markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Initialize service code data structures
Service code / service name map
Service code histogram | h_file = open("./serviceCodesCount.tsv","r")
code_name_map = {}
code_histogram = {}
patternobj = re.compile('^([0-9a-z]+)\s\|\s([0-9a-z\s]+)$')
for fields in csv.reader(h_file, delimiter="\t"):
matchobj = patternobj.match(fields[0])
cur_code = matchobj.group(1)
code_name_map[cur_code] = matchobj.group(2)
code_histogram[cur_code] = float(fields[1])
h_file.close() | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Plot Cincinnati 311 Service Code Statistics
References
Descending Array Sort
Change Plot Font Size | total_count_fraction = code_histogram.values()
total_count_fraction.sort()
total_count_fraction = total_count_fraction[::-1]
total_count_fraction /= np.sum(total_count_fraction)
total_count_fraction = np.cumsum(total_count_fraction)
sns.set(font_scale=2)
f,h_ax = plt.subplots(1,2,figsize=(12,6))
h_ax[0].bar(range(0,len(code_histogram.values())),
code_histogram.values())
h_ax[0].set_xlim((0,len(total_count_fraction)))
h_ax[0].set_xlabel('Service Code #')
h_ax[0].set_ylabel('Service Code Count')
h_ax[0].set_title('Cincinnati 311\nService Code Histogram')
h_ax[1].plot(total_count_fraction, linewidth=4)
h_ax[1].set_xlim((0,len(total_count_fraction)))
h_ax[1].set_xlabel('Sorted Service Code #')
h_ax[1].set_ylabel('Total Count Fraction')
f.tight_layout()
plt.savefig("./cincinatti311Stats.png") | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Cluster service code names
Compute Term Frequency Inverse Document Frequency (TF-IDF) feature vectors
Apply the K-means algorithm to cluster service code names based on their TF-IDF feature vector
References:
Rose, B. "Document Clustering in Python"
Text pre-processing to reduce dictionary size | from nltk.stem.snowball import SnowballStemmer
def tokenize(text):
""" Extracts unigrams (i.e. words) from a string that contains
a service code name.
Args:
text: String that stores a service code name
Returns:
filtered_tokens: List of words contained in a service code name"""
tokens = [word.lower() for word in nltk.word_tokenize(text)]
filtered_tokens =\
filter(lambda elem: re.match('^[a-z]+$', elem) != None,
tokens)
filtered_tokens =\
map(lambda elem: re.sub("\s+"," ", elem),
filtered_tokens)
return filtered_tokens
def tokenize_and_stem(text):
""" Applies the Snowball stemmer to unigrams (i.e. words) extracted
from a string that contains a service code name.
Args:
text: String that stores a service code name
Returns:
filtered_tokens: List of words contained in a service code name"""
stemmer = SnowballStemmer('english')
tokens = [word.lower() for word in nltk.word_tokenize(text)]
filtered_tokens =\
filter(lambda elem: re.match('^[a-z]+$', elem) != None,
tokens)
filtered_tokens =\
map(lambda elem: re.sub("\s+"," ", elem),
filtered_tokens)
filtered_tokens = [stemmer.stem(token) for token in filtered_tokens]
return filtered_tokens
def compute_tfidf_features(code_name_map,
tokenizer,
params):
""" Constructs a Term Frequency Inverse Document Frequency (TF-IDF)
matrix for the Cincinnati 311 service code names.
Args:
code_name_map: Dictionary that stores the mapping of service
codes to service names
tokenizer: Function that transforms a string into a list of
words
params: Dictionary that stores parameters that configure the
TfidfVectorizer class constructor
- mindocumentcount: Minimum number of term occurrences
in separate service code names
- maxdocumentfrequency: Maximum document frequency
Returns:
Tuple that stores a TF-IDF matrix and a TfidfVectorizer class
object.
Index: Description:
----- -----------
0 TF-IDF matrix
1 TfidfVectorizer class object"""
token_count = 0
for key in code_name_map.keys():
token_count += len(tokenize(code_name_map[key]))
num_codes = len(code_name_map.keys())
min_df = float(params['mindocumentcount']) / num_codes
tfidf_vectorizer =\
TfidfVectorizer(max_df=params['maxdocumentfrequency'],
min_df=min_df,
stop_words = 'english',
max_features = token_count,
use_idf=True,
tokenizer=tokenizer,
ngram_range=(1,1))
tfidf_matrix =\
tfidf_vectorizer.fit_transform(code_name_map.values())
return (tfidf_matrix,
tfidf_vectorizer)
def cluster_311_services(tfidf_matrix,
num_clusters,
random_seed):
"""Applies the K-means algorithm to cluster Cincinnati 311 service
codes based on their service name Term Frequency Inverse Document
Frequency (TF-IDF) feature vector.
Args:
tfidf_matrix: Cincinnati 311 service names TF-IDF feature matrix
num_clusters: K-means algorithm number of clusters input
random_seed: K-means algorithm random seed input:
Returns:
clusterid_code_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service code
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name"""
km = KMeans(n_clusters = num_clusters,
random_state=np.random.RandomState(seed=random_seed))
km.fit(tfidf_matrix)
clusters = km.labels_.tolist()
clusterid_code_map = defaultdict(list)
clusterid_name_map = defaultdict(list)
codes = code_name_map.keys()
names = code_name_map.values()
for idx in range(0, len(codes)):
clusterid_code_map[clusters[idx]].append(codes[idx])
clusterid_name_map[clusters[idx]].append(names[idx])
return (clusterid_code_map,
clusterid_name_map)
def compute_clusterid_totalcounts(clusterid_code_map,
code_histogram):
""" Computes the total Cincinnati 311 requests / service
names cluster
Args:
clusterid_code_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service code
code_histogram: Dictionary that stores the number of
occurrences for each Cincinnati 311 service
code
Returns:
clusterid_total_count: Dictionary that stores the total
Cincinnati 311 requests / service
names cluster"""
clusterid_total_count = defaultdict(int)
num_clusters = len(clusterid_code_map.keys())
for cur_cluster_id in range(0, num_clusters):
for cur_code in clusterid_code_map[cur_cluster_id]:
clusterid_total_count[cur_cluster_id] +=\
code_histogram[cur_code]
return clusterid_total_count
def print_cluster_stats(clusterid_name_map,
clusterid_total_count):
""" Prints the total number of codes and total requests count
for each Cincinnati 311 service names cluster.
