code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 __a =42 __a =None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __a =2 @register_to_config def __init__( self : Union[str, Any] , __a : float = 0.02 , __a : float = 1_00 , __a : float = 1.007 , __a : float = 80 , __a : float = 0.05 , __a : float = 50 , ): # standard deviation of the initial noise distribution _a = sigma_max # setable values _a = None _a = None _a = None # sigma(t_i) def UpperCamelCase__ ( self : Any , __a : torch.FloatTensor , __a : Optional[int] = None ): return sample def UpperCamelCase__ ( self : List[Any] , __a : int , __a : Union[str, torch.device] = None ): _a = num_inference_steps _a = np.arange(0 , self.num_inference_steps )[::-1].copy() _a = torch.from_numpy(__a ).to(__a ) _a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _a = torch.tensor(__a , dtype=torch.floataa , device=__a ) def UpperCamelCase__ ( self : Dict , __a : torch.FloatTensor , __a : float , __a : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: _a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _a = 0 # sample eps ~ N(0, S_noise^2 * I) _a = self.config.s_noise * randn_tensor(sample.shape , generator=__a ).to(sample.device ) _a = sigma + gamma * sigma _a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self : int , __a : torch.FloatTensor , __a : float , __a : float , __a : torch.FloatTensor , __a : bool = True , ): _a = sample_hat + sigma_hat * model_output _a = (sample_hat - pred_original_sample) / sigma_hat _a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def UpperCamelCase__ ( self : Dict , __a : torch.FloatTensor , __a : float , __a : float , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : bool = True , ): _a = sample_prev + sigma_prev * model_output _a = (sample_prev - pred_original_sample) / sigma_prev _a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : Tuple ): raise NotImplementedError()
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[str] = logging.get_logger() @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =field(default_factory=lowerCamelCase_ ) __a =field(default_factory=lowerCamelCase_ ) def UpperCamelCase__ ( self : Dict , __a : List[Any] , __a : Tensor , __a : Tensor ): _a = len(list(m.modules() ) ) == 1 or isinstance(__a , nn.Convad ) or isinstance(__a , nn.BatchNormad ) if has_not_submodules: self.traced.append(__a ) def __call__( self : List[Any] , __a : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__a ) [x.remove() for x in self.handles] return self @property def UpperCamelCase__ ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 __a =1 __a =field(default_factory=lowerCamelCase_ ) __a =field(default_factory=lowerCamelCase_ ) __a =True def __call__( self : Any , __a : Tensor ): _a = Tracker(self.dest )(__a ).parametrized _a = Tracker(self.src )(__a ).parametrized _a = list(filter(lambda __a : type(__a ) not in self.src_skip , __a ) ) _a = list(filter(lambda __a : type(__a ) not in self.dest_skip , __a ) ) if len(__a ) != len(__a ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(__a )} operations while' f' destination module has {len(__a )}.' ) for dest_m, src_m in zip(__a , __a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : nn.Module ): super().__init__() _a = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'Unexpected layer name {k}' _a = len(__a ) + 1 feature_blocks.append((f'res{block_index}', v) ) _a = nn.ModuleDict(__a ) def UpperCamelCase__ ( self : Optional[int] , __a : Tensor ): return get_trunk_forward_outputs( __a , out_feat_keys=__a , feature_blocks=self._feature_blocks , ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Tuple , __a : str ): _a = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any , __a : str ): # default to timm! if x not in self: _a = self.convert_name_to_timm(__a ) _a = partial(lambda: (timm.create_model(__a , pretrained=__a ).eval(), None) ) else: _a = super().__getitem__(__a ) return val class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __getitem__( self : Dict , __a : str ): if "seer" in x and "in1k" not in x: _a = RegNetModel else: _a = RegNetForImageClassification return val def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : List[Tuple[str, str]] ) -> Union[str, Any]: for from_key, to_key in keys: _a = from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def _lowerCamelCase ( lowercase : str , lowercase : Callable[[], nn.Module] , lowercase : Callable[[], nn.Module] , lowercase : RegNetConfig , lowercase : Path , lowercase : bool = True , ) -> int: print(F'Converting {name}...' ) with torch.no_grad(): _a , _a = from_model_func() _a = our_model_func(lowercase ).eval() _a = ModuleTransfer(src=lowercase , dest=lowercase , raise_if_mismatch=lowercase ) _a = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase ) if from_state_dict is not None: _a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _a = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _a = manually_copy_vissl_head(lowercase , our_model.state_dict() , lowercase ) our_model.load_state_dict(lowercase ) _a = our_model(lowercase , output_hidden_states=lowercase ) _a = ( our_outputs.logits if isinstance(lowercase , lowercase ) else our_outputs.last_hidden_state ) _a = from_model(lowercase ) _a = from_output[-1] if type(lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _a = our_outputs.hidden_states[-1] assert torch.allclose(lowercase , lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=lowercase , ) _a = 224 if "seer" not in name else 384 # we can use the convnext one _a = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=lowercase , ) print(F'Pushed {name}' ) def _lowerCamelCase ( lowercase : Path , lowercase : str = None , lowercase : bool = True ) -> Optional[Any]: _a = "imagenet-1k-id2label.json" _a = 1000 _a = (1, num_labels) _a = "huggingface/label-files" _a = num_labels _a = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type="dataset" ) ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase ) _a = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } _a = NameToOurModelFuncMap() _a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowercase : str , lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _a = torch.hub.load_state_dict_from_url(lowercase , model_dir=str(lowercase ) , map_location="cpu" ) _a = model_func() # check if we have a head, if yes add it _a = files["classy_state_dict"]["base_model"]["model"] _a = model_state_dict["trunk"] model.load_state_dict(lowercase ) return model.eval(), model_state_dict["heads"] # pretrained _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _a = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowercase , lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowercase , lowercase , lowercase , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : Any , __a : Optional[int]=13 , __a : Any=3 , __a : Any=True , __a : List[str]=True , __a : List[str]=0.1 , __a : str=0.1 , __a : Optional[Any]=2_24 , __a : Tuple=10_00 , __a : Tuple=[3, 3, 6, 4] , __a : int=[48, 56, 1_12, 2_20] , ): _a = parent _a = batch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = num_labels _a = image_size _a = layer_depths _a = embed_dims def UpperCamelCase__ ( self : Optional[int] ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : Any ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__a , layer_scale_init_value=1e-5 , ) def UpperCamelCase__ ( self : Optional[int] , __a : Any , __a : Dict , __a : str ): _a = SwiftFormerModel(config=__a ) model.to(__a ) model.eval() _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def UpperCamelCase__ ( self : List[Any] , __a : int , __a : Tuple , __a : List[str] ): _a = self.num_labels _a = SwiftFormerForImageClassification(__a ) model.to(__a ) model.eval() _a = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a = SwiftFormerForImageClassification(__a ) model.to(__a ) model.eval() _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Dict ): ((_a) , (_a) , (_a)) = self.prepare_config_and_inputs() _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __a =( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __a =False __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Any ): _a = SwiftFormerModelTester(self ) _a = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def UpperCamelCase__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def UpperCamelCase__ ( self : Dict ): pass def UpperCamelCase__ ( self : Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ ( self : str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ ( self : List[Any] ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = SwiftFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def UpperCamelCase__ ( self : Union[str, Any] ): pass def UpperCamelCase__ ( self : Dict ): def check_hidden_states_output(__a : Tuple , __a : Optional[Any] , __a : Tuple ): _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.hidden_states _a = 8 self.assertEqual(len(__a ) , __a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase__ ( self : Optional[int] ): def _config_zero_init(__a : List[str] ): _a = copy.deepcopy(__a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__a , __a , 1e-1_0 ) if isinstance(getattr(__a , __a , __a ) , __a ): _a = _config_zero_init(getattr(__a , __a ) ) setattr(__a , __a , __a ) return configs_no_init _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__a ) for model_class in self.all_model_classes: _a = model_class(config=__a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase__ ( self : str ): pass def _lowerCamelCase ( ) -> List[str]: _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : Optional[int] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : int ): _a = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__a ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _a = model(**__a ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) _a = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = '▁' lowerCAmelCase_ : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ : Optional[Any] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ : List[Any] = { 'facebook/xglm-564M': 20_48, } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : str , __a : Optional[int] , __a : Optional[Any]="<s>" , __a : Union[str, Any]="</s>" , __a : Tuple="</s>" , __a : List[Any]="<s>" , __a : Optional[int]="<unk>" , __a : Union[str, Any]="<pad>" , __a : Optional[Dict[str, Any]] = None , **__a : Union[str, Any] , ): _a = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _a = 7 _a = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] _a = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a = 1 # Mimic fairseq token-to-id alignment for the first 4 token _a = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _a = len(self.sp_model ) _a = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__a ) _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): _a = self.__dict__.copy() _a = None _a = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , __a : Union[str, Any] ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _a = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase__ ( self : Tuple , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) def UpperCamelCase__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase__ ( self : List[str] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase__ ( self : List[Any] ): _a = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self : int , __a : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self : Any , __a : List[str] ): _a = "".join(__a ).replace(__a , " " ).strip() return out_string def UpperCamelCase__ ( self : Dict , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _lowerCamelCase ( lowercase : Tuple ) -> int: for i in range(0 , lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def _lowerCamelCase ( lowercase : List[Any] ) -> List[str]: for i in range(lowercase , 0 , -1 ): for _ in range(lowercase , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def _lowerCamelCase ( lowercase : str ) -> Optional[int]: if n <= 0: print(" ... .... nothing printing :(" ) return floyd(lowercase ) # upper half reverse_floyd(lowercase ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') lowerCAmelCase_ : Optional[Any] = 1 while K: lowerCAmelCase_ : Dict = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) lowerCAmelCase_ : Dict = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : Union[str, Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ : List[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ : Union[str, Any] = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase_ : List[str] = spec.loader.load_module() lowerCAmelCase_ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ : Optional[Any] = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase_ : List[str] = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def _lowerCamelCase ( ) -> Any: _a = [] for config_class in list(CONFIG_MAPPING.values() ): _a = False # source code of `config_class` _a = inspect.getsource(lowercase ) _a = _re_checkpoint.findall(lowercase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _a , _a = checkpoint # verify the checkpoint name corresponds to the checkpoint link _a = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _a = True break _a = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase ) if len(lowercase ) > 0: _a = "\n".join(sorted(lowercase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : int = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : Tuple ) -> List[str]: _a = torch.load(lowercase , map_location="cpu" ) if "model" in sd.keys(): _a = torch.load(lowercase , map_location="cpu" )["model"] # pop unnecessary weights _a = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase ) _a = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _a = sd.pop(lowercase ) _a = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _a = sd[key] # We split QKV in separate Q,K,V _a = key.replace(".qkv_proj." , ".q_proj." ) _a = key.replace(".qkv_proj." , ".k_proj." ) _a = key.replace(".qkv_proj." , ".v_proj." ) _a = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _a , _a , _a = torch.split(lowercase , depth // 3 , dim=0 ) _a = q _a = k _a = v del sd[key] return sd @torch.no_grad() def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : Union[str, Any]=None ) -> Tuple: _a = load_checkpoint(lowercase ) if config is not None: _a = OPTConfig.from_pretrained(lowercase ) else: _a = OPTConfig() _a = OPTModel(lowercase ).half().eval() model.load_state_dict(lowercase ) # Check results Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowerCAmelCase_ : List[str] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : int , __a : Tuple , __a : Optional[Any]=13 , __a : List[Any]=7 , __a : Any=True , __a : Tuple=True , __a : Optional[Any]=True , __a : Dict=True , __a : List[Any]=99 , __a : Optional[Any]=32 , __a : List[str]=5 , __a : Union[str, Any]=4 , __a : Union[str, Any]=37 , __a : Optional[int]="gelu" , __a : Any=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=5_12 , __a : Optional[Any]=16 , __a : Union[str, Any]=2 , __a : Tuple=0.02 , __a : Union[str, Any]=4 , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def UpperCamelCase__ ( self : List[str] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self : List[Any] ): _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCamelCase__ ( self : int ): _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =True __a =( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self : str ): _a = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCamelCase__ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__a ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Any ): _a = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__a ) _a = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) _a = model(__a )[0] _a = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , __a ) # compare the actual values for a slice. _a = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self : Any ): _a = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__a ) _a = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) _a = model(__a )[0] # compare the actual values for a slice. _a = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import os def _lowerCamelCase ( lowercase : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) as input_file: _a = [ [int(lowercase ) for element in line.split("," )] for line in input_file.readlines() ] _a = len(lowercase ) _a = len(matrix[0] ) _a = [[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): _a = matrix[i][0] for j in range(1 , lowercase ): for i in range(lowercase ): _a = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase ): _a = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _a = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' lowerCAmelCase_ : Tuple = 'Alexander Joslin' import operator as op from .stack import Stack def _lowerCamelCase ( lowercase : str ) -> int: _a = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _a = Stack() _a = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 _a = operator_stack.peek() operator_stack.pop() _a = operand_stack.peek() operand_stack.pop() _a = operand_stack.peek() operand_stack.pop() _a = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase_ : List[str] = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import string from math import logaa def _lowerCamelCase ( lowercase : str , lowercase : str ) -> int: _a = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _a = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowerCamelCase ( lowercase : str , lowercase : str ) -> tuple[int, int]: _a = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _a = corpus_without_punctuation.split("\n" ) _a = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _lowerCamelCase ( lowercase : int , lowercase : int ) -> float: return round(tf * idf , 3 )
