markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Step 2: Generate a list of documents | urls = []
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994795/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=1994795')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314300/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=314300')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383356/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4383356')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596899/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4596899')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303126/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4303126')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637461/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4637461')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690355/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4690355')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505152/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=3505152')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976810/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=3976810')
#https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061037/
urls.append('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=4061037') | TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 3: Preprocess the documents | documents = []
abstracts = []
texts = []
print 'Preprocessing documents. This may take few minutes ...'
for i, url in enumerate(urls):
print 'Preprocessing document %d ...' % (i+1)
# Download the document
my_url = urllib2.urlopen(url)
raw_doc = BeautifulSoup(my_url.read(), 'xml')
documents.append(raw_doc)
# Extract the cleaned abstract
raw_abstract = raw_doc.abstract
my_abstract = re.sub(r'<\/?\w+>', r' ', str(raw_abstract)) # remove xml tags
abstracts.append(my_abstract)
# Extract the cleaned text
text = raw_doc.body
text = re.sub(r'\\n', r' ', str(text)) # remove newline characters
text = re.sub(r'<[^>]+>', r' ', str(text)) # remove xml tags
text = re.sub(r'\[[^\[^\]]+\]', r' ', str(text)) # remove references
text = re.sub(r'\[', r' ', str(text)) # remove any remaining [
text = re.sub(r'\]', r' ', str(text)) # remove any remaining ]
text = re.sub(r'[\s]{2,}', r' ', str(text)) # remove more than a single blank space
text = re.sub(r'\.\s+,\s+\S', r' ', str(text)) # remove , after a period
text = text.decode('utf-8')
texts.append(text)
print 'All documents preprocessed successfully.'
print 'We have %d documents with %d abstracts and %d texts.' % (len(documents), len(abstracts), len(texts))
assert len(documents) == len(abstracts)
assert len(documents) == len(texts)
| TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 4: Split the documents into sentences | punkttokenizer = PunktSentenceTokenizer()
text_sentences = []
for text in texts:
sentences = []
seen = set()
for sentence in punkttokenizer.tokenize(text):
sentences.append(sentence)
text_sentences.append(sentences) | TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 5: Count the term frequency for sentences | tf_matrices = []
tfidf_matrices = []
cosine_similarity_matrices = []
print 'Calculating sentence simiarities. This may take few minutes ...'
for i, sentences in enumerate(text_sentences):
print 'Calculating sentence simiarities of document %d ...' % (i+1)
tf_matrix = CountVectorizer().fit_transform(sentences)
tf_matrices.append(tf_matrix)
tfidf_matrix = TfidfTransformer().fit_transform(tf_matrix)
tfidf_matrices.append(tfidf_matrix)
cosine_similarity_matrix = tfidf_matrix * tfidf_matrix.T
cosine_similarity_matrices.append(cosine_similarity_matrix)
print 'All documents processed successfully.'
print 'We have %d documents with %d tf_matrices %d tfidf_matrices and %d cosine_similarity_matrices.' \
% (len(documents), len(tf_matrices), len(tfidf_matrices), len(cosine_similarity_matrices))
assert len(documents) == len(tf_matrices)
assert len(documents) == len(tfidf_matrices)
assert len(documents) == len(cosine_similarity_matrices)
| TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 6: Calculate TextRank | similarity_graphs = []
graph_ranks = []
highest_ranks = []
lowest_ranks = []
print 'Calculating TextRanks. This may take few minutes ...'
for i, cosine_similarity_matrix in enumerate(cosine_similarity_matrices):
print 'Calculating TextRanks of document %d ...' % (i+1)
similarity_graph = nx.from_scipy_sparse_matrix(cosine_similarity_matrix)
similarity_graphs.append(similarity_graph)
ranks = nx.pagerank(similarity_graph)
graph_ranks.append(ranks)
highest = sorted(((ranks[j],s) for j,s in enumerate(text_sentences[i])), reverse=True)
highest_ranks.append(highest)
lowest = sorted(((ranks[j],s) for j,s in enumerate(text_sentences[i])), reverse=False)
lowest_ranks.append(lowest)
print 'All documents processed successfully.'