Args:
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name
clusterid_total_count: Dictionary that stores the total
Cincinnati 311 requests / service
names cluster
Returns:
None"""
num_clusters = len(clusterid_total_count.keys())
for cur_cluster_id in range(0, num_clusters):
print "clusterid %d | # of codes: %d | total count: %d" %\
(cur_cluster_id,
len(clusterid_name_map[cur_cluster_id]),
clusterid_total_count[cur_cluster_id])
def eval_maxcount_clusterid(clusterid_code_map,
clusterid_total_count,
code_histogram):
""" This function performs the following two operations:
1.) Plots the requests count for each service name in the
maximum count service names cluster.
2. Prints the maximum count service name in the maximum count
service names cluster
Args:
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name
clusterid_total_count: Dictionary that stores the total
Cincinnati 311 requests / service
names cluster
code_histogram: Dictionary that stores the number of
occurrences for each Cincinnati 311 service
code
Returns:
None"""
num_clusters = len(clusterid_code_map.keys())
contains_multiple_codes = np.empty(num_clusters, dtype=bool)
for idx in range(0, num_clusters):
contains_multiple_codes[idx] = len(clusterid_code_map[idx]) > 1
filtered_clusterid =\
np.array(clusterid_total_count.keys())
filtered_total_counts =\
np.array(clusterid_total_count.values())
filtered_clusterid =\
filtered_clusterid[contains_multiple_codes]
filtered_total_counts =\
filtered_total_counts[contains_multiple_codes]
max_count_idx = np.argmax(filtered_total_counts)
maxcount_clusterid = filtered_clusterid[max_count_idx]
cluster_code_counts =\
np.zeros(len(clusterid_code_map[maxcount_clusterid]))
for idx in range(0, len(cluster_code_counts)):
key = clusterid_code_map[maxcount_clusterid][idx]
cluster_code_counts[idx] = code_histogram[key]
plt.bar(range(0,len(cluster_code_counts)),cluster_code_counts)
plt.grid(True)
plt.xlabel('Service Code #')
plt.ylabel('Service Code Count')
plt.title('Cluster #%d Service Code Histogram' %\
(maxcount_clusterid))
max_idx = np.argmax(cluster_code_counts)
print "max count code: %s" %\
(clusterid_code_map[maxcount_clusterid][max_idx])
def add_new_cluster(from_clusterid,
service_code,
clusterid_total_count,
clusterid_code_map,
clusterid_name_map):
"""Creates a new service name(s) cluster
Args:
from_clusterid: Integer that refers to a service names
cluster that is being split
servicecode: String that refers to a 311 service code
clusterid_code_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service code
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name
Returns:
None - Service names cluster data structures are updated
in place"""
code_idx =\
np.argwhere(np.array(clusterid_code_map[from_clusterid]) ==\
service_code)[0][0]
service_name = clusterid_name_map[from_clusterid][code_idx]
next_clusterid = (clusterid_code_map.keys()[-1])+1
clusterid_code_map[from_clusterid] =\
filter(lambda elem: elem != service_code,
clusterid_code_map[from_clusterid])
clusterid_name_map[from_clusterid] =\
filter(lambda elem: elem != service_name,
clusterid_name_map[from_clusterid])
clusterid_code_map[next_clusterid] = [service_code]
clusterid_name_map[next_clusterid] = [service_name]
def print_clustered_servicenames(cur_clusterid,
clusterid_name_map):
"""Prints the Cincinnati 311 service names(s) for a specific
Cincinnati 311 service names cluster
Args:
cur_clusterid: Integer that refers to a specific Cincinnati 311
service names cluster
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name"""
for cur_name in clusterid_name_map[cur_clusterid]:
print "%s" % (cur_name)
def plot_cluster_stats(clusterid_code_map,
clusterid_total_count):
"""Plots the following service name(s) cluster statistics:
- Number of service code(s) / service name(s) cluster
- Total number of requests / service name(s) cluster
Args:
clusterid_name_map: Dictionary that stores the mapping of
cluster identifier to Cincinnati 311
service name
clusterid_total_count: Dictionary that stores the total
Cincinnati 311 requests / service
names cluster
Returns:
None"""
codes_per_cluster =\
map(lambda elem: len(elem), clusterid_code_map.values())
num_clusters = len(codes_per_cluster)
f,h_ax = plt.subplots(1,2,figsize=(12,6))
h_ax[0].bar(range(0,num_clusters), codes_per_cluster)
h_ax[0].set_xlabel('Service Name(s) cluster id')
h_ax[0].set_ylabel('Number of service codes / cluster')
h_ax[1].bar(range(0,num_clusters), clusterid_total_count.values())
h_ax[1].set_xlabel('Service Name(s) cluster id')
h_ax[1].set_ylabel('Total number of requests')
plt.tight_layout() | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Apply a word tokenizer to the service names and construct a TF-IDF feature matrix | params = {'maxdocumentfrequency': 0.25,
'mindocumentcount': 10}
(tfidf_matrix,
tfidf_vectorizer) = compute_tfidf_features(code_name_map,
tokenize,
params)
print "# of terms: %d" % (tfidf_matrix.shape[1])
print tfidf_vectorizer.get_feature_names() | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Apply the K-means algorithm to cluster the Cincinnati 311 service names based on their TF-IDF feature vector | num_clusters = 20
kmeans_seed = 3806933558
(clusterid_code_map,
clusterid_name_map) = cluster_311_services(tfidf_matrix,
num_clusters,
kmeans_seed)
clusterid_total_count =\
compute_clusterid_totalcounts(clusterid_code_map,
code_histogram)
print_cluster_stats(clusterid_name_map,
clusterid_total_count) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Plot the service code histogram for the maximum size cluster | eval_maxcount_clusterid(clusterid_code_map,
clusterid_total_count,
code_histogram) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Apply a word tokenizer (with stemming) to the service names and construct a TF-IDF feature matrix | params = {'maxdocumentfrequency': 0.25,
'mindocumentcount': 10}
(tfidf_matrix,
tfidf_vectorizer) = compute_tfidf_features(code_name_map,
tokenize_and_stem,
params)
print "# of terms: %d" % (tfidf_matrix.shape[1])
print tfidf_vectorizer.get_feature_names() | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Apply the K-means algorithm to cluster the Cincinnati 311 service names based on their TF-IDF feature vector | num_clusters = 20
kmeans_seed = 3806933558
(clusterid_code_map,
clusterid_name_map) = cluster_311_services(tfidf_matrix,
num_clusters,
kmeans_seed)
clusterid_total_count =\
compute_clusterid_totalcounts(clusterid_code_map,
code_histogram)
print_cluster_stats(clusterid_name_map,
clusterid_total_count)
plot_cluster_stats(clusterid_code_map,
clusterid_total_count) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Create a separate service name(s) cluster for the 'mtlfrn' service code | add_new_cluster(1,
'mtlfrn',
clusterid_total_count,
clusterid_code_map,
clusterid_name_map) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Evaluate the service name(s) cluster statistics | clusterid_total_count =\
compute_clusterid_totalcounts(clusterid_code_map,
code_histogram)
print_cluster_stats(clusterid_name_map,
clusterid_total_count) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Create a separate service name(s) cluster for the 'ydwstaj' service code | add_new_cluster(1,
