id
int64
-30,985
55.9k
text
stringlengths
5
437k
29,728
9^9 \frac{1}{e^9}/9! = 9^8 \dfrac{1}{e^9}/8!
17,809
\nu_x^1 = \nu_x
-20,697
\frac{4 + r}{r \cdot 9 + 4(-1)} \frac{5}{5} = \dfrac{5r + 20}{45 r + 20 \left(-1\right)}
48,010
\left(x^{1/2}\right)^2 = x
21,571
a = a \cdot b = b \implies b = a
3,457
(4 + x)\cdot \left(1 + x\right) = (-1) + x^2 + x\cdot 5 + 5
31,753
z\cdot R\cdot x = x\cdot R\cdot z
-4,055
9\cdot a^2/5 = 9/5\cdot a^2
-1,987
\pi \dfrac{7}{12} + 5/12 \pi = \pi
23,392
\alpha - \beta = \frac{1}{\alpha + \beta} (-\beta \beta + \alpha^2)
-26,658
3 + 2\cdot x \cdot x + 7\cdot x = (2\cdot x + 1)\cdot (x + 3)
12,625
x^2 + g * g + gx*2 = \left(x + g\right)^2
-15,309
\frac{1}{1/m \frac{1}{p^5}}m^3 = \frac{m^3\cdot \frac{1}{1/m}}{\frac{1}{p^5}} = m^{3 - -1} p^5 = m^4 p^5
11,068
15 = (60\cdot (-1) + 90)\cdot \frac{1}{2}
34,521
a^{x + l} = a^l a^x
6,322
\frac{1/3*2}{3}*1 = \dfrac29
1,452
(-y + x) * (-y + x) = y^2 + x^2 - 2*x*y
23,880
(L - c)*(b - d) = L*b + c*d - L*d - b*c = L*b + c*d - L*d + b*c
12,380
2\cdot x = \pi \Rightarrow x = \pi/2
21,503
\chi \gt -R + 1 \Rightarrow -\chi + 1 \lt R
1,768
[a, b] = \left[f,d\right] rightarrow a = b,f = d
26,907
6/6 + 6/5 + \frac{6}{4} + 6/3 + \frac{6}{2} + \frac{6}{1} = 14.7
15,252
\lim_{m \to \infty}(-b_m + c_m) = 0 \implies 1 = \lim_{m \to \infty} c_m/(b_m)
-25,510
\frac{d}{dt} (\frac{4}{2 + t}) = -\frac{4}{(t + 2)^2}
-1,650
\frac{11}{12}\cdot π + 4/3\cdot π = \frac14\cdot 9\cdot π
-16,552
5 \cdot (9 \cdot 5)^{\frac{1}{2}} = 5 \cdot 45^{\frac{1}{2}}
24,236
X \backslash C + y = X \cap \overline{C + y} = X \cap \overline{C} + y
5,479
\tfrac{1}{2!} 4!*3!/2! = 3!*3! = 36
-11,540
4 + 6\times i = 4 + 0\times (-1) + i\times 6
51,267
\frac{14}{95^{\frac{1}{2}} + 9 \cdot (-1)} = \left(95^{1 / 2} + 9\right)/1 = 18 + \frac{1}{1} \cdot (95^{\tfrac{1}{2}} + 9 \cdot (-1))
21,873
\left(0 = 1 + 1 + 2n - n \cdot 6 + 10 \left(-1\right) \implies 8(-1) - 4n = 0\right) \implies n = -2
-26,554
-(3 \times y)^2 + 10^2 = (10 + 3 \times y) \times (-y \times 3 + 10)
11,029
-b + ba - a = a\cdot \left(b + (-1)\right) + b\cdot (-1)
-9,160
-a\cdot 2\cdot 3\cdot 3 a - 2\cdot 13 a = -18 a \cdot a - 26 a
6,642
(b + f)\cdot 2 = f + b + f + b
5,060
\dfrac{1}{-1} \cdot \sqrt{|-1| \cdot 2 - (-1)^2} = -1
1,008
(k + 1) \cdot \pi/3 = \pi/3 + \tfrac{\pi}{3} \cdot k
31,802
\frac{1}{12}\cdot \left(1 + \sqrt{6}\right) = \sqrt{6}/12 + \frac{1}{12}
20,856
A \cdot A^T \cdot A^T \cdot A \cdot A^T \cdot A = A \cdot A \cdot A^T \cdot A \cdot A^T \cdot A^T
-20,533
\tfrac{5 + 7 \cdot z}{7 \cdot z + 5} \cdot 4/1 = \frac{20 + 28 \cdot z}{7 \cdot z + 5}
8,087
-s\cdot t = -x \implies x = s\cdot t
6,723
(1 + \alpha)^3 = (1 + \alpha) (\alpha + 1) (1 + \alpha)
-24,017
10 + 6*16/2 = 10 + 6*8 = 10 + 6*8 = 10 + 48 = 58
29,948
1 = \frac{1}{-\tfrac{2}{3 + (-1)} + 3} \cdot 2
-22,307
2 + r \cdot r + r\cdot 3 = (r + 1)\cdot (2 + r)
27,255
h\cdot e\cdot h = e = h\cdot e\cdot h
10,430
19 + q^4 - q^2\cdot 20 = (19\cdot (-1) + q \cdot q)\cdot \left(q^2 + (-1)\right)
-5,713
\frac{3}{10 + 5 \cdot m} = \frac{1}{5 \cdot (m + 2)} \cdot 3
-22,835
\frac{108}{120} = \frac{9\cdot 12}{10\cdot 12}
23,394
\left(1 + 6 + 3\right)^n = 10^n
527
1 = \frac{1}{2} \cdot \left(v - u + 2\right) + u + v + 4 \cdot (-1) \Rightarrow v \cdot 3 + u = 8