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' lowerCAmelCase_ : int = 2_56 # Modulus to hash a string lowerCAmelCase_ : Dict = 1_00_00_03 def _lowerCamelCase ( lowercase : str , lowercase : str ) -> bool: _a = len(lowercase ) _a = len(lowercase ) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): _a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCamelCase ( ) -> None: _a = "abc1abc12" _a = "alskfjaldsabc1abc1abc12k23adsfabcabc" _a = "alskfjaldsk23adsfabcabc" assert rabin_karp(lowercase , lowercase ) and not rabin_karp(lowercase , lowercase ) # Test 2) _a = "ABABX" _a = "ABABZABABYABABX" assert rabin_karp(lowercase , lowercase ) # Test 3) _a = "AAAB" _a = "ABAAAAAB" assert rabin_karp(lowercase , lowercase ) # Test 4) _a = "abcdabcy" _a = "abcxabcdabxabcdabcdabcy" assert rabin_karp(lowercase , lowercase ) # Test 5) _a = "Lü" _a = "Lüsai" assert rabin_karp(lowercase , lowercase ) _a = "Lue" assert not rabin_karp(lowercase , lowercase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase_ : Optional[int] = (3, 9, -11, 0, 7, 5, 1, -1) lowerCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , __a : Iterable[int] ): _a = None for i in sorted(__a , reverse=__a ): _a = Node(__a , self.head ) def __iter__( self : List[Any] ): _a = self.head while node: yield node.data _a = node.next_node def __len__( self : Optional[Any] ): return sum(1 for _ in self ) def __str__( self : Any ): return " -> ".join([str(__a ) for node in self] ) def _lowerCamelCase ( lowercase : SortedLinkedList , lowercase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(lowercase ) + list(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Optional[int] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : Optional[Any] ) -> List[Any]: _a = [0] * len(lowercase ) _a = [] _a = [1] * len(lowercase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase ) ): if indegree[i] == 0: queue.append(lowercase ) while queue: _a = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _a = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase ) print(max(lowercase ) ) # Adjacency list of Graph lowerCAmelCase_ : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =StableDiffusionPanoramaPipeline __a =TEXT_TO_IMAGE_PARAMS __a =TEXT_TO_IMAGE_BATCH_PARAMS __a =TEXT_TO_IMAGE_IMAGE_PARAMS __a =TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self : int ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _a = DDIMScheduler() torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(__a ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self : Union[str, Any] , __a : Tuple , __a : List[Any]=0 ): _a = torch.manual_seed(__a ) _a = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = StableDiffusionPanoramaPipeline(**__a ) _a = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = sd_pipe(**__a ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : Any ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self : Union[str, Any] ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def UpperCamelCase__ ( self : Dict ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = StableDiffusionPanoramaPipeline(**__a ) _a = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = "french fries" _a = sd_pipe(**__a , negative_prompt=__a ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = StableDiffusionPanoramaPipeline(**__a ) _a = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = sd_pipe(**__a , view_batch_size=2 ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : List[str] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) _a = StableDiffusionPanoramaPipeline(**__a ) _a = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = sd_pipe(**__a ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : Union[str, Any] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=__a ) _a = StableDiffusionPanoramaPipeline(**__a ) _a = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = sd_pipe(**__a ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : List[Any] , __a : Union[str, Any]=0 ): _a = torch.manual_seed(__a ) _a = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self : int ): _a = "stabilityai/stable-diffusion-2-base" _a = DDIMScheduler.from_pretrained(__a , subfolder="scheduler" ) _a = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = self.get_inputs() _a = pipe(**__a ).images _a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _a = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase__ ( self : Optional[Any] ): _a = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=__a ) _a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = self.get_inputs() _a = pipe(**__a ).images _a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _a = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = 0 def callback_fn(__a : int , __a : int , __a : torch.FloatTensor ) -> None: _a = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _a = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _a = latents[0, -3:, -3:, -1] _a = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _a = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _a = latents[0, -3:, -3:, -1] _a = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _a = False _a = "stabilityai/stable-diffusion-2-base" _a = DDIMScheduler.from_pretrained(__a , subfolder="scheduler" ) _a = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = self.get_inputs() pipe(**__a , callback=__a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase__ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = "stabilityai/stable-diffusion-2-base" _a = DDIMScheduler.from_pretrained(__a , subfolder="scheduler" ) _a = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a = self.get_inputs() _a = pipe(**__a ) _a = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Tuple = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =[ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Union[str, Any] , **__a : Optional[int] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _a = deprecated_arg[3:] _a = not kwargs.pop(__a ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) _a = kwargs.pop("tpu_name" , self.tpu_name ) _a = kwargs.pop("device_idx" , self.device_idx ) _a = kwargs.pop("eager_mode" , self.eager_mode ) _a = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__a ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Name of TPU'} , ) __a =field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) __a =field(default=lowerCamelCase_ , metadata={'help': 'Benchmark models in eager model.'} ) __a =field( default=lowerCamelCase_ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase__ ( self : Union[str, Any] ): requires_backends(self , ["tf"] ) _a = None if self.tpu: try: if self.tpu_name: _a = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _a = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _a = None return tpu @cached_property def UpperCamelCase__ ( self : List[Any] ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _a = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _a = tf.distribute.OneDeviceStrategy(device=f'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _a = tf.distribute.OneDeviceStrategy(device=f'/cpu:{self.device_idx}' ) return strategy @property def UpperCamelCase__ ( self : List[Any] ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self : Optional[int] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase__ ( self : List[Any] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase__ ( self : Tuple ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self : Optional[Any] ): return self.n_gpu > 0
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Dict: _a = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : Optional[int] ) -> Tuple: _a = 0 while b > 0: if b & 1: _a = ((res % c) + (a % c)) % c a += a b >>= 1 return res
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @property def UpperCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) _a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def UpperCamelCase__ ( self : int ): torch.manual_seed(0 ) _a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def UpperCamelCase__ ( self : List[str] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__a ) def UpperCamelCase__ ( self : Dict ): _a = self.dummy_uncond_unet _a = DDIMScheduler() _a = self.dummy_vq_model _a = LDMPipeline(unet=__a , vqvae=__a , scheduler=__a ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) _a = torch.manual_seed(0 ) _a = ldm(generator=__a , num_inference_steps=2 , output_type="numpy" ).images _a = torch.manual_seed(0 ) _a = ldm(generator=__a , num_inference_steps=2 , output_type="numpy" , return_dict=__a )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _a = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] ): _a = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) _a = torch.manual_seed(0 ) _a = ldm(generator=__a , num_inference_steps=5 , output_type="numpy" ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _a = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) _a = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : int = ['model.decoder.embed_positions.weights'] def _lowerCamelCase ( lowercase : List[Any] ) -> Tuple: if "emb" in name: _a = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _a = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _a = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _a = name.replace("linear1" , "fc1" ) if "linear2" in name: _a = name.replace("linear2" , "fc2" ) if "norm1" in name: _a = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _a = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _a = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _a = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _a = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _a = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def _lowerCamelCase ( lowercase : OrderedDict , lowercase : int ) -> Tuple[Dict, Dict]: _a = list(state_dict.keys() ) _a = {} for key in keys: _a = state_dict.pop(lowercase ) _a = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj _a = val[:hidden_size, :] _a = val[hidden_size : 2 * hidden_size, :] _a = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _a = val else: _a = val return state_dict, enc_dec_proj_state_dict def _lowerCamelCase ( lowercase : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values _a = 1024 _a = 24 _a = 16 elif checkpoint == "medium": _a = 1536 _a = 48 _a = 24 elif checkpoint == "large": _a = 2048 _a = 48 _a = 32 else: raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) _a = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCamelCase ( lowercase : Optional[int] , lowercase : str=None , lowercase : Tuple=None , lowercase : Tuple="cpu" ) -> Union[str, Any]: _a = MusicGen.get_pretrained(lowercase , device=lowercase ) _a = decoder_config_from_checkpoint(lowercase ) _a = fairseq_model.lm.state_dict() _a , _a = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) _a = TaEncoderModel.from_pretrained("t5-base" ) _a = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _a = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _a , _a = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model _a = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass _a = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _a = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _a = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _a = AutoTokenizer.from_pretrained("t5-base" ) _a = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _a = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids _a = 2048 _a = 2048 # set other default generation config params _a = int(30 * audio_encoder.config.frame_rate ) _a = True _a = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(F'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , __a : Any , ): _a = parent _a = 13 _a = 7 _a = 30 _a = self.seq_length + self.mem_len _a = 15 _a = True _a = True _a = 99 _a = [10, 50, 80] _a = 32 _a = 32 _a = 4 _a = 8 _a = 1_28 _a = 2 _a = 2 _a = None _a = 1 _a = 0 _a = 3 _a = self.vocab_size - 1 _a = 0.01 def UpperCamelCase__ ( self : Dict ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase__ ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase__ ( self : Any , __a : Optional[int] , __a : Dict , __a : Tuple , __a : Union[str, Any] ): _a = TFTransfoXLModel(__a ) _a , _a = model(__a ).to_tuple() _a = {"input_ids": input_ids_a, "mems": mems_a} _a , _a = model(__a ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ ( self : List[Any] , __a : int , __a : int , __a : str , __a : List[Any] ): _a = TFTransfoXLLMHeadModel(__a ) _a , _a = model(__a ).to_tuple() _a = {"input_ids": input_ids_a, "labels": lm_labels} _a , _a = model(__a ).to_tuple() _a , _a = model([input_ids_a, mems_a] ).to_tuple() _a = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _a , _a = model(__a ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ ( self : List[str] , __a : Any , __a : int , __a : str , __a : List[Any] ): _a = TFTransfoXLForSequenceClassification(__a ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Tuple ): _a = self.prepare_config_and_inputs() ((_a) , (_a) , (_a) , (_a)) = config_and_inputs _a = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __a =() if is_tf_available() else () __a =( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : Any , __a : str , __a : str , __a : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase__ ( self : Dict ): _a = TFTransfoXLModelTester(self ) _a = ConfigTester(self , config_class=__a , d_embed=37 ) def UpperCamelCase__ ( self : str ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Dict ): self.model_tester.set_seed() _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__a ) def UpperCamelCase__ ( self : List[Any] ): self.model_tester.set_seed() _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__a ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a ) def UpperCamelCase__ ( self : str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _a = model_class(__a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _a = model.get_output_embeddings() assert isinstance(__a , tf.keras.layers.Layer ) _a = model.get_bias() assert name is None else: _a = model.get_output_embeddings() assert x is None _a = model.get_bias() assert name is None def UpperCamelCase__ ( self : Tuple ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase__ ( self : int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFTransfoXLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase__ ( self : List[Any] ): pass @require_tf class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase__ ( self : int ): _a = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off _a = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _a = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _a = model.generate(__a , max_length=2_00 , do_sample=__a ) self.assertListEqual(output_ids[0].numpy().tolist() , __a )
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) # General docstring lowerCAmelCase_ : Dict = 'PoolFormerConfig' # Base docstring lowerCAmelCase_ : Any = 'sail/poolformer_s12' lowerCAmelCase_ : Any = [1, 5_12, 7, 7] # Image classification docstring lowerCAmelCase_ : Tuple = 'sail/poolformer_s12' lowerCAmelCase_ : str = 'tabby, tabby cat' lowerCAmelCase_ : Optional[Any] = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCamelCase ( lowercase : Dict , lowercase : float = 0.0 , lowercase : bool = False ) -> Dict: if drop_prob == 0.0 or not training: return input _a = 1 - drop_prob _a = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _a = keep_prob + torch.rand(lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _a = input.div(lowercase ) * random_tensor return output class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : Optional[float] = None ): super().__init__() _a = drop_prob def UpperCamelCase__ ( self : List[str] , __a : torch.Tensor ): return drop_path(__a , self.drop_prob , self.training ) def UpperCamelCase__ ( self : List[str] ): return "p={}".format(self.drop_prob ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Any , __a : List[str] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : str , __a : List[Any]=None ): super().__init__() _a = patch_size if isinstance(__a , collections.abc.Iterable ) else (patch_size, patch_size) _a = stride if isinstance(__a , collections.abc.Iterable ) else (stride, stride) _a = padding if isinstance(__a , collections.abc.Iterable ) else (padding, padding) _a = nn.Convad(__a , __a , kernel_size=__a , stride=__a , padding=__a ) _a = norm_layer(__a ) if norm_layer else nn.Identity() def UpperCamelCase__ ( self : Optional[Any] , __a : Union[str, Any] ): _a = self.projection(__a ) _a = self.norm(__a ) return embeddings class __SCREAMING_SNAKE_CASE (nn.GroupNorm ): """simple docstring""" def __init__( self : Union[str, Any] , __a : int , **__a : List[str] ): super().__init__(1 , __a , **__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Any , __a : Dict ): super().__init__() _a = nn.AvgPoolad(__a , stride=1 , padding=pool_size // 2 , count_include_pad=__a ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ): return self.pool(__a ) - hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __a : List[Any] , __a : List[Any] , __a : Dict , __a : str ): super().__init__() _a = nn.Convad(__a , __a , 1 ) _a = nn.Convad(__a , __a , 1 ) _a = PoolFormerDropPath(__a ) if isinstance(config.hidden_act , __a ): _a = ACTaFN[config.hidden_act] else: _a = config.hidden_act def UpperCamelCase__ ( self : Tuple , __a : Dict ): _a = self.conva(__a ) _a = self.act_fn(__a ) _a = self.drop(__a ) _a = self.conva(__a ) _a = self.drop(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : Union[str, Any] , __a : List[Any] , __a : List[Any] , __a : int , __a : List[Any] , __a : List[str] ): super().__init__() _a = PoolFormerPooling(__a ) _a = PoolFormerOutput(__a , __a , __a , __a ) _a = PoolFormerGroupNorm(__a ) _a = PoolFormerGroupNorm(__a ) # Useful for training neural nets _a = PoolFormerDropPath(__a ) if drop_path > 0.0 else nn.Identity() _a = config.use_layer_scale if config.use_layer_scale: _a = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) _a = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) def UpperCamelCase__ ( self : Dict , __a : Dict ): if self.use_layer_scale: _a = self.pooling(self.before_norm(__a ) ) _a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _a = hidden_states + self.drop_path(__a ) _a = () _a = self.output(self.after_norm(__a ) ) _a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _a = hidden_states + self.drop_path(__a ) _a = (output,) + outputs return outputs else: _a = self.drop_path(self.pooling(self.before_norm(__a ) ) ) # First residual connection _a = pooling_output + hidden_states _a = () # Second residual connection inside the PoolFormerOutput block _a = self.drop_path(self.output(self.after_norm(__a ) ) ) _a = hidden_states + layer_output _a = (output,) + outputs return outputs class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __a : Optional[int] ): super().__init__() _a = config # stochastic depth decay rule _a = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _a = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _a = nn.ModuleList(__a ) # Transformer blocks _a = [] _a = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _a = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__a ) ) _a = nn.ModuleList(__a ) def UpperCamelCase__ ( self : List[Any] , __a : Dict , __a : str=False , __a : List[str]=True ): _a = () if output_hidden_states else None _a = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _a , _a = layers # Get patch embeddings from hidden_states _a = embedding_layer(__a ) # Send the embeddings through the blocks for _, blk in enumerate(__a ): _a = blk(__a ) _a = layer_outputs[0] if output_hidden_states: _a = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =PoolFormerConfig __a ='poolformer' __a ='pixel_values' __a =True def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCamelCase__ ( self : int , __a : Dict , __a : Union[str, Any]=False ): if isinstance(__a , __a ): _a = value lowerCAmelCase_ : Tuple = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , __a : Any ): super().