
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError('Input value must be a \'int\' type' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]:
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
_a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = reader.get_mention_assignments(lowercase , lowercase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"Number of resulting singleton clusters in the key "
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"files, respectively" )
return doc_coref_infos
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str:
_a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
_a = (conll / 3) * 100
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"conll_score": conll} )
return output_scores
def _lowerCamelCase ( lowercase : Any ) -> str:
_a = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ):
_a = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__a )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , )
return score
| 692 | 0 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = input_paths_and_base_extractors[compression_format]
if input_path is None:
UpperCAmelCase__ : Union[str, Any] = F"for \'{compression_format}\' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__lowerCamelCase )
assert base_extractor.is_extractable(__lowerCamelCase )
UpperCAmelCase__ : int = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__lowerCamelCase , __lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
UpperCAmelCase__ : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
UpperCAmelCase__ : List[str] = output_path.read_text(encoding="""utf-8""" )
UpperCAmelCase__ : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : Any = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
UpperCAmelCase__ : Dict = input_paths[compression_format]
if input_path is None:
UpperCAmelCase__ : Union[str, Any] = F"for \'{compression_format}\' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__lowerCamelCase )
UpperCAmelCase__ : List[Any] = Extractor.infer_extractor_format(__lowerCamelCase )
assert extractor_format is not None
UpperCAmelCase__ : Optional[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
UpperCAmelCase__ : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
UpperCAmelCase__ : List[Any] = output_path.read_text(encoding="""utf-8""" )
UpperCAmelCase__ : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> str:
'''simple docstring'''
import tarfile
UpperCAmelCase__ : Dict = tmp_path / """data_dot_dot"""
directory.mkdir()
UpperCAmelCase__ : Union[str, Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def _lowerCamelCase ( __lowerCamelCase ) -> Any:
'''simple docstring'''
import tarfile
UpperCAmelCase__ : int = tmp_path / """data_sym_link"""
directory.mkdir()
UpperCAmelCase__ : Any = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__lowerCamelCase )
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : Dict = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
UpperCAmelCase__ : Tuple = insecure_tar_files[insecure_tar_file]
UpperCAmelCase__ : List[Any] = tmp_path / """extracted"""
TarExtractor.extract(__lowerCamelCase , __lowerCamelCase )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def _lowerCamelCase ( __lowerCamelCase ) -> Tuple:
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
UpperCAmelCase__ : Dict = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
UpperCAmelCase__ : Union[str, Any] = (
B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__lowerCamelCase )
assert zipfile.is_zipfile(str(__lowerCamelCase ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__lowerCamelCase ) # but we're right
| 79 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase ( lowercase : float = 0.1 ) -> int:
_a = 3
_a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowercase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 692 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :str = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
@property
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :str = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , )
return model
@property
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(__a )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[str] = self.dummy_uncond_unet
lowerCAmelCase__ :Tuple = DDIMScheduler()
lowerCAmelCase__ :List[Any] = self.dummy_vq_model
lowerCAmelCase__ :str = LDMPipeline(unet=__a , vqvae=__a , scheduler=__a )
ldm.to(__a )
ldm.set_progress_bar_config(disable=__a )
lowerCAmelCase__ :int = torch.manual_seed(0 )
lowerCAmelCase__ :str = ldm(generator=__a , num_inference_steps=2 , output_type='numpy' ).images
lowerCAmelCase__ :List[str] = torch.manual_seed(0 )
lowerCAmelCase__ :int = ldm(generator=__a , num_inference_steps=2 , output_type='numpy' , return_dict=__a )[0]
lowerCAmelCase__ :str = image[0, -3:, -3:, -1]
lowerCAmelCase__ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase__ :int = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] )
lowerCAmelCase__ :Union[str, Any] = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :str = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' )
ldm.to(__a )
ldm.set_progress_bar_config(disable=__a )
lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 )
lowerCAmelCase__ :Optional[int] = ldm(generator=__a , num_inference_steps=5 , output_type='numpy' ).images
lowerCAmelCase__ :Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
lowerCAmelCase__ :Optional[Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] )
lowerCAmelCase__ :Any = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 93 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(CMStochasticIterativeScheduler,)
__a =10
def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ):
_a = {
"num_train_timesteps": 2_01,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : List[Any] ):
_a = 10
_a = self.get_scheduler_config()
_a = self.scheduler_classes[0](**__a )
scheduler.set_timesteps(__a )
_a = scheduler.timesteps[0]
_a = scheduler.timesteps[1]
_a = self.dummy_sample
_a = 0.1 * sample
_a = scheduler.step(__a , __a , __a ).prev_sample
