id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-23,129 | 3/4\cdot (-1/2) = -3/8 |
28,804 | x^{B + A} = x^A \cdot x^B |
8,225 | \dfrac{A_x}{Y_x} = \frac{A_x \cdot (-1)}{Y_x \cdot (-1)} |
29,360 | -x*\left(-a\right) = a*x |
37,511 | 23^2*4 = 6^2 + 28^2 + 36^2 |
31,655 | 789768 = 504 \times \left\lfloor{\frac{1}{504} \times 789999}\right\rfloor |
15,969 | g^b\cdot g^a = g^{b + a} |
23,712 | \frac{1}{10^{∞}} = \frac{1}{10^{2*∞ + 1}} |
24,320 | C_t + C_t = 2 \cdot C_t |
29,804 | \frac{x^2}{(-1) + x^2} = x^2/2 \cdot \left(\frac{1}{x + (-1)} - \tfrac{1}{1 + x}\right) |
-23,244 | 4 \cdot \frac16/2 = 1/3 |
12,810 | 0 = ((-\pi\cdot 2 + \pi)/2 + \frac{\pi}{2})/2 |
18,790 | x^d + z^d < x + z = 1 = (x + z)^d |
12,228 | z * z + x^2 + 4*r^2 = z^2 + 2*r^2 + x^2 + r^2*2 |
10,464 | x \cdot h' \cdot l \cdot h = h \cdot h' \cdot \dfrac{h}{h} \cdot x \cdot l |
51,273 | 2*4*5*6 = 240 |
5,240 | 1 = \dfrac{1}{4} + 3/4 |
36,995 | -y \cdot 2 = \frac{d}{dy} (-y^2) |
-25,492 | \frac{\mathrm{d}}{\mathrm{d}z} (\sin\left(z\right) \times 5 + z^2) = 5 \times \cos(z) + z \times 2 |
-20,788 | \frac{1}{n + 1} \cdot (1 + n) \cdot (-7/5) = \frac{1}{5 \cdot n + 5} \cdot (7 \cdot (-1) - 7 \cdot n) |
-20,507 | \frac{21 + k*3}{70 + k*10} = \frac{3}{10}*\frac{k + 7}{k + 7} |
4,519 | \sin\left(x + 90 \cdot (-1)\right) = -\sin\left(90\right) \cdot \cos(x) + \sin(x) \cdot \cos\left(90\right) |
5,344 | \left(-\cos{2\cdot x} + 1\right)/2 = \sin^2{x} |
-13,356 | \frac{1}{6 + 5\left(-1\right)}7 = 7/1 = 7/1 = 7 |
6,165 | \mathbb{E}[X] - C = \mathbb{E}[X - C] |
3,579 | 0 = 24 + 4\cdot z \Rightarrow -6 = z |
21,214 | \sin(A) \sin(B) = \frac{1}{2} (\cos\left(A - B\right) - \cos(A + B)) |
-20,711 | \frac{1}{18\cdot (-1) - 8\cdot p}\cdot (p\cdot 28 + 63) = \frac{1}{-p\cdot 4 + 9\cdot \left(-1\right)}\cdot (9\cdot \left(-1\right) - 4\cdot p)\cdot (-\dfrac{1}{2}\cdot 7) |
22,981 | y + z = 2*y + z - y |
19,496 | A^2 - B * B = (A + B)*(A - B) |
17,228 | -u_{z*z}*f^2 + u_t = 0 \Rightarrow u*u_{z*z}*f * f = u_t*u |
4,967 | (7^2)^y*7 = 7^{1 + y*2} |
38,227 | 500 = 5\cdot 100 = 5\cdot 10\cdot 10 = 5\cdot 5\cdot 2\cdot 5\cdot 2 = 2 \cdot 2\cdot 5 \cdot 5 \cdot 5 |
21,174 | x^2 + y \cdot y\cdot 4 + 9\cdot z^2 + 12\cdot y\cdot z + 6\cdot z\cdot x + 4\cdot y\cdot x = (x + y\cdot 2 + z\cdot 3) \cdot (x + y\cdot 2 + z\cdot 3) |
14,976 | \frac{z^2}{z^2 + \left(-1\right)} = \frac{z \times z}{(z + 1) \times (z + (-1))} |
