code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def __lowercase ( snake_case, snake_case ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(1_00, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 2_7} class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Any,A_: Union[str, Any],A_: int="[GO]",A_: List[Any]="[GO]",A_: Tuple="[s]",A_: Dict="[GO]",**A_: Union[str, Any] ): '''simple docstring''' super().__init__( unk_token=A_,bos_token=A_,eos_token=A_,pad_token=A_,**A_,) with open(A_,encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(A_ ) __UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.vocab ) def snake_case_ ( self: Any ): '''simple docstring''' return dict(self.vocab,**self.added_tokens_encoder ) def snake_case_ ( self: Union[str, Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] for s in text: char_tokens.extend(A_ ) return char_tokens def snake_case_ ( self: Dict,A_: str ): '''simple docstring''' return self.vocab.get(A_,self.vocab.get(self.unk_token ) ) def snake_case_ ( self: str,A_: str ): '''simple docstring''' return self.decoder.get(A_ ) def snake_case_ ( self: str,A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_,'w',encoding='utf-8' ) as f: f.write(json.dumps(self.vocab,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
UpperCAmelCase_ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: _A = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase_ = [None] * 1_0_0_0_0_0_0_0 UpperCAmelCase_ = True UpperCAmelCase_ = False def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _A = chain(next_number(_snake_case ) ) _A = number_chain while number < 10_000_000: _A = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_000_000 ) -> int: for i in range(1 , _snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
2
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
3
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowerCAmelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCAmelCase = model(_snake_case )['last_hidden_state'] lowerCAmelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowercase = logging.get_logger("""transformers.models.encodec""") _lowercase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _lowercase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _lowercase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _lowercase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _lowercase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowercase = [] _lowercase = [] def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :str , __lowerCamelCase :Optional[int] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "running_mean": _lowerCAmelCase = value elif weight_type == "running_var": _lowerCAmelCase = value elif weight_type == "num_batches_tracked": _lowerCAmelCase = value elif weight_type == "weight_ih_l0": _lowerCAmelCase = value elif weight_type == "weight_hh_l0": _lowerCAmelCase = value elif weight_type == "bias_ih_l0": _lowerCAmelCase = value elif weight_type == "bias_hh_l0": _lowerCAmelCase = value elif weight_type == "weight_ih_l1": _lowerCAmelCase = value elif weight_type == "weight_hh_l1": _lowerCAmelCase = value elif weight_type == "bias_ih_l1": _lowerCAmelCase = value elif weight_type == "bias_hh_l1": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :str ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def A (__lowerCamelCase :Any , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict ): _lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": _lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": _lowerCAmelCase = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(f'{name} was ignored' ) continue _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: _lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "weight_ih_l0" in name: _lowerCAmelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: _lowerCAmelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: _lowerCAmelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: _lowerCAmelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: _lowerCAmelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: _lowerCAmelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: _lowerCAmelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: _lowerCAmelCase = """bias_hh_l1""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: _lowerCAmelCase = """weight""" elif "running_mean" in name: _lowerCAmelCase = """running_mean""" elif "running_var" in name: _lowerCAmelCase = """running_var""" elif "num_batches_tracked" in name: _lowerCAmelCase = """num_batches_tracked""" else: _lowerCAmelCase = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any] , __lowerCamelCase :str , __lowerCamelCase :int=None , __lowerCamelCase :str=None , ): if config_path is not None: _lowerCAmelCase = EncodecConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowerCAmelCase = [8, 5, 4, 4] _lowerCAmelCase = [2.2] _lowerCAmelCase = 64 _lowerCAmelCase = 32000 _lowerCAmelCase = 2048 _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False elif model_name == "encodec_48khz": _lowerCAmelCase = [8, 5, 4, 2] _lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] _lowerCAmelCase = 48000 _lowerCAmelCase = 2 _lowerCAmelCase = False _lowerCAmelCase = """time_group_norm""" _lowerCAmelCase = True _lowerCAmelCase = 1.0 _lowerCAmelCase = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) _lowerCAmelCase = EncodecModel(__lowerCamelCase ) _lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = torch.load(__lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowerCAmelCase = original_checkpoint["""best_state"""] recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
6
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : int ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
7
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''sew-d''' def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase=2 , _UpperCAmelCase=512 , _UpperCAmelCase=256 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=("p2c", "c2p") , _UpperCAmelCase="layer_norm" , _UpperCAmelCase="gelu_python" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-7 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase) __A : List[Any] = hidden_size __A : Any = feat_extract_norm __A : List[str] = feat_extract_activation __A : Union[str, Any] = list(_UpperCAmelCase) __A : List[str] = list(_UpperCAmelCase) __A : Dict = list(_UpperCAmelCase) __A : Any = conv_bias __A : str = num_conv_pos_embeddings __A : Optional[int] = num_conv_pos_embedding_groups __A : Optional[Any] = len(self.conv_dim) __A : Union[str, Any] = num_hidden_layers __A : int = intermediate_size __A : Union[str, Any] = squeeze_factor __A : Tuple = max_position_embeddings __A : Optional[Any] = position_buckets __A : Union[str, Any] = share_att_key __A : Union[str, Any] = relative_attention __A : Optional[int] = norm_rel_ebd __A : Dict = list(_UpperCAmelCase) __A : Optional[Any] = hidden_act __A : List[str] = num_attention_heads __A : Union[str, Any] = hidden_dropout __A : List[Any] = attention_dropout __A : List[Any] = activation_dropout __A : Dict = feat_proj_dropout __A : str = final_dropout __A : Dict = layer_norm_eps __A : int = feature_layer_norm_eps __A : int = initializer_range __A : str = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)' F'= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Dict = apply_spec_augment __A : Optional[Any] = mask_time_prob __A : Union[str, Any] = mask_time_length __A : List[str] = mask_time_min_masks __A : Dict = mask_feature_prob __A : List[Any] = mask_feature_length __A : Dict = mask_feature_min_masks # ctc loss __A : str = ctc_loss_reduction __A : Any = ctc_zero_infinity # sequence classification __A : List[str] = use_weighted_layer_sum __A : List[Any] = classifier_proj_size @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
8
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
0
import numpy # List of input, output pairs SCREAMING_SNAKE_CASE__ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) SCREAMING_SNAKE_CASE__ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) SCREAMING_SNAKE_CASE__ = [2, 4, 1, 5] SCREAMING_SNAKE_CASE__ = len(train_data) SCREAMING_SNAKE_CASE__ = 0.009 def A ( __UpperCamelCase , __UpperCamelCase="train" ) -> str: return calculate_hypothesis_value(__UpperCamelCase , __UpperCamelCase ) - output( __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> int: A__ = 0 for i in range(len(__UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A ( __UpperCamelCase , __UpperCamelCase ) -> int: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A ( __UpperCamelCase , __UpperCamelCase=m ) -> Optional[int]: A__ = 0 for i in range(__UpperCamelCase ): if index == -1: summation_value += _error(__UpperCamelCase ) else: summation_value += _error(__UpperCamelCase ) * train_data[i][0][index] return summation_value def A ( __UpperCamelCase ) -> Dict: A__ = summation_of_cost_derivative(__UpperCamelCase , __UpperCamelCase ) / m return cost_derivative_value def A ( ) -> Tuple: global parameter_vector # Tune these values to set a tolerance value for predicted output A__ = 0.00_0002 A__ = 0 A__ = 0 while True: j += 1 A__ = [0, 0, 0, 0] for i in range(0 , len(__UpperCamelCase ) ): A__ = get_cost_derivative(i - 1 ) A__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCamelCase , __UpperCamelCase , atol=__UpperCamelCase , rtol=__UpperCamelCase , ): break A__ = temp_parameter_vector print(('Number of iterations:', j) ) def A ( ) -> List[str]: for i in range(len(__UpperCamelCase ) ): print(('Actual output value:', output(__UpperCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(__UpperCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
9
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = OmegaConf.load(__snake_case ) _UpperCamelCase = torch.load(__snake_case , map_location='''cpu''' )['''model'''] _UpperCamelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCamelCase = {} _UpperCamelCase = '''first_stage_model.''' for key in keys: if key.startswith(__snake_case ): _UpperCamelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCamelCase = {} _UpperCamelCase = '''model.diffusion_model.''' for key in keys: if key.startswith(__snake_case ): _UpperCamelCase = state_dict[key] _UpperCamelCase = config.model.params.first_stage_config.params _UpperCamelCase = config.model.params.unet_config.params _UpperCamelCase = VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) _UpperCamelCase = UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) _UpperCamelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) _UpperCamelCase = LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _lowerCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
10
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = DPTConfig(embedding_type='''hybrid''') if "large" in checkpoint_url: _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = [5, 11, 17, 23] _a = [256, 512, 1_024, 1_024] _a = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _a = 768 _a = [1, 1, 1, 0.5] _a = [256, 512, 768, 768] _a = 150 _a = 16 _a = (1, 384, 384) _a = False _a = '''project''' if "ade" in checkpoint_url: _a = True _a = 768 _a = [1, 1, 1, 0.5] _a = 150 _a = 16 _a = '''huggingface/label-files''' _a = '''ade20k-id2label.json''' _a = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''')) , '''r''')) _a = {int(__A): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase (__A): """simple docstring""" _a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A) def lowerCAmelCase (__A): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _a = name.replace('''pretrained.model''' , '''dpt.encoder''') if "pretrained.model" in name: _a = name.replace('''pretrained.model''' , '''dpt.embeddings''') if "patch_embed" in name: _a = name.replace('''patch_embed''' , '''''') if "pos_embed" in name: _a = name.replace('''pos_embed''' , '''position_embeddings''') if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''') if "proj" in name and "project" not in name: _a = name.replace('''proj''' , '''projection''') if "blocks" in name: _a = name.replace('''blocks''' , '''layer''') if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''') if "norm1" in name and "backbone" not in name: _a = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name and "backbone" not in name: _a = name.replace('''norm2''' , '''layernorm_after''') if "scratch.output_conv" in name: _a = name.replace('''scratch.output_conv''' , '''head''') if "scratch" in name: _a = name.replace('''scratch''' , '''neck''') if "layer1_rn" in name: _a = name.replace('''layer1_rn''' , '''convs.0''') if "layer2_rn" in name: _a = name.replace('''layer2_rn''' , '''convs.1''') if "layer3_rn" in name: _a = name.replace('''layer3_rn''' , '''convs.2''') if "layer4_rn" in name: _a = name.replace('''layer4_rn''' , '''convs.3''') if "refinenet" in name: _a = int(name[len('''neck.refinenet''') : len('''neck.refinenet''') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _a = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: _a = name.replace('''out_conv''' , '''projection''') if "resConfUnit1" in name: _a = name.replace('''resConfUnit1''' , '''residual_layer1''') if "resConfUnit2" in name: _a = name.replace('''resConfUnit2''' , '''residual_layer2''') if "conv1" in name: _a = name.replace('''conv1''' , '''convolution1''') if "conv2" in name: _a = name.replace('''conv2''' , '''convolution2''') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''') if "pretrained.act_postprocess2.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''') if "pretrained.act_postprocess3.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''') if "pretrained.act_postprocess4.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''') # resize blocks if "pretrained.act_postprocess1.3" in name: _a = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''') if "pretrained.act_postprocess1.4" in name: _a = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''') if "pretrained.act_postprocess2.3" in name: _a = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''') if "pretrained.act_postprocess2.4" in name: _a = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''') if "pretrained.act_postprocess3.3" in name: _a = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''') if "pretrained.act_postprocess4.3" in name: _a = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''') if "pretrained.act_postprocess4.4" in name: _a = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''') if "pretrained" in name: _a = name.replace('''pretrained''' , '''dpt''') if "bn" in name: _a = name.replace('''bn''' , '''batch_norm''') if "head" in name: _a = name.replace('''head''' , '''head.head''') if "encoder.norm" in name: _a = name.replace('''encoder.norm''' , '''layernorm''') if "auxlayer" in name: _a = name.replace('''auxlayer''' , '''auxiliary_head.head''') if "backbone" in name: _a = name.replace('''backbone''' , '''backbone.bit.encoder''') if ".." in name: _a = name.replace('''..''' , '''.''') if "stem.conv" in name: _a = name.replace('''stem.conv''' , '''bit.embedder.convolution''') if "blocks" in name: _a = name.replace('''blocks''' , '''layers''') if "convolution" in name and "backbone" in name: _a = name.replace('''convolution''' , '''conv''') if "layer" in name and "backbone" in name: _a = name.replace('''layer''' , '''layers''') if "backbone.bit.encoder.bit" in name: _a = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''') if "embedder.conv" in name: _a = name.replace('''embedder.conv''' , '''embedder.convolution''') if "backbone.bit.encoder.stem.norm" in name: _a = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''') _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[: config.hidden_size, :] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def lowerCAmelCase (): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(__A , stream=__A).raw) return im @torch.no_grad() def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a , _a = get_dpt_config(__A) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _a = torch.load(__A , map_location='''cpu''') # remove certain keys remove_ignore_keys_(__A) # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(__A) _a = val # read in qkv matrices read_in_q_k_v(__A , __A) # load HuggingFace model _a = DPTForSemanticSegmentation(__A) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__A) model.load_state_dict(__A) model.eval() # Check outputs on an image _a = 480 if '''ade''' in checkpoint_url else 384 _a = DPTImageProcessor(size=__A) _a = prepare_img() _a = image_processor(__A , return_tensors='''pt''') # forward pass _a = model(**__A).logits if '''ade''' in checkpoint_url else model(**__A).predicted_depth if show_prediction: _a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(__A).mkdir(exist_ok=__A) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(__A) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(__A) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''') image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowercase_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
11
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase__ : Any = get_logger(__name__) class _snake_case ( enum.Enum ): __lowerCAmelCase : Optional[Any] = 'all_checks' __lowerCAmelCase : int = 'basic_checks' __lowerCAmelCase : str = 'no_checks' class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase_ ) - set(lowercase_ ) ) ) lowercase__ : Union[str, Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowercase__ : Dict = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase_ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass class _snake_case ( UpperCAmelCase_ ): pass def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) lowercase__ : List[str] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase_ ) ) logger.info("""All the splits matched successfully.""" ) def UpperCamelCase ( lowercase_ , lowercase_ = True ) -> dict: '''simple docstring''' if record_checksum: lowercase__ : Dict = shaaaa() with open(lowercase_ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(lowercase_ ) lowercase__ : Dict = m.hexdigest() else: lowercase__ : Optional[Any] = None return {"num_bytes": os.path.getsize(lowercase_ ), "checksum": checksum} def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
12
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Any = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } A__ : str = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } A__ : Any = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any = ['input_ids', 'attention_mask'] lowerCamelCase : Optional[Any] = DistilBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowerCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowerCamelCase : Optional[Any] = do_lower_case __lowerCamelCase : Dict = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : Tuple = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = do_lower_case def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: __lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Dict = [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ = TypeVar('''T''') def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (position - 1) // 2 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 1 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 2 class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : list[tuple[T, int]] = [] _a : dict[T, int] = {} _a : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __lowercase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __lowercase ( self , _a , _a ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_a ) def __lowercase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a : List[Any] = self.heap[0] self._bubble_down(_a ) return elem def __lowercase ( self , _a , _a ) -> None: # Update the weight of the given key _a : Optional[int] = self.position_map[elem] _a : Any = (elem, weight) if position > 0: _a : Any = get_parent_position(_a ) _a , _a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_a ) else: self._bubble_down(_a ) else: self._bubble_down(_a ) def __lowercase ( self , _a ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None _a : str = get_parent_position(_a ) _a , _a : List[str] = self.heap[curr_pos] _a , _a : List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_a , _a ) return self._bubble_up(_a ) return None def __lowercase ( self , _a ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a : Union[str, Any] = self.position_map[elem] _a , _a : List[str] = self.heap[curr_pos] _a : int = get_child_left_position(_a ) _a : Optional[int] = get_child_right_position(_a ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a : Union[str, Any] = self.heap[child_left_position] _a , _a : Tuple = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) if child_left_position < self.elements: _a , _a : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) else: return None if child_right_position < self.elements: _a , _a : Optional[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) return None def __lowercase ( self , _a , _a ) -> None: # Swap the nodes at the given positions _a : str = self.heap[nodea_pos][0] _a : str = self.heap[nodea_pos][0] _a , _a : Optional[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a : List[str] = nodea_pos _a : List[str] = nodea_pos class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : dict[T, dict[T, int]] = {} _a : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __lowercase ( self , _a ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a : Optional[Any] = {} self.nodes += 1 def __lowercase ( self , _a , _a , _a ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_a ) self.add_node(_a ) _a : int = weight _a : int = weight def __UpperCAmelCase ( __a : GraphUndirectedWeighted[T] ,) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" _a : dict[T, int] = {node: maxsize for node in graph.connections} _a : dict[T, T | None] = {node: None for node in graph.connections} _a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__a ,__a ) if priority_queue.is_empty(): return dist, parent # initialization _a : List[str] = priority_queue.extract_min() _a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : List[Any] = node # running prim's algorithm while not priority_queue.is_empty(): _a : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : Optional[Any] = node return dist, parent