__init__(__a ) _a = config _a = PoolFormerEncoder(__a ) # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self : List[str] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self : Any , __a : Optional[torch.FloatTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _a = self.encoder( __a , output_hidden_states=__a , return_dict=__a , ) _a = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=encoder_outputs.hidden_states , ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : Tuple ): super().__init__() _a = nn.Linear(config.hidden_size , config.hidden_size ) def UpperCamelCase__ ( self : Dict , __a : Any ): _a = self.dense(__a ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , __a : List[str] ): super().__init__(__a ) _a = config.num_labels _a = PoolFormerModel(__a ) # Final norm _a = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _a = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): _a = return_dict if return_dict is not None else self.config.use_return_dict _a = self.poolformer( __a , output_hidden_states=__a , return_dict=__a , ) _a = outputs[0] _a = self.classifier(self.norm(__a ).mean([-2, -1] ) ) _a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a = "single_label_classification" else: _a = "multi_label_classification" if self.config.problem_type == "regression": _a = MSELoss() if self.num_labels == 1: _a = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": _a = CrossEntropyLoss() _a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a = BCEWithLogitsLoss() _a = loss_fct(__a , __a ) if not return_dict: _a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase_ : Union[str, Any] = False class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[Any] , __a : Tuple=32 ): set_seed(0 ) _a = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 ) _a = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def UpperCamelCase__ ( self : List[str] ): _a = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _a = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=__a , ) _a = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=__a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _a = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )] _a = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )] _a = [torch.randint(0 , 10_00 , (4,) ).long().to(__a ) for _ in range(4 )] # train with a DDPM scheduler _a , _a = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() _a = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _a = model(__a , timesteps[i] ).sample _a = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _a , _a = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() _a = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _a = model(__a , timesteps[i] ).sample _a = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ : Any = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ : List[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ : Union[str, Any] = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase_ : List[Any] = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _lowerCamelCase ( lowercase : str ) -> Dict: _a = None # source code of `config_class` _a = inspect.getsource(lowercase ) _a = _re_checkpoint.findall(lowercase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _a = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _a = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _a = ckpt_name break return checkpoint def _lowerCamelCase ( ) -> Union[str, Any]: _a = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _a = get_checkpoint_from_config_class(lowercase ) _a = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase ) if len(lowercase ) > 0: _a = "\n".join(sorted(lowercase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _lowerCamelCase ( lowercase : Tuple ) -> int: _a = model.config _a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _a = MBartConfig( is_decoder=lowercase , is_encoder_decoder=lowercase , add_cross_attention=lowercase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase , add_final_layer_norm=lowercase , ) return encoder_config, decoder_config def _lowerCamelCase ( lowercase : Union[str, Any] ) -> List[str]: if "encoder.model" in name: _a = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: _a = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _a = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: _a = "encoder." + name if "attn.proj" in name: _a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: _a = name.replace("attn" , "attention.self" ) if "norm1" in name: _a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": _a = "encoder.layernorm.weight" if name == "encoder.norm.bias": _a = "encoder.layernorm.bias" return name def _lowerCamelCase ( lowercase : str , lowercase : List[Any] ) -> Tuple: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[3] ) _a = int(key_split[5] ) _a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _a = val return orig_state_dict def _lowerCamelCase ( lowercase : List[str] , lowercase : str=None , lowercase : Optional[Any]=False ) -> Tuple: # load original model _a = DonutModel.from_pretrained(lowercase ).eval() # load HuggingFace model _a , _a = get_configs(lowercase ) _a = DonutSwinModel(lowercase ) _a = MBartForCausalLM(lowercase ) _a = VisionEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) model.eval() _a = original_model.state_dict() _a = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) # verify results on scanned document _a = load_dataset("hf-internal-testing/example-documents" ) _a = dataset["test"][0]["image"].convert("RGB" ) _a = XLMRobertaTokenizerFast.from_pretrained(lowercase , from_slow=lowercase ) _a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _a = DonutProcessor(lowercase , lowercase ) _a = processor(lowercase , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _a = "When is the coffee break?" _a = task_prompt.replace("{user_input}" , lowercase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _a = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _a = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _a = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _a = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _a = "hello world" else: raise ValueError("Model name not supported" ) _a = original_model.decoder.tokenizer(lowercase , add_special_tokens=lowercase , return_tensors="pt" )[ "input_ids" ] _a = original_model.encoder.model.patch_embed(lowercase ) _a , _a = model.encoder.embeddings(lowercase ) assert torch.allclose(lowercase , lowercase , atol=1E-3 ) # verify encoder hidden states _a = original_model.encoder(lowercase ) _a = model.encoder(lowercase ).last_hidden_state assert torch.allclose(lowercase , lowercase , atol=1E-2 ) # verify decoder hidden states _a = original_model(lowercase , lowercase , lowercase ).logits _a = model(lowercase , decoder_input_ids=lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCAmelCase_ : Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str , __a : List[str] , __a : Dict=13 , __a : List[str]=7 , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Union[str, Any]=True , __a : int=True , __a : Optional[Any]=99 , __a : List[str]=64 , __a : Union[str, Any]=5 , __a : Dict=4 , __a : int=37 , __a : List[str]="gelu" , __a : List[Any]=0.1 , __a : Optional[Any]=0.1 , __a : Union[str, Any]=5_12 , __a : List[str]=16 , __a : Optional[Any]=2 , __a : Union[str, Any]=0.02 , __a : Dict=3 , __a : str=4 , __a : List[str]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope _a = vocab_size - 1 def UpperCamelCase__ ( self : str ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase__ ( self : Dict ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCamelCase__ ( self : Any ): _a , _a , _a , _a = self.prepare_config_and_inputs() _a = True return config, input_ids, input_mask, token_labels def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : List[str] , __a : int ): _a = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Optional[int] , __a : Dict , __a : List[Any] , __a : Optional[Any] ): _a = True _a = GPTNeoXModel(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Any , __a : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : str ): _a = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : Any , __a : Union[str, Any] , __a : int ): _a = self.num_labels _a = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : int , __a : Optional[Any] , __a : Dict , __a : Union[str, Any] , __a : Any ): _a = self.num_labels _a = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : List[str] , __a : str , __a : str , __a : int , __a : Union[str, Any] ): _a = self.num_labels _a = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[int] , __a : Any ): _a = True _a = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass _a = model(__a , attention_mask=__a , use_cache=__a ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model(__a , attention_mask=__a , output_hidden_states=__a ) _a = output_from_no_past["hidden_states"][0] _a = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["hidden_states"][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def UpperCamelCase__ ( self : Dict ): _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __a =(GPTNeoXForCausalLM,) if is_torch_available() else () __a =( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Union[str, Any] ): _a = GPTNeoXModelTester(self ) _a = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def UpperCamelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Union[str, Any] ): _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def UpperCamelCase__ ( self : int ): # This regression test was failing with PyTorch < 1.3 _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def UpperCamelCase__ ( self : int ): _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def UpperCamelCase__ ( self : int ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase__ ( self : Tuple , __a : Union[str, Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() _a = original_model(__a ).last_hidden_state _a = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {"type": scaling_type, "factor": 10.0} _a = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() _a = scaled_model(__a ).last_hidden_state _a = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Any ): _a = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: _a = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) _a = tokenizer("My favorite food is" , return_tensors="pt" ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _a = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" _a = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) _a = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' lowerCAmelCase_ : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Tuple = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import string def _lowerCamelCase ( lowercase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): _a = "" for symbol in message: if symbol in string.ascii_uppercase: _a = string.ascii_uppercase.find(lowercase ) _a = num - key if num < 0: _a = num + len(string.ascii_uppercase ) _a = translated + string.ascii_uppercase[num] else: _a = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _lowerCamelCase ( ) -> None: _a = input("Encrypted message: " ) _a = message.upper() decrypt(lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Any=False ) -> List[str]: _a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _a = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: _a = "" else: _a = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _a = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[ : config.hidden_size, : ] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( lowercase : str , lowercase : List[Any] , lowercase : Dict ) -> Optional[Any]: _a = dct.pop(lowercase ) _a = val def _lowerCamelCase ( ) -> str: _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCamelCase ( lowercase : Tuple , lowercase : List[str] ) -> Dict: _a = DeiTConfig() # all deit models have fine-tuned heads _a = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _a = 1000 _a = "huggingface/label-files" _a = "imagenet-1k-id2label.json" _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = int(deit_name[-6:-4] ) _a = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): _a = 192 _a = 768 _a = 12 _a = 3 elif deit_name[9:].startswith("small" ): _a = 384 _a = 1536 _a = 12 _a = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): _a = 1024 _a = 4096 _a = 24 _a = 16 # load original model from timm _a = timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a = timm_model.state_dict() _a = create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , lowercase ) # load HuggingFace model _a = DeiTForImageClassificationWithTeacher(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor _a = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _a = DeiTImageProcessor(size=lowercase , crop_size=config.image_size ) _a = image_processor(images=prepare_img() , return_tensors="pt" ) _a = encoding["pixel_values"] _a = model(lowercase ) _a = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Dict = [True] * 1_00_00_01 lowerCAmelCase_ : str = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowerCAmelCase_ : Any = False i += 1 def _lowerCamelCase ( lowercase : int ) -> bool: return seive[n] def _lowerCamelCase ( lowercase : int ) -> bool: return any(digit in "02468" for digit in str(lowercase ) ) def _lowerCamelCase ( lowercase : int = 100_0000 ) -> list[int]: _a = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowercase ) and not contains_an_even_digit(lowercase ): _a = str(lowercase ) _a = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase ) )] if all(is_prime(lowercase ) for i in list_nums ): result.append(lowercase ) return result def _lowerCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __a ='convnextv2' def __init__( self : Dict , __a : str=3 , __a : str=4 , __a : Optional[Any]=4 , __a : List[Any]=None , __a : List[Any]=None , __a : List[Any]="gelu" , __a : List[Any]=0.02 , __a : Optional[int]=1e-1_2 , __a : Any=0.0 , __a : Optional[Any]=2_24 , __a : Union[str, Any]=None , __a : int=None , **__a : str , ): super().__init__(**__a ) _a = num_channels _a = patch_size _a = num_stages _a = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes _a = [3, 3, 9, 3] if depths is None else depths _a = hidden_act _a = initializer_range _a = layer_norm_eps _a = drop_path_rate _a = image_size _a = ["stem"] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : str , __a : List[str] ): raise NotImplementedError() def UpperCamelCase__ ( self : Dict ): raise NotImplementedError() class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict , __a : "AutoTokenizer" , __a : bool = False , **__a : Union[str, Any] ): _a = tokenizer _a = skip_prompt _a = decode_kwargs # variables used in the streaming process _a = [] _a = 0 _a = True def UpperCamelCase__ ( self : int , __a : Optional[Any] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: _a = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _a = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): _a = text[self.print_len :] _a = [] _a = 0 # If the last token is a CJK character, we print the characters. elif len(__a ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _a = text[self.print_len :] self.print_len += len(__a ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _a = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__a ) self.on_finalized_text(__a ) def UpperCamelCase__ ( self : Tuple ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _a = text[self.print_len :] _a = [] _a = 0 else: _a = "" _a = True self.on_finalized_text(__a , stream_end=__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : bool = False ): print(__a , flush=__a , end="" if not stream_end else None ) def UpperCamelCase__ ( self : List[Any] , __a : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , __a : "AutoTokenizer" , __a : bool = False , __a : Optional[float] = None , **__a : Optional[Any] ): super().__init__(__a , __a , **__a ) _a = Queue() _a = None _a = timeout def UpperCamelCase__ ( self : Dict , __a : str , __a : bool = False ): self.text_queue.put(__a , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[Any] ): return self def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Optional[Any] = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowerCamelCase ( lowercase : int ) -> Any: _a = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Union[str, Any]: _a , _a = emb.weight.shape _a = nn.Linear(lowercase , lowercase , bias=lowercase ) _a = emb.weight.data return lin_layer def _lowerCamelCase ( lowercase : Optional[Any] ) -> Tuple: _a = torch.load(lowercase , map_location="cpu" ) _a = mam_aaa["args"] or mam_aaa["cfg"]["model"] _a = mam_aaa["model"] remove_ignore_keys_(lowercase ) _a = state_dict["encoder.embed_tokens.weight"].shape[0] _a = MaMaaaConfig( vocab_size=lowercase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _a = state_dict["decoder.embed_tokens.weight"] _a = MaMaaaForConditionalGeneration(lowercase ) model.model.load_state_dict(lowercase , strict=lowercase ) _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Dict = parser.parse_args() lowerCAmelCase_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['pixel_values'] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Union[int, float] = 1 / 2_55 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : Optional[int] , ): super().__init__(**__a ) _a = size if size is not None else {"height": 3_84, "width": 3_84} _a = get_size_dict(__a , default_to_square=__a ) _a = do_resize _a = size _a = resample _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def UpperCamelCase__ ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ): _a = get_size_dict(__a , default_to_square=__a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) _a = (size["height"], size["width"]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : str , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : List[Any] , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : bool = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[str] , ): _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = size if size is not None else self.size _a = get_size_dict(__a , default_to_square=__a ) _a = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__a ) for image in images] if do_resize: _a = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: _a = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _a = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _a = [to_channel_dimension_format(__a , __a ) for image in images] _a = BatchFeature(data={"pixel_values": images} , tensor_type=__a ) return encoded_outputs