13,055
l\cdot 2\cdot 2 = 4\cdot l
28,142
-z^3 + z = \frac{1}{X^2}\cdot L\cdot M rightarrow (1 - z^2)\cdot z = \tfrac{L}{X \cdot X}\cdot M
30,520
\frac{x}{\sqrt{\frac{xy}{n}}}=x\sqrt{\frac{n}{xy}}=\sqrt{\frac{nx}y}
-17,708
80 = 18*\left(-1\right) + 98
34,849
3952*253 - 255*3921 = 1
30,900
(z_2 - z_1)\cdot (z_2^2 + z_2\cdot z_1 + z_1^2) = z_2^3 - z_1^3
47,341
39 = 14 + 1\cdot 25
884
1 = \left|{\dfrac{A}{A}}\right| = \left|{A}\right|\cdot \left|{\tfrac{1}{A}}\right|
36,115
|v\cdot x| = |v|\cdot |x|
32,698
1431 = 1 + 2\times 26^2 + 3\times 26
22,814
-1/2\cdot x_4 + x_1 = 0 \Rightarrow x_1 = 1/2\cdot x_4
15,252
\lim_{n\to\infty}(a_n-b_n)=0\Rightarrow \lim_{n\to\infty}\frac{a_n}{b_n}=1
-18,069
4 = 73 (-1) + 77
-18,787
2 = \frac63
13,495
(x + 4\cdot (-1))/2\cdot 2 = x + 4\cdot (-1)
-12,038
\frac{2}{3} = s/(16\times \pi)\times 16\times \pi = s
24,855
\left(1423 \cdot D\right) \cdot \left(1423 \cdot D\right) = 1423^2 \cdot D = 12 \cdot 34 \cdot D = D
-26,622
(9\cdot (-1) + 4\cdot x^3)\cdot (x \cdot x \cdot x\cdot 4 + 9) = -9^2 + \left(4\cdot x^3\right) \cdot \left(4\cdot x^3\right)
-18,779
\dfrac{8x}{4} = 2x
-20,323
(2 + x \cdot 2)/\left(-10\right) \cdot \frac{1}{4} \cdot 4 = \dfrac{1}{-40} \cdot (x \cdot 8 + 8)
2,675
\tan{x} = \frac{1}{\cos{x}} \cdot \sin{x} = 1/\cot{x}
-23,374
\frac{1}{6} = \frac{1}{3*2}
-10,962
48 = \dfrac14 \cdot 192
3,971
(4^3 - 4^2 + 4*(-1) + 1)*4^{2013} = 4^{2016} - 4^{2015} - 4^{2014} + 4^{2013}
33,438
\pi \cdot \frac13 \cdot 2 = 2 \cdot \pi/3
23,846
\dfrac{1}{n + k}*n = \frac{1}{n + k}*(n + k - k) = 1 - \frac{k}{n + k}
-543
(e^{19 \pi i/12})^{10} = e^{10 \frac{1}{12}\pi*19 i}
44,882
\sum_{l=i}^n l = \sum_{l=0}^{n - i} (i + l) = \sum_{l=0}^{n - i} i + \sum_{l=0}^{n - i} l
-22,429
8^{\frac{7}{3}}=\left(8^{\frac{1}{3}}\right)^{7}=2^{7} = 2\cdot2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2 = 4\cdot2\cdot 2\cdot 2\cdot 2\cdot 2 = 8\cdot2\cdot 2\cdot 2\cdot 2 = 16\cdot2\cdot 2\cdot 2 = 32\cdot2\cdot 2 = 64\cdot2 = 128
4,760
4\cdot y + 4\cdot \left(-1\right) = 4\cdot \left(y + 2\cdot (-1)\right) + 8 + 4\cdot (-1) = 4\cdot \left(y + 2\cdot \left(-1\right)\right) + 4
14,422
\frac{3}{50} = \frac{8}{4 + 8} \cdot \frac{3}{5 + 3} \cdot (\left(-1\right) \cdot 0.4 + 1) \cdot 0.4
550
1 - 8/y^3 = 0 \implies y=2
29,596
\left(\left(-1\right) + y\right)^3 + y^3 + \left(1 + y\right)^3 = y*6 + 3 y^3
33,657
l^3 - l^2 + l^2 - l = l \cdot l^2 - l
8,301
0 = x^2 * x - 2*x^2 - 5*x + 6 = (x + \left(-1\right))*(x + 2)*\left(x + 3*(-1)\right)
-1,664
-2 \cdot \pi + \pi \cdot 13/6 = \frac{\pi}{6}
7,513
\dfrac{y}{1} = \left(1 - z\right)/3 = r rightarrow y = r\wedge z = 1 - r\cdot 3
39,382
12 \left(-1\right) + 22 = 10
-3,695
\frac{132\cdot q}{99\cdot q^2} = \frac{1}{q^2}\cdot q\cdot 132/99
23,692
n^{j \cdot 2} + (-1) = (\left(-1\right) + n^j) \cdot \left(n^j + 1\right)
25,363
\frac{1}{2}\cdot \sqrt{X\cdot 4} = \sqrt{X}
24,366
b^{s/q} = (b^{\frac{1}{q}})^s = (b^s)^{\dfrac{1}{q}}
48,475
F_2 = F_2
-28,894
20!=20\cdot19\cdot18\cdot...\cdot3\cdot2\cdot1
48,842
(-1)^{2/2} = (-1)^1 = -1
46,887
52 = \dfrac{1}{1/52}
21,528
b^{y + x} = b^x b^y
26,216
-z_2 * z_2 + z_1 * z_1 = (z_1 - z_2)*\left(z_2 + z_1\right)
-26,543
9 - 25 z^2 = \left(-z*5 + 3\right) (z*5 + 3)