14
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : int=18 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Optional[Any]=400 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , ) -> int: """simple docstring""" lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = DPTImageProcessor if is_vision_available() else None def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = DPTImageProcessingTester(self ) @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
15
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
0
from collections import deque from .hash_table import HashTable class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , *__A : str , **__A : Union[str, Any] ): super().__init__(*__A , **__A ) def lowerCAmelCase_ ( self : str , __A : str , __A : Optional[Any] ): __A : Tuple = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__A ) __A : Optional[int] = self.values[key] def lowerCAmelCase_ ( self : Any ): return ( sum(self.charge_factor - len(__A ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase_ ( self : Optional[int] , __A : int , __A : Union[str, Any]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__A ) == 0 ): return key return super()._collision_resolution(__A , __A )
17
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = ["input_features", "attention_mask"] def __init__( self , _lowerCAmelCase=80 , _lowerCAmelCase=16000 , _lowerCAmelCase=80 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Tuple: super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = num_mel_bins _lowerCAmelCase = do_ceptral_normalize _lowerCAmelCase = normalize_means _lowerCAmelCase = normalize_vars _lowerCAmelCase = True def _snake_case ( self , _lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ) _lowerCAmelCase = ta_kaldi.fbank(_lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: _lowerCAmelCase = x[:input_length].mean(axis=0 ) _lowerCAmelCase = np.subtract(_lowerCAmelCase , _lowerCAmelCase ) if normalize_vars: _lowerCAmelCase = x[:input_length].std(axis=0 ) _lowerCAmelCase = np.divide(_lowerCAmelCase , _lowerCAmelCase ) if input_length < x.shape[0]: _lowerCAmelCase = padding_value # make sure array is in float32 _lowerCAmelCase = x.astype(np.floataa ) return x def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[np.ndarray]: _lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCAmelCase , _lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_lowerCAmelCase , _lowerCAmelCase ) ] def __call__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCAmelCase = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [raw_speech] # extract fbank features _lowerCAmelCase = [self._extract_fbank_features(_lowerCAmelCase ) for waveform in raw_speech] # convert into correct format for padding _lowerCAmelCase = BatchFeature({"input_features": features} ) _lowerCAmelCase = self.pad( _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) # make sure list is in array format _lowerCAmelCase = padded_inputs.get("input_features" ) if isinstance(input_features[0] , _lowerCAmelCase ): _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features] _lowerCAmelCase = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _lowerCAmelCase = ( np.array(_lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowerCAmelCase = self.normalize( padded_inputs["input_features"] , attention_mask=_lowerCAmelCase ) if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs
18
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _a = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _a = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _a = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence'''), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence''') , id='''references'''), }) , ) def UpperCAmelCase ( self , __a , __a , __a = 1 , __a = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a) }
19
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase: Optional[int] = 16 _lowerCAmelCase: Optional[Any] = 32 def _lowercase( __a : Accelerator , __a : int = 16 ): a__ =AutoTokenizer.from_pretrained('bert-base-cased' ) a__ =load_dataset('glue' , 'mrpc' ) def tokenize_function(__a : Tuple ): # max_length=None => use the model max length (it's actually the default) a__ =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ =datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__a : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ =16 elif accelerator.mixed_precision != "no": a__ =8 else: a__ =None return tokenizer.pad( __a , padding='longest' , max_length=__a , pad_to_multiple_of=__a , return_tensors='pt' , ) # Instantiate dataloaders. a__ =DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a ) a__ =DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase: Any = mocked_dataloaders # noqa: F811 def _lowercase( __a : List[Any] , __a : Union[str, Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __a ) == "1": a__ =2 # Initialize accelerator a__ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ =config['lr'] a__ =int(config['num_epochs'] ) a__ =int(config['seed'] ) a__ =int(config['batch_size'] ) a__ =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation a__ =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a__ =batch_size // MAX_GPU_BATCH_SIZE a__ =MAX_GPU_BATCH_SIZE set_seed(__a ) a__ , a__ =get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ =model.to(accelerator.device ) # Instantiate optimizer a__ =AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler a__ =get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ =accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a__ =model(**__a ) a__ =outputs.loss a__ =loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() a__ =0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ =model(**__a ) a__ =outputs.logits.argmax(dim=-1 ) a__ , a__ =accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__a ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples a__ =predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__a , references=__a , ) a__ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) def _lowercase( ): a__ =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__a , default=__a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) a__ =parser.parse_args() a__ ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__a , __a ) if __name__ == "__main__": main()
20
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A ( UpperCamelCase__ ): @slow @require_torch def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) __magic_name__ : int =BertTokenizer.from_pretrained("""bert-base-uncased""" ) __magic_name__ : str =bertabert.config.encoder.vocab_size __magic_name__ : Union[str, Any] =tokenizer.sep_token_id __magic_name__ : Optional[Any] =tokenizer.cls_token_id __magic_name__ : str =1_28 __magic_name__ : List[str] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) __magic_name__ : Union[str, Any] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) __magic_name__ : Union[str, Any] =train_dataset.select(range(32 ) ) __magic_name__ : str =val_dataset.select(range(16 ) ) __magic_name__ : int =4 def _map_to_encoder_decoder_inputs(__snake_case :Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] __magic_name__ : Dict =tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__snake_case , max_length=5_12 ) __magic_name__ : Dict =tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__snake_case , max_length=1_28 ) __magic_name__ : Optional[int] =inputs.input_ids __magic_name__ : Tuple =inputs.attention_mask __magic_name__ : Any =outputs.input_ids __magic_name__ : Tuple =outputs.input_ids.copy() __magic_name__ : Union[str, Any] =[ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __magic_name__ : List[str] =outputs.attention_mask assert all(len(__snake_case ) == 5_12 for x in inputs.input_ids ) assert all(len(__snake_case ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(__snake_case :Tuple ): __magic_name__ : Tuple =pred.label_ids __magic_name__ : Any =pred.predictions # all unnecessary tokens are removed __magic_name__ : Optional[int] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : List[Any] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : Optional[Any] =sum([int(pred_str[i] == label_str[i] ) for i in range(len(__snake_case ) )] ) / len(__snake_case ) return {"accuracy": accuracy} # map train dataset __magic_name__ : Dict =train_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset __magic_name__ : List[str] =val_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) __magic_name__ : Tuple =self.get_auto_remove_tmp_dir() __magic_name__ : Optional[int] =SeqaSeqTrainingArguments( output_dir=__snake_case , per_device_train_batch_size=__snake_case , per_device_eval_batch_size=__snake_case , predict_with_generate=__snake_case , evaluation_strategy="""steps""" , do_train=__snake_case , do_eval=__snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __magic_name__ : List[str] =SeqaSeqTrainer( model=__snake_case , args=__snake_case , compute_metrics=_compute_metrics , train_dataset=__snake_case , eval_dataset=__snake_case , tokenizer=__snake_case , ) # start training trainer.train()
21
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : List[str] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
def _snake_case (__lowercase): UpperCamelCase_ = [0] * len(__lowercase) UpperCamelCase_ = [] UpperCamelCase_ = [1] * len(__lowercase) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowercase)): if indegree[i] == 0: queue.append(__lowercase) while queue: UpperCamelCase_ = queue.pop(0) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowercase) print(max(__lowercase)) # Adjacency list of Graph snake_case__ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
23
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : str = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: List[str] = '''conditional_detr''' lowercase__: Optional[int] = ['''past_key_values'''] lowercase__: Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , __magic_name__ : Optional[Any]=True , __magic_name__ : int=None , __magic_name__ : str=3 , __magic_name__ : Tuple=3_00 , __magic_name__ : str=6 , __magic_name__ : Any=20_48 , __magic_name__ : Optional[int]=8 , __magic_name__ : Dict=6 , __magic_name__ : Optional[int]=20_48 , __magic_name__ : List[str]=8 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : Any=0.0 , __magic_name__ : int=True , __magic_name__ : List[str]="relu" , __magic_name__ : Tuple=2_56 , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : int=0.0 , __magic_name__ : str=0.02 , __magic_name__ : List[str]=1.0 , __magic_name__ : Union[str, Any]=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[int]=True , __magic_name__ : Any=False , __magic_name__ : Dict=2 , __magic_name__ : Any=5 , __magic_name__ : Dict=2 , __magic_name__ : int=1 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[int]=5 , __magic_name__ : Dict=2 , __magic_name__ : Any=0.25 , **__magic_name__ : Dict , ) -> int: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __snake_case : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = backbone_config.get("""model_type""" ) __snake_case : Dict = CONFIG_MAPPING[backbone_model_type] __snake_case : List[Any] = config_class.from_dict(__magic_name__ ) __snake_case : Any = use_timm_backbone __snake_case : Tuple = backbone_config __snake_case : Optional[Any] = num_channels __snake_case : int = num_queries __snake_case : Dict = d_model __snake_case : Optional[int] = encoder_ffn_dim __snake_case : int = encoder_layers __snake_case : List[Any] = encoder_attention_heads __snake_case : List[Any] = decoder_ffn_dim __snake_case : int = decoder_layers __snake_case : Optional[Any] = decoder_attention_heads __snake_case : Any = dropout __snake_case : int = attention_dropout __snake_case : Optional[Any] = activation_dropout __snake_case : Tuple = activation_function __snake_case : Union[str, Any] = init_std __snake_case : int = init_xavier_std __snake_case : Any = encoder_layerdrop __snake_case : Union[str, Any] = decoder_layerdrop __snake_case : List[str] = encoder_layers __snake_case : Tuple = auxiliary_loss __snake_case : str = position_embedding_type __snake_case : Dict = backbone __snake_case : str = use_pretrained_backbone __snake_case : str = dilation # Hungarian matcher __snake_case : int = class_cost __snake_case : Tuple = bbox_cost __snake_case : str = giou_cost # Loss coefficients __snake_case : Any = mask_loss_coefficient __snake_case : Any = dice_loss_coefficient __snake_case : List[str] = cls_loss_coefficient __snake_case : int = bbox_loss_coefficient __snake_case : Optional[int] = giou_loss_coefficient __snake_case : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return self.d_model def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __snake_case : Union[str, Any] = self.backbone_config.to_dict() __snake_case : Dict = self.__class__.model_type return output class _A ( __lowercase ): lowercase__: Dict = version.parse('''1.11''' ) @property def lowercase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : List[Any] ) -> float: """simple docstring""" return 1E-5 @property def lowercase__ ( self : str ) -> int: """simple docstring""" return 12
26
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Dict = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = 32 , snake_case_=PILImageResampling.BILINEAR , snake_case_ = True , **snake_case_ , ): _A = do_resize _A = do_rescale _A = size_divisor _A = resample super().__init__(**snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ): _A, _A = get_image_size(snake_case_ ) # Rounds the height and width down to the closest multiple of size_divisor _A = height // size_divisor * size_divisor _A = width // size_divisor * size_divisor _A = resize(snake_case_ , (new_h, new_w) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) return image def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ): return rescale(image=snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _A = do_resize if do_resize is not None else self.do_resize _A = do_rescale if do_rescale is not None else self.do_rescale _A = size_divisor if size_divisor is not None else self.size_divisor _A = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) _A = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. _A = [to_numpy_array(snake_case_ ) for img in images] if do_resize: _A = [self.resize(snake_case_ , size_divisor=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _A = [self.rescale(snake_case_ , scale=1 / 255 ) for image in images] _A = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
27
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
0
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _a ( nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = nn.Linear(3, 4 ) SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(4, 5 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(A ) ) ) class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(A, model.state_dict() ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(A, 'index.json' ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, F"{key}.dat" ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE : int = torch.randn(2, 3, dtype=A ) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : str = offload_weight(A, 'weight', A, {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, 'weight.dat' ) self.assertTrue(os.path.isfile(A ) ) self.assertDictEqual(A, {'weight': {'shape': [2, 3], 'dtype': str(A ).split('.' )[1]}} ) SCREAMING_SNAKE_CASE : Any = load_offloaded_weight(A, index['weight'] ) self.assertTrue(torch.equal(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ModelForTest() SCREAMING_SNAKE_CASE : List[str] = model.state_dict() SCREAMING_SNAKE_CASE : str = {k: v for k, v in state_dict.items() if 'linear2' not in k} SCREAMING_SNAKE_CASE : Optional[Any] = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) SCREAMING_SNAKE_CASE : Any = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v for k, v in state_dict.items() if 'weight' in k} SCREAMING_SNAKE_CASE : int = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) # Duplicates are removed SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = {'a.1': 0, 'a.10': 1, 'a.2': 2} SCREAMING_SNAKE_CASE : Dict = extract_submodules_state_dict(A, ['a.1', 'a.2'] ) self.assertDictEqual(A, {'a.1': 0, 'a.2': 2} ) SCREAMING_SNAKE_CASE : Tuple = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} SCREAMING_SNAKE_CASE : str = extract_submodules_state_dict(A, ['a.1', 'a.2'] ) self.assertDictEqual(A, {'a.1.a': 0, 'a.2.a': 2} )
28
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=18 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,) -> Dict: UpperCAmelCase_ : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : List[str] = min_resolution UpperCAmelCase_ : Any = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : str = do_normalize def a__ ( self ) -> Optional[int]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def a__ ( self ) -> int: UpperCAmelCase_ : Dict = ImageGPTImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''clusters''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def a__ ( self ) -> int: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : Tuple = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,obj[key] ) ) else: self.assertEqual(obj[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Any = os.path.join(_SCREAMING_SNAKE_CASE ,'''image_processor.json''' ) image_processor_first.to_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_json_file(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.image_processing_class.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def a__ ( self ) -> str: pass def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) UpperCAmelCase_ : Optional[int] = Image.open(dataset[4]['''file'''] ) UpperCAmelCase_ : Any = Image.open(dataset[5]['''file'''] ) UpperCAmelCase_ : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) UpperCAmelCase_ : Any = prepare_images() # test non-batched UpperCAmelCase_ : Tuple = image_processing(images[0] ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1_024) ) UpperCAmelCase_ : str = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,_SCREAMING_SNAKE_CASE ) # test batched UpperCAmelCase_ : List[str] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1_024) ) UpperCAmelCase_ : List[str] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,_SCREAMING_SNAKE_CASE )
30
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , *_lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = OpenAIGPTForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Tuple ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = OpenAIGPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is SCREAMING_SNAKE_CASE_ = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
0
