id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-30,254 | \frac{1}{y + 4}\cdot (y^2 + 16\cdot (-1)) = \frac{1}{y + 4}\cdot (y + 4)\cdot (y + 4\cdot \left(-1\right)) = y + 4\cdot (-1) |
6,356 | \frac{1}{(-\frac{1}{2} + p)^4} = -p + \frac{1}{2} \implies (p - 1/2)^5 = -1 |
22,651 | \binom{n}{1 + l} + \binom{n}{l} = \binom{n + 1}{1 + l} |
-12,638 | 40 = 156 \times (-1) + 196 |
19,330 | \frac{1}{2 + 2\cdot z^2 - 5\cdot z}\cdot \left(z\cdot 5 + 4\cdot (-1)\right) + 2 = \dfrac{4\cdot z^2 - 5\cdot z}{z^2\cdot 2 - z\cdot 5 + 2} |
9,233 | (2 \cdot (-1) + x) \cdot (x + 2) = x^2 + 0 \cdot x + 4 \cdot (-1) |
-7,227 | \frac{1}{70} = \frac15 \frac{1}{14} |
33,528 | 2/3 = \dfrac19\cdot 6 |
-24,407 | 3 + \frac17 \cdot 70 = 3 + 10 = 3 + 10 = 13 |
-1,219 | \frac{3}{\frac{1}{2}*3}\dfrac15 = 2/3*3/5 |
27,211 | A = 2\cdot (63 - A) - 2\cdot (2A + 63 (-1)) = -6A + 252 |
-18,284 | \frac{1}{(1 + j)\cdot j}\cdot \left(j + 1\right)\cdot (2\cdot (-1) + j) = \frac{1}{j^2 + j}\cdot (2\cdot (-1) + j \cdot j - j) |
32,470 | \frac34\times s + \frac14 = (-s + 1)/4 + s |
5,031 | {(-1) + k \choose 2} = \frac12 \cdot (k + 2 \cdot (-1)) \cdot \left(k + (-1)\right) |
32,881 | (-1)\cdot 0.2 + 1 = \frac{1}{1 + 0.25} |
3,513 | x\cdot \beta\cdot \alpha = x\cdot \beta\cdot \alpha |
26,996 | 9^1 = 9^{\frac{1}{2}}*9^{1/2} |
21,380 | |\dfrac{1}{n + 1}\cdot (n + (-1)) + (-1)| = |-\frac{1}{n + 1}\cdot 2| = \frac{2}{|n + 1|} |
22,331 | 2520 = 10!/(2!*3!*5!) |
24,071 | 0 = V \cdot T \cdot \sin{\beta} - \frac{b}{2} \cdot T^2\Longrightarrow V \cdot \sin{\beta} \cdot 2/b = T |
19,260 | \tfrac{84}{1 + 49 \cdot (-1)} = -7/4 |
20,880 | l - x + T + Q = 0 + T + Q = 0 + T + 0 + Q = l + T - x + Q |
427 | E(Z_1 Z_2) = E(Z_2) E(Z_1) |
10,999 | \int (1 - e^{-\alpha})\times e^{e^\alpha}\,\mathrm{d}\alpha = \int (e^\alpha + \left(-1\right))\times e^{-\alpha}\times e^{e^\alpha}\,\mathrm{d}\alpha = \int (e^\alpha + (-1))\times e^{e^\alpha - \alpha}\,\mathrm{d}\alpha |
-10,530 | -\tfrac{1}{z + 5} \cdot (10 \cdot \left(-1\right) + z) \cdot \frac{1}{4} \cdot 4 = -\frac{1}{20 + z \cdot 4} \cdot (4 \cdot z + 40 \cdot (-1)) |
14,394 | u * u = \dfrac{u^{12}}{u^{10}} |
18,632 | f^{l_1 + l_2} = f^{l_1} \cdot f^{l_2} |
12,392 | 2^{1/2} = \frac{1}{2}8^{1/2} |
15,629 | \left\lceil{\frac{10}{5 + (-1)}}\right\rceil = \left\lceil{\frac{1}{4}*10}\right\rceil = \left\lceil{2.5}\right\rceil = 3 |
27,025 | \frac{S - \dfrac{m}{2}}{\sqrt{\frac14 \cdot m}} = (S \cdot 2 - m)/(\sqrt{m}) |
-14,125 | \dfrac{2}{10 + 9 \cdot (-1)} = \frac11 \cdot 2 = 2/1 = 2 |
36,447 | c\cdot g = g\cdot c |
16,263 | 1 = \frac1h + \dfrac{1}{h + b} + \frac{1}{h + b + c} \geq \dfrac{1}{h + b + c}\cdot 3 |