-15,136 | \tfrac{1}{\frac{1}{q^{20}} \cdot n^5} \cdot \frac{1}{n^3} \cdot \frac{1}{q^4} = \frac{1}{q^4 \cdot \frac{1}{q^{20}}} \cdot \dfrac{1}{n^3 \cdot n^5} = \frac{1}{n^8} \cdot q^{-4 - -20} = \frac{1}{n^8} \cdot q^{16} |
18,121 | 3 \cdot y + 2 - 2 \cdot y + 2 \cdot \left(-1\right) = y |
-18,252 | \frac{1}{c^2 - c\cdot 4}\cdot (c^2 - c + 12\cdot (-1)) = \frac{1}{c\cdot (4\cdot (-1) + c)}\cdot (c + 3)\cdot (c + 4\cdot (-1)) |
18,709 | 9 = 0! \times {4 \choose 4} + 4! - 3! \times {4 \choose 1} + {4 \choose 2} \times 2! - 1! \times {4 \choose 3} |
23,627 | (-((-1) + j) + x)\cdot (x + 1 - (-1) + j)/2 = \frac{1}{2}\cdot (x - j + 2)\cdot (1 + x - j) |
30,045 | \left\{0, 1, 2, 3, 4\right\} = \left\{0, 1, 2, 3, 4\right\} = \Z_{5} |
27,007 | \left(k + 1\right) \cdot 4 = k \cdot 4 + 4 |
19,802 | 2\cdot (2 + z) = 4 + 2\cdot z |
22,767 | \sin\left(-l^2 + \left(l + 1\right) \times \left(l + 1\right)\right) = \sin(2\times l + 1) |
28,111 | 2^{-\frac23} = 2^{1/3}/2 |
-27,502 | 2*2*h*h*5 = 20*h^2 |
16,507 | \left(n\cdot b\cdot a\right)^2 = (a\cdot b\cdot n) \cdot (a\cdot b\cdot n) |
45,754 | 2^4*2*3*4 = 4!*2^4 |
-6,211 | \tfrac{1}{t*5 + 15*(-1)} = \tfrac{1}{(3*(-1) + t)*5} |
13,634 | (2013 + 2012 \cdot \left(2013 + 2012 \cdot (2013 + 2012 \cdot \dots^{1/2})^{1/2}\right)^{1/2})^{1/2} = 2013 |
7,382 | 1/\left(3*5*4\right) = \frac{1}{60} |
17,397 | 4(-1) + 2 = -4^{1/2} |
-9,898 | 88\% = \dfrac{88}{100} = \tfrac{22}{25} |
21,089 | \frac{\sqrt{3}}{4} = \frac{g^2}{c^2} \Rightarrow \sqrt{3} = g, 2 = c |
-26,633 | 36 - z^2 = 6 \cdot 6 - z^2 |
5,704 | \frac{1}{x^a + x^{-a}} = \frac{1}{x^{2\cdot a} + 1}\cdot x^a \approx \frac{1}{x^a} |
-1,581 | \frac16 \cdot \pi + \pi \cdot \frac{1}{12} \cdot 23 = 25/12 \cdot \pi |
879 | \frac{2}{3} + 1/3*0 = \dfrac23 |
-9,286 | 3*7 - n*7*7 = -49 n + 21 |
5,639 | -c = (-c^{\frac{1}{3}})^3 |
2,333 | C = C*C^0 |
9,749 | 36 \cdot (-1) + y \cdot y = 2 \cdot (-1) + y \cdot y \Rightarrow y = 6,-6 |
-1,833 | \frac{1}{6}7 \pi = \pi \frac23 + \pi/2 |
14,939 | \sin(\pi/12) = \dfrac{1}{4}*(\sqrt{6} - \sqrt{2}) |
14,380 | det\left(z\cdot I - A\cdot B\right)\cdot det\left(A\right) = det\left(z\cdot A - A\cdot B\cdot A\right) = det\left(A\right)\cdot det\left(z\cdot I - B\cdot A\right) |
-25,869 | \dfrac{5^{10}}{5 \times 5^2} = 5^7 |
551 | y^j\cdot g_j + d_j\cdot y^j = (g_j + d_j)\cdot y^j |
-28,764 | 1/3 - \dfrac{1}{6 + z\cdot 3}\cdot 4 = \dfrac{z + 2\cdot (-1)}{3\cdot z + 6} |