'ydwstaj',
clusterid_total_count,
clusterid_code_map,
clusterid_name_map) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Create a separate service name(s) cluster for the 'grfiti' service code | add_new_cluster(1,
'grfiti',
clusterid_total_count,
clusterid_code_map,
clusterid_name_map) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Create a separate service name(s) cluster for the 'dapub1' service code | add_new_cluster(1,
'dapub1',
clusterid_total_count,
clusterid_code_map,
clusterid_name_map) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Evaluate the service name(s) cluster statistics | clusterid_total_count =\
compute_clusterid_totalcounts(clusterid_code_map,
code_histogram)
print_cluster_stats(clusterid_name_map,
clusterid_total_count)
plot_cluster_stats(clusterid_code_map,
clusterid_total_count) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Label each service name(s) cluster | cur_clusterid = 0
clusterid_category_map = {}
clusterid_category_map[cur_clusterid] = 'streetmaintenance'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'miscellaneous'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'trashcart'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'buildinghazzard'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'buildingcomplaint'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'repairrequest'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'propertymaintenance'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'defaultrequest'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'propertycomplaint'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'trashcomplaint'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'servicecompliment'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'inspection'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'servicecomplaint'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'buildinginspection'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'buildingcomplaint'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'signmaintenance'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'requestforservice'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'litter'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'recycling'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid +=1
clusterid_category_map[cur_clusterid] = 'treemaintenance'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'metalfurniturecollection'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'yardwaste'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'graffitiremoval'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map[cur_clusterid] = 'deadanimal'
print_clustered_servicenames(cur_clusterid,
clusterid_name_map)
cur_clusterid += 1
clusterid_category_map | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Plot Cincinnati 311 Service Name Categories | import pandas as pd
category_totalcountdf =\
pd.DataFrame({'totalcount': clusterid_total_count.values()},
index=clusterid_category_map.values())
sns.set(font_scale=1.5)
category_totalcountdf.plot(kind='barh') | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Write service code / category map to disk
Storing Python Dictionaries | servicecode_category_map = {}
for clusterid in clusterid_name_map.keys():
cur_category = clusterid_category_map[clusterid]
for servicecode in clusterid_code_map[clusterid]:
servicecode_category_map[servicecode] = cur_category
with open('serviceCodeCategory.txt', 'w') as fp:
num_names = len(servicecode_category_map)
keys = servicecode_category_map.keys()
values = servicecode_category_map.values()
for idx in range(0, num_names):
if idx == 0:
fp.write("%s{\"%s\": \"%s\",\n" % (" " * 12,
keys[idx],
values[idx]))
#----------------------------------------
elif idx > 0 and idx < num_names-1:
fp.write("%s\"%s\": \"%s\",\n" % (" " * 13,
keys[idx],
values[idx]))
#----------------------------------------
else:
fp.write("%s\"%s\": \"%s\"}" % (" " * 13,
keys[idx],
values[idx])) | ClusterServiceCodes.ipynb | mspcvsp/cincinnati311Data | gpl-3.0 |
Tabular data | df = pd.read_csv("data/titanic.csv")
df.head() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Starting from reading this dataset, to answering questions about this data in a few lines of code:
What is the age distribution of the passengers? | df['Age'].hist() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
How does the survival rate of the passengers differ between sexes? | df.groupby('Sex')[['Survived']].aggregate(lambda x: x.sum() / len(x)) | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Or how does it differ between the different classes? | df.groupby('Pclass')['Survived'].aggregate(lambda x: x.sum() / len(x)).plot(kind='bar') | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Are young people more likely to survive? | df['Survived'].sum() / df['Survived'].count()
df25 = df[df['Age'] <= 25]
df25['Survived'].sum() / len(df25['Survived']) | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
All the needed functionality for the above examples will be explained throughout this tutorial.
Data structures
Pandas provides two fundamental data objects, for 1D (Series) and 2D data (DataFrame).
Series
A Series is a basic holder for one-dimensional labeled data. It can be created much as a NumPy array is created: | s = pd.Series([0.1, 0.2, 0.3, 0.4])
s | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Attributes of a Series: index and values
The series has a built-in concept of an index, which by default is the numbers 0 through N - 1 | s.index | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
You can access the underlying numpy array representation with the .values attribute: | s.values | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
We can access series values via the index, just like for NumPy arrays: | s[0] | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Unlike the NumPy array, though, this index can be something other than integers: | s2 = pd.Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s2
s2['c'] | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
In this way, a Series object can be thought of as similar to an ordered dictionary mapping one typed value to another typed value.
In fact, it's possible to construct a series directly from a Python dictionary: | pop_dict = {'Germany': 81.3,
'Belgium': 11.3,
'France': 64.3,
'United Kingdom': 64.9,
'Netherlands': 16.9}
population = pd.Series(pop_dict)
population | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
We can index the populations like a dict as expected: | population['France'] | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
but with the power of numpy arrays: | population * 1000 | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
DataFrames: Multi-dimensional Data
A DataFrame is a tablular data structure (multi-dimensional object to hold labeled data) comprised of rows and columns, akin to a spreadsheet, database table, or R's data.frame object. You can think of it as multiple Series object which share the same index.
<img src="img/dataframe.png" width=110%>
One of the most common ways of creating a dataframe is from a dictionary of arrays or lists.