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCamelCase__ : List[Any] = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = {} state_dict.pop('''pixel_mean''' , __lowerCAmelCase ) state_dict.pop('''pixel_std''' , __lowerCAmelCase ) snake_case__ = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(2 ) ) if layer_nb == 0: snake_case__ = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: snake_case__ = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: snake_case__ = key.replace('''layers.2''' , '''proj_out''' ) snake_case__ = value snake_case__ = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="ybelkada/segment-anything" ) -> Tuple: snake_case__ = hf_hub_download(__lowerCAmelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: snake_case__ = SamConfig() elif "sam_vit_l" in model_name: snake_case__ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ = SamConfig( vision_config=__lowerCAmelCase , ) elif "sam_vit_h" in model_name: snake_case__ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ = SamConfig( vision_config=__lowerCAmelCase , ) snake_case__ = torch.load(__lowerCAmelCase , map_location='''cpu''' ) snake_case__ = replace_keys(__lowerCAmelCase ) snake_case__ = SamImageProcessor() snake_case__ = SamProcessor(image_processor=__lowerCAmelCase ) snake_case__ = SamModel(__lowerCAmelCase ) hf_model.load_state_dict(__lowerCAmelCase ) snake_case__ = hf_model.to('''cuda''' ) snake_case__ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' ) snake_case__ = [[[400, 650]]] snake_case__ = [[1]] snake_case__ = processor(images=np.array(__lowerCAmelCase ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case__ = hf_model(**__lowerCAmelCase ) snake_case__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case__ = processor( images=np.array(__lowerCAmelCase ) , input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case__ = hf_model(**__lowerCAmelCase ) snake_case__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case__ = ((75, 275, 1725, 850),) snake_case__ = processor(images=np.array(__lowerCAmelCase ) , input_boxes=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case__ = hf_model(**__lowerCAmelCase ) snake_case__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case__ = [[[400, 650], [800, 650]]] snake_case__ = [[1, 1]] snake_case__ = processor( images=np.array(__lowerCAmelCase ) , input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case__ = hf_model(**__lowerCAmelCase ) snake_case__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": lowerCamelCase__ : Tuple = argparse.ArgumentParser() lowerCamelCase__ : int = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
33
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
0
"""simple docstring""" import inspect import unittest class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase__ ( self) -> Union[str, Any]: import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase = inspect.getmembers(lowerCamelCase_ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase = '''k-diffusion''' elif backend == "invisible_watermark": UpperCamelCase = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
34
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = MgpstrTokenizer __lowerCamelCase : Tuple = False __lowerCamelCase : int = {} __lowerCamelCase : Optional[int] = False def snake_case_ ( self ): '''simple docstring''' super().setUp() # fmt: off snake_case : Optional[int] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case : Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ ,range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) snake_case : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" ) def snake_case_ ( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : str = """tester""" snake_case : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case : Union[str, Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case : str = tokenizer.encode([special_token] ,add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,1 ) snake_case : Dict = tokenizer.decode(SCREAMING_SNAKE_CASE_ ,skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case , snake_case : List[str] = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) snake_case : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) snake_case : str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Dict = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(len(SCREAMING_SNAKE_CASE_ ) ,0 ) snake_case : Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) self.assertEqual(text_a.replace(""" """ ,"""""" ) ,SCREAMING_SNAKE_CASE_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def snake_case_ ( self ): '''simple docstring''' pass
36
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
from math import sqrt def UpperCamelCase_ ( __a = 1_000_000 ) -> int: a__ : int = 0 a__ : int = 0 a__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
37
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__magic_name__ ) ) def UpperCamelCase__ ( __magic_name__ : list[list[int]] , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : int ) -> bool: '''simple docstring''' if index == len(__magic_name__ ): return True # Recursive Step for i in range(__magic_name__ ): if valid_coloring(graph[index] , __magic_name__ , __magic_name__ ): # Color current vertex snake_case__ : Dict = i # Validate coloring if util_color(__magic_name__ , __magic_name__ , __magic_name__ , index + 1 ): return True # Backtrack snake_case__ : Tuple = -1 return False def UpperCamelCase__ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[int]: '''simple docstring''' snake_case__ : Dict = [-1] * len(__magic_name__ ) if util_color(__magic_name__ , __magic_name__ , __magic_name__ , 0 ): return colored_vertices return []
38
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = XLMRobertaTokenizer SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[str] = True def snake_case__( self : Any ) ->Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = XLMRobertaTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__( self : Optional[int] ) ->int: snake_case_ = '''<pad>''' snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_UpperCamelCase ) , 1_0_0_2 ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def snake_case__( self : int ) ->Any: snake_case_ = XLMRobertaTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) snake_case_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__( self : Tuple ) ->Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(_UpperCamelCase ) snake_case_ = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case_ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(_UpperCamelCase ) snake_case_ = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=True snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase ) snake_case_ = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(_UpperCamelCase ) snake_case_ = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=False snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase ) snake_case_ = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(_UpperCamelCase ) snake_case_ = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) @cached_property def snake_case__( self : int ) ->List[str]: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def snake_case__( self : Any ) ->Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCamelCase , f.name ) snake_case_ = XLMRobertaTokenizer(f.name , keep_accents=_UpperCamelCase ) snake_case_ = pickle.dumps(_UpperCamelCase ) pickle.loads(_UpperCamelCase ) def snake_case__( self : Any ) ->Optional[int]: if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = '''I was born in 92000, and this is falsé.''' snake_case_ = tokenizer.tokenize(_UpperCamelCase ) snake_case_ = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) snake_case_ = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(_UpperCamelCase ) snake_case_ = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : Optional[Any] ) ->str: snake_case_ = '''Hello World!''' snake_case_ = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def snake_case__( self : str ) ->Tuple: snake_case_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case_ = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def snake_case__( self : Dict ) ->List[str]: # fmt: off snake_case_ = {'''input_ids''': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
39
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
0
import datasets __UpperCAmelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' __UpperCAmelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' __UpperCAmelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] ) -> Any: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ), codebase_urls=[], reference_urls=[], format='numpy', ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )}
40
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _A ( A__ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(A__ , 0 , A__ , args=(A__) )[0] def _A ( A__ , A__ ): """simple docstring""" return math.pow(A__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
41
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' super().__init__() lowerCamelCase_ = model lowerCamelCase_ = 2 lowerCamelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: # load longformer model from model identifier lowerCamelCase_ = LongformerModel.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = LightningModel(__UpperCamelCase ) lowerCamelCase_ = torch.load(__UpperCamelCase ,map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowerCamelCase_ = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
42
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] ): super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self :Optional[int] , lowerCamelCase__ :int = 1 , lowerCamelCase__ :int = 1_00 , lowerCamelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ :Optional[float] = None , lowerCamelCase__ :bool = True , ): if audio_length_in_s is None: UpperCamelCase__ :List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase__ :Tuple = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase__ :str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCamelCase__ :Tuple = int(lowerCamelCase__ ) if sample_size % down_scale_factor != 0: UpperCamelCase__ :Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" """ process.""" ) UpperCamelCase__ :Dict = int(lowerCamelCase__ ) UpperCamelCase__ :Any = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase__ :Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase__ :Union[str, Any] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ , device=audio.device ) UpperCamelCase__ :List[Any] = self.scheduler.timesteps.to(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase__ :Tuple = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase__ :str = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample UpperCamelCase__ :Any = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase__ :Optional[int] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase__ )
45
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase : Optional[int] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger('''transformers.models.speecht5''') def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] ): hf_model.apply_weight_norm() __a : int = checkpoint['input_conv.weight_g'] __a : Optional[Any] = checkpoint['input_conv.weight_v'] __a : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): __a : Tuple = checkpoint[f'''upsamples.{i}.1.weight_g'''] __a : Tuple = checkpoint[f'''upsamples.{i}.1.weight_v'''] __a : Optional[Any] = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __a : Optional[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] __a : Tuple = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] __a : int = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] __a : List[str] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] __a : str = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] __a : Optional[Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] __a : List[str] = checkpoint['output_conv.1.weight_g'] __a : int = checkpoint['output_conv.1.weight_v'] __a : List[str] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any]=None , ): if config_path is not None: __a : List[Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase_ ) else: __a : Optional[Any] = SpeechTaHifiGanConfig() __a : Tuple = SpeechTaHifiGan(lowerCamelCase_ ) __a : Optional[int] = torch.load(lowerCamelCase_ ) load_weights(orig_checkpoint['model']['generator'] , lowerCamelCase_ , lowerCamelCase_ ) __a : List[Any] = np.load(lowerCamelCase_ ) __a : Optional[Any] = stats[0].reshape(-1 ) __a : str = stats[1].reshape(-1 ) __a : Union[str, Any] = torch.from_numpy(lowerCamelCase_ ).float() __a : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).float() model.save_pretrained(lowerCamelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
47
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = KandinskyInpaintPipeline snake_case__ :str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ :List[str] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ :List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ :Tuple = False @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return 100 @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase__ = MultilingualCLIP(__magic_name__ ) lowerCAmelCase__ = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ = UNetaDConditionModel(**__magic_name__ ) return model @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = self.dummy_tokenizer lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="epsilon" , thresholding=__magic_name__ , ) lowerCAmelCase__ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(__magic_name__ ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(__magic_name__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "cpu" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__magic_name__ ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = "a hat" lowerCAmelCase__ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) lowerCAmelCase__ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ = pipeline( __magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self : Tuple ): __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 2_56 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 def a ( self : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = cva.imread(_lowercase , 0 ) __UpperCAmelCase = copy.deepcopy(self.img ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) __UpperCAmelCase = np.sum(_lowercase ) for i in range(len(_lowercase ) ): __UpperCAmelCase = x[i] / self.k self.sk += prk __UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: __UpperCAmelCase = int(last % last ) __UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_lowercase ) __UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) __UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: __UpperCAmelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def a ( self : Tuple ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def a ( self : Union[str, Any] ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": _lowercase : Optional[int] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _lowercase : Union[str, Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
49
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
0
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): lowerCamelCase__ = multiprocessing.Manager() lowerCamelCase__ = manager.list() lowerCamelCase__ = multiprocessing.Process(target=__lowerCAmelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCamelCase__ = shutil.rmtree lowerCamelCase__ = os.rmdir lowerCamelCase__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCamelCase__ = {} with swallow_io(): with time_limit(__lowerCAmelCase ): exec(__lowerCAmelCase , __lowerCAmelCase ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. lowerCamelCase__ = rmtree lowerCamelCase__ = rmdir lowerCamelCase__ = chdir @contextlib.contextmanager def A__ ( __lowerCAmelCase : Tuple ): def signal_handler(__lowerCAmelCase : str , __lowerCAmelCase : Tuple ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __lowerCAmelCase ) signal.signal(signal.SIGALRM , __lowerCAmelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A__ ( ): lowerCamelCase__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowerCAmelCase ): with contextlib.redirect_stderr(__lowerCAmelCase ): with redirect_stdin(__lowerCAmelCase ): yield @contextlib.contextmanager def A__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowerCAmelCase ): yield dirname class UpperCamelCase__ (a ): '''simple docstring''' pass class UpperCamelCase__ (io.StringIO ): '''simple docstring''' def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): raise OSError def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): raise OSError def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): raise OSError def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return False class UpperCamelCase__ (contextlib._RedirectStream ): # type: ignore '''simple docstring''' _UpperCamelCase = 'stdin' @contextlib.contextmanager def A__ ( __lowerCAmelCase : Optional[int] ): if root == ".": yield return lowerCamelCase__ = os.getcwd() os.chdir(__lowerCAmelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[str]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCamelCase__ = None lowerCamelCase__ = None import os lowerCamelCase__ = """1""" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None import shutil lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None import subprocess lowerCamelCase__ = None # type: ignore lowerCamelCase__ = None import sys lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None
50
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a__ : Optional[int] , a__ : List[str]=99 , a__ : str=13 , a__ : List[Any]=7 , a__ : Union[str, Any]=9 , a__ : int=True , a__ : Optional[Any]=True , a__ : Union[str, Any]=False , a__ : List[Any]=32 , a__ : Dict=5 , a__ : Dict=4 , a__ : int=37 , a__ : List[Any]=8 , a__ : List[str]=0.1 , a__ : Dict=0.002 , a__ : Dict=1 , a__ : Optional[int]=0 , a__ : Tuple=0 , a__ : int=None , a__ : Any=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = encoder_seq_length UpperCAmelCase = decoder_seq_length # For common tests UpperCAmelCase = self.decoder_seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = d_ff UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = dropout_rate UpperCAmelCase = initializer_factor UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = decoder_start_token_id UpperCAmelCase = None UpperCAmelCase = decoder_layers def __snake_case ( self : Tuple ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __snake_case ( self : Optional[Any] , a__ : Any , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any]=None , a__ : Union[str, Any]=None , a__ : int=None , a__ : List[str]=None , a__ : Dict=None , ): if attention_mask is None: UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=a__ ) if decoder_head_mask is None: UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=a__ ) if cross_attn_head_mask is None: UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __snake_case ( self : List[str] ): UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = self.get_config() UpperCAmelCase = config.num_attention_heads UpperCAmelCase = self.prepare_inputs_dict(a__ , a__ , a__ ) return config, input_dict def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self : Optional[int] ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : Tuple ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : List[str] , a__ : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any , a__ : Tuple , a__ : List[Any] , ): UpperCAmelCase = UMTaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( input_ids=a__ , decoder_input_ids=a__ , attention_mask=a__ , decoder_attention_mask=a__ , ) UpperCAmelCase = model(input_ids=a__ , decoder_input_ids=a__ ) UpperCAmelCase = result.last_hidden_state UpperCAmelCase = result.past_key_values UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(a__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __snake_case ( self : Optional[Any] , a__ : str , a__ : Dict , a__ : Dict , a__ : int , a__ : Tuple , a__ : int , ): UpperCAmelCase = UMTaModel(config=a__ ).get_decoder().to(a__ ).eval() # first forward pass UpperCAmelCase = model(a__ , use_cache=a__ ) UpperCAmelCase = model(a__ ) UpperCAmelCase = model(a__ , use_cache=a__ ) self.parent.assertTrue(len(a__ ) == len(a__ ) ) self.parent.assertTrue(len(a__ ) == len(a__ ) + 1 ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = model(a__ )['''last_hidden_state'''] UpperCAmelCase = model(a__ , past_key_values=a__ )['''last_hidden_state'''] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __snake_case ( self : Optional[int] , a__ : Tuple , a__ : Dict , ): UpperCAmelCase = UMTaModel(config=a__ ).to(a__ ).half().eval() UpperCAmelCase = model(**a__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(a__ ).any().item() ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase =(UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =True _lowerCamelCase =True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase =[0.8, 0.9] def __snake_case ( self : Optional[int] ): UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( a__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=a__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs[0] UpperCAmelCase = UMTaForConditionalGeneration(a__ ).eval() model.to(a__ ) UpperCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=a__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=a__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=a__ ), } for attn_name, (name, mask) in zip(a__ , head_masking.items() ): UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=a__ ) UpperCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=a__ , return_dict_in_generate=a__ , **a__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __snake_case ( self : Tuple ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __snake_case ( self : Dict ): UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=a__ ).to(a__ ) UpperCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=a__ , legacy=a__ ) UpperCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase = tokenizer(a__ , return_tensors='''pt''' , padding=a__ ).input_ids # fmt: off UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(a__ , a__ ) UpperCAmelCase = model.generate(input_ids.to(a__ ) ) UpperCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , a__ )