_a = scheduler.step(__a , __a , __a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self : Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : int ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = 1
scheduler.set_timesteps(__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(__a ):
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [1_06, 0]
scheduler.set_timesteps(timesteps=__a )
_a = scheduler.timesteps
_a = torch.manual_seed(0 )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
_a = scheduler.scale_model_input(__a , __a )
# 2. predict noise residual
_a = model(__a , __a )
# 3. predict previous sample x_t-1
_a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def UpperCamelCase__ ( self : List[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 15, 0]
with self.assertRaises(__a , msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [39, 30, 12, 1, 0]
_a = len(__a )
with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a )
def UpperCamelCase__ ( self : str ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=__a )
| 692 | 0 |
"""simple docstring"""
def snake_case_ ( A_ : int = 10_00 ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : List[str] = 1, 1
_lowerCamelCase : List[Any] = 2
while True:
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = fa + fa
_lowerCamelCase , _lowerCamelCase : Tuple = fa, f
index += 1
for _ in str(A_ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 83 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ):
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 692 | 0 |
'''simple docstring'''
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> int:
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and number_of_steps > 0
), f"number_of_steps needs to be positive integer, your input {number_of_steps}"
if number_of_steps == 1:
return 1
snake_case__ , snake_case__ : Dict = 1, 1
for _ in range(number_of_steps - 1 ):
snake_case__ , snake_case__ : Union[str, Any] = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 270 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='timesformer'
def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ):
super().__init__(**__a )
_a = image_size
_a = patch_size
_a = num_channels
_a = num_frames
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = qkv_bias
_a = attention_type
_a = drop_path_rate
| 692 | 0 |
"""simple docstring"""
from queue import PriorityQueue
from typing import Any
import numpy as np
def a ( __UpperCAmelCase : dict , __UpperCAmelCase : str , __UpperCAmelCase : set , __UpperCAmelCase : set , __UpperCAmelCase : dict , __UpperCAmelCase : dict , __UpperCAmelCase : PriorityQueue , __UpperCAmelCase : dict , __UpperCAmelCase : float | int , ) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
__magic_name__: List[str] = cst_fwd.get(__UpperCAmelCase , np.inf )
__magic_name__: Dict = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
__magic_name__: List[Any] = new_cost_f
__magic_name__: int = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
__magic_name__: Any = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def a ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : dict , __UpperCAmelCase : dict ) -> int:
__magic_name__: Any = -1
__magic_name__: List[Any] = set()
__magic_name__: List[Any] = set()
__magic_name__: List[str] = {source: 0}
__magic_name__: Optional[Any] = {destination: 0}
__magic_name__: List[Any] = {source: None}
__magic_name__: List[str] = {destination: None}
__magic_name__: List[Any] = PriorityQueue()
__magic_name__: str = PriorityQueue()
__magic_name__: List[str] = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
__magic_name__, __magic_name__: str = queue_forward.get()
visited_forward.add(__UpperCAmelCase )
__magic_name__, __magic_name__: Optional[Any] = queue_backward.get()
visited_backward.add(__UpperCAmelCase )
__magic_name__: Optional[int] = pass_and_relaxation(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )
__magic_name__: Dict = pass_and_relaxation(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
__magic_name__: Dict = shortest_distance
return shortest_path_distance
__lowerCamelCase = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
__lowerCamelCase = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self : Dict ):
_a = 1
_a = 3
_a = (32, 32)
_a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ ( self : Dict ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__a )
@property
def UpperCamelCase__ ( self : str ):
def extract(*__a : Tuple , **__a : str ):
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict ):
_a = torch.ones([0] )
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
self.pixel_values.to(__a )
return self
return Out()
return extract
def UpperCamelCase__ ( self : Optional[int] ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
_a = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , )
_a = output.images
_a = torch.Generator(device=__a ).manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.dummy_cond_unet
_a = PNDMScheduler(skip_prk_steps=__a )
_a = self.dummy_vae
_a = self.dummy_text_encoder
_a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
_a = 77
_a = self.dummy_image.to(__a )
# put models in fp16
_a = unet.half()
_a = vae.half()
_a = bert.half()
# make sure here that pndm scheduler skips prk
_a = AltDiffusionImgaImgPipeline(
unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , )
_a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a )
_a = alt_pipe.to(__a )
alt_pipe.set_progress_bar_config(disable=__a )
_a = "A painting of a squirrel eating a burger"
_a = torch.manual_seed(0 )
_a = alt_pipe(
[prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
_a = init_image.resize((7_60, 5_04) )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
_a = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_a = init_image.resize((7_68, 5_12) )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
_a = "BAAI/AltDiffusion"
_a = AltDiffusionImgaImgPipeline.from_pretrained(
__a , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "A fantasy landscape, trending on artstation"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 692 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.