print 'We have %d documents with %d similarity_graphs %d graph_ranks and %d highest_ranks.' \
% (len(documents), len(similarity_graphs), len(graph_ranks), len(highest_ranks))
assert len(documents) == len(similarity_graphs)
assert len(documents) == len(graph_ranks)
assert len(documents) == len(highest_ranks)
| TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 7: Save extractive summaries | print 'Saving extractive summaries. This may take a few minutes ...'
for i, highest in enumerate(highest_ranks):
print 'Writing extractive summary for document %d ...' % (i+1)
out_file = '\\TextRank\\system\\article%d_system1.txt' % (i+1)
with open(out_file, 'w') as f:
for i in range(5):
f.write((highest[i][1] + '\n').encode('utf-8'))
print 'All documents processed successfully.' | TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 8: Save ground truths. | print 'Saving ground truths. This may take a few minutes ...'
for i, abstract in enumerate(abstracts):
print 'Writing ground truth for document %d ...' % (i+1)
out_file = '\\TextRank\\reference\\article%d_reference1.txt' % (i+1)
with open(out_file, 'w') as f:
f.write(abstract.strip() + '\n')
print 'All documents processed successfully.' | TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Step 9: Calculate ROUGE score | %cd C:\ROUGE
!java -jar rouge2.0_0.2.jar
df = pd.read_csv('results.csv')
print df.sort_values('Avg_F-Score', ascending=False) | TextRank_Automatic_Summarization_for_Medical_Articles.ipynb | avtlearns/automatic_text_summarization | gpl-3.0 |
Display sensitivity maps for EEG and MEG sensors
Sensitivity maps can be produced from forward operators that
indicate how well different sensor types will be able to detect
neural currents from different regions of the brain.
To get started with forward modeling see tut-forward. | # Author: Eric Larson <[email protected]>
#
# License: BSD-3-Clause
import numpy as np
import mne
from mne.datasets import sample
from mne.source_space import compute_distance_to_sensors
from mne.source_estimate import SourceEstimate
import matplotlib.pyplot as plt
print(__doc__)
data_path = sample.data_path()
fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
subjects_dir = data_path + '/subjects'
# Read the forward solutions with surface orientation
fwd = mne.read_forward_solution(fwd_fname)
mne.convert_forward_solution(fwd, surf_ori=True, copy=False)
leadfield = fwd['sol']['data']
print("Leadfield size : %d x %d" % leadfield.shape) | 0.24/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Compute sensitivity maps | grad_map = mne.sensitivity_map(fwd, ch_type='grad', mode='fixed')
mag_map = mne.sensitivity_map(fwd, ch_type='mag', mode='fixed')
eeg_map = mne.sensitivity_map(fwd, ch_type='eeg', mode='fixed') | 0.24/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Show gain matrix a.k.a. leadfield matrix with sensitivity map | picks_meg = mne.pick_types(fwd['info'], meg=True, eeg=False)
picks_eeg = mne.pick_types(fwd['info'], meg=False, eeg=True)
fig, axes = plt.subplots(2, 1, figsize=(10, 8), sharex=True)
fig.suptitle('Lead field matrix (500 dipoles only)', fontsize=14)
for ax, picks, ch_type in zip(axes, [picks_meg, picks_eeg], ['meg', 'eeg']):
im = ax.imshow(leadfield[picks, :500], origin='lower', aspect='auto',
cmap='RdBu_r')
ax.set_title(ch_type.upper())
ax.set_xlabel('sources')
ax.set_ylabel('sensors')
fig.colorbar(im, ax=ax)
fig_2, ax = plt.subplots()
ax.hist([grad_map.data.ravel(), mag_map.data.ravel(), eeg_map.data.ravel()],
bins=20, label=['Gradiometers', 'Magnetometers', 'EEG'],
color=['c', 'b', 'k'])
fig_2.legend()
ax.set(title='Normal orientation sensitivity',
xlabel='sensitivity', ylabel='count')
brain_sens = grad_map.plot(
subjects_dir=subjects_dir, clim=dict(lims=[0, 50, 100]), figure=1)
brain_sens.add_text(0.1, 0.9, 'Gradiometer sensitivity', 'title', font_size=16) | 0.24/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Compare sensitivity map with distribution of source depths | # source space with vertices
src = fwd['src']
# Compute minimum Euclidean distances between vertices and MEG sensors
depths = compute_distance_to_sensors(src=src, info=fwd['info'],
picks=picks_meg).min(axis=1)
maxdep = depths.max() # for scaling
vertices = [src[0]['vertno'], src[1]['vertno']]
depths_map = SourceEstimate(data=depths, vertices=vertices, tmin=0.,
tstep=1.)