Note that in the IPython notebook, the dataframe will display in a rich HTML view: | data = {'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'],
'population': [11.3, 64.3, 81.3, 16.9, 64.9],
'area': [30510, 671308, 357050, 41526, 244820],
'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']}
countries = pd.DataFrame(data)
countries | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Attributes of the DataFrame
A DataFrame has besides a index attribute, also a columns attribute: | countries.index
countries.columns | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
To check the data types of the different columns: | countries.dtypes | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
An overview of that information can be given with the info() method: | countries.info() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Also a DataFrame has a values attribute, but attention: when you have heterogeneous data, all values will be upcasted: | countries.values | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
If we don't like what the index looks like, we can reset it and set one of our columns: | countries = countries.set_index('country')
countries | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
To access a Series representing a column in the data, use typical indexing syntax: | countries['area'] | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Basic operations on Series/Dataframes
As you play around with DataFrames, you'll notice that many operations which work on NumPy arrays will also work on dataframes. | # redefining the example objects
population = pd.Series({'Germany': 81.3, 'Belgium': 11.3, 'France': 64.3,
'United Kingdom': 64.9, 'Netherlands': 16.9})
countries = pd.DataFrame({'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'],
'population': [11.3, 64.3, 81.3, 16.9, 64.9],
'area': [30510, 671308, 357050, 41526, 244820],
'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']}) | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Elementwise-operations (like numpy)
Just like with numpy arrays, many operations are element-wise: | population / 100
countries['population'] / countries['area'] | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Alignment! (unlike numpy)
Only, pay attention to alignment: operations between series will align on the index: | s1 = population[['Belgium', 'France']]
s2 = population[['France', 'Germany']]
s1
s2
s1 + s2 | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Reductions (like numpy)
The average population number: | population.mean() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
The minimum area: | countries['area'].min() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
For dataframes, often only the numeric columns are included in the result: | countries.median() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
<div class="alert alert-success">
<b>EXERCISE</b>: Calculate the population numbers relative to Belgium
</div> | population / population['Belgium'].mean() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
<div class="alert alert-success">
<b>EXERCISE</b>: Calculate the population density for each country and add this as a new column to the dataframe.
</div> | countries['population']*1000000 / countries['area']
countries['density'] = countries['population']*1000000 / countries['area']
countries | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Some other useful methods
Sorting the rows of the DataFrame according to the values in a column: | countries.sort_values('density', ascending=False) | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
One useful method to use is the describe method, which computes summary statistics for each column: | countries.describe() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
The plot method can be used to quickly visualize the data in different ways: | countries.plot() | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
However, for this dataset, it does not say that much: | countries['population'].plot(kind='bar') | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
You can play with the kind keyword: 'line', 'bar', 'hist', 'density', 'area', 'pie', 'scatter', 'hexbin'
Importing and exporting data
A wide range of input/output formats are natively supported by pandas:
CSV, text
SQL database
Excel
HDF5
json
html
pickle
... | pd.read
states.to | solved - 02 - Data structures.ipynb | jorisvandenbossche/2015-EuroScipy-pandas-tutorial | bsd-2-clause |
Exercise 1: Finding Correlations of Non-Linear Relationships
a. Traditional (Pearson) Correlation
Find the correlation coefficient for the relationship between x and y. | n = 100
x = np.linspace(1, n, n)
y = x**5
#Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
b. Spearman Rank Correlation
Find the Spearman rank correlation coefficient for the relationship between x and y using the stats.rankdata function and the formula
$$r_S = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$
where $d_i$ is the difference in rank of the ith pair of x and y values. | #Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
Check your results against scipy's Spearman rank function. stats.spearmanr | # Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
Exercise 2: Limitations of Spearman Rank Correlation
a. Lagged Relationships
First, create a series b that is identical to a but lagged one step (b[i] = a[i-1]). Then, find the Spearman rank correlation coefficient of the relationship between a and b. | n = 100
a = np.random.normal(0, 1, n)
#Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
b. Non-Monotonic Relationships
First, create a series d using the relationship $d=10c^2 - c + 2$. Then, find the Spearman rank rorrelation coefficient of the relationship between c and d. | n = 100
c = np.random.normal(0, 2, n)
#Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
Exercise 3: Real World Example
a. Factor and Forward Returns
Here we'll define a simple momentum factor (model). To evaluate it we'd need to look at how its predictions correlate with future returns over many days. We'll start by just evaluating the Spearman rank correlation between our factor values and forward returns on just one day.
Compute the Spearman rank correlation between factor values and 10 trading day forward returns on 2015-1-2.
For help on the pipeline API, see this tutorial: https://www.quantopian.com/tutorials/pipeline | #Pipeline Setup
from quantopian.research import run_pipeline
from quantopian.pipeline import Pipeline
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.pipeline.factors import CustomFactor, Returns, RollingLinearRegressionOfReturns
from quantopian.pipeline.classifiers.morningstar import Sector
from quantopian.pipeline.filters import QTradableStocksUS
from time import time
#MyFactor is our custom factor, based off of asset price momentum
class MyFactor(CustomFactor):
""" Momentum factor """
inputs = [USEquityPricing.close]
window_length = 60
def compute(self, today, assets, out, close):
out[:] = close[-1]/close[0]
universe = QTradableStocksUS()
pipe = Pipeline(
columns = {
'MyFactor' : MyFactor(mask=universe),
},
screen=universe
)
start_timer = time()
results = run_pipeline(pipe, '2015-01-01', '2015-06-01')
end_timer = time()
results.fillna(value=0);
print "Time to run pipeline %.2f secs" % (end_timer - start_timer)
my_factor = results['MyFactor']
n = len(my_factor)
asset_list = results.index.levels[1].unique()
prices_df = get_pricing(asset_list, start_date='2015-01-01', end_date='2016-01-01', fields='price')
# Compute 10-day forward returns, then shift the dataframe back by 10
forward_returns_df = prices_df.pct_change(10).shift(-10)
# The first trading day is actually 2015-1-2
single_day_factor_values = my_factor['2015-1-2']
# Because prices are indexed over the total time period, while the factor values dataframe
# has a dynamic universe that excludes hard to trade stocks, each day there may be assets in
# the returns dataframe that are not present in the factor values dataframe. We have to filter down
# as a result.
single_day_forward_returns = forward_returns_df.loc['2015-1-2'][single_day_factor_values.index]
#Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
b. Rolling Spearman Rank Correlation
Repeat the above correlation for the first 60 days in the dataframe as opposed to just a single day. You should get a time series of Spearman rank correlations. From this we can start getting a better sense of how the factor correlates with forward returns.