51
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = RobertaTokenizer __lowerCAmelCase = RobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = {'''cls_token''': '''<s>'''} def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a : Optional[Any] = {'''unk_token''': '''<unk>'''} __a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = '''lower newer''' __a : Any = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : int = '''lower newer''' __a : int = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __a : Optional[int] = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : str = tokens + [tokenizer.unk_token] __a : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowerCamelCase ( self ): __a : List[str] = self.tokenizer_class.from_pretrained('''roberta-base''' ) __a : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase ) __a : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase ) __a : List[Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : str = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __a : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self ): __a : Optional[Any] = self.get_tokenizer() __a : str = '''Encode this sequence.''' __a : List[Any] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __a : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens __a : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __a : List[Any] = '''Encode <mask> sequence''' __a : Optional[Any] = '''Encode <mask>sequence''' __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = encoded.index(_UpperCAmelCase ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase ) __a : Tuple = encoded.index(_UpperCAmelCase ) __a : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : Tuple = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : List[str] = '''A, <mask> AllenNLP sentence.''' __a : Dict = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) __a : Tuple = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __a : int = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __a : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _lowerCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __a : List[Any] = f"""{text_of_1_token} {text_of_1_token}""" __a : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Dict = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[str] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Dict = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Optional[int] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Optional[int] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : int = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Optional[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
52
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _snake_case : int = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any ): __lowerCAmelCase = set() __lowerCAmelCase = [] def parse_line(lowerCAmelCase_ : str ): for line in fp: if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase_ ) > 0: __lowerCAmelCase = '\n'.join(lowerCAmelCase_ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(lowerCAmelCase_ ) buffer.clear() continue else: __lowerCAmelCase = line.strip() buffer.append(lowerCAmelCase_ ) if from_gh: for filename in os.listdir(lowerCAmelCase_ ): __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) else: try: with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int ): __lowerCAmelCase = set() __lowerCAmelCase = [os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) for p in os.listdir(lowerCAmelCase_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase_, lowerCAmelCase_ ) ) return selected_warnings if __name__ == "__main__": def a_ ( lowerCAmelCase_ : str ): return values.split(',' ) _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) _snake_case : List[Any] = parser.parse_args() _snake_case : List[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _snake_case : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _snake_case : List[str] = extract_warnings(args.output_dir, args.targets) _snake_case : int = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __lowercase : List[Any] ={ """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =XLNetConfig.from_json_file(lowercase__ ) UpperCAmelCase_ =finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_ =finetuning_task UpperCAmelCase_ =GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ =XLNetForSequenceClassification(lowercase__ ) elif "squad" in finetuning_task: UpperCAmelCase_ =finetuning_task UpperCAmelCase_ =XLNetForQuestionAnswering(lowercase__ ) else: UpperCAmelCase_ =XLNetLMHeadModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) print(F'Save PyTorch model to {os.path.abspath(lowercase__ )}' ) torch.save(model.state_dict() , lowercase__ ) print(F'Save configuration file to {os.path.abspath(lowercase__ )}' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) __lowercase : Optional[int] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
54
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ,A : Optional[Any] ,): __A = parent __A = 13 __A = 7 __A = 30 __A = self.seq_length + self.mem_len __A = 15 __A = True __A = True __A = 99 __A = [10, 50, 80] __A = 32 __A = 32 __A = 4 __A = 8 __A = 1_28 __A = 2 __A = 2 __A = None __A = 1 __A = 0 __A = 3 __A = self.vocab_size - 1 __A = 0.01 def UpperCamelCase_ ( self : Union[str, Any] ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase_ ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : str ,A : Optional[Any] ,A : Union[str, Any] ): __A = TFTransfoXLModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a} __A , __A = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ,A : Any ,A : Any ,A : Optional[Any] ): __A = TFTransfoXLLMHeadModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() __A , __A = model([input_ids_a, mems_a] ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ): __A = TFTransfoXLForSequenceClassification(A ) __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int ): __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case_ = () if is_tf_available() else () snake_case_ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[Any] ,A : Any ,A : Optional[Any] ,A : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase_ ( self : Optional[Any] ): __A = TFTransfoXLModelTester(self ) __A = ConfigTester(self ,config_class=A ,d_embed=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def UpperCamelCase_ ( self : str ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Tuple ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __A = model_class(A ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __A = model.get_output_embeddings() assert isinstance(A ,tf.keras.layers.Layer ) __A = model.get_bias() assert name is None else: __A = model.get_output_embeddings() assert x is None __A = model.get_bias() assert name is None def UpperCamelCase_ ( self : Union[str, Any] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __A = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __A = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __A = model.generate(A ,max_length=2_00 ,do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() ,A )
55
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
0
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : str ) -> list[int]: """simple docstring""" return [ord(lowercase__ ) - 9_6 for elem in plain] def _a (lowercase__ : list[int] ) -> str: """simple docstring""" return "".join(chr(elem + 9_6 ) for elem in encoded ) def _a () -> None: """simple docstring""" __snake_case = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowercase__ ) print('Decoded:' , decode(lowercase__ ) ) if __name__ == "__main__": main()
56
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =StableDiffusionInstructPixaPixPipeline a : List[str] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) UpperCamelCase_: List[Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) UpperCamelCase_: int = CLIPTextModel(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_: Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): UpperCamelCase_: str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ) if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_: List[Any] = torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_: Tuple = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _a ( self ): UpperCamelCase_: List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: int = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: int = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: str = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: int = self.get_dummy_components() UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Any = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Dict = 'french fries' UpperCamelCase_: Optional[int] = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) UpperCamelCase_: List[str] = output.images UpperCamelCase_: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Dict = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Tuple = self.get_dummy_components() UpperCamelCase_: Any = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: List[Any] = [inputs['prompt']] * 2 UpperCamelCase_: Optional[Any] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 UpperCamelCase_: Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image / 2 + 0.5 UpperCamelCase_: int = image.permute(0 , 3 , 1 , 2 ) UpperCamelCase_: int = image.repeat(2 , 1 , 1 , 1 ) UpperCamelCase_: List[Any] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) UpperCamelCase_: Optional[int] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: str = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Optional[int] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Tuple = [round(_lowerCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(_lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Tuple = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _a ( self ): UpperCamelCase_: int = self.get_dummy_components() UpperCamelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: str = VaeImageProcessor(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = pipe(**self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='pt' ) )[0] UpperCamelCase_: Union[str, Any] = components['vae'] UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCamelCase_: str = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCamelCase_: Dict = pipe(**_lowerCamelCase )[0] UpperCamelCase_: str = np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCamelCase , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase=0 ): UpperCamelCase_: int = torch.manual_seed(_lowerCamelCase ) UpperCamelCase_: int = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) UpperCamelCase_: Union[str, Any] = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def _a ( self ): UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: List[str] = self.get_inputs() UpperCamelCase_: Optional[int] = pipe(**_lowerCamelCase ).images UpperCamelCase_: Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Optional[Any] = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) UpperCamelCase_: List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Union[str, Any] = self.get_inputs() UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ).images UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Any = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) UpperCamelCase_: Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: int = self.get_inputs() UpperCamelCase_: Any = pipe(**_lowerCamelCase ).images UpperCamelCase_: str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: str = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Optional[Any] = 0 def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: UpperCamelCase_: List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase_: List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) UpperCamelCase_: Optional[Any] = latents[0, -3:, -3:, -1] UpperCamelCase_: Tuple = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCamelCase_: str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) UpperCamelCase_: Optional[int] = latents[0, -3:, -3:, -1] UpperCamelCase_: Any = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCamelCase_: Tuple = False UpperCamelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) UpperCamelCase_: Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Optional[Any] = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase_: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) UpperCamelCase_: Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase_: Union[str, Any] = self.get_inputs() UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ) UpperCamelCase_: str = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _a ( self ): UpperCamelCase_: Tuple = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase_: Dict = inputs['image'].resize((5_0_4, 5_0_4) ) UpperCamelCase_: int = 'timbrooks/instruct-pix2pix' UpperCamelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Tuple = pipe(**_lowerCamelCase ) UpperCamelCase_: Optional[int] = output.images[0] UpperCamelCase_: List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) UpperCamelCase_: Union[str, Any] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
57
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gpt_neox''' def __init__( self , _lowercase=5_0_4_3_2 , _lowercase=6_1_4_4 , _lowercase=4_4 , _lowercase=6_4 , _lowercase=2_4_5_7_6 , _lowercase="gelu" , _lowercase=0.25 , _lowercase=1_0_0_0_0 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=2_0_4_8 , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=True , _lowercase=0 , _lowercase=2 , _lowercase=False , _lowercase=True , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : Any = vocab_size snake_case_ : int = max_position_embeddings snake_case_ : Tuple = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : int = rotary_pct snake_case_ : Tuple = rotary_emb_base snake_case_ : Union[str, Any] = attention_dropout snake_case_ : Optional[int] = hidden_dropout snake_case_ : Tuple = classifier_dropout snake_case_ : str = initializer_range snake_case_ : List[str] = layer_norm_eps snake_case_ : Dict = use_cache snake_case_ : str = tie_word_embeddings snake_case_ : Optional[Any] = use_parallel_residual snake_case_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) snake_case_ : Dict = self.rope_scaling.get("""type""" , _lowercase ) snake_case_ : str = self.rope_scaling.get("""factor""" , _lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
58
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
from collections import namedtuple import requests from lxml import html # type: ignore __A = namedtuple("covid_data", "cases deaths recovered") def lowerCAmelCase_ ( __a = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" lowerCamelCase__: int ="//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) __A = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
59
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase_ : Union[str, Any] = ['''accelerate''', '''launch'''] lowerCamelCase_ : Tuple = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase_ : Tuple = '''default_config.yaml''' lowerCamelCase_ : str = config_folder / config_file lowerCamelCase_ : List[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase_ : Dict = Path('''tests/test_configs''' ) @classmethod def lowerCamelCase (cls ) -> Dict: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase (cls ) -> Any: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__magic_name__ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__magic_name__ ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : List[str] = '''test-tpu''' lowerCamelCase_ : Dict = '''us-central1-a''' lowerCamelCase_ : Any = '''ls''' lowerCamelCase_ : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase_ : Tuple = '''cd /usr/share''' lowerCamelCase_ : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase_ : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : int = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__magic_name__ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , )
60
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
0
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" while second != 0: lowerCAmelCase__ = first & second first ^= second lowerCAmelCase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('Enter the first number: ').strip()) UpperCamelCase = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
61
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=None , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Dict = embedding_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : List[str] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Union[str, Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def _A ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Any = MegatronBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = MegatronBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Tuple = MegatronBertForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Dict = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _A ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = MegatronBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _A ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = MegatronBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : int = MegatronBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Any = MegatronBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : int = self.num_choices SCREAMING_SNAKE_CASE : Any = MegatronBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : int = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] = True # test_resize_embeddings = False UpperCamelCase_ : str = False def _A ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=False ): SCREAMING_SNAKE_CASE : Any = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : int = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Any ): self.config_tester.run_common_tests() def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) snake_case = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("Model is not available." ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(os.environ["MYDIR"] , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MegatronBertModel.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.half() SCREAMING_SNAKE_CASE : Dict = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : str = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE : Optional[int] = output[0, ii, jj] SCREAMING_SNAKE_CASE : Tuple = expected[3 * ii + jj] SCREAMING_SNAKE_CASE : str = "ii={} jj={} a={} b={}".format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_ ) , msg=UpperCAmelCase_ )
62
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 a : Optional[Any] = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 a : int = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class a : """simple docstring""" def __init__( self : int ) -> Optional[Any]: __UpperCAmelCase : Tuple = WATERMARK_BITS __UpperCAmelCase : Tuple = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def UpperCAmelCase ( self : Dict , __lowercase : torch.FloatTensor ) -> Optional[Any]: # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __UpperCAmelCase : Tuple = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __UpperCAmelCase : Tuple = [self.encoder.encode(__lowercase , """dwtDct""" ) for image in images] __UpperCAmelCase : int = torch.from_numpy(np.array(__lowercase ) ).permute(0 , 3 , 1 , 2 ) __UpperCAmelCase : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
63
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A__ ( snake_case_ : Tuple ): def wrapper(*snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: Optional[int]= timeit.default_timer() SCREAMING_SNAKE_CASE__: str= func(*snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE__: str= timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE__: List[Any]= func.__name__ return wrapper def A__ ( snake_case_ : dict , snake_case_ : Any=100 , snake_case_ : str=None ): SCREAMING_SNAKE_CASE__: Tuple= [] SCREAMING_SNAKE_CASE__: Any= seq_shapes or {} for i in range(snake_case_ ): SCREAMING_SNAKE_CASE__: Any= {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(snake_case_ , _ArrayXD ): SCREAMING_SNAKE_CASE__: Union[str, Any]= np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(snake_case_ , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE__: Optional[int]= '''The small grey turtle was surprisingly fast when challenged.''' else: SCREAMING_SNAKE_CASE__: Union[str, Any]= np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(snake_case_ , datasets.Sequence ): while isinstance(snake_case_ , datasets.Sequence ): SCREAMING_SNAKE_CASE__: Dict= v.feature SCREAMING_SNAKE_CASE__: Dict= seq_shapes[k] SCREAMING_SNAKE_CASE__: Dict= np.random.rand(*snake_case_ ).astype(v.dtype ) SCREAMING_SNAKE_CASE__: Dict= data dummy_data.append((i, example) ) return dummy_data def A__ ( snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=100 , snake_case_ : Optional[Any]=None ): SCREAMING_SNAKE_CASE__: Union[str, Any]= generate_examples(snake_case_ , num_examples=snake_case_ , seq_shapes=snake_case_ ) with ArrowWriter(features=snake_case_ , path=snake_case_ ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE__: Tuple= features.encode_example(snake_case_ ) writer.write(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= datasets.Dataset.from_file(filename=snake_case_ , info=datasets.DatasetInfo(features=snake_case_ ) ) return dataset