brain_dep = depths_map.plot(
subject='sample', subjects_dir=subjects_dir,
clim=dict(kind='value', lims=[0, maxdep / 2., maxdep]), figure=2)
brain_dep.add_text(0.1, 0.9, 'Source depth (m)', 'title', font_size=16) | 0.24/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Sensitivity is likely to co-vary with the distance between sources to
sensors. To determine the strength of this relationship, we can compute the
correlation between source depth and sensitivity values. | corr = np.corrcoef(depths, grad_map.data[:, 0])[0, 1]
print('Correlation between source depth and gradiomter sensitivity values: %f.'
% corr) | 0.24/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb | mne-tools/mne-tools.github.io | bsd-3-clause |
Using interact for animation with data
A soliton is a constant velocity wave that maintains its shape as it propagates. They arise from non-linear wave equations, such has the Korteweg–de Vries equation, which has the following analytical solution:
$$
\phi(x,t) = \frac{1}{2} c \mathrm{sech}^2 \left[ \frac{\sqrt{c}}{2} \left(x - ct - a \right) \right]
$$
The constant c is the velocity and the constant a is the initial location of the soliton.
Define soliton(x, t, c, a) function that computes the value of the soliton wave for the given arguments. Your function should work when the postion x or t are NumPy arrays, in which case it should return a NumPy array itself. | def soliton(x, t, c, a):
i=(((c**(1/2))/2)*(x-c*t-a))
return ((1/2)*c*(np.cos(i)**(-2)))
assert np.allclose(soliton(np.array([0]),0.0,1.0,0.0), np.array([0.5])) | assignments/assignment05/InteractEx03.ipynb | phungkh/phys202-2015-work | mit |
To create an animation of a soliton propagating in time, we are going to precompute the soliton data and store it in a 2d array. To set this up, we create the following variables and arrays: | tmin = 0.0
tmax = 10.0
tpoints = 100
t = np.linspace(tmin, tmax, tpoints)
xmin = 0.0
xmax = 10.0
xpoints = 200
x = np.linspace(xmin, xmax, xpoints)
c = 1.0
a = 0.0 | assignments/assignment05/InteractEx03.ipynb | phungkh/phys202-2015-work | mit |
Compute a 2d NumPy array called phi:
It should have a dtype of float.
It should have a shape of (xpoints, tpoints).
phi[i,j] should contain the value $\phi(x[i],t[j])$. | phi=np.ndarray((xpoints,tpoints), dtype=float)
for i in range(200):
for j in range(100):
phi[i,j]=soliton(x[i],t[j],c,a)
assert phi.shape==(xpoints, tpoints)
assert phi.ndim==2
assert phi.dtype==np.dtype(float)
assert phi[0,0]==soliton(x[0],t[0],c,a) | assignments/assignment05/InteractEx03.ipynb | phungkh/phys202-2015-work | mit |
Write a plot_soliton_data(i) function that plots the soliton wave $\phi(x, t[i])$. Customize your plot to make it effective and beautiful. | def plot_soliton_data(i=0):
plt.figure(figsize=(9,6))
plt.plot(x,soliton(x,t[i],c,a))
plt.box(False)
plt.ylim(0,6000)
plt.grid(True)
plt.ylabel('soliton wave')
plt.xlabel('x')
plot_soliton_data(0)
assert True # leave this for grading the plot_soliton_data function | assignments/assignment05/InteractEx03.ipynb | phungkh/phys202-2015-work | mit |
Use interact to animate the plot_soliton_data function versus time. | interact(plot_soliton_data, i=(0,100,5))
assert True # leave this for grading the interact with plot_soliton_data cell | assignments/assignment05/InteractEx03.ipynb | phungkh/phys202-2015-work | mit |
Let's notice a few key things:
1. To make a list we use []
2. We separate individual elements with commas
3. The elements of a list can be any type
4. The elements need not be explicitly written
Other Properties of Lists
You can add two lists to create a new list.