What we're driving towards is known as an information coefficient. This is a very common way of measuring how predictive a model is. All of this plus much more is automated in our open source alphalens library. In order to see alphalens in action you can check out these resources:
A basic tutorial:
https://www.quantopian.com/tutorials/getting-started#lesson4
An in-depth lecture:
https://www.quantopian.com/lectures/factor-analysis | rolling_corr = pd.Series(index=None, data=None)
#Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
b. Rolling Spearman Rank Correlation
Plot out the rolling correlation as a time series, and compute the mean and standard deviation. | # Your code goes here | notebooks/lectures/Spearman_Rank_Correlation/questions/notebook.ipynb | quantopian/research_public | apache-2.0 |
Loading Data
First, we load the data. NOTE, targets with the starting name of PSR are radio scans of known pulsars PSR_B0355+54_0013. But, files with HIP65960 cataloged targets that shouldn't have pulsar characteristics. If you wish to learn more about the data check out https://ui.adsabs.harvard.edu/abs/2019PASP..131l4505L/abstract
The header information gives vital information about the observational setup of the telescope. For example, the coarse channel width or the observation time and duration, etc. | from blimpy import Waterfall
import pylab as plt
import numpy as np
import math
from scipy import stats, interpolate
from copy import deepcopy
%matplotlib inline
obs = Waterfall('/content/spliced_blc40414243444546o7o0515253545556o7o061626364656667_guppi_58837_86186_PSR_B0355+54_0013.gpuspec.8.0001.fil',
t_start=0,t_stop= 80000,max_load=10)
obs.info()
# Loads data into numpy array
data = obs.data
data.shape
coarse_channel_width = np.int(np.round(187.5/64/abs(obs.header['foff'])))
# Here we plot the integrated signal over time.
obs.plot_spectrum()
fig = plt.figure(figsize=(10,8))
plt.title('Spectrogram With Bandpass')
plt.xlabel("Fchans")
plt.ylabel("Time")
plt.imshow(data[:3000,0,1500:3000], aspect='auto')
plt.colorbar() | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Band Pass Removal
The goal of this process is to clean the data of its artifacts created by combining multiple bands. Our data is created by taking sliding windows of the raw voltage data and computing an FFT of that sliding window. With these FFTs (each containing frequency information about a timestamp) for each coarse channel, we use a bandpass filter to cut off frequencies that don’t belong to that coarse channel’s frequency range. But we can’t achieve a perfect cut, and that’s why there's a falling off at the edges.
They’re called band-pass because they only allow signals in a particular frequency range, called a band, to pass-through. When we assemble the products we see these dips in the spectrogram. In other words - they aren't real signals.
To remove the bandpass features, we use spline lines to fit each channel to get a model of the bandpass of that channel. By using splines, we can fit the bandpass without fitting the more significant signals.
If you want more details on this check out https://github.com/FX196/SETI-Energy-Detection for a detailed explanation. | average_power = np.zeros((data.shape[2]))
shifted_power = np.zeros((int(data.shape[2]/8)))
x=[]
spl_order = 2
print("Fitting Spline")
data_adjust = np.zeros(data.shape)
average_power = data.mean(axis=0)
# Note the value 8 is the COARSE CHANNEL WIDTH
# We adjust each coarse channel to correct the bandpass artifacts
for i in range(0, data.shape[2], 8):
average_channel = average_power[0,i:i+8]
x = np.arange(0,coarse_channel_width,1)
knots = np.arange(0, coarse_channel_width, coarse_channel_width//spl_order+1)
tck = interpolate.splrep(x, average_channel, s=knots[1:])
xnew = np.arange(0, coarse_channel_width,1)
ynew = interpolate.splev(xnew, tck, der=0)
data_adjust[:,0,i:i+8] = data[:,0,i:i+8] - ynew
plt.figure()
plt.plot( data_adjust.mean(axis=0)[0,:])
plt.title('Spline Fit - adjusted')
plt.xlabel("Fchans")
plt.ylabel("Power")
fig = plt.figure(figsize=(10,8))
plt.title('After bandpass correction')
plt.imshow(data_adjust[:3000,0,:], aspect='auto')
plt.colorbar() | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Dedispersion
When pulses reach Earth they reach the observer at different times due to dispersion. This dispersion is the result of the interstellar medium causing time delays. This creates a "swooping curve" on the radio spectrogram instead of plane waves. If we are going to fold the pulses to increase the SNR then we're making the assumption that the pulses arrive at the same time. Thus we need to correct the dispersion by shifting each channel down a certain time delay relative to its frequency channel. We index a frequency column in the spectrogram. Then we split it between a time delay and original data and swap the positions.
However, the problem is, we don't know the dispersion measure DM of the signal. The DM is the path integral of the signal through the interstellar medium with an electron density measure of.