64
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): snake_case_ = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ = Features({"""image""": Image()} ) snake_case_ = Features({"""labels""": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def __lowercase ( self : Dict ,A : str ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCAmelCase__ : List[str] = copy.deepcopy(self ) UpperCAmelCase__ : Optional[Any] = self.label_schema.copy() UpperCAmelCase__ : List[Any] = features[self.label_column] UpperCAmelCase__ : List[Any] = label_schema return task_template @property def __lowercase ( self : int ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
65
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): _lowercase : Optional[Any] = data def __iter__( self ): for element in self.data: yield element def __magic_name__ ( SCREAMING_SNAKE_CASE=True ) -> List[Any]: _lowercase : List[str] = Accelerator(even_batches=SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: if iterable: _lowercase : Optional[int] = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) else: _lowercase : Union[str, Any] = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) _lowercase : Any = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE ) return dl def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[int]: _lowercase : Union[str, Any] = create_dataloader(accelerator=SCREAMING_SNAKE_CASE , dataset_size=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) _lowercase : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __magic_name__ ( ) -> Any: _lowercase : Dict = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __magic_name__ ( ) -> List[str]: _lowercase : Dict = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __magic_name__ ( ) -> int: _lowercase : Optional[Any] = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = torch.nn.Linear(1 , 1 ) _lowercase : Optional[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) _lowercase : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = ddp_model(batch[0].float() ) _lowercase : List[Any] = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def __magic_name__ ( ) -> Optional[int]: _lowercase : Union[str, Any] = True _lowercase : Any = False _lowercase : Tuple = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.nn.Linear(1 , 1 ) _lowercase : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE ) _lowercase : Any = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) _lowercase : str = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): _lowercase : str = train_dl.batch_sampler.even_batches _lowercase : Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __magic_name__ ( ) -> Tuple: _lowercase : Any = True _lowercase : Union[str, Any] = False _lowercase : Tuple = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = torch.nn.Linear(1 , 1 ) _lowercase : str = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) _lowercase : Dict = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): _lowercase : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __magic_name__ ( ) -> Tuple: _lowercase : Optional[Any] = create_accelerator() _lowercase : str = torch.nn.Linear(1 , 1 ) _lowercase : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def __magic_name__ ( ) -> List[str]: _lowercase : List[str] = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _lowercase : Tuple = accelerator.state.distributed_type _lowercase : List[str] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = original_state if __name__ == "__main__": main()
66
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
class A_ : """simple docstring""" def __init__( self : List[str] ) -> Any: _lowercase = 0 _lowercase = 0 _lowercase = {} def __UpperCAmelCase ( self : Union[str, Any] ,__A : Tuple ) -> Dict: if vertex not in self.adjacency: _lowercase = {} self.num_vertices += 1 def __UpperCAmelCase ( self : Dict ,__A : List[Any] ,__A : Tuple ,__A : str ) -> Union[str, Any]: self.add_vertex(__A ) self.add_vertex(__A ) if head == tail: return _lowercase = weight _lowercase = weight def __UpperCAmelCase ( self : List[str] ) -> str: _lowercase = self.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase = edge edges.remove((tail, head, weight) ) for i in range(len(__A ) ): _lowercase = list(edges[i] ) edges.sort(key=lambda __A : e[2] ) for i in range(len(__A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowercase = edges[i][2] + 1 for edge in edges: _lowercase , _lowercase , _lowercase = edge _lowercase = weight _lowercase = weight def __str__( self : List[Any] ) -> Tuple: _lowercase = '' for tail in self.adjacency: for head in self.adjacency[tail]: _lowercase = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def __UpperCAmelCase ( self : Any ) -> Dict: _lowercase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: return self.adjacency.keys() @staticmethod def __UpperCAmelCase ( __A : str=None ,__A : Optional[int]=None ) -> int: _lowercase = Graph() if vertices is None: _lowercase = [] if edges is None: _lowercase = [] for vertex in vertices: g.add_vertex(__A ) for edge in edges: g.add_edge(*__A ) return g class A_ : """simple docstring""" def __init__( self : Any ) -> int: _lowercase = {} _lowercase = {} def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.parent ) def __UpperCAmelCase ( self : str ,__A : List[str] ) -> Any: if item in self.parent: return self.find(__A ) _lowercase = item _lowercase = 0 return item def __UpperCAmelCase ( self : List[Any] ,__A : Dict ) -> List[str]: if item not in self.parent: return self.make_set(__A ) if item != self.parent[item]: _lowercase = self.find(self.parent[item] ) return self.parent[item] def __UpperCAmelCase ( self : Optional[int] ,__A : Optional[int] ,__A : List[Any] ) -> Any: _lowercase = self.find(__A ) _lowercase = self.find(__A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowercase = roota return roota if self.rank[roota] < self.rank[roota]: _lowercase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowercase = roota return roota return None @staticmethod def __UpperCAmelCase ( __A : Union[str, Any] ) -> List[Any]: _lowercase = graph.num_vertices _lowercase = Graph.UnionFind() _lowercase = [] while num_components > 1: _lowercase = {} for vertex in graph.get_vertices(): _lowercase = -1 _lowercase = graph.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase = edge edges.remove((tail, head, weight) ) for edge in edges: _lowercase , _lowercase , _lowercase = edge _lowercase = union_find.find(__A ) _lowercase = union_find.find(__A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowercase , _lowercase , _lowercase = cheap_edge[vertex] if union_find.find(__A ) != union_find.find(__A ): union_find.union(__A ,__A ) mst_edges.append(cheap_edge[vertex] ) _lowercase = num_components - 1 _lowercase = Graph.build(edges=__A ) return mst
67
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __A = False class _A ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Any ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Optional[Any] ) -> str: __UpperCAmelCase =VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __UpperCAmelCase =torch.manual_seed(0 ) __UpperCAmelCase =pipe.dual_guided( prompt="""first prompt""" , image=__SCREAMING_SNAKE_CASE , text_to_image_strength=0.75 , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =VersatileDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =generator.manual_seed(0 ) __UpperCAmelCase =pipe.dual_guided( prompt="""first prompt""" , image=__SCREAMING_SNAKE_CASE , text_to_image_strength=0.75 , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _a ( self : List[Any] ) -> Dict: __UpperCAmelCase =VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ="""cyberpunk 2077""" __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __UpperCAmelCase =torch.manual_seed(0 ) __UpperCAmelCase =pipe.dual_guided( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , text_to_image_strength=0.75 , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __UpperCAmelCase =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __UpperCAmelCase ="""A painting of a squirrel eating a burger """ __UpperCAmelCase =torch.manual_seed(0 ) __UpperCAmelCase =pipe.text_to_image( prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __UpperCAmelCase =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __UpperCAmelCase =pipe.image_variation(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __UpperCAmelCase =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
68
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Union[str, Any] = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : Dict , lowercase : List[Any] , lowercase : Dict=True , lowercase : int="pt" ): '''simple docstring''' lowerCamelCase_ = {'add_prefix_space': True} if isinstance(lowercase , lowercase ) and not line.startswith(' ' ) else {} lowerCamelCase_ = padding_side return tokenizer( [line] , max_length=lowercase , padding='max_length' if pad_to_max_length else None , truncation=lowercase , return_tensors=lowercase , add_special_tokens=lowercase , **lowercase , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[str] , lowercase : Dict=None , ): '''simple docstring''' lowerCamelCase_ = input_ids.ne(lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , A_ : List[Any] , A_ : List[Any] , A_ : List[str] , A_ : Dict , A_ : Dict="train" , A_ : Dict=None , A_ : Optional[Any]=None , A_ : Any=None , A_ : Union[str, Any]="" , ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ = Path(A_ ).joinpath(type_path + '.source' ) lowerCamelCase_ = Path(A_ ).joinpath(type_path + '.target' ) lowerCamelCase_ = self.get_char_lens(self.src_file ) lowerCamelCase_ = max_source_length lowerCamelCase_ = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowerCamelCase_ = tokenizer lowerCamelCase_ = prefix if n_obs is not None: lowerCamelCase_ = self.src_lens[:n_obs] lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang def __len__( self : int ) -> int: """simple docstring""" return len(self.src_lens ) def __getitem__( self : Tuple , A_ : Dict ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCamelCase_ = index + 1 # linecache starts at 1 lowerCamelCase_ = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip('\n' ) lowerCamelCase_ = linecache.getline(str(self.tgt_file ) , A_ ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) lowerCamelCase_ = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer lowerCamelCase_ = encode_line(A_ , A_ , self.max_source_length , 'right' ) lowerCamelCase_ = encode_line(A_ , A_ , self.max_target_length , 'right' ) lowerCamelCase_ = source_inputs['input_ids'].squeeze() lowerCamelCase_ = target_inputs['input_ids'].squeeze() lowerCamelCase_ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( A_ : Union[str, Any] ) -> Tuple: """simple docstring""" return [len(A_ ) for x in Path(A_ ).open().readlines()] def a__ ( self : Optional[Any] , A_ : Optional[Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCamelCase_ = torch.stack([x['input_ids'] for x in batch] ) lowerCamelCase_ = torch.stack([x['attention_mask'] for x in batch] ) lowerCamelCase_ = torch.stack([x['decoder_input_ids'] for x in batch] ) lowerCamelCase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) lowerCamelCase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) lowerCamelCase_ = trim_batch(A_ , A_ ) lowerCamelCase_ , lowerCamelCase_ = trim_batch(A_ , A_ , attention_mask=A_ ) lowerCamelCase_ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCamelCase : Optional[int] = getLogger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_git_info() save_json(lowercase , os.path.join(lowercase , 'git_log.json' ) ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Tuple , lowercase : str=4 , **lowercase : Optional[Any] ): '''simple docstring''' with open(lowercase , 'w' ) as f: json.dump(lowercase , lowercase , indent=lowercase , **lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' with open(lowercase ) as f: return json.load(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = git.Repo(search_parent_directories=lowercase ) lowerCamelCase_ = { 'repo_id': str(lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _SCREAMING_SNAKE_CASE ( lowercase : Callable , lowercase : Iterable ): '''simple docstring''' return list(map(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' with open(lowercase , 'wb' ) as f: return pickle.dump(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' def remove_articles(lowercase : int ): return re.sub(r'\b(a|an|the)\b' , ' ' , lowercase ) def white_space_fix(lowercase : List[str] ): return " ".join(text.split() ) def remove_punc(lowercase : List[Any] ): lowerCamelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = normalize_answer(lowercase ).split() lowerCamelCase_ = normalize_answer(lowercase ).split() lowerCamelCase_ = Counter(lowercase ) & Counter(lowercase ) lowerCamelCase_ = sum(common.values() ) if num_same == 0: return 0 lowerCamelCase_ = 1.0 * num_same / len(lowercase ) lowerCamelCase_ = 1.0 * num_same / len(lowercase ) lowerCamelCase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str ): '''simple docstring''' return normalize_answer(lowercase ) == normalize_answer(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[str] ): '''simple docstring''' assert len(lowercase ) == len(lowercase ) lowerCamelCase_ = 0 for hypo, pred in zip(lowercase , lowercase ): em += exact_match_score(lowercase , lowercase ) if len(lowercase ) > 0: em /= len(lowercase ) return {"em": em} def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' return model_prefix.startswith('rag' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase_ = 'dropout_rate' for p in extra_params: if getattr(lowercase , lowercase , lowercase ): if not hasattr(lowercase , lowercase ) and not hasattr(lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(lowercase ) ) delattr(lowercase , lowercase ) continue lowerCamelCase_ = p if hasattr(lowercase , lowercase ) else equivalent_param[p] setattr(lowercase , lowercase , getattr(lowercase , lowercase ) ) delattr(lowercase , lowercase ) return hparams, config
70
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {"""vocab_file""": """spiece.model"""} _lowerCamelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } _lowerCamelCase = {"""bert_for_seq_generation""": 512} class _snake_case (__SCREAMING_SNAKE_CASE): __A : List[str] =VOCAB_FILES_NAMES __A : Dict =PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[int] =[] __A : Any =["input_ids", "attention_mask"] def __init__( self ,_snake_case ,_snake_case="<s>" ,_snake_case="</s>" ,_snake_case="<unk>" ,_snake_case="<pad>" ,_snake_case="<::::>" ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,pad_token=_snake_case ,sep_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) UpperCAmelCase_ : Optional[Any] = vocab_file UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCamelCase__ ( self ): return self.sp_model.get_piece_size() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase_ : Tuple = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self ,_snake_case ): UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self ,_snake_case ): return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): return self.sp_model.piece_to_id(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : str = self.sp_model.IdToPiece(_snake_case ) return token def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token UpperCAmelCase_ : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Any = os.path.join( _snake_case ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,"wb" ) as fi: UpperCAmelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
71
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BlipImageProcessor' UpperCamelCase__ = 'AutoTokenizer' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) # add QFormer tokenizer lowercase =qformer_tokenizer def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase =BatchFeature() if text is not None: lowercase =self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) encoding.update(snake_case_ ) lowercase =self.qformer_tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) lowercase =qformer_text_encoding.pop('''input_ids''' ) lowercase =qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase =self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _A( self ): lowercase =self.tokenizer.model_input_names lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _A( self , snake_case_ , **snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) lowercase =os.path.join(snake_case_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(snake_case_ ) return super().save_pretrained(snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): lowercase =AutoTokenizer.from_pretrained(snake_case_ , subfolder='''qformer_tokenizer''' ) lowercase =cls._get_arguments_from_pretrained(snake_case_ , **snake_case_ ) args.append(snake_case_ ) return cls(*snake_case_ )
72
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( A__ ): _lowercase : Dict = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE__ ( self , **a) -> List[Any]: SCREAMING_SNAKE_CASE = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**a) return config def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=a , beta_end=a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def SCREAMING_SNAKE_CASE__ ( self) -> int: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: self.check_over_configs(thresholding=a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a , prediction_type=a , sample_max_value=a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE = samplea.shape[0] SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea] , dim=0) SCREAMING_SNAKE_CASE = torch.arange(a)[0:3, None].repeat(1 , a) SCREAMING_SNAKE_CASE = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(a , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a)) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 11_53.18_33) < 1E-2 assert abs(result_mean.item() - 0.50_05) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0) for t in reversed(range(a)): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(a , a) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step(a , a , a , generator=a).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a)) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 2_58.96_06) < 1E-2 assert abs(result_mean.item() - 0.33_72) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type='v_prediction') SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0) for t in reversed(range(a)): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(a , a) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step(a , a , a , generator=a).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a)) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 2_02.02_96) < 1E-2 assert abs(result_mean.item() - 0.26_31) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a) SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(a): if i == len(a) - 1: SCREAMING_SNAKE_CASE = -1 else: SCREAMING_SNAKE_CASE = timesteps[i + 1] SCREAMING_SNAKE_CASE = scheduler.previous_timestep(a) SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(a , msg='`custom_timesteps` must be in descending order.'): scheduler.set_timesteps(timesteps=a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE = len(a) with self.assertRaises(a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.'): scheduler.set_timesteps(num_inference_steps=a , timesteps=a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**a) SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a)
73