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : str ) -> YolosConfig: _a = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _a = 192 _a = 768 _a = 12 _a = 3 _a = [800, 1333] _a = False elif yolos_name == "yolos_s_dWr": _a = 330 _a = 14 _a = 6 _a = 1320 elif "yolos_s" in yolos_name: _a = 384 _a = 1536 _a = 12 _a = 6 elif "yolos_b" in yolos_name: _a = [800, 1344] _a = 91 _a = "huggingface/label-files" _a = "coco-detection-id2label.json" _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( lowercase : dict , lowercase : YolosConfig , lowercase : bool = False ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _a = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[: config.hidden_size, :] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[-config.hidden_size :, :] _a = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( lowercase : str ) -> str: if "backbone" in name: _a = name.replace("backbone" , "vit" ) if "cls_token" in name: _a = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: _a = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: _a = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: _a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: _a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _a = name.replace("attn" , "attention.self" ) if "norm1" in name: _a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: _a = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: _a = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: _a = name.replace("vit.norm" , "vit.layernorm" ) return name def _lowerCamelCase ( lowercase : dict , lowercase : YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[2] ) _a = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[ dim : dim * 2, : ] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def _lowerCamelCase ( ) -> torch.Tensor: _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : str , lowercase : bool = False ) -> str: _a = get_yolos_config(lowercase ) # load original state_dict _a = torch.load(lowercase , map_location="cpu" )["model"] # load 🤗 model _a = YolosForObjectDetection(lowercase ) model.eval() _a = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) # Check outputs on an image, prepared by YolosImageProcessor _a = 800 if yolos_name != "yolos_ti" else 512 _a = YolosImageProcessor(format="coco_detection" , size=lowercase ) _a = image_processor(images=prepare_img() , return_tensors="pt" ) _a = model(**lowercase ) _a , _a = outputs.logits, outputs.pred_boxes _a , _a = None, None if yolos_name == "yolos_ti": _a = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _a = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _a = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _a = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _a = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _a = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _a = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _a = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _a = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _a = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowercase , atol=1E-4 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) if push_to_hub: _a = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _a = model_mapping[yolos_name] image_processor.push_to_hub(lowercase , organization="hustvl" ) model.push_to_hub(lowercase , organization="hustvl" ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ : List[str] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' from __future__ import annotations from random import random class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , __a : int | None = None ): _a = value _a = random() _a = None _a = None def __repr__( self : Tuple ): from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self : Any ): _a = str(self.value ) + " " _a = str(self.left or "" ) _a = str(self.right or "" ) return value + left + right def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _a , _a = split(root.left , lowercase ) return left, root else: _a , _a = split(root.right , lowercase ) return root, right def _lowerCamelCase ( lowercase : Node | None , lowercase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _a = merge(left.right , lowercase ) return left else: _a = merge(lowercase , right.left ) return right def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Node | None: _a = Node(lowercase ) _a , _a = split(lowercase , lowercase ) return merge(merge(lowercase , lowercase ) , lowercase ) def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Node | None: _a , _a = split(lowercase , value - 1 ) _a , _a = split(lowercase , lowercase ) return merge(lowercase , lowercase ) def _lowerCamelCase ( lowercase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def _lowerCamelCase ( lowercase : Node | None , lowercase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _a = insert(lowercase , int(arg[1:] ) ) elif arg[0] == "-": _a = erase(lowercase , int(arg[1:] ) ) else: print("Unknown command" ) return root def _lowerCamelCase ( ) -> None: _a = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _a = input() while args != "q": _a = interact_treap(lowercase , lowercase ) print(lowercase ) _a = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def _lowerCamelCase ( lowercase : dict , lowercase : str , lowercase : set , lowercase : set , lowercase : dict , lowercase : dict , lowercase : PriorityQueue , lowercase : dict , lowercase : float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a = cst_fwd.get(lowercase , np.inf ) _a = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a = new_cost_f _a = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict , lowercase : dict ) -> int: _a = -1 _a = set() _a = set() _a = {source: 0} _a = {destination: 0} _a = {source: None} _a = {destination: None} _a = PriorityQueue() _a = PriorityQueue() _a = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a = queue_forward.get() visited_forward.add(lowercase ) _a , _a = queue_backward.get() visited_backward.add(lowercase ) _a = pass_and_relaxation( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) _a = pass_and_relaxation( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a = shortest_distance return shortest_path_distance lowerCAmelCase_ : Dict = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCAmelCase_ : Any = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: def update_area_of_max_square(lowercase : int , lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _a = update_area_of_max_square(lowercase , col + 1 ) _a = update_area_of_max_square(row + 1 , col + 1 ) _a = update_area_of_max_square(row + 1 , lowercase ) if mat[row][col]: _a = 1 + min([right, diagonal, down] ) _a = max(largest_square_area[0] , lowercase ) return sub_problem_sol else: return 0 _a = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: def update_area_of_max_square_using_dp_array( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _a = update_area_of_max_square_using_dp_array(lowercase , col + 1 , lowercase ) _a = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase ) _a = update_area_of_max_square_using_dp_array(row + 1 , lowercase , lowercase ) if mat[row][col]: _a = 1 + min([right, diagonal, down] ) _a = max(largest_square_area[0] , lowercase ) _a = sub_problem_sol return sub_problem_sol else: return 0 _a = [0] _a = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase ) return largest_square_area[0] def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: _a = [[0] * (cols + 1) for _ in range(rows + 1 )] _a = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _a = dp_array[row][col + 1] _a = dp_array[row + 1][col + 1] _a = dp_array[row + 1][col] if mat[row][col] == 1: _a = 1 + min(lowercase , lowercase , lowercase ) _a = max(dp_array[row][col] , lowercase ) else: _a = 0 return largest_square_area def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: _a = [0] * (cols + 1) _a = [0] * (cols + 1) _a = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _a = current_row[col + 1] _a = next_row[col + 1] _a = next_row[col] if mat[row][col] == 1: _a = 1 + min(lowercase , lowercase , lowercase ) _a = max(current_row[col] , lowercase ) else: _a = 0 _a = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : Any = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='gptj' __a ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , __a : str=5_04_00 , __a : int=20_48 , __a : Tuple=40_96 , __a : int=28 , __a : Tuple=16 , __a : Dict=64 , __a : Optional[Any]=None , __a : Optional[int]="gelu_new" , __a : Optional[Any]=0.0 , __a : Union[str, Any]=0.0 , __a : Optional[int]=0.0 , __a : Optional[Any]=1e-5 , __a : int=0.02 , __a : Optional[Any]=True , __a : Dict=5_02_56 , __a : Dict=5_02_56 , __a : List[str]=False , **__a : str , ): _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , __a : PretrainedConfig , __a : str = "default" , __a : List[PatchingSpec] = None , __a : bool = False , ): super().__init__(__a , task=__a , patching_specs=__a , use_past=__a ) if not getattr(self._config , "pad_token_id" , __a ): # TODO: how to do that better? _a = 0 @property def UpperCamelCase__ ( self : Optional[Any] ): _a = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) _a = {0: "batch", 1: "past_sequence + sequence"} else: _a = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase__ ( self : int ): return self._config.n_layer @property def UpperCamelCase__ ( self : int ): return self._config.n_head def UpperCamelCase__ ( self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): _a = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _a , _a = common_inputs["input_ids"].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] _a = common_inputs["attention_mask"] if self.use_past: _a = ordered_inputs["attention_mask"].dtype _a = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def UpperCamelCase__ ( self : List[str] ): return 13
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' from math import factorial lowerCAmelCase_ : str = {str(d): factorial(d) for d in range(10)} def _lowerCamelCase ( lowercase : int ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) ) def _lowerCamelCase ( ) -> int: _a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase_ : Dict = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Dict , lowercase : int=None ) -> Dict: # Initialise PyTorch model _a = XLNetConfig.from_json_file(lowercase ) _a = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) _a = finetuning_task _a = GLUE_TASKS_NUM_LABELS[finetuning_task] _a = XLNetForSequenceClassification(lowercase ) elif "squad" in finetuning_task: _a = finetuning_task _a = XLNetForQuestionAnswering(lowercase ) else: _a = XLNetLMHeadModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowercase , lowercase , lowercase ) # Save pytorch-model _a = os.path.join(lowercase , lowercase ) _a = os.path.join(lowercase , lowercase ) print(F'Save PyTorch model to {os.path.abspath(lowercase )}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {os.path.abspath(lowercase )}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCAmelCase_ : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ShapEPipeline __a =['prompt'] __a =['prompt'] __a =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __a =False @property def UpperCamelCase__ ( self : str ): return 32 @property def UpperCamelCase__ ( self : Any ): return 32 @property def UpperCamelCase__ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase__ ( self : int ): return 8 @property def UpperCamelCase__ ( self : Union[str, Any] ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase__ ( self : Any ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__a ) @property def UpperCamelCase__ ( self : int ): torch.manual_seed(0 ) _a = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _a = PriorTransformer(**__a ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _a = ShapERenderer(**__a ) return model def UpperCamelCase__ ( self : Dict ): _a = self.dummy_prior _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_renderer _a = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) _a = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCamelCase__ ( self : List[Any] , __a : List[Any] , __a : Optional[Any]=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCamelCase__ ( self : List[str] ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = pipe(**self.get_dummy_inputs(__a ) ) _a = output.images[0] _a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : int ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self : Tuple ): _a = torch_device == "cpu" _a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def UpperCamelCase__ ( self : List[str] ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = 1 _a = 2 _a = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: _a = batch_size * [inputs[key]] _a = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Dict ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) _a = ShapEPipeline.from_pretrained("openai/shap-e" ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = torch.Generator(device=__a ).manual_seed(0 ) _a = pipe( "a shark" , generator=__a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ : Dict = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ : Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase_ : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase_ : str = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase_ : Dict = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase_ : List[Any] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase_ : Tuple = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase_ : Dict = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase_ : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase_ : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_MAPPING lowerCAmelCase_ : List[Any] = auto_class_update(FlaxAutoModel) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase_ : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase_ : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase_ : Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ): """simple docstring""" __a =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase_ : List[str] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : List[Any] = '#' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = {} def UpperCamelCase__ ( self : Optional[Any] , __a : str ): _a = self._trie for char in text: if char not in trie: _a = {} _a = trie[char] _a = True def UpperCamelCase__ ( self : Any , __a : str ): _a = self._trie for char in prefix: if char in trie: _a = trie[char] else: return [] return self._elements(__a ) def UpperCamelCase__ ( self : int , __a : dict ): _a = [] for c, v in d.items(): _a = [" "] if c == END else [(c + s) for s in self._elements(__a )] result.extend(__a ) return tuple(__a ) lowerCAmelCase_ : Optional[int] = Trie() lowerCAmelCase_ : Tuple = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowerCamelCase ( lowercase : str ) -> tuple: _a = trie.find_word(lowercase ) return tuple(string + word for word in suffixes ) def _lowerCamelCase ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : str , __a : Union[str, Any] , __a : List[Any]=7 , __a : Tuple=3 , __a : List[str]=18 , __a : Any=30 , __a : Tuple=4_00 , __a : int=True , __a : List[Any]=None , __a : List[Any]=True , __a : Tuple=False , __a : List[Any]=True , __a : Optional[int]=True , __a : Dict=[0.5, 0.5, 0.5] , __a : List[Any]=[0.5, 0.5, 0.5] , ): _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size if size is not None else {"height": 18, "width": 20} _a = do_thumbnail _a = do_align_axis _a = do_pad _a = do_normalize _a = image_mean _a = image_std def UpperCamelCase__ ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =DonutImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : Tuple ): _a = DonutImageProcessingTester(self ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : Optional[int] ): _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_thumbnail" ) ) self.assertTrue(hasattr(__a , "do_align_long_axis" ) ) self.assertTrue(hasattr(__a , "do_pad" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order _a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def UpperCamelCase__ ( self : Optional[Any] ): pass @is_flaky() def UpperCamelCase__ ( self : Optional[Any] ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _a = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def UpperCamelCase__ ( self : List[Any] ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _a = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def UpperCamelCase__ ( self : int ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _a = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='trocr' __a =['past_key_values'] __a ={ 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : int , __a : Optional[int]=5_02_65 , __a : Optional[Any]=10_24 , __a : List[Any]=12 , __a : Union[str, Any]=16 , __a : Union[str, Any]=40_96 , __a : Optional[Any]="gelu" , __a : Any=5_12 , __a : Optional[Any]=0.1 , __a : Tuple=0.0 , __a : Optional[Any]=0.0 , __a : str=2 , __a : Optional[int]=0.02 , __a : List[str]=0.0 , __a : Tuple=True , __a : Optional[int]=False , __a : List[str]=True , __a : Optional[int]=True , __a : Tuple=1 , __a : Tuple=0 , __a : str=2 , **__a : Optional[Any] , ): _a = vocab_size _a = d_model _a = decoder_layers _a = decoder_attention_heads _a = decoder_ffn_dim _a = activation_function _a = max_position_embeddings _a = dropout _a = attention_dropout _a = activation_dropout _a = init_std _a = decoder_layerdrop _a = use_cache _a = scale_embedding _a = use_learned_position_embeddings _a = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : int , lowercase : Tuple , lowercase : Dict , lowercase : Dict ) -> List[str]: for attribute in key.split("." ): _a = getattr(lowercase , lowercase ) if weight_type is not None: _a = getattr(lowercase , lowercase ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCamelCase ( lowercase : Any , lowercase : Optional[int] ) -> Optional[Any]: _a = [] _a = fairseq_model.state_dict() _a = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _a = None for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) _a = True elif name.split("." )[0] == "proj": _a = fairseq_model.proj _a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _a = True if "*" in mapped_key: _a = name.split(lowercase )[0].split("." )[-2] _a = mapped_key.replace("*" , lowercase ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" else: _a = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def _lowerCamelCase ( lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : Dict , lowercase : Dict ) -> List[str]: _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: _a , _a = emb.weight.shape _a = nn.Linear(lowercase , lowercase , bias=lowercase ) _a = emb.weight.data return lin_layer def _lowerCamelCase ( lowercase : List[Any] ) -> Any: with open(lowercase , "r" , encoding="utf-8" ) as f: _a = f.readlines() _a = [line.split(" " )[0] for line in lines] _a = len(lowercase ) _a = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(lowercase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , ) -> Optional[int]: _a = WavaVecaConfig.from_pretrained(lowercase ) _a = SpeechaTextaConfig.from_pretrained( lowercase , vocab_size=lowercase , decoder_layers=lowercase , do_stable_layer_norm=lowercase ) _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _a = model[0].eval() # set weights for wav2vec2 encoder _a = WavaVecaModel(lowercase ) _a = recursively_load_weights_wavaveca(model.encoder , lowercase ) _a = SpeechaTextaForCausalLM(lowercase ) _a , _a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase ) # set output linear layer unexpected_keys.remove("embed_out" ) _a = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) _a = SpeechEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) _a = False # add projection layer _a = nn.Parameter(projection_layer.weight ) _a = nn.Parameter(projection_layer.bias ) _a = create_vocab_dict(lowercase ) with open(os.path.join(lowercase , "vocab.json" ) , "w" ) as fp: json.dump(lowercase , lowercase ) _a = SpeechaTextaTokenizer(os.path.join(lowercase , "vocab.json" ) ) tokenizer.save_pretrained(lowercase ) _a = hf_wavavec.config.to_dict() _a = tokenizer.pad_token_id _a = tokenizer.bos_token_id _a = tokenizer.eos_token_id _a = "speech_to_text_2" _a = "wav2vec2" _a = SpeechEncoderDecoderConfig.from_dict(lowercase ) hf_wavavec.save_pretrained(lowercase ) feature_extractor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') lowerCAmelCase_ : List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ : Optional[int] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase_ : int = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict: _a = list(state_dict.keys() ) for name in state_dict_keys: _a = state_dict.pop(lowercase ) # emb -> embedding if name.startswith("emb." ): _a = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): _a = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention _a = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , lowercase ) # ffn -> feed_forward _a = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): _a = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): _a = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): _a = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": _a = "rwkv." + name _a = weight return state_dict def _lowerCamelCase ( lowercase : Any , lowercase : str , lowercase : Optional[Any] , lowercase : str=None , lowercase : List[str]=None , lowercase : int=False , lowercase : Union[str, Any]=None ) -> Optional[Any]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) _a = 5_0277 _a = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: _a = PreTrainedTokenizerFast(tokenizer_file=lowercase ) _a = len(lowercase ) tokenizer.save_pretrained(lowercase ) # 2. Build the config _a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) _a = RwkvConfig( vocab_size=lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase ) # 3. Download model file then convert state_dict _a = hf_hub_download(lowercase , lowercase ) _a = torch.load(lowercase , map_location="cpu" ) _a = convert_state_dict(lowercase ) # 4. Split in shards and save _a , _a = shard_checkpoint(lowercase ) for shard_file, shard in shards.items(): torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if index is not None: _a = os.path.join(lowercase , lowercase ) # Save the index as well with open(lowercase , "w" , encoding="utf-8" ) as f: _a = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + "\n" f.write(lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) _a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a = torch.load(os.path.join(lowercase , lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase , lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) _a = AutoModelForCausalLM.from_pretrained(lowercase ) model.push_to_hub(lowercase , max_shard_size="2GB" ) tokenizer.push_to_hub(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase_ : Any = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : List[Any]=13 , __a : Optional[Any]=7 , __a : str=True , __a : Optional[Any]=True , __a : List[str]=False , __a : Optional[int]=True , __a : str=99 , __a : int=32 , __a : int=5 , __a : Optional[int]=4 , __a : List[Any]=37 , __a : Dict="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[Any]=5_12 , __a : int=16 , __a : str=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Tuple=4 , __a : Tuple=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def UpperCamelCase__ ( self : Union[str, Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : Tuple ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict , __a : Any , __a : Any , __a : int , __a : Tuple , __a : List[Any] , __a : Tuple ): _a = BioGptModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Dict , __a : Dict , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : List[str] , __a : List[Any] , __a : Union[str, Any] , __a : str , ): _a = BioGptForCausalLM(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict , __a : List[str] , __a : Any , __a : Dict , __a : Optional[int] , *__a : Union[str, Any] ): _a = BioGptModel(config=__a ) model.to(__a ) model.eval() # create attention mask _a = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) _a = self.seq_length // 2 _a = 0 # first forward pass _a , _a = model(__a , attention_mask=__a ).to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _a = ids_tensor((1,) , __a ).item() + 1 _a = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _a = random_other_next_tokens # append to next input_ids and attn_mask _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a )] , dim=1 , ) # get two different outputs _a = model(__a , attention_mask=__a )["last_hidden_state"] _a = model(__a , past_key_values=__a , attention_mask=__a )["last_hidden_state"] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def UpperCamelCase__ ( self : Optional[int] , __a : Optional[int] , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] , *__a : Dict ): _a = BioGptModel(config=__a ).to(__a ).eval() _a = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) # first forward pass _a = model(__a , attention_mask=__a , use_cache=__a ) _a , _a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _a = model(__a , attention_mask=__a )["last_hidden_state"] _a = model(__a , attention_mask=__a , past_key_values=__a )[ "last_hidden_state" ] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : List[Any] , __a : int , __a : Optional[Any] , *__a : Tuple , __a : List[str]=False ): _a = BioGptForCausalLM(__a ) model.to(__a ) if gradient_checkpointing: model.gradient_checkpointing_enable() _a = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCamelCase__ ( self : Any , __a : List[str] , *__a : Dict ): _a = BioGptModel(__a ) _a = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCamelCase__ ( self : Any , __a : int , __a : str , __a : str , __a : Union[str, Any] , __a : Tuple , *__a : Any ): _a = self.num_labels _a = BioGptForTokenClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a =(BioGptForCausalLM,) if is_torch_available() else () __a =( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) __a =False def UpperCamelCase__ ( self : Tuple ): _a = BioGptModelTester(self ) _a = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__a ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__a ) @slow def UpperCamelCase__ ( self : List[Any] ): _a = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(__a ) _a = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _a = "left" # Define PAD Token = EOS Token = 50256 _a = tokenizer.eos_token _a = model.config.eos_token_id # use different length sentences to test batching _a = [ "Hello, my dog is a little", "Today, I", ] _a = tokenizer(__a , return_tensors="pt" , padding=__a ) _a = inputs["input_ids"].to(__a ) _a = model.generate( input_ids=__a , attention_mask=inputs["attention_mask"].to(__a ) , ) _a = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(__a ) _a = model.generate(input_ids=__a ) _a = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _a = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(__a ) _a = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) _a = tokenizer.batch_decode(__a , skip_special_tokens=__a ) _a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) _a = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) _a = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) @slow def UpperCamelCase__ ( self : Union[str, Any] ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = BioGptModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ ( self : Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict["input_ids"] _a = input_ids.ne(1 ).to(__a ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = "multi_label_classification" _a = input_dict["input_ids"] _a = input_ids.ne(1 ).to(__a ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Tuple ): _a = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) _a = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) _a = model(__a )[0] _a = 4_23_84 _a = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self : Tuple ): _a = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _a = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(__a ) torch.manual_seed(0 ) _a = tokenizer("COVID-19 is" , return_tensors="pt" ).to(__a ) _a = model.generate( **__a , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__a , ) _a = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) _a = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(__a , __a )
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[str] ): _a = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_28, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_42, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } _a = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_28, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_42, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(__a ) , __a ) def UpperCamelCase__ ( self : Tuple ): _a = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__a ) , x.transpose() ) ) _a = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase__ ( self : Union[str, Any] ): _a = np.random.randn(3 , 4 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) ) _a = np.random.randn(3 , 4 , 5 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self : Optional[Any] ): _a = np.random.randn(3 , 4 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) ) _a = np.random.randn(3 , 4 , 5 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self : List[str] ): _a = np.random.randn(3 , 4 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(transpose(__a ) , np.asarray(transpose(__a ) ) ) ) _a = np.random.randn(3 , 4 , 5 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , np.asarray(transpose(__a , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.reshape(__a , (4, 3) ) ) ) _a = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.reshape(__a , (12, 5) ) ) ) @require_torch def UpperCamelCase__ ( self : Tuple ): _a = np.random.randn(3 , 4 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) ) _a = np.random.randn(3 , 4 , 5 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self : Tuple ): _a = np.random.randn(3 , 4 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) ) _a = np.random.randn(3 , 4 , 5 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self : Optional[Any] ): _a = np.random.randn(3 , 4 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.asarray(reshape(__a , (4, 3) ) ) ) ) _a = np.random.randn(3 , 4 , 5 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.asarray(reshape(__a , (12, 5) ) ) ) ) def UpperCamelCase__ ( self : int ): _a = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__a ) , np.squeeze(__a ) ) ) _a = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.squeeze(__a , axis=2 ) ) ) @require_torch def UpperCamelCase__ ( self : str ): _a = np.random.randn(1 , 3 , 4 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) ) _a = np.random.randn(1 , 4 , 1 , 5 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self : Any ): _a = np.random.randn(1 , 3 , 4 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) ) _a = np.random.randn(1 , 4 , 1 , 5 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self : Optional[int] ): _a = np.random.randn(1 , 3 , 4 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(squeeze(__a ) , np.asarray(squeeze(__a ) ) ) ) _a = np.random.randn(1 , 4 , 1 , 5 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.asarray(squeeze(__a , axis=2 ) ) ) ) def UpperCamelCase__ ( self : List[str] ): _a = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.expand_dims(__a , axis=1 ) ) ) @require_torch def UpperCamelCase__ ( self : Optional[int] ): _a = np.random.randn(3 , 4 ) _a = torch.tensor(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self : List[Any] ): _a = np.random.randn(3 , 4 ) _a = tf.constant(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self : Union[str, Any] ): _a = np.random.randn(3 , 4 ) _a = jnp.array(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.asarray(expand_dims(__a , axis=1 ) ) ) )
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='beit' def __init__( self : Optional[int] , __a : Union[str, Any]=81_92 , __a : List[Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Optional[Any]="gelu" , __a : List[Any]=0.0 , __a : Dict=0.0 , __a : str=0.02 , __a : List[Any]=1e-1_2 , __a : Optional[int]=2_24 , __a : Dict=16 , __a : Tuple=3 , __a : Tuple=False , __a : Union[str, Any]=False , __a : int=False , __a : Optional[int]=False , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=True , __a : int=[3, 5, 7, 11] , __a : Any=[1, 2, 3, 6] , __a : List[Any]=True , __a : List[str]=0.4 , __a : int=2_56 , __a : str=1 , __a : Union[str, Any]=False , __a : Any=2_55 , **__a : List[str] , ): super().__init__(**__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = image_size _a = patch_size _a = num_channels _a = use_mask_token _a = use_absolute_position_embeddings _a = use_relative_position_bias _a = use_shared_relative_position_bias _a = layer_scale_init_value _a = drop_path_rate _a = use_mean_pooling # decode head attributes (semantic segmentation) _a = out_indices _a = pool_scales # auxiliary head attributes (semantic segmentation) _a = use_auxiliary_head _a = auxiliary_loss_weight _a = auxiliary_channels _a = auxiliary_num_convs _a = auxiliary_concat_input _a = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =version.parse('1.11' ) @property def UpperCamelCase__ ( self : List[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self : List[Any] ): return 1e-4
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int , __a : Optional[Any] , __a : str=2 , __a : str=8 , __a : Union[str, Any]=True , __a : List[str]=True , __a : Tuple=True , __a : Optional[int]=True , __a : List[str]=99 , __a : List[str]=16 , __a : Tuple=5 , __a : Optional[int]=2 , __a : List[str]=36 , __a : int="gelu" , __a : Optional[int]=0.0 , __a : Dict=0.0 , __a : int=5_12 , __a : Union[str, Any]=16 , __a : str=2 , __a : List[str]=0.02 , __a : int=3 , __a : Any=4 , __a : Optional[int]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def UpperCamelCase__ ( self : str ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : str ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Any ): _a = self.get_config() _a = 3_00 return config def UpperCamelCase__ ( self : List[str] ): ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self : Tuple , __a : str , __a : List[str] , __a : int , __a : List[str] , __a : Tuple , __a : str , __a : Union[str, Any] ): _a = MraModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a ) _a = model(__a , token_type_ids=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : str , __a : Optional[int] , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] , __a : int , __a : Optional[Any] , __a : str , ): _a = True _a = MraModel(__a ) model.to(__a ) model.eval() _a = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) _a = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , ) _a = model(__a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : str , __a : Any , __a : Tuple , __a : Tuple , __a : Dict , __a : int , __a : Any , __a : Optional[Any] ): _a = MraForMaskedLM(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Any , __a : Dict , __a : Tuple , __a : str , __a : Tuple , __a : Optional[Any] , __a : Tuple ): _a = MraForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _a = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : Dict , __a : Optional[Any] , __a : int , __a : Optional[Any] , __a : str , __a : Any , __a : Optional[Any] , __a : Tuple ): _a = self.num_labels _a = MraForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] , __a : int , __a : List[Any] , __a : Dict , __a : Dict , __a : Optional[int] , __a : str , __a : List[Any] ): _a = self.num_labels _a = MraForTokenClassification(config=__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : int , __a : List[str] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : Tuple , __a : Optional[int] , __a : Any ): _a = self.num_choices _a = MraForMultipleChoice(config=__a ) model.to(__a ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : List[str] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __a =False __a =False __a =False __a =False __a =() def UpperCamelCase__ ( self : Union[str, Any] ): _a = MraModelTester(self ) _a = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ ( self : Optional[Any] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MraModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="MRA does not output attentions" ) def UpperCamelCase__ ( self : Any ): return @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Union[str, Any] ): _a = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _a = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _a = model(__a )[0] _a = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self : List[Any] ): _a = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _a = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _a = model(__a )[0] _a = 5_02_65 _a = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self : Any ): _a = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _a = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): _a = model(__a )[0] _a = 5_02_65 _a = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __a : Dict , __a : Optional[int]=3 , __a : Optional[Any]=32 , __a : List[Any]=3 , __a : Union[str, Any]=10 , __a : Union[str, Any]=[10, 20, 30, 40] , __a : Union[str, Any]=[1, 1, 2, 1] , __a : int=True , __a : str=True , __a : Union[str, Any]="relu" , __a : Optional[Any]=3 , __a : Optional[int]=None , ): _a = parent _a = batch_size _a = image_size _a = num_channels _a = embeddings_size _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = hidden_act _a = num_labels _a = scope _a = len(__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = self.get_config() return config, pixel_values def UpperCamelCase__ ( self : List[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self : Dict , __a : Optional[Any] , __a : Any ): _a = FlaxRegNetModel(config=__a ) _a = model(__a ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[Any] ): _a = self.num_labels _a = FlaxRegNetForImageClassification(config=__a ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : List[str] ): _a = self.prepare_config_and_inputs() _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __a =False __a =False __a =False def UpperCamelCase__ ( self : Dict ): _a = FlaxRegNetModelTester(self ) _a = ConfigTester(self , config_class=__a , has_text_modality=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self : Tuple ): return def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCamelCase__ ( self : Dict ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCamelCase__ ( self : Union[str, Any] ): pass def UpperCamelCase__ ( self : Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : List[str] ): def check_hidden_states_output(__a : Optional[Any] , __a : Dict , __a : List[str] ): _a = model_class(__a ) _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase__ ( self : int ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = self._prepare_for_class(__a , __a ) _a = model_class(__a ) @jax.jit def model_jitted(__a : Optional[Any] , **__a : Dict ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): _a = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _a = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( ) -> int: _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : Tuple ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : int ): _a = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="np" ) _a = model(**__a ) # verify the logits _a = (1, 10_00) self.assertEqual(outputs.logits.shape , __a ) _a = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =TransfoXLTokenizer __a =False __a =False def UpperCamelCase__ ( self : List[Any] ): super().setUp() _a = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self : int , **__a : Optional[Any] ): _a = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] ): _a = "<unk> UNwanted , running" _a = "<unk> unwanted, running" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__a ) _a = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(__a , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [0, 4, 8, 7] ) def UpperCamelCase__ ( self : Dict ): _a = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def UpperCamelCase__ ( self : Dict ): _a = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = TransfoXLTokenizer(lower_case=__a ) _a = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" _a = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) self.assertEqual(tokenizer.convert_tokens_to_string(__a ) , __a ) def UpperCamelCase__ ( self : Any ): _a = self.get_tokenizer() _a = len(__a ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , __a : list[int] ): _a = len(__a ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , __a ): _a = self.prefix_sum[i - 1] + array[i] def UpperCamelCase__ ( self : Optional[int] , __a : int , __a : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def UpperCamelCase__ ( self : List[str] , __a : int ): _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , **__a : Dict ): super().__init__(**__a ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(__a ) def UpperCamelCase__ ( self : Any , **__a : List[str] ): _a = {} _a = {} _a = {} # preprocess args if "points_per_batch" in kwargs: _a = kwargs["points_per_batch"] if "points_per_crop" in kwargs: _a = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: _a = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: _a = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: _a = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: _a = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: _a = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: _a = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: _a = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: _a = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: _a = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: _a = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Dict , __a : Dict , *__a : Optional[Any] , __a : Union[str, Any]=None , __a : Optional[int]=None , **__a : Optional[Any] ): return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ ( self : int , __a : List[str] , __a : List[str]=64 , __a : int = 0 , __a : float = 5_12 / 15_00 , __a : Optional[int] = 32 , __a : Optional[int] = 1 , ): _a = load_image(__a ) _a = self.image_processor.size["longest_edge"] _a , _a , _a , _a = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) _a = self.image_processor(images=__a , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": _a = self.get_inference_context() with inference_context(): _a = self._ensure_tensor_on_device(__a , device=self.device ) _a = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) _a = image_embeddings _a = grid_points.shape[1] _a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __a , __a ): _a = grid_points[:, i : i + points_per_batch, :, :] _a = input_labels[:, i : i + points_per_batch] _a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : int=0.88 , __a : Union[str, Any]=0.95 , __a : Optional[int]=0 , __a : Dict=1 , ): _a = model_inputs.pop("input_boxes" ) _a = model_inputs.pop("is_last" ) _a = model_inputs.pop("original_sizes" ).tolist() _a = model_inputs.pop("reshaped_input_sizes" ).tolist() _a = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _a = model_outputs["pred_masks"] _a = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) _a = model_outputs["iou_scores"] _a , _a , _a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ ( self : Any , __a : List[str] , __a : List[Any]=False , __a : List[str]=False , __a : Dict=0.7 , ): _a = [] _a = [] _a = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) _a = torch.cat(__a ) _a = torch.cat(__a ) _a , _a , _a , _a = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) _a = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) _a = {} if output_rle_mask: _a = rle_mask if output_bboxes_mask: _a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import sys lowerCAmelCase_ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowerCamelCase ( lowercase : str ) -> int: _a = 1 for digit in s: product *= int(lowercase ) return product def _lowerCamelCase ( lowercase : str = N ) -> int: _a = -sys.maxsize - 1 _a = n[:13] _a = 13 while cur_index < len(lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _a = substr[1:] + n[cur_index] cur_index += 1 else: _a = max(lowercase , str_eval(lowercase ) ) _a = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ConsistencyModelPipeline __a =UNCONDITIONAL_IMAGE_GENERATION_PARAMS __a =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __a =frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def UpperCamelCase__ ( self : Tuple ): _a = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def UpperCamelCase__ ( self : int ): _a = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def UpperCamelCase__ ( self : Union[str, Any] , __a : str=False ): if class_cond: _a = self.dummy_cond_unet else: _a = self.dummy_uncond_unet # Default to CM multistep sampler _a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) _a = { "unet": unet, "scheduler": scheduler, } return components def UpperCamelCase__ ( self : Dict , __a : int , __a : List[str]=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def UpperCamelCase__ ( self : Tuple ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = ConsistencyModelPipeline(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components(class_cond=__a ) _a = ConsistencyModelPipeline(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = 0 _a = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self : int ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = ConsistencyModelPipeline(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = 1 _a = None _a = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self : str ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components(class_cond=__a ) _a = ConsistencyModelPipeline(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = 1 _a = None _a = 0 _a = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] , __a : Tuple=0 , __a : int=False , __a : List[Any]="cpu" , __a : List[Any]=torch.floataa , __a : Union[str, Any]=(1, 3, 64, 64) ): _a = torch.manual_seed(__a ) _a = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: _a = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a ) _a = latents return inputs def UpperCamelCase__ ( self : List[str] , __a : Any=0 , __a : Dict="cpu" , __a : Union[str, Any]=torch.floataa , __a : List[Any]=(1, 3, 64, 64) ): if type(__a ) == str: _a = torch.device(__a ) _a = torch.Generator(device=__a ).manual_seed(__a ) _a = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) return latents def UpperCamelCase__ ( self : List[str] ): _a = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) _a = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_inputs() _a = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase__ ( self : Union[str, Any] ): _a = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) _a = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_inputs() _a = 1 _a = None _a = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase__ ( self : Union[str, Any] ): _a = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) _a = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_inputs(get_fixed_latents=__a , device=__a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _a = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase__ ( self : Optional[Any] ): _a = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) _a = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_inputs(get_fixed_latents=__a , device=__a ) _a = 1 _a = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _a = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _a = image[0, -3:, -3:, -1] _a = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' lowerCAmelCase_ : Optional[int] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase_ : Any = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : str , __a : Path , __a : Union[str, None] = None , __a : Union[List[str], None] = None , __a : Union[str, List[str], None] = None , __a : bool = True , ): _a = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )] if identifier is not None: _a = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__a , __a ): for n_ in n_identifier: _a = [file for file in files if n_ not in file] else: _a = [file for file in files if n_identifier not in file] _a = ignore_files or [] ignore_files.append("__init__.py" ) _a = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __a ) if only_modules: _a = file.split("." )[0] try: _a = getattr(__a , __a ) _a = doctest.DocTestSuite(__a ) _a = unittest.TextTestRunner().run(__a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: _a = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self : Optional[int] ): _a = Path("src/transformers" ) _a = "modeling" _a = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__a , identifier=__a , ignore_files=__a ) def UpperCamelCase__ ( self : Dict ): _a = Path("src/transformers" ) _a = "tokenization" self.analyze_directory(__a , identifier=__a ) def UpperCamelCase__ ( self : Dict ): _a = Path("src/transformers" ) _a = "configuration" self.analyze_directory(__a , identifier=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = Path("src/transformers" ) _a = ["configuration", "modeling", "tokenization"] self.analyze_directory(__a , n_identifier=__a ) def UpperCamelCase__ ( self : str ): _a = Path("docs/source" ) _a = ["favicon.ico"] self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' lowerCAmelCase_ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCamelCase ( lowercase : Tuple , lowercase : List[str] , lowercase : Tuple , lowercase : Any ) -> int: # Return True if there is node that has not iterated. _a = [False] * len(lowercase ) _a = [s] _a = True while queue: _a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) _a = True _a = u return visited[t] def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] ) -> Optional[Any]: _a = [-1] * (len(lowercase )) _a = 0 _a = [] _a = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): _a = float("Inf" ) _a = sink while s != source: # Find the minimum value in select path _a = min(lowercase , graph[parent[s]][s] ) _a = parent[s] max_flow += path_flow _a = sink while v != source: _a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _a = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 10**9 ) -> int: _a = 1 _a = 2 _a = 0 _a = 0 _a = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple ) -> Tuple: # Construct model if openai_config_file == "": _a = OpenAIGPTConfig() else: _a = OpenAIGPTConfig.from_json_file(lowercase ) _a = OpenAIGPTModel(lowercase ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase , lowercase , lowercase ) # Save pytorch-model _a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _a = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) lowerCAmelCase_ : Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ : Tuple = 16 lowerCAmelCase_ : str = 32 def _lowerCamelCase ( lowercase : Accelerator , lowercase : DatasetDict , lowercase : List[int] , lowercase : List[int] , lowercase : int = 16 ) -> int: _a = AutoTokenizer.from_pretrained("bert-base-cased" ) _a = DatasetDict( { "train": dataset["train"].select(lowercase ), "validation": dataset["train"].select(lowercase ), "test": dataset["validation"], } ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) _a = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) _a = DataLoader( tokenized_datasets["test"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader, test_dataloader def _lowerCamelCase ( lowercase : str , lowercase : Dict ) -> Optional[int]: # New Code # _a = [] # Download the dataset _a = load_dataset("glue" , "mrpc" ) # Create our splits _a = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) _a = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE set_seed(lowercase ) # New Code # # Create our folds: _a = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) _a = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase ): _a , _a , _a = get_fold_dataloaders( lowercase , lowercase , lowercase , lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**lowercase ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**lowercase ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase ) # New Code # # We also run predictions on the test set at the very end _a = [] for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**lowercase ) _a = outputs.logits _a , _a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _a = torch.cat(lowercase , dim=0 ) _a = torch.stack(lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _a = metric.compute(predictions=lowercase , references=lowercase ) accelerator.print("Average test metrics from all folds:" , lowercase ) def _lowerCamelCase ( ) -> str: _a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=lowercase , default=3 , help="The number of splits to perform across the dataset" ) _a = parser.parse_args() _a = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' lowerCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _a = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(lowercase )}' ) raise ValueError(lowercase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Dict = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int , __a : Optional[Any] , __a : List[Any]=13 , __a : List[Any]=7 , __a : Tuple=True , __a : str=True , __a : int=True , __a : Tuple=True , __a : int=99 , __a : int=32 , __a : List[Any]=2 , __a : List[str]=4 , __a : str=37 , __a : Any="gelu" , __a : Dict=0.1 , __a : str=0.1 , __a : str=5_12 , __a : Dict=16 , __a : Optional[Any]=2 , __a : Optional[int]=0.02 , __a : Optional[int]=3 , __a : Tuple=4 , __a : Optional[Any]=None , __a : int=0 , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope _a = projection_dim def UpperCamelCase__ ( self : Dict ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _a = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : List[str] , __a : int , __a : List[Any] , __a : Dict , __a : Dict , __a : Dict , __a : Any , __a : int ): _a = TFDPRContextEncoder(config=__a ) _a = model(__a , attention_mask=__a , token_type_ids=__a ) _a = model(__a , token_type_ids=__a ) _a = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Dict , __a : Tuple , __a : Union[str, Any] , __a : Optional[int] , __a : Dict ): _a = TFDPRQuestionEncoder(config=__a ) _a = model(__a , attention_mask=__a , token_type_ids=__a ) _a = model(__a , token_type_ids=__a ) _a = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase__ ( self : int , __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : str ): _a = TFDPRReader(config=__a ) _a = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase__ ( self : Any ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __a ={'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} __a =False __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : List[str] ): _a = TFDPRModelTester(self ) _a = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ ( self : int ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a ) @slow def UpperCamelCase__ ( self : Any ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFDPRQuestionEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFDPRReader.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : List[str] ): _a = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _a = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] _a = model(__a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _a = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , __a : int , __a : List[Any]=13 , __a : int=30 , __a : Dict=2 , __a : Union[str, Any]=3 , __a : Union[str, Any]=True , __a : str=True , __a : int=32 , __a : Union[str, Any]=2 , __a : Dict=4 , __a : List[str]=37 , __a : Optional[int]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=10 , __a : List[str]=0.02 , __a : List[str]=3 , __a : Optional[int]=0.6 , __a : Optional[int]=None , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase__ ( self : str ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : Any ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Any , __a : Union[str, Any] ): _a = TFViTMAEModel(config=__a ) _a = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Any , __a : Optional[int] , __a : Tuple ): _a = TFViTMAEForPreTraining(__a ) _a = model(__a , training=__a ) # expected sequence length = num_patches _a = (self.image_size // self.patch_size) ** 2 _a = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _a = 1 _a = TFViTMAEForPreTraining(__a ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__a , training=__a ) _a = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase__ ( self : Dict ): _a = self.prepare_config_and_inputs() ((_a) , (_a) , (_a)) = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __a ={'feature-extraction': TFViTMAEModel} if is_tf_available() else {} __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Optional[int] ): _a = TFViTMAEModelTester(self ) _a = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCamelCase__ ( self : List[str] ): pass def UpperCamelCase__ ( self : Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , tf.keras.layers.Layer ) ) def UpperCamelCase__ ( self : Dict ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def UpperCamelCase__ ( self : Optional[int] ): # make the mask reproducible np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(__a ) _a = self._prepare_for_class(__a , __a ) _a = model(__a , noise=__a ) _a = copy.deepcopy(self._prepare_for_class(__a , __a ) ) _a = model(**__a , noise=__a ) _a = outputs_dict[0].numpy() _a = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def UpperCamelCase__ ( self : Any ): # make the mask reproducible np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__a : Union[str, Any] ): _a = {} for k, v in inputs_dict.items(): if tf.is_tensor(__a ): _a = v.numpy() else: _a = np.array(__a ) return inputs_np_dict for model_class in self.all_model_classes: _a = model_class(__a ) _a = self._prepare_for_class(__a , __a ) _a = prepare_numpy_arrays(__a ) _a = model(__a , noise=__a ) _a = model(**__a , noise=__a ) self.assert_outputs_same(__a , __a ) def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : List[Any] , __a : Optional[int] ): # make masks reproducible np.random.seed(2 ) _a = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a = tf.constant(__a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _a = tf_noise super().check_pt_tf_models(__a , __a , __a ) def UpperCamelCase__ ( self : Tuple ): # make mask reproducible np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__a ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__a , __a ),) if isinstance(__a , __a ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__a , "_keras_serializable" , __a ) } _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a = tf.convert_to_tensor(__a ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: _a = main_layer_class(__a ) _a = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _a = tf.keras.Model(__a , outputs=main_layer(__a ) ) _a = model(__a ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(__a , "keras_model.h5" ) model.save(__a ) _a = tf.keras.models.load_model( __a , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__a , tf.keras.Model ) _a = model(__a ) self.assert_outputs_same(__a , __a ) @slow def UpperCamelCase__ ( self : Optional[int] ): # make mask reproducible np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(__a ) _a = self._prepare_for_class(__a , __a ) _a = model(__a , noise=__a ) if model_class.__name__ == "TFViTMAEModel": _a = outputs.last_hidden_state.numpy() _a = 0 else: _a = outputs.logits.numpy() _a = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) _a = model_class.from_pretrained(__a ) _a = model(__a , noise=__a ) if model_class.__name__ == "TFViTMAEModel": _a = after_outputs["last_hidden_state"].numpy() _a = 0 else: _a = after_outputs["logits"].numpy() _a = 0 _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1e-5 ) def UpperCamelCase__ ( self : int ): # make mask reproducible np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(__a ) _a = self._prepare_for_class(__a , __a ) _a = model(__a , noise=__a ) _a = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__a ) _a = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _a = model_class.from_config(model.config ) _a = new_model(__a ) # Build model new_model.set_weights(model.get_weights() ) _a = new_model(__a , noise=__a ) self.assert_outputs_same(__a , __a ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase__ ( self : int ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCamelCase__ ( self : Optional[int] ): pass @slow def UpperCamelCase__ ( self : List[str] ): _a = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ) -> Union[str, Any]: _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : Dict ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : Tuple ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _a = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _a = ViTMAEConfig() _a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _a = np.random.uniform(size=(1, num_patches) ) # forward pass _a = model(**__a , noise=__a ) # verify the logits _a = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , __a ) _a = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __a , atol=1e-4 )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =RoCBertTokenizer __a =None __a =False __a =True __a =filter_non_english def UpperCamelCase__ ( self : List[Any] ): super().setUp() _a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _a = {} _a = {} for i, value in enumerate(__a ): _a = i _a = i _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _a = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def UpperCamelCase__ ( self : Tuple ): _a = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase__ ( self : List[Any] ): _a = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self : Any ): _a = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCamelCase__ ( self : Dict ): _a = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self : Any ): _a = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self : str ): _a = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self : Dict ): _a = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self : str ): _a = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self : List[Any] ): _a = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase__ ( self : Dict ): _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(__a ): _a = i _a = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCamelCase__ ( self : int ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase__ ( self : int ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase__ ( self : Union[str, Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase__ ( self : List[str] ): _a = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _a = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def UpperCamelCase__ ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _a = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _a = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _a = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCamelCase__ ( self : Any ): _a = ["的", "人", "有"] _a = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = True _a = self.tokenizer_class.from_pretrained(__a , **__a ) _a = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _a = tokenizer_p.encode(__a , add_special_tokens=__a ) _a = tokenizer_r.encode(__a , add_special_tokens=__a ) _a = tokenizer_r.convert_ids_to_tokens(__a ) _a = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _a = False _a = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _a = self.tokenizer_class.from_pretrained(__a , **__a ) _a = tokenizer_r.encode(__a , add_special_tokens=__a ) _a = tokenizer_p.encode(__a , add_special_tokens=__a ) _a = tokenizer_r.convert_ids_to_tokens(__a ) _a = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _a = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def UpperCamelCase__ ( self : str ): _a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _a = tokenizer.encode("你好" , add_special_tokens=__a ) _a = tokenizer.encode("你是谁" , add_special_tokens=__a ) _a = tokenizer.build_inputs_with_special_tokens(__a ) _a = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase__ ( self : int ): _a = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = "你好,你是谁" _a = tokenizer.tokenize(__a ) _a = tokenizer.convert_tokens_to_ids(__a ) _a = tokenizer.convert_tokens_to_shape_ids(__a ) _a = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _a = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _a = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_ : Any = 6_378_137.0 lowerCAmelCase_ : List[str] = 6_356_752.314_245 lowerCAmelCase_ : Any = 6_37_81_37 def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float , lowercase : float ) -> float: _a = (AXIS_A - AXIS_B) / AXIS_A _a = atan((1 - flattening) * tan(radians(lowercase ) ) ) _a = atan((1 - flattening) * tan(radians(lowercase ) ) ) _a = radians(lowercase ) _a = radians(lowercase ) # Equation _a = sin((phi_a - phi_a) / 2 ) _a = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _a = sqrt(sin_sq_phi + (cos(lowercase ) * cos(lowercase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ : Any = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ : Optional[int] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ : Optional[Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def UpperCamelCase__ ( self : Any ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def UpperCamelCase__ ( self : List[str] , __a : Optional[int] , __a : Optional[int] , __a : List[str]=None , __a : Optional[int]="uniform_average" , __a : List[Any]=True ): _a = mean_squared_error( __a , __a , sample_weight=__a , multioutput=__a , squared=__a ) return {"mse": mse}
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 3 , lowercase : int = 7 , lowercase : int = 100_0000 ) -> int: _a = 0 _a = 1 for current_denominator in range(1 , limit + 1 ): _a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _a = current_numerator _a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[str] , *__a : Optional[Any] , **__a : List[str] ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __a ='focalnet' def __init__( self : str , __a : str=2_24 , __a : Optional[Any]=4 , __a : str=3 , __a : Dict=96 , __a : Tuple=False , __a : Dict=[1_92, 3_84, 7_68, 7_68] , __a : List[str]=[2, 2, 6, 2] , __a : Optional[Any]=[2, 2, 2, 2] , __a : Optional[int]=[3, 3, 3, 3] , __a : str="gelu" , __a : Tuple=4.0 , __a : Tuple=0.0 , __a : List[str]=0.1 , __a : Union[str, Any]=False , __a : Dict=1e-4 , __a : Optional[Any]=False , __a : Dict=False , __a : Any=False , __a : List[str]=0.02 , __a : int=1e-5 , __a : Optional[Any]=32 , __a : List[str]=None , __a : Tuple=None , **__a : str , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = use_conv_embed _a = hidden_sizes _a = depths _a = focal_levels _a = focal_windows _a = hidden_act _a = mlp_ratio _a = hidden_dropout_prob _a = drop_path_rate _a = use_layerscale _a = layerscale_value _a = use_post_layernorm _a = use_post_layernorm_in_modulation _a = normalize_modulator _a = initializer_range _a = layer_norm_eps _a = encoder_stride _a = ["stem"] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int=2_8123 ) -> List[Any]: _a = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _a = set() _a = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ : List[str] = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =CanineTokenizer __a =False def UpperCamelCase__ ( self : List[Any] ): super().setUp() _a = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self : Optional[Any] ): return CanineTokenizer.from_pretrained("google/canine-s" ) def UpperCamelCase__ ( self : str , **__a : List[Any] ): _a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) _a = 10_24 return tokenizer @require_torch def UpperCamelCase__ ( self : str ): _a = self.canine_tokenizer _a = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off _a = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _a = tokenizer(__a , padding=__a , return_tensors="pt" ) self.assertIsInstance(__a , __a ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCamelCase__ ( self : List[str] ): _a = self.canine_tokenizer _a = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] _a = tokenizer(__a , padding=__a , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __a ) self.assertIn("attention_mask" , __a ) self.assertIn("token_type_ids" , __a ) @require_torch def UpperCamelCase__ ( self : Optional[int] ): _a = self.canine_tokenizer _a = [ "What's the weater?", "It's about 25 degrees.", ] _a = tokenizer( text_target=__a , max_length=32 , padding="max_length" , truncation=__a , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCamelCase__ ( self : List[str] ): # safety check on max_len default value so we are sure the test works _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" _a = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) _a = tokenizer.__class__.from_pretrained(__a ) _a = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) shutil.rmtree(__a ) _a = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" _a = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _a = chr(0XE0_07 ) additional_special_tokens.append(__a ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _a = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) _a = tokenizer.__class__.from_pretrained(__a ) _a = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) self.assertIn(__a , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _a = tokenizer.__class__.from_pretrained(__a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a , _a = self.get_clean_sequence(__a ) # a special token for Canine can be defined as follows: _a = 0XE0_05 _a = chr(__a ) tokenizer.add_special_tokens({"cls_token": special_token} ) _a = tokenizer.encode(__a , add_special_tokens=__a ) self.assertEqual(len(__a ) , 1 ) _a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) self.assertEqual(__a , input_encoded + special_token_id ) _a = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__ ( self : Tuple ): _a = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = chr(0XE0_05 ) _a = chr(0XE0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__a ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) _a = tokenizer.tokenize(__a ) _a = tokenizer.tokenize(__a ) self.assertEqual(len(__a ) , 1 ) self.assertEqual(len(__a ) , 1 ) self.assertEqual(token_a[0] , __a ) self.assertEqual(token_a[0] , __a ) @require_tokenizers def UpperCamelCase__ ( self : List[Any] ): _a = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _a = 0XE0_06 _a = chr(__a ) _a = AddedToken(__a , lstrip=__a ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__a ) tokenizer.from_pretrained(__a ) def UpperCamelCase__ ( self : Any ): _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__a ) with open(os.path.join(__a , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _a = json.load(__a ) with open(os.path.join(__a , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _a = json.load(__a ) # a special token for Canine can be defined as follows: _a = 0XE0_06 _a = chr(__a ) _a = [new_token_a] _a = [new_token_a] with open(os.path.join(__a , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) with open(os.path.join(__a , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _a = tokenizer_class.from_pretrained(__a , extra_ids=0 ) self.assertIn(__a , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _a = 0XE0_07 _a = chr(__a ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _a = [AddedToken(__a , lstrip=__a )] _a = tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , extra_ids=0 ) self.assertIn(__a , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = "hello world" if self.space_between_special_tokens: _a = "[CLS] hello world [SEP]" else: _a = input _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = tokenizer.decode(__a , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__a , [output, output.lower()] ) def UpperCamelCase__ ( self : str ): _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _a = "a" _a = ord(__a ) for attr in attributes_list: setattr(__a , attr + "_id" , __a ) self.assertEqual(getattr(__a , __a ) , __a ) self.assertEqual(getattr(__a , attr + "_id" ) , __a ) setattr(__a , attr + "_id" , __a ) self.assertEqual(getattr(__a , __a ) , __a ) self.assertEqual(getattr(__a , attr + "_id" ) , __a ) setattr(__a , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__a , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__a , "additional_special_tokens_ids" ) , [] ) _a = 0XE0_06 _a = chr(__a ) setattr(__a , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__a , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__a , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def UpperCamelCase__ ( self : Union[str, Any] ): pass def UpperCamelCase__ ( self : List[str] ): pass def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : Optional[int] ): pass def UpperCamelCase__ ( self : int ): pass def UpperCamelCase__ ( self : int ): pass def UpperCamelCase__ ( self : Union[str, Any] ): pass def UpperCamelCase__ ( self : Optional[Any] ): pass