$$DM =\int_0^d n_e dl$$
What we do is we brute force the DM by executing multiple trials DMs and we take the highest SNR created by the dedispersion with the given trial DM. | def delay_from_DM(DM, freq_emitted):
if (type(freq_emitted) == type(0.0)):
if (freq_emitted > 0.0):
return DM / (0.000241 * freq_emitted * freq_emitted)
else:
return 0.0
else:
return Num.where(freq_emitted > 0.0,
DM / (0.000241 * freq_emitted * freq_emitted), 0.0)
def de_disperse(data,DM,fchan,width,tsamp):
clean = deepcopy(data)
for i in range(clean.shape[1]):
end = clean.shape[0]
freq_emitted = i*width+ fchan
time = int((delay_from_DM(DM, freq_emitted))/tsamp)
if time!=0 and time<clean.shape[0]:
# zero_block = np.zeros((time))
zero_block = clean[:time,i]
shift_block = clean[:end-time,i]
clean[time:end,i]= shift_block
clean[:time,i]= zero_block
elif time!=0:
clean[:,i]= np.zeros(clean[:,i].shape)
return clean
def DM_can(data, data_base, sens, DM_base, candidates, fchan,width,tsamp ):
snrs = np.zeros((candidates,2))
for i in range(candidates):
DM = DM_base+sens*i
data = de_disperse(data, DM, fchan,width,tsamp)
time_series = data.sum(axis=1)
snrs[i,1] = SNR(time_series)
snrs[i,0] =DM
if int((delay_from_DM(DM, fchan))/tsamp)+1 > data.shape[0]:
break
if i %1==0:
print("Candidate "+str(i)+"\t SNR: "+str(round(snrs[i,1],4)) + "\t Largest Time Delay: "+str(round(delay_from_DM(DM, fchan), 6))+' seconds'+"\t DM val:"+ str(DM)+"pc/cm^3")
data = data_base
return snrs
# Functions to determine SNR and TOP candidates
def SNR(arr):
index = np.argmax(arr)
average_noise = abs(arr.mean(axis=0))
return math.log(arr[index]/average_noise)
def top(arr, top = 10):
candidate = []
# Delete the first and second element fourier transform
arr[0]=0
arr[1]=0
for i in range(top):
# We add 1 as the 0th index = period of 1 not 0
index = np.argmax(arr)
candidate.append(index+1)
arr[index]=0
return candidate | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Dedispersion Trials
The computer now checks multiple DM values and adjust each frequency channel where it records its SNR. We increment the trial DM by a tunable parameter sens. After the trials, we take the largest SNR created by adjusting the time delays. We use that data to perform the FFT's and record the folded profiles. | small_data = data_adjust[:,0,:]
data_base = data_adjust[:,0,:]
sens =0.05
DM_base = 6.4
candidates = 50
fchan = obs.header['fch1']
width = obs.header['foff']
tsamp = obs.header['tsamp']
fchan = fchan+ width*small_data.shape[1]
snrs = DM_can(small_data, data_base, sens, DM_base, candidates, fchan, abs(width),tsamp)
plt.plot(snrs[:,0], snrs[:,1])
plt.title('DM values vs SNR')
plt.xlabel("DM values")
plt.ylabel("SNR of Dedispersion")
DM = snrs[np.argmax(snrs[:,1]),0]
print(DM)
fchan = fchan+ width*small_data.shape[1]
data_adjust[:,0,:] = de_disperse(data_adjust[:,0,:], DM, fchan,abs(width),tsamp)
fig = plt.figure(figsize=(10, 8))
plt.imshow(data_adjust[:,0,:], aspect='auto')
plt.title('De-dispersed Data')
plt.xlabel("Fchans")
plt.ylabel("Time")
plt.colorbar()
plt.show() | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Detecting Pulses - Fourier Transforms and Folding
Next, we apply the discrete Fourier transform on the data to detect periodic pulses. To do so, we look for the greatest magnitude of the Fourier transform. This indicates potential periods within the data. Then we check for consistency by folding the data by the period which the Fourier transform indicates.
The folding algorithm is simple. You take each period and you fold the signals on top of itself. If the period you guessed matches the true period then by the law of superposition it will increase the SNR. This spike in signal to noise ratio appears in the following graph. This algorithm is the following equation. | # Preforming the fourier transform.
%matplotlib inline
import scipy.fftpack
from scipy.fft import fft
N = 1000
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = abs(data_adjust[:,0,:].mean(axis=1))
yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N//2)
# Magintude of the fourier transform
# Between 0.00035 and 3.5 seconds
mag = np.abs(yf[:60000])
candidates = top(mag, top=15)
plt.plot(2.0/N * mag[1:])
plt.grid()
plt.title('Fourier Transform of Signal')
plt.xlabel("Periods")
plt.ylabel("Magnitude of Fourier Transform")
plt.show()
print("Signal To Noise Ratio for the Fourier Transform is: "+str(SNR(mag)))
print("Most likely Candidates are: "+str(candidates)) | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Folding Algorithm
The idea of the folding algorithm is to see if the signal forms a consistent profile as you fold/integrate the values together. If the profile appears consistent/stable then you're looking at an accurate reading of the pulsar's period. This confirms the implications drawn from the Fourier transform. This is profiling the pulsar. When folding the pulses it forms a "fingerprint" of the pulsar. These folds are unique to the pulsar detected.
$$s_j = \sum^{N/P-1}{K=0} D{j+kP} $$
We are suming over the regular intervals of period P. This is implemented below. | # Lets take an example of such a period!
# The 0th candidate is the top ranked candidate by the FFT
period = 895
fold = np.zeros((period, data.shape[2]))
multiples = int(data.data.shape[0]/period)
results = np.zeros((period))
for i in range(multiples-1):
fold[:,:]=data_adjust[i*period:(i+1)*period,0,:]+ fold
results = fold.mean(axis=1)
results = results - results.min()
results = results / results.max()
print(SNR(results))
plt.plot(results)
plt.title('Folded Signal Profile With Period: '+str(round(period*0.000349,5)))
plt.xlabel("Time (Multiples of 0.00035s)")
plt.ylabel("Normalized Integrated Signal")
# Lets take an example of such a period!
# The 0th candidate is the top ranked candidate by the FFT
can_snr =[]
for k in range(len(candidates)):
period = candidates[k]
fold = np.zeros((period, data.shape[2]))
multiples = int(data.data.shape[0]/period)
results = np.zeros((period))
for i in range(multiples-1):
fold[:,:]=data[i*period:(i+1)*period,0,:]+ fold
results = fold.mean(axis=1)
results = results - results.min()
results = results / results.max()
can_snr.append(SNR(results))
# print(SNR(results))
print("Max SNR of Fold Candidates: "+ str(max(can_snr)))
# Generates multiple images saved to create a GIF
from scipy import stats
data = data
period = candidates[0]
fold = np.zeros((period, data.shape[2]))
multiples = int(data.data.shape[0]/period)
results = np.zeros((period))
for i in range(multiples-1):
fold[:,:]=data[i*period:(i+1)*period,0,:]+ fold
results = fold.mean(axis=1)
results = results - results.min()
results = results / results.max()
# Generates multiple frames of the graph as it folds!
plt.plot(results)
plt.title('Folded Signal Period '+str(period*0.000349)+" seconds| Fold Iteration: "+str(i))
plt.xlabel("Time (Multiples of 0.00035s)")
plt.ylabel("Normalized Integrated Signal")
plt.savefig('/content/drive/My Drive/Deeplearning/Pulsars/output/candidates/CAN_3/multi_chan_'+str(period)+'_'+str(i)+'.png')
plt.close()
results = fold.mean(axis=1)
results = results - results.min()
results = results / results.max()
print("The Signal To Noise of the Fold is: "+str(SNR(results)))
plt.plot(results) | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
What Happens If The Data Doesn't Contain Pulses?