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): __SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): __SCREAMING_SNAKE_CASE : List[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __SCREAMING_SNAKE_CASE : Optional[Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] __SCREAMING_SNAKE_CASE : str = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(snake_case )-1}''' ) if "norm" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __SCREAMING_SNAKE_CASE : str = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] __SCREAMING_SNAKE_CASE : Any = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(snake_case )-1}''' ) if "layer_norm1" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: __SCREAMING_SNAKE_CASE : List[Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 __SCREAMING_SNAKE_CASE : List[str] = key[key.find('''block''' ) + len('''block''' )] __SCREAMING_SNAKE_CASE : Dict = key.replace(F'''block{idx}''' , F'''block.{int(snake_case )-1}''' ) if "attn.q" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: __SCREAMING_SNAKE_CASE : int = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: __SCREAMING_SNAKE_CASE : int = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) __SCREAMING_SNAKE_CASE : List[Any] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __SCREAMING_SNAKE_CASE : List[str] = key[key.find('''linear_c''' ) + len('''linear_c''' )] __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(snake_case )-1}''' ) if "bot_conv" in key: __SCREAMING_SNAKE_CASE : List[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: __SCREAMING_SNAKE_CASE : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: __SCREAMING_SNAKE_CASE : Any = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: __SCREAMING_SNAKE_CASE : Any = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: __SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: __SCREAMING_SNAKE_CASE : Any = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) __SCREAMING_SNAKE_CASE : Tuple = value return new_state_dict def a__ ( snake_case , snake_case ): """simple docstring""" # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = kv_weight[ : config.hidden_sizes[i], : ] __SCREAMING_SNAKE_CASE : str = kv_bias[: config.hidden_sizes[i]] __SCREAMING_SNAKE_CASE : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] __SCREAMING_SNAKE_CASE : List[Any] = kv_bias[config.hidden_sizes[i] :] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image @torch.no_grad() def a__ ( snake_case , snake_case , snake_case=False , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __SCREAMING_SNAKE_CASE : Union[str, Any] = GLPNImageProcessor() # prepare image __SCREAMING_SNAKE_CASE : str = prepare_img() __SCREAMING_SNAKE_CASE : str = image_processor(images=snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) # rename keys __SCREAMING_SNAKE_CASE : str = rename_keys(snake_case ) # key and value matrices need special treatment read_in_k_v(snake_case , snake_case ) # create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : Dict = GLPNForDepthEstimation(snake_case ) model.load_state_dict(snake_case ) model.eval() # forward pass __SCREAMING_SNAKE_CASE : int = model(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: __SCREAMING_SNAKE_CASE : int = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) __SCREAMING_SNAKE_CASE : Any = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=snake_case , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) lowercase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
74
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
0
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ ) -> list[int]: return [ord(lowerCAmelCase__ ) - 96 for elem in plain] def a__ ( lowerCAmelCase__ ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def a__ ( ) -> None: UpperCAmelCase__ : Optional[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , lowerCAmelCase__ ) print('''Decoded:''' , decode(lowerCAmelCase__ ) ) if __name__ == "__main__": main()
75
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = botoa.client('''iam''' ) __lowercase : Union[str, Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__UpperCamelCase , AssumeRolePolicyDocument=json.dumps(__UpperCamelCase , indent=2 ) ) __lowercase : Union[str, Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=__UpperCamelCase , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__UpperCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = botoa.client('''iam''' ) return iam_client.get_role(RoleName=__UpperCamelCase )["Role"]["Arn"] def __UpperCAmelCase ( ): __lowercase : int = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , __UpperCamelCase , ) __lowercase : Tuple = None if credentials_configuration == 0: __lowercase : List[Any] = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) __lowercase : Any = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) __lowercase : int = _ask_field('''AWS Access Key ID: ''' ) __lowercase : Any = aws_access_key_id __lowercase : int = _ask_field('''AWS Secret Access Key: ''' ) __lowercase : List[str] = aws_secret_access_key __lowercase : Union[str, Any] = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) __lowercase : str = aws_region __lowercase : List[Any] = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , __UpperCamelCase , ) if role_management == 0: __lowercase : List[Any] = _ask_field('''Enter your IAM role name: ''' ) else: __lowercase : Dict = '''accelerate_sagemaker_execution_role''' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(__UpperCamelCase ) __lowercase : str = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) __lowercase : List[Any] = None if is_custom_docker_image: __lowercase : Dict = _ask_field('''Enter your Docker image: ''' , lambda __UpperCamelCase : str(__UpperCamelCase ).lower() ) __lowercase : Optional[int] = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) __lowercase : str = None if is_sagemaker_inputs_enabled: __lowercase : Any = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda __UpperCamelCase : str(__UpperCamelCase ).lower() , ) __lowercase : List[str] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) __lowercase : Optional[int] = None if is_sagemaker_metrics_enabled: __lowercase : Dict = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda __UpperCamelCase : str(__UpperCamelCase ).lower() , ) __lowercase : int = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) __lowercase : Optional[int] = {} __lowercase : Dict = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) if use_dynamo: __lowercase : Tuple = '''dynamo_''' __lowercase : Dict = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __lowercase : List[Any] = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) if use_custom_options: __lowercase : Optional[int] = _ask_options( '''Which mode do you want to use?''' , __UpperCamelCase , lambda __UpperCamelCase : TORCH_DYNAMO_MODES[int(__UpperCamelCase )] , default='''default''' , ) __lowercase : str = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) __lowercase : Union[str, Any] = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__UpperCamelCase , error_message='''Please enter yes or no.''' , ) __lowercase : str = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: __lowercase : Union[str, Any] = _ask_options( __UpperCamelCase , __UpperCamelCase , lambda __UpperCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__UpperCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __lowercase : Tuple = _ask_field(__UpperCamelCase , lambda __UpperCamelCase : str(__UpperCamelCase ).lower() , default='''ml.p3.2xlarge''' ) __lowercase : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __lowercase : Optional[Any] = _ask_field( '''How many machines do you want use? [1]: ''' , __UpperCamelCase , default=1 , ) __lowercase : List[Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=__UpperCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__UpperCamelCase , use_cpu=__UpperCamelCase , dynamo_config=__UpperCamelCase , eca_instance_type=__UpperCamelCase , profile=__UpperCamelCase , region=__UpperCamelCase , iam_role_name=__UpperCamelCase , mixed_precision=__UpperCamelCase , num_machines=__UpperCamelCase , sagemaker_inputs_file=__UpperCamelCase , sagemaker_metrics_file=__UpperCamelCase , )
76
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A = random.Random() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=1.0 , UpperCamelCase=None , UpperCamelCase=None ) -> Optional[Any]: """simple docstring""" if rng is None: __UpperCAmelCase : Tuple = global_rng __UpperCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a__ ( unittest.TestCase ): def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=7 , UpperCamelCase_ : int=400 , UpperCamelCase_ : List[Any]=2000 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : List[Any]=160 , UpperCamelCase_ : str=8 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : Union[str, Any]=4000 , UpperCamelCase_ : Any=False , UpperCamelCase_ : List[str]=True , ): """simple docstring""" __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = min_seq_length __UpperCAmelCase : Any = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Dict = padding_value __UpperCAmelCase : Any = sampling_rate __UpperCAmelCase : Any = return_attention_mask __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Optional[Any] = feature_size __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = hop_length def a_ ( self : Tuple): """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a_ ( self : Optional[int] , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=False): """simple docstring""" def _flatten(UpperCamelCase_ : Union[str, Any]): return list(itertools.chain(*UpperCamelCase_)) if equal_length: __UpperCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : int = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(UpperCamelCase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = WhisperFeatureExtractor if is_speech_available() else None def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = WhisperFeatureExtractionTester(self) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(UpperCamelCase_)[0] check_json_file_has_correct_format(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Tuple = feat_extract_first.to_dict() __UpperCAmelCase : Any = feat_extract_second.to_dict() __UpperCAmelCase : int = feat_extract_first.mel_filters __UpperCAmelCase : List[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_)) self.assertEqual(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = os.path.join(UpperCamelCase_ , "feat_extract.json") feat_extract_first.to_json_file(UpperCamelCase_) __UpperCAmelCase : List[Any] = self.feature_extraction_class.from_json_file(UpperCamelCase_) __UpperCAmelCase : str = feat_extract_first.to_dict() __UpperCAmelCase : List[Any] = feat_extract_second.to_dict() __UpperCAmelCase : Dict = feat_extract_first.mel_filters __UpperCAmelCase : List[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_)) self.assertEqual(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : str = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __UpperCAmelCase : int = [np.asarray(UpperCamelCase_) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase : Tuple = feature_extractor(UpperCamelCase_ , padding="max_length" , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input __UpperCAmelCase : str = feature_extractor(speech_inputs[0] , return_tensors="np").input_features __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3)) # Test batched __UpperCAmelCase : List[str] = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features __UpperCAmelCase : str = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3)) # Test 2-D numpy arrays are batched. __UpperCAmelCase : List[Any] = [floats_list((1, x))[0] for x in (800, 800, 800)] __UpperCAmelCase : Optional[int] = np.asarray(UpperCamelCase_) __UpperCAmelCase : List[Any] = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features __UpperCAmelCase : Any = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3)) # Test truncation required __UpperCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200)] __UpperCAmelCase : List[Any] = [np.asarray(UpperCamelCase_) for speech_input in speech_inputs] __UpperCAmelCase : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCAmelCase : int = [np.asarray(UpperCamelCase_) for speech_input in speech_inputs_truncated] __UpperCAmelCase : Optional[int] = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features __UpperCAmelCase : Optional[int] = feature_extractor(UpperCamelCase_ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3)) def a_ ( self : Union[str, Any]): """simple docstring""" import torch __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __UpperCAmelCase : Dict = np.random.rand(100 , 32).astype(np.floataa) __UpperCAmelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase : str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) __UpperCAmelCase : Optional[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def a_ ( self : Optional[Any] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech __UpperCAmelCase : List[str] = ds.sort("id").select(range(UpperCamelCase_))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Any = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ]) # fmt: on __UpperCAmelCase : Union[str, Any] = self._load_datasamples(1) __UpperCAmelCase : Optional[int] = WhisperFeatureExtractor() __UpperCAmelCase : Dict = feature_extractor(UpperCamelCase_ , return_tensors="pt").input_features self.assertEqual(input_features.shape , (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase_ , atol=1e-4)) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __UpperCAmelCase : List[Any] = self._load_datasamples(1)[0] __UpperCAmelCase : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCAmelCase : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase_)[0] self.assertTrue(np.all(np.mean(UpperCamelCase_) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase_) - 1) < 1e-3))
77
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __A ( UpperCamelCase__ ): a__ : Any = """facebook/nllb-200-distilled-600M""" a__ : Union[str, Any] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) a__ : int = """translator""" a__ : Optional[Any] = AutoTokenizer a__ : Optional[Any] = AutoModelForSeqaSeqLM a__ : Dict = LANGUAGE_CODES a__ : Union[str, Any] = ["""text""", """text""", """text"""] a__ : Union[str, Any] = ["""text"""] def _lowercase (self : int , __a : int , __a : Dict , __a : int ): if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) UpperCAmelCase_ = self.lang_to_code[src_lang] UpperCAmelCase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a , return_tensors="pt" , src_lang=__a , tgt_lang=__a ) def _lowercase (self : Optional[Any] , __a : List[str] ): return self.model.generate(**__a ) def _lowercase (self : Any , __a : Tuple ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__a )
78
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( __lowerCamelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase="None" , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : Optional[Any] = use_input_mask UpperCAmelCase__ : Union[str, Any] = use_token_type_ids UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Optional[int] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : List[str] = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Any = num_labels UpperCAmelCase__ : str = num_choices UpperCAmelCase__ : Union[str, Any] = relative_attention UpperCAmelCase__ : int = position_biased_input UpperCAmelCase__ : Dict = pos_att_type UpperCAmelCase__ : Optional[int] = scope def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Tuple = None if self.use_input_mask: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ : int = None if self.use_token_type_ids: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Any = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.get_config() UpperCAmelCase__ : Tuple = 300 return config def __UpperCAmelCase ( self , _lowerCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : str = DebertaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] UpperCAmelCase__ : int = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] UpperCAmelCase__ : List[str] = model(_lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : str = DebertaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = self.num_labels UpperCAmelCase__ : List[str] = DebertaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : str = DebertaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = DebertaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : int = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : str = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = DebertaModelTester(self ) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCAmelCase ) @slow def __UpperCAmelCase ( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = DebertaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __UpperCAmelCase ( self ): pass @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] # compare the actual values for a slice. UpperCAmelCase__ : Dict = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
79
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
0
__UpperCamelCase : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __UpperCamelCase : Optional[int] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __UpperCamelCase : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
80
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : list ) -> None: __snake_case : str = set_counts __snake_case : Union[str, Any] = max(lowerCamelCase ) __snake_case : List[Any] = len(lowerCamelCase ) __snake_case : Tuple = [1] * num_sets __snake_case : Dict = list(range(lowerCamelCase ) ) def __snake_case ( self : str , lowerCamelCase : int , lowerCamelCase : int ) -> bool: __snake_case : List[Any] = self.get_parent(lowerCamelCase ) __snake_case : Tuple = self.get_parent(lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __snake_case : List[str] = 0 __snake_case : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __snake_case : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = src_parent __snake_case : Tuple = self.set_counts[src_parent] __snake_case : str = max(self.max_set , lowerCamelCase ) return True def __snake_case ( self : int , lowerCamelCase : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set __snake_case : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
81
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = params UpperCAmelCase_ = np.array(_UpperCAmelCase ) UpperCAmelCase_ = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : str , _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.lengths ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.params.max_model_input_size UpperCAmelCase_ = self.lengths > max_len logger.info(F"""Splitting {sum(_UpperCAmelCase )} too long sequences.""" ) def divide_chunks(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if self.params.mlm: UpperCAmelCase_ , UpperCAmelCase_ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: UpperCAmelCase_ , UpperCAmelCase_ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase_ = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: UpperCAmelCase_ = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) UpperCAmelCase_ = np.array(_UpperCAmelCase ) UpperCAmelCase_ = np.array(_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = len(self ) UpperCAmelCase_ = self.lengths > 11 UpperCAmelCase_ = self.token_ids[indices] UpperCAmelCase_ = self.lengths[indices] UpperCAmelCase_ = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase_ = self.params.special_tok_ids["unk_token"] UpperCAmelCase_ = len(self ) UpperCAmelCase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase_ = (unk_occs / self.lengths) < 0.5 UpperCAmelCase_ = self.token_ids[indices] UpperCAmelCase_ = self.lengths[indices] UpperCAmelCase_ = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [t[0] for t in batch] UpperCAmelCase_ = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings UpperCAmelCase_ = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: UpperCAmelCase_ = self.params.special_tok_ids["pad_token"] else: UpperCAmelCase_ = self.params.special_tok_ids["unk_token"] UpperCAmelCase_ = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) UpperCAmelCase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
82
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def snake_case_ ( A_ : Any, A_ : str, A_ : Optional[int]=False, A_ : str=False, A_ : Dict=True, A_ : Any=False, A_ : int="dummy_doc" ): '''simple docstring''' _lowerCamelCase : Optional[int] = {doc: key_lines} _lowerCamelCase : Any = {doc: sys_lines} _lowerCamelCase : str = {} _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase , _lowerCamelCase : Dict = reader.get_doc_mentions(A_, key_doc_lines[doc], A_ ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCamelCase : Optional[int] = reader.set_annotated_parse_trees(A_, key_doc_lines[doc], A_, A_ ) _lowerCamelCase , _lowerCamelCase : Dict = reader.get_doc_mentions(A_, sys_doc_lines[doc], A_ ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCamelCase : Union[str, Any] = reader.set_annotated_parse_trees(A_, key_doc_lines[doc], A_, A_ ) if remove_nested: _lowerCamelCase , _lowerCamelCase : Any = reader.remove_nested_coref_mentions(A_, A_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCamelCase , _lowerCamelCase : Tuple = reader.remove_nested_coref_mentions(A_, A_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCamelCase : Optional[int] = reader.get_mention_assignments(A_, A_ ) _lowerCamelCase : List[Any] = reader.get_mention_assignments(A_, A_ ) _lowerCamelCase : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' '''files, respectively''' ) return doc_coref_infos def snake_case_ ( A_ : Any, A_ : Any, A_ : Any, A_ : List[str], A_ : int, A_ : Dict, A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = get_coref_infos(A_, A_, A_, A_, A_, A_ ) _lowerCamelCase : List[str] = {} _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 for name, metric in metrics: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = evaluator.evaluate_documents(A_, A_, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ), F'''Recall: {recall * 1_00:.2f}''', F''' Precision: {precision * 1_00:.2f}''', F''' F1: {fa * 1_00:.2f}''', ) if conll_subparts_num == 3: _lowerCamelCase : Any = (conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'''conll_score''': conll} ) return output_scores def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : int = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: _lowerCamelCase : int = line.split()[5] if not parse_col == "-": _lowerCamelCase : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=False ): """simple docstring""" _lowerCamelCase : str = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: _lowerCamelCase : Tuple = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCamelCase : Dict = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