You can append an element to the end of a list by using the append function.
You can append a list to the end of another list by using the += operator.
You can access a single element with something called slicing | la=[1,2,3]
lb=["1","2","3"]
print(la+lb)
la.append(4)
print(la)
lb+=la
print(lb) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Slicing
At one point, you will want to access certain elements of a list, this is done by slicing. There are a couple of ways to do this.
1. la[0] will give the first element of the list la. Note that lists are indexed starting at zero, not one.
2. la[n] will give the (n+1)th element of the list la.
3. la[-1] will give the last element of the list la.
4. la[-n] will give the nth to last element of the list la.
5. la[p:q:k] will give you every kth element starting at p and ending at q of the list la. Ex/la[1:7:2] will give you every second element starting at 1 and ending at 7.
5b. If p is omitted, it is assumed to be 0. If k is omitted, it is assumed to be 1, if q is omitted, it is assumed to be the last index or -1, which is really the same thing as we see above. | la=[1,2,3,4,5,6,7,8,9,10]
print(la[0])
print(la[3])
print(la[-1])
print(la[-3])
print(la[0:10:2])
print(la[3::2])
print(la[2:4:])
print(la[2:4]) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Exercises
Make 2 lists and add them together.
Take your list from 1., append the list ["I", "Love", "Python"] to it without using the append command, then print every second element.
Can you make a list of lists? Try it.
Consider the list x=[3,5,7,8,"Pi"].
4a. Type out what you would expect python to print along with the type of object printed would be for the following slices:
x[2]
x[0]
x[-2]
x[1::2]
x[1::]
x[::-4]
4b. Check your answer by creating that list and printing out the corresponding slices.
Sets
Sets are a special type of list that adhere to certain rules. If you have taken any higher level or proof-based math classes, you will recognize that sets in Python are exactly the same as those in mathematics. Instead of using [], {} are used to create a set. Sets have the following properties:
Sets will not contain duplicates. If you make a set with duplicates, it will only retain one of them.
Sets are not ordered. This means no slicing.
Sets have the familiar set operations from math. These are outlined below.
You can convert a list to a set in the following manner: Let t be a list, then set(t) is now a set containing the elements of t.
Set Operations
Consider sets s={1,2,3} and t={1,2,3,4,5};
| Operation | Meaning | Example |
|:----------:|:-------:|:-------:|
| s|t | Union | {1,2,3,4,5} |
| s&t | Intersection | {1,2,3} |
| s-t | Difference | {} |
| s^t | Symmetric Difference | {4,5} |
| s<t | Strict Subset | True |
| s<=t | Subset | True |
| s>t | Strict Superset | False |
| s>= | Superset | False | | t = {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
print(t)
s = {1,4,5,7,8}
print(t-s)
print(s-t)
print(t^s)
print(t-s|s-t)
print(t^s==t-s|s-t) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Exercises
Write a set containing the letters of the word "dog".
Find the difference between the set in 1. and the set {"d", 5, "g"}
Remove all the duplicates in the list [1,2,4,3,3,3,5,2,3,4,5,6,3,5,7] and print the resulting object in two lines.
Tuples
Tuples are just like lists except that you cannot append elements to a tuple. You may, however, combine two tuples. To create a tuple, one uses (). | a = (1,2,3,4,5)
b = ('a', 'b', 'c')
print(a)
print(b)
print(a+b) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Dictionaries
Dictionaries are quite different from any container we have seen so far. A dictionary is a bunch of unordered key/value pairs. That is, each element of a dictionary has a key and a value and the elements are in no particular order. It is good to keep this unorderedness in mind later on, for now, let's look at some examples. To create a dictionary we use the following syntax, { key:value}. | #Let's say we have some students take a test and we want to store their scores
scores = {'Sally':89, 'Lucy':75, 'Jeff':45, 'Jose':96}
print(scores)
#We can, however, not combine two different dictionaries
scores2 = {'Devin':64, 'John':23, 'Jake':75}
print(scores2)
print(scores+scores2) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Unlike with lists, we cannot access elements of the dictionary with slicing. We must instead use the keys. Let's see how to do this. | print(scores['Sally'])
print(scores2['John']) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
As we can see, the key returns us the value. This can be useful if you have a bunch of items that need to be paired together.