Below we will show you that this algorithm detects pulses and excludes targets that do not include this feature. We will do so by loading a target that isn't known to be a pulsar. HIP65960 is a target that doesn't contain repeating signals.
Below we will repeat and apply the same algorithm but on a target that isn't a pulsar. We won't reiterate the explanations again. | !wget http://blpd13.ssl.berkeley.edu/dl/GBT_58402_66282_HIP65960_time.h5
from blimpy import Waterfall
import pylab as plt
import numpy as np
import math
from scipy import stats, interpolate
%matplotlib inline
obs = Waterfall('/content/GBT_58402_66282_HIP65960_time.h5',
f_start=0,f_stop= 361408,max_load=5)
obs.info()
# Loads data into numpy array
data = obs.data
coarse_channel_width = np.int(np.round(187.5/64/abs(obs.header['foff'])))
obs.plot_spectrum()
average_power = np.zeros((data.shape[2]))
shifted_power = np.zeros((int(data.shape[2]/8)))
x=[]
spl_order = 2
print("Fitting Spline")
data_adjust = np.zeros(data.shape)
average_power = data.mean(axis=0)
# Note the value 8 is the COARSE CHANNEL WIDTH
# We adjust each coarse channel to correct the bandpass artifacts
for i in range(0, data.shape[2], coarse_channel_width):
average_channel = average_power[0,i:i+coarse_channel_width]
x = np.arange(0,coarse_channel_width,1)
knots = np.arange(0, coarse_channel_width, coarse_channel_width//spl_order+1)
tck = interpolate.splrep(x, average_channel, s=knots[1:])
xnew = np.arange(0, coarse_channel_width,1)
ynew = interpolate.splev(xnew, tck, der=0)
data_adjust[:,0,i:i+coarse_channel_width] = data[:,0,i:i+coarse_channel_width] - ynew
from copy import deepcopy
small_data = data[:,0,:]
data_base = data[:,0,:]
sens =0.05
DM_base = 6.4
candidates = 50
fchan = obs.header['fch1']
width = obs.header['foff']
tsamp = obs.header['tsamp']
# fchan = fchan+ width*small_data.shape[1]
fchan = 7501.28173828125
snrs = DM_can(small_data, data_base, sens, DM_base, candidates, fchan, abs(width),tsamp)
plt.plot(snrs[:,0], snrs[:,1])
plt.title('DM values vs SNR')
plt.xlabel("DM values")
plt.ylabel("SNR of Dedispersion")
DM = snrs[np.argmax(snrs[:,1]),0]
print(DM)
fchan = fchan+ width*small_data.shape[1]
data_adjust[:,0,:] = de_disperse(data_adjust[:,0,:], DM, fchan,abs(width),tsamp)
# Preforming the fourier transform.
%matplotlib inline
import scipy.fftpack
from scipy.fft import fft
N = 60000
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = data[:,0,:].mean(axis=1)
yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N//2)
# Magintude of the fourier transform
# Between 0.00035 and 3.5 seconds
# We set this to a limit of 200 because
# The total tchan is only 279
mag = np.abs(yf[:200])
candidates = top(mag, top=15)
plt.plot(2.0/N * mag[1:])
plt.grid()
plt.title('Fourier Transform of Signal')
plt.xlabel("Periods")
plt.ylabel("Magnitude of Fourier Transform")
plt.show()
print("Signal To Noise Ratio for the Fourier Transform is: "+str(SNR(mag)))
print("Most likely Candidates are: "+str(candidates))
| GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
NOTICE
Notice how the signal to noise ratio is a lot smaller, It's smaller by 2 orders of magnitude (100x) than the original pulsar fold. Typically with a SNR of 1, it isn't considered a signal of interest as it's most likely just noise. | # Lets take an example of such a period!
# The 0th candidate is the top ranked candidate by the FFT
can_snr =[]
for k in range(len(candidates)):
period = candidates[k]
fold = np.zeros((period, data.shape[2]))
multiples = int(data.data.shape[0]/period)
results = np.zeros((period))
for i in range(multiples-1):
fold[:,:]=data[i*period:(i+1)*period,0,:]+ fold
results = fold.mean(axis=1)
results = results - results.min()
results = results / results.max()
can_snr.append(SNR(results))
print("Max SNR of Fold Candidates: "+ str(max(can_snr))) | GBT/pulsar_searches/Pulsar_Search/Pulsar_DedisperseV3.ipynb | UCBerkeleySETI/breakthrough | gpl-3.0 |
Introduction
Ce notebook est la traduction française du cours sur SymPy disponible entre autre sur Wakari avec quelques modifications et compléments notamment pour la résolution d'équations différentielles. Il a pour but de permettre aux étudiants de différents niveaux d'expérimenter des notions mathématiques en leur fournissant une base de code qu'ils peuvent modifier.
SymPy - est un module Python qui peut être utilisé dans un programme Python ou dans une session IPython. Il fournit de puissantes fonctionnalités de calcul symbolique.
Pour commencer à utiliser SymPy dans un programme ou un notebook Python, importer le module sympy: | from sympy import * | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Pour obtenir des sorties mathématiques formatées $\LaTeX$ : | from sympy import init_printing
init_printing(use_latex=True) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Variables symboliques
Dans SymPy on a besoin de créer des symboles pour les variables qu'on souhaite employer. Pour cela on utilise la class Symbol: | x = Symbol('x')
(pi + x)**2
# manière alternative de définir plusieurs symboles en une seule instruction
a, b, c = symbols("a, b, c") | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
On peut ajouter des contraintes sur les symboles lors de leur création : | x = Symbol('x', real=True)
x.is_imaginary
x = Symbol('x', positive=True)
x > 0 | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Nombres complexes
L'unité imaginaire est notée I dans Sympy. | 1+1*I
I**2
(1 + x * I)**2 | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Nombres rationnels
Il y a trois types numériques différents dans SymPy : Real (réel), Rational (rationnel), Integer (entier) : | r1 = Rational(4,5)
r2 = Rational(5,4)
r1
r1+r2
r1/r2 | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Evaluation numérique
SymPy permet une précision arbitraire des évaluations numériques et fournit des expressions pour quelques constantes comme : pi, E, oo pour l'infini.