29,011 | 180 = 2 \cdot 2\cdot 3 \cdot 3\cdot 5 |
30,811 | \dfrac{1}{2} \times \frac{2}{3} = 1/3 |
18,306 | \frac12 = 2/4 = 50/100 |
15,486 | \left(l \cdot 12 + 11\right)/4 = l \cdot 3 + 2 + 3/4 |
9,189 | -2\cdot \int u^{-\dfrac{1}{3}}\,du = ((-6)\cdot u^{\frac13\cdot 2})/2 = -3\cdot u^{\frac23} |
38,810 | b = 15 \cdot b \cdot l = 1.2 \cdot b \cdot l |
-29,240 | 0 = 5*0 + 0*(-1) |
20,889 | f_3 \cdot z^2 \cdot f_2 \cdot f_1 = z \cdot f_3 \cdot z \cdot f_2 \cdot f_1 |
9,873 | \mathbb{N}_{n} := \left\{n, 1, \dotsm\right\} |
5,514 | h^2 + 2dh + d^2 = \left(h + d\right)^2 |
4,107 | \dfrac{1}{X_j^2} + X_j \cdot X_j + 2 = (1/(X_j) + X_j)^2 |
-439 | \pi\cdot \tfrac{1}{4}\cdot 3 = -8\cdot \pi + \frac{35}{4}\cdot \pi |
1,358 | \left(15 + 84 - 2 \cdot x = x \Rightarrow x \cdot 3 = 99\right) \Rightarrow 33 = x |
5,848 | 1/(c*g) = \frac{1}{c*g} |
-18,382 | \frac{1}{n^2 - 8\cdot n}\cdot (8\cdot (-1) + n \cdot n - n\cdot 7) = \frac{1}{n\cdot \left(n + 8\cdot (-1)\right)}\cdot \left(1 + n\right)\cdot (8\cdot (-1) + n) |
4,086 | (x \times y)^3 = y^3 \times x \times x \times x |
16,012 | (\frac{1}{1 + 5/13}*2)^{\frac{1}{2}} = \dfrac{13^{\dfrac{1}{2}}}{3} |
-10,000 | 35\% = \dfrac{35}{100} = \frac{7}{20} |
-11,615 | -18 - 2\cdot i = -2\cdot i - 8 + 10\cdot (-1) |
26,520 | \left(-z_1 + z_2\right)*(z_2 * z_2 + z_1^2)*(z_2 + z_1) = z_2^4 - z_1^4 |
9,973 | x \times x + y^2 + z^2 = 2 \times x^2 + 1 = 2 \times x \times y \times z + 1 |
-6,423 | \frac{2}{\left(r + 1\right) \cdot 2} = \frac{2}{r \cdot 2 + 2} |
-27,006 | \sum_{n=1}^\infty \frac{1}{n^2 \cdot 3^n} \cdot (5 + 2 \cdot \left(-1\right))^n = \sum_{n=1}^\infty \frac{3^n}{n^2 \cdot 3^n} = \sum_{n=1}^\infty \dfrac{1}{n^2} |
22,285 | n + (-1) + n + 2 \cdot (-1) = 3 \cdot \left(-1\right) + n \cdot 2 |
42,554 | e^{\log_e(c)} = c |
14,552 | \dfrac{1}{\cos{E} (1 + \sin{E})}\left(2 + 2\sin{E}\right) = 2/\cos{E} = 2\sec{E} |
-12,126 | \frac{2}{9} = s/(12 \pi) \cdot 12 \pi = s |
-20,000 | \frac{-7 \cdot z + 5 \cdot (-1)}{-z \cdot 7 + 5 \cdot (-1)} \cdot 9/8 = \frac{45 \cdot (-1) - z \cdot 63}{40 \cdot (-1) - 56 \cdot z} |
29,025 | 3 (n^2 - (n + (-1))^2) - 2 (n - n + (-1)) = 3*(2 n + (-1)) + 2 \left(-1\right) = 6 n + 5 (-1) |
26,153 | (g - y)/g = 1 - \frac{y}{g} |
29,713 | \frac{1}{((-1) + j)!} \cdot l + \dfrac{1}{(j + (-1))!} \cdot m = \frac{l + m}{((-1) + j)!} |
6,244 | 2 + 1 + \dfrac{1}{100}\cdot \left(74 + 1\right) = 3.75 |
8,194 | \left(t^2 - 2\cdot t + \left(-1\right) = 0 \Rightarrow -t\cdot 2 = 1 - t \cdot t\right) \Rightarrow -1 = \frac{t}{-t^2 + 1}\cdot 2 |
-25,801 | \dfrac{1}{18} \cdot 5 = 1/6 \cdot 5/3 |
-28,794 | \frac{\pi*2}{\dfrac{1}{365}*2*\pi} = 365 |