83
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A_ : '''simple docstring''' _UpperCamelCase : int _UpperCamelCase : Node | None class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = None for i in sorted(snake_case , reverse=snake_case ): lowercase = Node(snake_case , self.head ) def __iter__( self ): lowercase = self.head while node: yield node.data lowercase = node.next_node def __len__( self ): return sum(1 for _ in self ) def __str__( self ): return " -> ".join([str(snake_case ) for node in self] ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return SortedLinkedList(list(__SCREAMING_SNAKE_CASE ) + list(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
84
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) set_seed(770) SCREAMING_SNAKE_CASE__ : List[Any] = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } SCREAMING_SNAKE_CASE__ : Optional[Any] = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(os.path.abspath(__file__)) SCREAMING_SNAKE_CASE__ : int = os.path.join(os.path.expanduser("~"), ".cache") SCREAMING_SNAKE_CASE__ : int = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _a ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = model_type if use_small: key += "_small" return os.path.join(lowercase__ , REMOTE_MODEL_PATHS[key]['file_name'] ) def _a ( lowercase__ : Dict , lowercase__ : Dict ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) hf_hub_download(repo_id=lowercase__ , filename=lowercase__ , local_dir=lowercase__ ) def _a ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Any=False , lowercase__ : int="text" ): '''simple docstring''' if model_type == "text": SCREAMING_SNAKE_CASE__ : List[str] = BarkSemanticModel SCREAMING_SNAKE_CASE__ : Optional[int] = BarkSemanticConfig SCREAMING_SNAKE_CASE__ : Dict = BarkSemanticGenerationConfig elif model_type == "coarse": SCREAMING_SNAKE_CASE__ : Tuple = BarkCoarseModel SCREAMING_SNAKE_CASE__ : Union[str, Any] = BarkCoarseConfig SCREAMING_SNAKE_CASE__ : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": SCREAMING_SNAKE_CASE__ : Tuple = BarkFineModel SCREAMING_SNAKE_CASE__ : Tuple = BarkFineConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() SCREAMING_SNAKE_CASE__ : Tuple = f'''{model_type}_small''' if use_small else model_type SCREAMING_SNAKE_CASE__ : Dict = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase__ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) SCREAMING_SNAKE_CASE__ : str = torch.load(lowercase__ , map_location=lowercase__ ) # this is a hack SCREAMING_SNAKE_CASE__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: SCREAMING_SNAKE_CASE__ : List[Any] = model_args['vocab_size'] SCREAMING_SNAKE_CASE__ : str = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments SCREAMING_SNAKE_CASE__ : Optional[Any] = model_args.pop('n_head' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_args.pop('n_embd' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_args.pop('n_layer' ) SCREAMING_SNAKE_CASE__ : Dict = ConfigClass(**checkpoint['model_args'] ) SCREAMING_SNAKE_CASE__ : str = ModelClass(config=lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = GenerationConfigClass() SCREAMING_SNAKE_CASE__ : List[str] = model_generation_config SCREAMING_SNAKE_CASE__ : List[Any] = checkpoint['model'] # fixup checkpoint SCREAMING_SNAKE_CASE__ : List[str] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowercase__ ): # replace part of the key with corresponding layer name in HF implementation SCREAMING_SNAKE_CASE__ : Optional[int] = k[len(lowercase__ ) :] for old_layer_name in new_layer_name_dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_k.replace(lowercase__ , new_layer_name_dict[old_layer_name] ) SCREAMING_SNAKE_CASE__ : Dict = state_dict.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : int = set(state_dict.keys() ) - set(model.state_dict().keys() ) SCREAMING_SNAKE_CASE__ : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} SCREAMING_SNAKE_CASE__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) SCREAMING_SNAKE_CASE__ : Optional[int] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowercase__ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(lowercase__ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(lowercase__ , strict=lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.num_parameters(exclude_embeddings=lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase__ , 3 )} loss''' ) model.eval() model.to(lowercase__ ) del checkpoint, state_dict return model def _a ( lowercase__ : Dict , lowercase__ : Tuple=False , lowercase__ : str="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() SCREAMING_SNAKE_CASE__ : Dict = 'cpu' # do conversion on cpu SCREAMING_SNAKE_CASE__ : str = _get_ckpt_path(lowercase__ , use_small=lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = _load_model(lowercase__ , lowercase__ , model_type=lowercase__ , use_small=lowercase__ ) # load bark initial model SCREAMING_SNAKE_CASE__ : List[str] = _bark_load_model(lowercase__ , 'cpu' , model_type=lowercase__ , use_small=lowercase__ ) if model_type == "text": SCREAMING_SNAKE_CASE__ : Any = bark_model['model'] if model.num_parameters(exclude_embeddings=lowercase__ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model SCREAMING_SNAKE_CASE__ : Union[str, Any] = 5 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 if model_type in ["text", "coarse"]: SCREAMING_SNAKE_CASE__ : List[Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) SCREAMING_SNAKE_CASE__ : str = bark_model(lowercase__ )[0] SCREAMING_SNAKE_CASE__ : str = model(lowercase__ ) # take last logits SCREAMING_SNAKE_CASE__ : Optional[int] = output_new_model_total.logits[:, [-1], :] else: SCREAMING_SNAKE_CASE__ : str = 3 SCREAMING_SNAKE_CASE__ : Dict = 8 SCREAMING_SNAKE_CASE__ : str = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) SCREAMING_SNAKE_CASE__ : Any = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = bark_model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) def _a ( lowercase__ : Dict , lowercase__ : Any , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) SCREAMING_SNAKE_CASE__ : int = BarkFineConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) SCREAMING_SNAKE_CASE__ : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) SCREAMING_SNAKE_CASE__ : Dict = BarkSemanticModel.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = BarkCoarseModel.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BarkFineModel.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BarkConfig.from_sub_model_configs( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : int = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BarkModel(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = semantic SCREAMING_SNAKE_CASE__ : str = coarseAcoustic SCREAMING_SNAKE_CASE__ : int = fineAcoustic SCREAMING_SNAKE_CASE__ : Optional[Any] = codec SCREAMING_SNAKE_CASE__ : str = bark_generation_config Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) bark.save_pretrained(lowercase__ , repo_id=lowercase__ , push_to_hub=lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
85
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :Optional[Any] = logging.get_logger(__name__) __a :Tuple = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'vit' def __init__( self : Optional[int] , UpperCAmelCase : str=768 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Optional[Any]=1E-12 , UpperCAmelCase : Tuple=224 , UpperCAmelCase : int=16 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=16 , **UpperCAmelCase : List[str] , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = qkv_bias A_ = encoder_stride class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = version.parse('1.11' ) @property def __A ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Union[str, Any] ): return 1E-4
86
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''AutoTokenizer''' UpperCAmelCase__ = ['''tokenizer'''] UpperCAmelCase__ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]=None) ->List[str]: '''simple docstring''' super().__init__(UpperCAmelCase__) A__ = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any="speaker_embeddings_path.json" , **UpperCAmelCase__ : Dict) ->int: '''simple docstring''' if speaker_embeddings_dict_path is not None: A__ = get_file_from_repo( UpperCAmelCase__ , UpperCAmelCase__ , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase__) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase__) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase__) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase__) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase__) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase__) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase__) , revision=kwargs.pop('''revision''' , UpperCAmelCase__) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(UpperCAmelCase__ , UpperCAmelCase__)}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""") A__ = None else: with open(UpperCAmelCase__) as speaker_embeddings_json: A__ = json.load(UpperCAmelCase__) else: A__ = None A__ = AutoTokenizer.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) return cls(tokenizer=UpperCAmelCase__ , speaker_embeddings=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple="speaker_embeddings_path.json" , UpperCAmelCase__ : Optional[Any]="speaker_embeddings" , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ , '''v2''') , exist_ok=UpperCAmelCase__) A__ = {} A__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ = self._load_voice_preset(UpperCAmelCase__) A__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , UpperCAmelCase__ , f"""{prompt_key}_{key}""") , voice_preset[key] , allow_pickle=UpperCAmelCase__ , ) A__ = os.path.join(UpperCAmelCase__ , f"""{prompt_key}_{key}.npy""") A__ = tmp_dict with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''w''') as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__) super().save_pretrained(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str = None , **UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = self.speaker_embeddings[voice_preset] A__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""") A__ = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''') , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase__) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase__) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase__) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase__) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase__) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase__) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase__) , revision=kwargs.pop('''revision''' , UpperCAmelCase__) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/") , voice_preset_paths[key])}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""") A__ = np.load(UpperCAmelCase__) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[dict] = None) ->Optional[int]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""") if not isinstance(voice_preset[key] , np.ndarray): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.""") if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.""") def __call__( self : Optional[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]="pt" , UpperCAmelCase__ : str=256 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=False , **UpperCAmelCase__ : int , ) ->int: '''simple docstring''' if voice_preset is not None and not isinstance(UpperCAmelCase__ , UpperCAmelCase__): if ( isinstance(UpperCAmelCase__ , UpperCAmelCase__) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ = self._load_voice_preset(UpperCAmelCase__) else: if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and not voice_preset.endswith('''.npz'''): A__ = voice_preset + '''.npz''' A__ = np.load(UpperCAmelCase__) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase__ , **UpperCAmelCase__) A__ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__) A__ = self.tokenizer( UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , padding='''max_length''' , max_length=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) if voice_preset is not None: A__ = voice_preset return encoded_text
87
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( A_ ): def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """tf_padding""")) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """depth_multiplier""")) class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=0.25 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu6" , SCREAMING_SNAKE_CASE=1280 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=None , ) -> Any: _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Tuple = depth_multiplier _lowerCamelCase : int = depth_divisible_by _lowerCamelCase : Tuple = min_depth _lowerCamelCase : Any = expand_ratio _lowerCamelCase : int = tf_padding _lowerCamelCase : str = output_stride _lowerCamelCase : str = first_layer_is_expansion _lowerCamelCase : Optional[int] = finegrained_output _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) _lowerCamelCase : Any = classifier_dropout_prob _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = initializer_range _lowerCamelCase : List[str] = scope def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self) -> str: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : Tuple = MobileNetVaModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : str = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Tuple: _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Union[str, Any] = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : List[str] = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : int = MobileNetVaModelTester(self) _lowerCamelCase : Dict = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""") def UpperCamelCase_ ( self) -> Optional[int]: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""") def UpperCamelCase_ ( self) -> Dict: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""") def UpperCamelCase_ ( self) -> Any: pass def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) _lowerCamelCase : Optional[Any] = outputs.hidden_states _lowerCamelCase : Tuple = 16 self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Tuple: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def _snake_case ( ): """simple docstring""" _lowerCamelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""") if is_vision_available() else None ) @slow def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : List[str] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE) # verify the logits _lowerCamelCase : Optional[int] = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = torch.tensor([0.24_45, -1.19_93, 0.19_05]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Optional[int] = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : str = model.to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : Union[str, Any] = prepare_img() _lowerCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = outputs.logits # verify the logits _lowerCamelCase : Union[str, Any] = torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
88
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2, lowerCamelCase=99, lowerCamelCase=0, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase="last", lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=0, ) -> str: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = seq_length _lowercase : int = is_training _lowercase : List[str] = use_input_lengths _lowercase : int = use_token_type_ids _lowercase : Any = use_labels _lowercase : Union[str, Any] = gelu_activation _lowercase : List[str] = sinusoidal_embeddings _lowercase : str = causal _lowercase : Optional[int] = asm _lowercase : Union[str, Any] = n_langs _lowercase : List[Any] = vocab_size _lowercase : Any = n_special _lowercase : Any = hidden_size _lowercase : str = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : List[str] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : int = num_labels _lowercase : Optional[int] = num_choices _lowercase : Optional[Any] = summary_type _lowercase : Optional[Any] = use_proj _lowercase : int = scope _lowercase : List[Any] = bos_token_id def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : int = None if self.use_input_lengths: _lowercase : Dict = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.n_langs) _lowercase : Tuple = None _lowercase : int = None _lowercase : int = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], 2).float() _lowercase : Tuple = ids_tensor([self.batch_size], self.num_choices) _lowercase : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : List[Any] = XLMModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, lengths=lowerCamelCase, langs=lowerCamelCase) _lowercase : int = model(lowerCamelCase, langs=lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[Any]: """simple docstring""" _lowercase : Dict = XLMWithLMHeadModel(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> str: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnsweringSimple(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase) _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) _lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnswering(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase) _lowercase : List[Any] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, p_mask=lowerCamelCase, ) _lowercase : List[str] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, ) ((_lowercase) , ) : Optional[Any] = result_with_labels.to_tuple() _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) ((_lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> int: """simple docstring""" _lowercase : Optional[Any] = XLMForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) _lowercase : Optional[int] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : str = XLMForTokenClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[Any] = self.num_choices _lowercase : Optional[int] = XLMForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[str] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[Any] = config_and_inputs _lowercase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase_ : Union[str, Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Optional[int]: """simple docstring""" _lowercase : Any = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowercase : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) _lowercase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) return inputs_dict def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = XLMModelTester(self) _lowercase : List[str] = ConfigTester(self, config_class=lowerCamelCase, emb_dim=37) def UpperCamelCase ( self) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> int: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_attentions in attentions], [True] * len(lowerCamelCase)) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : Dict = min_length + idx + 1 _lowercase : int = min_length + idx + 1 _lowercase : Dict = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(lowerCamelCase)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> List[Any]: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_hidden_states in hidden_states], [True] * len(lowerCamelCase), ) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : int = min_length + idx + 1 _lowercase : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(lowerCamelCase), ) pass @slow def UpperCamelCase ( self) -> int: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = XLMModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([[14, 4_47]], dtype=torch.long, device=lowerCamelCase) # the president _lowercase : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowercase : str = model.generate(lowerCamelCase, do_sample=lowerCamelCase) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), lowerCamelCase)
89