Pour évaluer numériquement une expression nous utilisons la fonction evalf (ou N). Elle prend un argument n qui spécifie le nombre de chiffres significatifs. | pi.evalf(n=50)
E.evalf(n=4)
y = (x + pi)**2
N(y, 5) # raccourci pour evalf | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Quand on évalue des expressions algébriques on souhaite souvent substituer un symbole par une valeur numérique. Dans SymPy cela s'effectue par la fonction subs : | y.subs(x, 1.5)
N(y.subs(x, 1.5)) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
La fonction subs permet de substituer aussi des symboles et des expressions : | y.subs(x, a+pi) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
On peut aussi combiner l'évolution d'expressions avec les tableaux de NumPy (pour tracer une fonction par ex) : | import numpy
x_vec = numpy.arange(0, 10, 0.1)
y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(x_vec, y_vec); | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Manipulations algébriques
Une des principales utilisations d'un système de calcul symbolique est d'effectuer des manipulations algébriques d'expression. Il est possible de développer un produit ou bien de factoriser une expression. Les fonctions pour réaliser ces opérations de bases figurent dans les exemples des sections suivantes.
Développer et factoriser
Les premiers pas dans la manipulation algébrique | (x+1)*(x+2)*(x+3)
expand((x+1)*(x+2)*(x+3)) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
La fonction expand (développer) prend des mots clés en arguments pour indiquer le type de développement à réaliser. Par exemple pour développer une expression trigonomètrique on utilise l'argument trig=True : | sin(a+b)
expand(sin(a+b), trig=True)
sin(a+b)**3
expand(sin(a+b)**3, trig=True) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Lancer help(expand) pour une explication détaillée des différents types de développements disponibles.
L'opération opposée au développement est bien sur la factorisation qui s'effectue grâce à la fonction factor : | factor(x**3 + 6 * x**2 + 11*x + 6)
x1, x2 = symbols("x1, x2")
factor(x1**2*x2 + 3*x1*x2 + x1*x2**2) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Simplify
The simplify tries to simplify an expression into a nice looking expression, using various techniques. More specific alternatives to the simplify functions also exists: trigsimp, powsimp, logcombine, etc.
The basic usages of these functions are as follows: | # simplify expands a product
simplify((x+1)*(x+2)*(x+3))
# simplify uses trigonometric identities
simplify(sin(a)**2 + cos(a)**2)
simplify(cos(x)/sin(x)) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
simplify permet aussi de tester l'égalité d'expressions : | exp1 = sin(a+b)**3
exp2 = sin(a)**3*cos(b)**3 + 3*sin(a)**2*sin(b)*cos(a)*cos(b)**2 + 3*sin(a)*sin(b)**2*cos(a)**2*cos(b) + sin(b)**3*cos(a)**3
simplify(exp1 - exp2)
if simplify(exp1 - exp2) == 0:
print "{0} = {1}".format(exp1, exp2)
else:
print "exp1 et exp2 sont différentes" | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
apart and together
Pour manipuler des expressions numériques de fractions on dispose des fonctions apart and together : | f1 = 1/((a+1)*(a+2))
f1
apart(f1)
f2 = 1/(a+2) + 1/(a+3)
f2
together(f2) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Simplify combine les fractions mais ne factorise pas : | simplify(f2) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Calcul
En plus des manipulations algébriques, l'autre grande utilisation d'un système de calcul symbolique et d'effectuer des calculs comme des dérivées et intégrales d'expressions algébriques.
Dérivation
La dérivation est habituellement simple. On utilise la fonction diff avec pour premier argument l'expression à dériver et comme second le symbole de la variable suivant laquelle dériver : | y | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Dérivée première | diff(y**2, x) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Pour des dérivées d'ordre supérieur : | diff(y**2, x, x) # dérivée seconde
diff(y**2, x, 2) # dérivée seconde avec une autre syntaxe | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Pour calculer la dérivée d'une expression à plusieurs variables : | x, y, z = symbols("x,y,z")
f = sin(x*y) + cos(y*z) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
$\frac{d^3f}{dxdy^2}$ | diff(f, x, 1, y, 2) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Integration
L'intégration est réalisée de manière similaire : | f
integrate(f, x) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
En fournissant des limites pour la variable d'intégration on peut évaluer des intégrales définies : | integrate(f, (x, -1, 1)) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
et aussi des intégrales impropres pour lesquelles on ne connait pas de primitive | x_i = numpy.arange(-5, 5, 0.1)
y_i = numpy.array([N((exp(-x**2)).subs(x, xx)) for xx in x_i])
fig2, ax2 = plt.subplots()
ax2.plot(x_i, y_i)
ax2.set_title("$e^{-x^2}$")
integrate(exp(-x**2), (x, -oo, oo)) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Rappel, oo est la notation SymPy pour l'infini.
Sommes et produits
On peut évaluer les sommes et produits d'expression avec les fonctions Sum et Product : | n = Symbol("n")
Sum(1/n**2, (n, 1, 10))
Sum(1/n**2, (n,1, 10)).evalf()
Sum(1/n**2, (n, 1, oo)).evalf()
N(pi**2/6) # fonction zeta(2) de Riemann | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Les produits sont calculés de manière très semblables : | Product(n, (n, 1, 10)) # 10! | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Limites
Les limites sont évaluées par la fonction limit. Par exemple : | limit(sin(x)/x, x, 0) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
On peut changer la direction d'approche du point limite par l'argument du mot clé dir : | limit(1/x, x, 0, dir="+")
limit(1/x, x, 0, dir="-") | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Séries
Le développement en série est une autre fonctionnalité très utile d'un système de calcul symbolique. Dans SymPy on réalise les développements en série grâce à la fonction series : | series(exp(x), x) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Par défaut le développement de l'expression s'effectue au voisinage de $x=0$, mais on peut développer la série au voisinage de toute autre valeur de $x$ en incluant explicitement cette valeur lors de l'appel à la fonction : | series(exp(x), x, 1) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Et on peut explicitement définir jusqu'à quel ordre le développement doit être mené : | series(exp(x), x, 1, 10) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Le développement en séries inclue l'ordre d'approximation. Ceci permet de gérer l'ordre du résultat de calculs utilisant des développements en séries d'ordres différents : | s1 = cos(x).series(x, 0, 5)
s1
s2 = sin(x).series(x, 0, 2)
s2
expand(s1 * s2) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Si on ne souhaite pas afficher l'ordre on utilise la méthode removeO : | expand(s1.removeO() * s2.removeO()) | Calcul symbolique.ipynb | regisDe/compagnons | gpl-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.