-22,311 | (x + 9\cdot (-1))\cdot \left(x + 10\cdot (-1)\right) = 90 + x^2 - 19\cdot x |
16,841 | 2 \times \left(-1\right) + 5^{3 \times 0} + 2 \times 5^{2 \times 0} - 5^0 = 0 |
3,471 | f_1/\left(g_1\right) + f_2/\left(g_2\right) = \frac{1}{g_2 \cdot g_1} \cdot (g_1 \cdot f_2 + g_2 \cdot f_1) |
3,711 | \frac12\cdot (2\cdot x + 6\cdot (-1)) = x + 3\cdot \left(-1\right) |
-5,317 | 10^7*0.74 = 0.74*10^{(-1)*\left(-1\right) + 6} |
15,380 | 15 = 5 \cdot v \implies 3 = v |
-6,631 | \dfrac{5}{(x + 8) \cdot (5 \cdot (-1) + x)} = \frac{5}{x^2 + 3 \cdot x + 40 \cdot \left(-1\right)} |
-19,194 | \frac{1}{30} \cdot 11 = \dfrac{1}{4 \cdot \pi} \cdot Z_q \cdot 4 \cdot \pi = Z_q |
10,081 | (2Hy)^2 = 2^2 H^2 y^2 = 4H * H y^2 |
34,033 | bb f = f = bbf |
22,013 | 2 = 1*2 = (4 + 2) \left(4 + 2 \left(-1\right)\right) = 4^2 - 2^2 |
23,949 | 2^{66} + (-1) = 2^{33} * 2^{33} + (-1) = \left(2^{33} + 1\right) (2^{33} + \left(-1\right)) |
-7,674 | \dfrac{-9\cdot i + 2}{2 + i} = \frac{2 - i}{2 - i}\cdot \frac{1}{2 + i}\cdot (2 - i\cdot 9) |
5,415 | \sqrt{2} = x rightarrow -\sqrt{2} + x = 0 |
9,986 | 5^F \cdot 6 + 6\left(-1\right) - 5^F + 5 = (-1) + 5^F \cdot (6 + \left(-1\right)) |
-20,997 | (-4\cdot x + 12\cdot (-1))/(x\cdot 8) = 4/4\cdot \dfrac{1}{x\cdot 2}\cdot (3\cdot (-1) - x) |
13,897 | d = \frac{1}{1 - 3\cdot d \cdot d}\cdot (3\cdot d - d^3) + 2 \Rightarrow (d + 2\cdot \left(-1\right))\cdot (-3\cdot d^2 + 1) = -d^3 + d\cdot 3 |
14,542 | -2d_2 d_1 + (d_2 + d_1)^2 = d_2 * d_2 + d_1^2 |
4,200 | 0 + 0 + 0 = 1 + (-1) + (1 + (-1))\cdot ... |
52,541 | \arctan(x) = \int_0^x \frac{1}{1 + t^2}\,dt = \int\limits_0^x (1 - t^2 + \frac{1}{1 + t * t}*t^4)\,dt = x - 1/3*x^3 + \int\limits_0^x \frac{t^4}{1 + t^4}\,dt |
-12,026 | 1/18 = \frac{x}{6\cdot \pi}\cdot 6\cdot \pi = x |
3,019 | \frac{1}{\left(l + 1\right)^2} \cdot \left(l^2 + 2 \cdot l\right) = \frac{l}{\left(l + 1\right)^2} \cdot (l + 2) |
18,022 | \left(A \cdot x = c\Longrightarrow x \cdot A/A = \dfrac{1}{A} \cdot c\right)\Longrightarrow x = \dfrac{c}{A} |
13,501 | \pi\cdot \tfrac13\cdot 85 = \pi\cdot \frac{5}{6}\cdot 34 |
21,392 | \tan{u} = \frac{2*\tan{\frac{u}{2}}}{1 - \tan^2{u/2}} \gt 2*\tan{\frac{u}{2}} |
-10,413 | -2 = 60 + 20r - 50 = 20r + 10 |
29,871 | \|Y \cdot y\|_2 = \|Y\|_2 = \|Y\|_2 \cdot \|y\|_2 |
8,046 | (1 + 10^{1 + n} \cdot 8)/9 = 1 + 8 \cdot \frac{1}{9} \cdot ((-1) + 10^{n + 1}) |
-1,628 | -π \cdot \frac14 \cdot 3 + 2 \cdot π = 5/4 \cdot π |
28,039 | \frac{0}{2} + \frac12\cdot 1000 = 500 |
-3,349 | (5 + 3*(-1) + 4)*\sqrt{13} = 6*\sqrt{13} |
-5,258 | 0.66 \times 10^{2\,-\,5} = 0.66 \times 10^{-3} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.