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase_ : Union[str, Any] = 'bart' lowerCAmelCase_ : Optional[int] = True @st.cache(allow_output_mutation=lowercase ) def _lowerCamelCase ( ) -> List[str]: if LOAD_DENSE_INDEX: _a = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) _a = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) _a = qar_model.eval() else: _a , _a = (None, None) if MODEL_TYPE == "bart": _a = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) _a = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) _a = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) _a = sas_model.eval() else: _a , _a = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase ) def _lowerCamelCase ( ) -> Optional[int]: if LOAD_DENSE_INDEX: _a = faiss.StandardGpuResources() _a = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] _a = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) _a = faiss.IndexFlatIP(128 ) _a = faiss.index_cpu_to_gpu(lowercase , 1 , lowercase ) wikiaab_gpu_index_flat.add(lowercase ) # TODO fix for larger GPU else: _a , _a = (None, None) _a = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase ) def _lowerCamelCase ( ) -> Optional[Any]: _a = datasets.load_dataset("eli5" , name="LFQA_reddit" ) _a = elia["train_eli5"] _a = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) _a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowercase ) return (elia_train, eli5_train_q_index) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = load_indexes() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = load_models() lowerCAmelCase_ , lowerCAmelCase_ : str = load_train_data() def _lowerCamelCase ( lowercase : Dict , lowercase : Tuple=10 ) -> Optional[Any]: _a = embed_questions_for_retrieval([question] , lowercase , lowercase ) _a , _a = eli5_train_q_index.search(lowercase , lowercase ) _a = [elia_train[int(lowercase )] for i in I[0]] return nn_examples def _lowerCamelCase ( lowercase : int , lowercase : List[str]="wiki40b" , lowercase : Union[str, Any]="dense" , lowercase : List[str]=10 ) -> Optional[int]: if source == "none": _a , _a = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": _a , _a = query_qa_dense_index( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) else: _a , _a = query_es_index( lowercase , lowercase , index_name="english_wiki40b_snippets_100w" , n_results=lowercase , ) _a = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] _a = "question: {} context: {}".format(lowercase , lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase : None), } ) def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : List[str]=64 , lowercase : int=256 , lowercase : str=False , lowercase : Dict=2 , lowercase : Union[str, Any]=0.95 , lowercase : str=0.8 ) -> Any: with torch.no_grad(): _a = qa_sas_generate( lowercase , lowercase , lowercase , num_answers=1 , num_beams=lowercase , min_len=lowercase , max_len=lowercase , do_sample=lowercase , temp=lowercase , top_p=lowercase , top_k=lowercase , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar lowerCAmelCase_ : List[str] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' lowerCAmelCase_ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase_ : List[str] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase_ : Tuple = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] lowerCAmelCase_ : int = st.sidebar.checkbox('Demo options') if demo_options: lowerCAmelCase_ : int = st.sidebar.selectbox( '', action_list, index=3, ) lowerCAmelCase_ : Tuple = action_list.index(action_st) lowerCAmelCase_ : List[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) lowerCAmelCase_ : List[str] = show_type == 'Show full text of passages' else: lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Union[str, Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: lowerCAmelCase_ : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) lowerCAmelCase_ : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) lowerCAmelCase_ : List[Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: lowerCAmelCase_ : Tuple = 'wiki40b' lowerCAmelCase_ : int = 'dense' lowerCAmelCase_ : List[Any] = 'beam' lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Tuple = 64 lowerCAmelCase_ : int = 2_56 lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : List[str] = st.sidebar.checkbox('Generation options') if generate_options: lowerCAmelCase_ : str = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) lowerCAmelCase_ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) lowerCAmelCase_ : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) lowerCAmelCase_ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase_ : Optional[Any] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase_ : Any = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCAmelCase_ : str = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCAmelCase_ : Optional[int] = None # start main text lowerCAmelCase_ : Tuple = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] lowerCAmelCase_ : Tuple = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase_ : Any = st.text_input('Enter your question here:', '') else: lowerCAmelCase_ : Union[str, Any] = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase_ , lowerCAmelCase_ : str = make_support(question, source=wiki_source, method='dense', n_results=10) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = make_support(question, source=wiki_source, method='sparse', n_results=10) lowerCAmelCase_ : Any = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase_ : str = support_list[:10] lowerCAmelCase_ : List[Any] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): lowerCAmelCase_ : Union[str, Any] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) lowerCAmelCase_ : List[str] = res[1].strip() if sec_titles == "": lowerCAmelCase_ : List[Any] = '[{}]({})'.format(res[0], wiki_url) else: lowerCAmelCase_ : List[Any] = sec_titles.split(' & ') lowerCAmelCase_ : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase_ : Union[str, Any] = find_nearest_training(question) lowerCAmelCase_ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) lowerCAmelCase_ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) lowerCAmelCase_ : int = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase_ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase_ : int = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase_ : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __a =field(default=lowerCamelCase_ , metadata={'help': 'A folder containing the training data.'} ) __a =field(default=lowerCamelCase_ , metadata={'help': 'A folder containing the validation data.'} ) __a =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __a =field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __a =field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = {} if self.train_dir is not None: _a = self.train_dir if self.validation_dir is not None: _a = self.validation_dir _a = data_files if data_files else None @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCamelCase_ )} , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __a =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __a =field(default=lowerCamelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Stride to use for the encoder.'} , ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , __a : Dict=1_92 , __a : int=32 , __a : Any=4 , __a : Any=0.6 ): _a = input_size _a = mask_patch_size _a = model_patch_size _a = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _a = self.input_size // self.mask_patch_size _a = self.mask_patch_size // self.model_patch_size _a = self.rand_size**2 _a = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : List[Any] ): _a = np.random.permutation(self.token_count )[: self.mask_count] _a = np.zeros(self.token_count , dtype=__a ) _a = 1 _a = mask.reshape((self.rand_size, self.rand_size) ) _a = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _lowerCamelCase ( lowercase : Tuple ) -> Union[str, Any]: _a = torch.stack([example["pixel_values"] for example in examples] ) _a = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _lowerCamelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , lowercase , lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _a = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: _a = ds["train"].train_test_split(data_args.train_val_split ) _a = split["train"] _a = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _a = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: _a = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _a = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , "decoder_type" ): _a = "simmim" # adapt config _a = model_args.image_size if model_args.image_size is not None else config.image_size _a = model_args.patch_size if model_args.patch_size is not None else config.patch_size _a = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _a = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: _a = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _a = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _a = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _a = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _a = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: _a = ds["train"].column_names else: _a = ds["validation"].column_names if data_args.image_column_name is not None: _a = data_args.image_column_name elif "image" in column_names: _a = "image" elif "img" in column_names: _a = "img" else: _a = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _a = Compose( [ Lambda(lambda lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _a = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase : Tuple ): _a = [transforms(lowercase ) for image in examples[image_column_name]] _a = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _a = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _a = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer _a = Trainer( model=lowercase , args=lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _a = trainer.evaluate() trainer.log_metrics("eval" , lowercase ) trainer.save_metrics("eval" , lowercase ) # Write model card and (optionally) push to hub _a = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='poolformer' def __init__( self : int , __a : Union[str, Any]=3 , __a : str=16 , __a : Optional[int]=16 , __a : Union[str, Any]=3 , __a : Union[str, Any]=4.0 , __a : List[Any]=[2, 2, 6, 2] , __a : List[Any]=[64, 1_28, 3_20, 5_12] , __a : Dict=[7, 3, 3, 3] , __a : List[Any]=[4, 2, 2, 2] , __a : List[str]=[2, 1, 1, 1] , __a : Optional[Any]=4 , __a : Optional[int]=0.0 , __a : Any="gelu" , __a : str=True , __a : str=1e-5 , __a : Optional[Any]=0.02 , **__a : Optional[int] , ): _a = num_channels _a = patch_size _a = stride _a = padding _a = pool_size _a = hidden_sizes _a = mlp_ratio _a = depths _a = patch_sizes _a = strides _a = num_encoder_blocks _a = drop_path_rate _a = hidden_act _a = use_layer_scale _a = layer_scale_init_value _a = initializer_range super().__init__(**__a ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =version.parse('1.11' ) @property def UpperCamelCase__ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self : Dict ): return 2e-3
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Optional[Any] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='BlipImageProcessor' __a ='AutoTokenizer' def __init__( self : List[Any] , __a : Optional[Any] , __a : Union[str, Any] ): _a = False super().__init__(__a , __a ) _a = self.image_processor def __call__( self : Optional[Any] , __a : ImageInput = None , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Dict , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _a = self.tokenizer _a = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values _a = self.image_processor(__a , return_tensors=__a ) if text is not None: _a = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: _a = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def UpperCamelCase__ ( self : List[Any] , *__a : Union[str, Any] , **__a : Dict ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : Union[str, Any] , *__a : List[str] , **__a : List[str] ): return self.tokenizer.decode(*__a , **__a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase__ ( self : List[Any] ): _a = self.tokenizer.model_input_names _a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[str] = logging.get_logger(__name__) set_seed(7_70) lowerCAmelCase_ : Dict = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } lowerCAmelCase_ : Dict = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } lowerCAmelCase_ : Optional[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase_ : Optional[Any] = os.path.join(os.path.expanduser('~'), '.cache') lowerCAmelCase_ : str = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def _lowerCamelCase ( lowercase : Any , lowercase : Any=False ) -> Tuple: _a = model_type if use_small: key += "_small" return os.path.join(lowercase , REMOTE_MODEL_PATHS[key]["file_name"] ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Optional[int] ) -> Optional[Any]: os.makedirs(lowercase , exist_ok=lowercase ) hf_hub_download(repo_id=lowercase , filename=lowercase , local_dir=lowercase ) def _lowerCamelCase ( lowercase : Dict , lowercase : Union[str, Any] , lowercase : Optional[Any]=False , lowercase : Dict="text" ) -> str: if model_type == "text": _a = BarkSemanticModel _a = BarkSemanticConfig _a = BarkSemanticGenerationConfig elif model_type == "coarse": _a = BarkCoarseModel _a = BarkCoarseConfig _a = BarkCoarseGenerationConfig elif model_type == "fine": _a = BarkFineModel _a = BarkFineConfig _a = BarkFineGenerationConfig else: raise NotImplementedError() _a = F'{model_type}_small' if use_small else model_type _a = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["repo_id"] , model_info["file_name"] ) _a = torch.load(lowercase , map_location=lowercase ) # this is a hack _a = checkpoint["model_args"] if "input_vocab_size" not in model_args: _a = model_args["vocab_size"] _a = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a = model_args.pop("n_head" ) _a = model_args.pop("n_embd" ) _a = model_args.pop("n_layer" ) _a = ConfigClass(**checkpoint["model_args"] ) _a = ModelClass(config=lowercase ) _a = GenerationConfigClass() _a = model_generation_config _a = checkpoint["model"] # fixup checkpoint _a = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(lowercase ): # replace part of the key with corresponding layer name in HF implementation _a = k[len(lowercase ) :] for old_layer_name in new_layer_name_dict: _a = new_k.replace(lowercase , new_layer_name_dict[old_layer_name] ) _a = state_dict.pop(lowercase ) _a = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a = {k for k in extra_keys if not k.endswith(".attn.bias" )} _a = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(lowercase ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(lowercase ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(lowercase , strict=lowercase ) _a = model.num_parameters(exclude_embeddings=lowercase ) _a = checkpoint["best_val_loss"].item() logger.info(F'model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase , 3 )} loss' ) model.eval() model.to(lowercase ) del checkpoint, state_dict return model def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any=False , lowercase : int="text" ) -> List[str]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a = "cpu" # do conversion on cpu _a = _get_ckpt_path(lowercase , use_small=lowercase ) _a = _load_model(lowercase , lowercase , model_type=lowercase , use_small=lowercase ) # load bark initial model _a = _bark_load_model(lowercase , "cpu" , model_type=lowercase , use_small=lowercase ) if model_type == "text": _a = bark_model["model"] if model.num_parameters(exclude_embeddings=lowercase ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _a = 5 _a = 10 if model_type in ["text", "coarse"]: _a = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _a = bark_model(lowercase )[0] _a = model(lowercase ) # take last logits _a = output_new_model_total.logits[:, [-1], :] else: _a = 3 _a = 8 _a = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a = model(lowercase , lowercase ) _a = bark_model(lowercase , lowercase ) _a = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) def _lowerCamelCase ( lowercase : str , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : Tuple , ) -> List[Any]: _a = os.path.join(lowercase , lowercase ) _a = BarkSemanticConfig.from_pretrained(os.path.join(lowercase , "config.json" ) ) _a = BarkCoarseConfig.from_pretrained(os.path.join(lowercase , "config.json" ) ) _a = BarkFineConfig.from_pretrained(os.path.join(lowercase , "config.json" ) ) _a = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _a = BarkSemanticModel.from_pretrained(lowercase ) _a = BarkCoarseModel.from_pretrained(lowercase ) _a = BarkFineModel.from_pretrained(lowercase ) _a = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _a = BarkConfig.from_sub_model_configs( lowercase , lowercase , lowercase , lowercase ) _a = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a = BarkModel(lowercase ) _a = semantic _a = coarseAcoustic _a = fineAcoustic _a = codec _a = bark_generation_config Path(lowercase ).mkdir(exist_ok=lowercase ) bark.save_pretrained(lowercase , repo_id=lowercase , push_to_hub=lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') lowerCAmelCase_ : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase_ : str = logging.get_logger(__name__) logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : str ) -> Union[str, Any]: if "xprophetnet" in prophetnet_checkpoint_path: _a = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _a , _a = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase , output_loading_info=lowercase ) else: _a = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _a , _a = ProphetNetForConditionalGeneration.from_pretrained( lowercase , output_loading_info=lowercase ) _a = ["key_proj", "value_proj", "query_proj"] _a = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: _a = key.split("." ) if attributes[0] == "lm_head": _a = prophet _a = prophet_old else: _a = prophet.prophetnet _a = prophet_old.model _a = False for attribute in attributes: if attribute in mapping: _a = mapping[attribute] if not hasattr(lowercase , lowercase ) and len(lowercase ) > 0: _a = attribute elif hasattr(lowercase , lowercase ): _a = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a = old_model.weight logger.info(F'{attribute} is initialized.' ) _a = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a = old_model.bias logger.info(F'{attribute} is initialized' ) _a = True break elif attribute in special_keys and hasattr(lowercase , "in_proj_weight" ): _a = old_model.in_proj_weight.shape[0] // 3 _a = getattr(lowercase , lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _a = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _a = True break if attribute.isdigit(): _a = model[int(lowercase )] _a = old_model[int(lowercase )] else: _a = getattr(lowercase , lowercase ) if old_attribute == "": _a = old_model else: if not hasattr(lowercase , lowercase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _a = getattr(lowercase , lowercase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase_ : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') lowerCAmelCase_ : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ) -> Any: _a = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ) -> Optional[int]: with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowerCamelCase ( ) -> str: _a = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ) -> Optional[Any]: _a = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _a = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ) -> Union[str, Any]: assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _lowerCamelCase ( ) -> int: # laplace diagonals _a = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _a = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _lowerCamelCase ( ) -> Union[str, Any]: assert med.median_filter(lowercase , 3 ).any() def _lowerCamelCase ( ) -> Union[str, Any]: _a , _a = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _lowerCamelCase ( ) -> Union[str, Any]: _a = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _lowerCamelCase ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: _a = bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: _a = rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowerCamelCase ( ) -> Optional[int]: _a = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _a = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None _a = 0 _a = 0 _a = image[x_coordinate][y_coordinate] _a = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _a = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _a = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1