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __UpperCAmelCase = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def _snake_case ( A , A , A=None ) -> List[str]: if rng is None: lowerCAmelCase__ = random.Random() lowerCAmelCase__ = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ = [] for _ in range(A ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ = np.array(A , dtype=jnp.intaa ).reshape(A ) return output def _snake_case ( A , A=None ) -> Union[str, Any]: lowerCAmelCase__ = ids_tensor(A , vocab_size=2 , rng=A ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ = 1 return attn_mask @require_flax class a__ : '''simple docstring''' lowercase__ : Optional[Any] = None lowercase__ : Union[str, Any] = () def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ = 2 lowerCAmelCase__ = inputs['''input_ids'''].shape[-1] // 2 lowerCAmelCase__ = inputs['''input_ids'''][:max_batch_size, :sequence_length] lowerCAmelCase__ = jnp.ones_like(lowerCamelCase_ ) lowerCAmelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ = getattr(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = pt_model_class(lowerCamelCase_ ).eval() lowerCAmelCase__ = load_flax_weights_in_pytorch_model(lowerCamelCase_ , flax_model.params ) lowerCAmelCase__ = flax_model.generate(lowerCamelCase_ ).sequences lowerCAmelCase__ = pt_model.generate(torch.tensor(lowerCamelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = True lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = True lowerCAmelCase__ = max_length lowerCAmelCase__ = 0.8 lowerCAmelCase__ = 10 lowerCAmelCase__ = 0.3 lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = max_length lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = False lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = True lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = 2 lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) lowerCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCAmelCase__ = '''Hello world''' lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCamelCase_ , '''do_samples''' ): model.generate(lowerCamelCase_ , do_samples=lowerCamelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCamelCase_ , '''foo''' ): lowerCAmelCase__ = {'''foo''': '''bar'''} model.generate(lowerCamelCase_ , **lowerCamelCase_ )
90
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowercase = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowercase = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowercase = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def _snake_case ( snake_case__ : Optional[Any] ): A = collections.OrderedDict() with open(snake_case__ , 'r' , encoding='utf-8' ) as reader: A = reader.readlines() for index, token in enumerate(snake_case__ ): A = token.rstrip('\n' ) A = index return vocab class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = VOCAB_FILES_NAMES _lowerCamelCase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : int ,A_ : List[str] ,A_ : Dict="[SEP]" ,A_ : List[str]="[SEP]" ,A_ : Optional[int]="[SEP]" ,A_ : str="[UNK]" ,A_ : str="[PAD]" ,A_ : Dict="[CLS]" ,A_ : Optional[Any]="[MASK]" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[Any] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,sep_token=A_ ,unk_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab A = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): A = F'[unused{i}]' A = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab A = 12 A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self : Tuple ) -> List[str]: A = self.__dict__.copy() A = None return state def __setstate__( self : Dict ,A_ : int ) -> str: A = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ) -> str: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Union[str, Any] ) -> Tuple: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] A = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
91
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } UpperCamelCase_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]: for attribute in key.split('''.''' ): lowercase : List[str] =getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase : Union[str, Any] =getattr(__magic_name__ , __magic_name__ ).shape else: lowercase : Union[str, Any] =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : Tuple =value elif weight_type == "weight_g": lowercase : Union[str, Any] =value elif weight_type == "weight_v": lowercase : Any =value elif weight_type == "bias": lowercase : Dict =value else: lowercase : Union[str, Any] =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _lowerCAmelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: lowercase : Optional[int] =[] lowercase : Union[str, Any] =fairseq_model.state_dict() lowercase : Tuple =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase : Union[str, Any] =None for name, value in fairseq_dict.items(): lowercase : Any =False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == '''group''' , ) lowercase : Tuple =True elif name.split('''.''' )[0] == "proj": lowercase : List[Any] =fairseq_model.proj lowercase : Union[str, Any] =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase : Tuple =True if "*" in mapped_key: lowercase : Any =name.split(__magic_name__ )[0].split('''.''' )[-2] lowercase : Dict =mapped_key.replace('''*''' , __magic_name__ ) if "weight_g" in name: lowercase : Optional[int] ='''weight_g''' elif "weight_v" in name: lowercase : Dict ='''weight_v''' elif "bias" in name: lowercase : Optional[Any] ='''bias''' elif "weight" in name: lowercase : Any ='''weight''' else: lowercase : Dict =None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> str: lowercase : str =full_name.split('''conv_layers.''' )[-1] lowercase : Optional[Any] =name.split('''.''' ) lowercase : List[Any] =int(items[0] ) lowercase : Optional[Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Any =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : Optional[int] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase : Dict =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : List[str] =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : str ) -> Optional[int]: lowercase , lowercase : List[Any] =emb.weight.shape lowercase : Optional[Any] =nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase : Any =emb.weight.data return lin_layer def _lowerCAmelCase ( __magic_name__ : int ) -> Optional[int]: with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: lowercase : Dict =f.readlines() lowercase : Optional[int] =[line.split(''' ''' )[0] for line in lines] lowercase : List[Any] =len(__magic_name__ ) lowercase : List[str] ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__magic_name__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _lowerCAmelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : int , ) -> List[str]: lowercase : List[str] =WavaVecaConfig.from_pretrained(__magic_name__ ) lowercase : int =SpeechaTextaConfig.from_pretrained( __magic_name__ , vocab_size=__magic_name__ , decoder_layers=__magic_name__ , do_stable_layer_norm=__magic_name__ ) lowercase : Optional[int] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) lowercase , lowercase , lowercase : Dict =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowercase : Union[str, Any] =model[0].eval() # set weights for wav2vec2 encoder lowercase : Union[str, Any] =WavaVecaModel(__magic_name__ ) lowercase : Union[str, Any] =recursively_load_weights_wavaveca(model.encoder , __magic_name__ ) lowercase : Optional[int] =SpeechaTextaForCausalLM(__magic_name__ ) lowercase , lowercase : Union[str, Any] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__magic_name__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowercase : List[Any] =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase : Optional[Any] =SpeechEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) lowercase : Tuple =False # add projection layer lowercase : Union[str, Any] =nn.Parameter(projection_layer.weight ) lowercase : Dict =nn.Parameter(projection_layer.bias ) lowercase : str =create_vocab_dict(__magic_name__ ) with open(os.path.join(__magic_name__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__magic_name__ , __magic_name__ ) lowercase : Dict =SpeechaTextaTokenizer(os.path.join(__magic_name__ , '''vocab.json''' ) ) tokenizer.save_pretrained(__magic_name__ ) lowercase : Optional[Any] =hf_wavavec.config.to_dict() lowercase : List[Any] =tokenizer.pad_token_id lowercase : Any =tokenizer.bos_token_id lowercase : Any =tokenizer.eos_token_id lowercase : int ='''speech_to_text_2''' lowercase : int ='''wav2vec2''' lowercase : Optional[Any] =SpeechEncoderDecoderConfig.from_dict(__magic_name__ ) hf_wavavec.save_pretrained(__magic_name__ ) feature_extractor.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=10224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") UpperCamelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """mvp""" __magic_name__ :Optional[Any] = ["""past_key_values"""] __magic_name__ :str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=5_0_2_6_7 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=8_0_0 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = vocab_size lowerCAmelCase__ :List[Any] = max_position_embeddings lowerCAmelCase__ :List[str] = d_model lowerCAmelCase__ :Optional[int] = encoder_ffn_dim lowerCAmelCase__ :Dict = encoder_layers lowerCAmelCase__ :Optional[int] = encoder_attention_heads lowerCAmelCase__ :Dict = decoder_ffn_dim lowerCAmelCase__ :Optional[int] = decoder_layers lowerCAmelCase__ :List[Any] = decoder_attention_heads lowerCAmelCase__ :List[Any] = dropout lowerCAmelCase__ :Optional[Any] = attention_dropout lowerCAmelCase__ :int = activation_dropout lowerCAmelCase__ :List[str] = activation_function lowerCAmelCase__ :Any = init_std lowerCAmelCase__ :List[str] = encoder_layerdrop lowerCAmelCase__ :Optional[Any] = decoder_layerdrop lowerCAmelCase__ :Tuple = classifier_dropout lowerCAmelCase__ :Any = use_cache lowerCAmelCase__ :Tuple = encoder_layers lowerCAmelCase__ :str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase__ :Any = use_prompt lowerCAmelCase__ :List[Any] = prompt_length lowerCAmelCase__ :Dict = prompt_mid_dim super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __UpperCAmelCase ): lowerCAmelCase__ :str = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " 'The config can simply be saved and uploaded again to be fixed.' )
93
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =tempfile.mkdtemp() # fmt: off lowercase : str =['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase : Any =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : str =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowercase : List[Any] ={'''unk_token''': '''<unk>'''} lowercase : Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) lowercase : Dict ={ '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowercase : int =os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Dict , **UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Optional[Any] , **UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[Any] ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : Dict =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : str =[Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : str =self.get_tokenizer() lowercase : List[str] =self.get_rust_tokenizer() lowercase : Union[str, Any] =self.get_image_processor() lowercase : str =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : List[Any] =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowercase : List[Any] =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : int =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[int] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Dict =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : Dict =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase : List[str] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : Optional[int] =self.get_tokenizer() lowercase : str =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Union[str, Any] =self.prepare_image_inputs() lowercase : int =image_processor(UpperCAmelCase , return_tensors='''np''' ) lowercase : Optional[int] =processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : List[str] =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Any ='''lower newer''' lowercase : int =processor(text=UpperCAmelCase ) lowercase : str =tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Union[str, Any] =self.get_tokenizer() lowercase : Any =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[int] ='''lower newer''' lowercase : Union[str, Any] =self.prepare_image_inputs() lowercase : Union[str, Any] =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : int =self.get_image_processor() lowercase : List[Any] =self.get_tokenizer() lowercase : List[Any] =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =self.prepare_image_inputs() lowercase : int =self.prepare_image_inputs() lowercase : Union[str, Any] =processor(images=UpperCAmelCase , visual_prompt=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.get_image_processor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Union[str, Any] =CLIPSegProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Union[str, Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Union[str, Any] =processor.batch_decode(UpperCAmelCase ) lowercase : str =tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
94
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
0
"""simple docstring""" class UpperCamelCase_ (__A ): pass class UpperCamelCase_ (__A ): pass class UpperCamelCase_ : def __init__( self : List[str] ) -> Tuple: UpperCAmelCase_ : int = [ [], [], [], ] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : int ) -> str: return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCamelCase_ : def __init__( self : int ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> None: if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: if not self.queue: raise UnderFlowError("The queue is empty" ) else: UpperCAmelCase_ : Union[str, Any] = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Dict ) -> str: return str(self.queue ) def snake_case ( ): UpperCAmelCase_ : Dict = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,1_00 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,1_28 ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case ( ): UpperCAmelCase_ : Dict = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
95
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def a ( __UpperCAmelCase : int ) -> Optional[int]: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def a ( __UpperCAmelCase : Tuple ) -> Any: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def a ( __UpperCAmelCase : str ) -> Optional[Any]: from transformers.testing_utils import pytest_terminal_summary_main __magic_name__: Optional[int] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase , id=__UpperCAmelCase ) def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Optional[int]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __magic_name__: Union[str, Any] = 0 # Doctest custom flag to ignore output. __lowerCamelCase = doctest.register_optionflag('IGNORE_RESULT') __lowerCamelCase = doctest.OutputChecker class __A ( SCREAMING_SNAKE_CASE_ ): def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple ) -> str: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case ) __lowerCamelCase = CustomOutputChecker __lowerCamelCase = HfDoctestModule __lowerCamelCase = HfDocTestParser
96
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
0
import numpy as np class lowercase__: """simple docstring""" def __init__( self : List[str] ) -> str: lowercase_ = (0, 0) lowercase_ = None lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def __eq__( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> int: return self.position == cell.position def _lowercase ( self : Union[str, Any] ) -> str: print(self.position ) class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=(5, 5) ) -> str: lowercase_ = np.zeros(SCREAMING_SNAKE_CASE_ ) lowercase_ = world_size[0] lowercase_ = world_size[1] def _lowercase ( self : Optional[Any] ) -> Optional[Any]: print(self.w ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: lowercase_ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase_ = cell.position[0] lowercase_ = cell.position[1] lowercase_ = [] for n in neughbour_cord: lowercase_ = current_x + n[0] lowercase_ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase_ = Cell() lowercase_ = (x, y) lowercase_ = cell neighbours.append(SCREAMING_SNAKE_CASE_ ) return neighbours def a ( snake_case__: str , snake_case__: List[Any] , snake_case__: Union[str, Any] ): '''simple docstring''' lowercase_ = [] lowercase_ = [] _open.append(snake_case__ ) while _open: lowercase_ = np.argmin([n.f for n in _open] ) lowercase_ = _open[min_f] _closed.append(_open.pop(snake_case__ ) ) if current == goal: break for n in world.get_neigbours(snake_case__ ): for c in _closed: if c == n: continue lowercase_ = current.g + 1 lowercase_ , lowercase_ = n.position lowercase_ , lowercase_ = goal.position lowercase_ = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase_ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case__ ) lowercase_ = [] while current.parent is not None: path.append(current.position ) lowercase_ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __a = Gridworld() # Start position and goal __a = Cell() __a = (0, 0) __a = Cell() __a = (4, 4) print(f"path from {start.position} to {goal.position}") __a = astar(world, start, goal) # Just for visual reasons. for i in s: __a = 1 print(world.w)
97
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'audio': Audio()} ) _snake_case : ClassVar[Features] = Features({'labels': ClassLabel} ) _snake_case : str = "audio" _snake_case : str = "labels" def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCamelCase = copy.deepcopy(self ) _UpperCamelCase = self.label_schema.copy() _UpperCamelCase = features[self.label_column] _UpperCamelCase = label_schema return task_template @property def snake_case__ ( self : int ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
98
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
import collections import os import re from pathlib import Path SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: SCREAMING_SNAKE_CASE = re.compile(r'^\s*try:') # Catches a line with else: SCREAMING_SNAKE_CASE = re.compile(r'^\s*else:') def a (lowerCAmelCase__ ): if _re_test_backend.search(lowerCAmelCase__ ) is None: return None __a = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )] backends.sort() return "_and_".join(lowerCAmelCase__ ) def a (lowerCAmelCase__ ): with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __a = f.readlines() __a = 0 while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure __a = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __a = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase__ ): __a = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0] __a = re.findall(r"""\[([^\]]+)\]""" , lowerCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __a = _re_import_struct_key_value.search(lowerCAmelCase__ ) if single_line_import_search is not None: __a = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __a = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __a = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None: __a = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(""", """ ) __a = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_between_brackets.search(lowerCAmelCase__ ) is not None: __a = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(""", """ ) __a = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_quote_object.search(lowerCAmelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __a = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __a = [] while ( line_index < len(lowerCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __a = lines[line_index] __a = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __a = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. __a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __a = lines[line_index] __a = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __a = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a (lowerCAmelCase__ , lowerCAmelCase__ ): def find_duplicates(lowerCAmelCase__ ): return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __a = [] for key in import_dict_objects.keys(): __a = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __a = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __a = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a (): __a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __a = os.path.join(lowerCAmelCase__ , """__init__.py""" ) __a = parse_init(lowerCAmelCase__ ) if objects is not None: __a = analyze_results(*lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: raise ValueError("""\n\n""".join(lowerCAmelCase__ ) ) def a (): __a = [] for path, directories, files in os.walk(lowerCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase__ ) / folder).glob("""*.py""" ) ) ) == 0: continue __a = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) ) __a = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCAmelCase__ ) for fname in files: if fname == "__init__.py": continue __a = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) ) __a = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCAmelCase__ ) return submodules SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a (): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import __a = direct_transformers_import(lowerCAmelCase__ ) __a = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase__ , """__init__.py""" ) , """r""" ) as f: __a = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowerCAmelCase__ ) ) ) __a = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase__ ) > 0: __a = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
99
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
0