18,830 | 1/a + (-1) = (1 + \left(1 + \dotsm\right)^{-1})^{-1} = a |
24,479 | \dfrac{1}{2520}7920 = \frac{22}{7} |
18,991 | 2 + z - z \cdot z = (-z + 2)\cdot \left(z + 1\right) |
-20,054 | 9/9 \cdot \frac{1}{x + \left(-1\right)} \cdot (9 + 2 \cdot x) = \dfrac{1}{9 \cdot (-1) + 9 \cdot x} \cdot (81 + 18 \cdot x) |
8,075 | \frac{1}{55} \cdot 89 = 1 + \frac{34}{55} |
-16,622 | -6 = -6 \times 5 \times f - 6 = -30 \times f - 6 = -30 \times f + 6 \times (-1) |
10,799 | \frac{1}{1 - v/2}*\left((-1)*\dfrac12\right) + \dfrac{1}{1 - v} = -\frac{1}{-1 + v} + \frac{1}{-2 + v} |
9,011 | \frac{\text{d}}{\text{d}h} \arcsin(h) = 1/\cos(\arcsin(h)) |
25,182 | \dfrac{1}{4 \cdot a^2} \cdot (a \cdot x \cdot 2 + h)^2 = \left(x + \dfrac{h}{2 \cdot a}\right)^2 |
-23,451 | \frac{2}{3}*\frac15 = \frac{1}{15}*2 |
-6,742 | 20/100 + \frac{1}{100} \cdot 3 = \dfrac{1}{100} \cdot 3 + 2/10 |
31,022 | 1 + x \cdot 2 = \left(1 + x\right)^2 - x^2 |
-7,873 | \frac{1}{-3 - i} \cdot (-i \cdot 16 + 2) = \dfrac{-3 + i}{-3 + i} \cdot \dfrac{1}{-3 - i} \cdot (2 - i \cdot 16) |
-18,401 | \frac{(l + 3 \cdot \left(-1\right)) \cdot \left(3 \cdot (-1) + l\right)}{(l + 3 \cdot (-1)) \cdot l} = \frac{1}{-3 \cdot l + l^2} \cdot (l^2 - 6 \cdot l + 9) |
9,607 | \frac{x}{K} \times M = |x \times M| = \max{|x|\wedge |M|} = \max{\frac{x}{K}\wedge M/K} = \dfrac{x}{K} \times M/K |
31,631 | 1/3 = 1/(1/2\cdot 6) |
-22,067 | \frac18 \cdot 12 = 3/2 |
8,084 | \sin(y + \tfrac{1}{2}*\pi) = \cos{y} |
25,132 | \lim_{n \to \infty} 2^{\frac1n \cdot \left(n + \left(-1\right)\right)} = 2 = \lim_{n \to \infty} 2^{(n + 1)/n} |
245 | y = \frac{1}{2 + x} rightarrow x = \frac{1}{y}*(1 - y*2) |
-11,515 | 9 + 13*i = -3 + 12 + i*13 |
22,022 | -2 = b + (-1) \Rightarrow -1 = b |
-29,351 | a \times a - g \times g = (g + a)\times (a - g) |
-22,915 | 40/64 = 8\times 5/(8\times 8) |
22,808 | y^{y^{y^{y^{\ldots}}}} = 2 \Rightarrow 2 = y^2 |
24,701 | 2^2 - 2*x + x^2 = (x + (-1))*(x + 2*(-1)) + x + 2 = x^2 - 3*x + 2 + 2 + x = x^2 - 2*x + 4 |
29,283 | 1 + (1 + 2 + 2)/3 = \frac83 |
-2,148 | \pi\cdot \frac{13}{12} + \dfrac{1}{12}\cdot 23\cdot \pi = 3\cdot \pi |
40,612 | 5 5 5 + 3 3 3 + 4^3 = 6 6^2 |
-3,200 | \sqrt{10}*6 = (1 + 5) \sqrt{10} |
33,413 | a/b = \dfrac{1 + b^2}{a^2 + 1} \implies a = b |
17,372 | \frac{1}{(-y + 1)^2}\times \left(y^{n + 1}\times n - y^n\times (n + 1) + 1\right) = 1 + y\times 2 + 3\times y^2 + ... + y^{n + (-1)}\times n |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.