Accessing Just the Keys or Values
Want to get a list of the keys in a dictionary? How about the values? Fret not, there is a way! | print(scores.keys())
print(scores.values()) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Exercises
Build a dictionary of some constants in physics and math. Print out at least two of these values.
Give an example of something that would be best represented by a dictionary, think pairs.
In and Not In
No, this section isn't about fashion. It is about the in and not in operators. They return a boolean value based on whether or not a value is in or not in a container. Note that for dictionaries, this refers to the keys, no the values. | print('Devin' in scores2)
print(2 in a)
print('Hello World' not in scores) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
Converting Between Containers
But what if I want my set to be a list or my tuple to be a set? To convert between types of containers, you can use any of the following functions:
list() : Converts any container type into a list, for dictionaries it will be the list of keys.
tuple() : Converts any container type into a tuple, for dictionaries it will be the tuple of keys.
set() : Converts any container type into a set, for dictionaries it will be the set of keys. Note that as above, this will remove all duplicates. | a = [1,2,3]
b = (1,2,3)
c = {1,2,3}
d = {1:2,3:4}
print(list(b))
print(list(c))
print(list(d))
print(tuple(a))
print(tuple(c))
print(tuple(d))
print(set(a))
print(set(b))
print(set(d)) | Python Workshop/Containers.ipynb | CalPolyPat/Python-Workshop | mit |
2.1 Gaussian Elimination | def naive_gaussian_elimination(matrix):
"""
A simple gaussian elimination to solve equations
Args:
matrix : numpy 2d array
Returns:
mat : The matrix processed by gaussian elimination
x : The roots of the equation
Raises:
ValueError:
- matrix is null
RuntimeError :
- Zero pivot encountered
"""
if matrix is None :
raise ValueError('args matrix is null')
#Clone the matrix
mat = matrix.copy().astype(np.float64)
# Row Size
m = mat.shape[0]
# Column Size
n = mat.shape[1]
# Gaussian Elimaination
for i in range(0, m):
if np.abs(mat[i , i]) == 0 :
raise RuntimeError('zero pivot encountered')
for j in range(i + 1, m):
mult = mat[j, i] / mat[i, i]
for k in range(i, m):
mat[j, k] -= mult * mat[i, k]
mat[j, n - 1] -= mult * mat[i, n - 1]
# Back Substitution
x = np.zeros(m, dtype=np.float64)
for i in range(m - 1,-1,-1):
for j in range(i + 1, m):
mat[i, n-1] = mat[i ,n-1] - mat[i,j] * x[j]
mat[i, j] = 0.0
x[i] = mat[i, n-1] / mat[i, i]
return mat, x | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Apply Gaussian elimination in tableau form for the system of three equations in three
unknowns:
$$
\large
\begin{matrix}
x + 2y - z = 3 & \
2x + y - 2z = 3 & \
-3x + y + z = -6
\end{matrix}
$$ | """
Input:
[[ 1 2 -1 3]
[ 2 1 -2 3]
[-3 1 1 -6]]
"""
input_mat = np.array([1, 2, -1, 3, 2, 1, -2, 3, -3, 1, 1, -6])
input_mat = input_mat.reshape(3, 4)
output_mat, x = naive_gaussian_elimination(input_mat)
print(output_mat)
print('[x, y, z] = {}'.format(x)) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Additional Examples
Put the system $x + 2y - z = 3,-3x + y + z = -6,2x + z = 8$ into tableau form and solve by Gaussian elimination. | input_mat = np.array([
[ 1, 2, -1, 3],
[-3, 1, 1, -6],
[ 2, 0, 1, 8]
])
output_mat, x = naive_gaussian_elimination(input_mat)
print(output_mat)
print('[x, y, z] = {}'.format(x)) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.1 Computer Problems
Put together the code fragments in this section to create a MATLAB program for “naive” Gaussian elimination (meaning no row exchanges allowed). Use it to solve the systems of Exercise 2.
See my implementation naive_gaussian_elimination in python.
Let $H$ denote the $n \times n$ Hilbert matrix, whose $(i, j)$ entry is $1 / (i + j - 1)$. Use the MATLAB program from Computer Problem 1 to solve $Hx = b$, where $b$ is the vector of all ones, for (a) n = 2 (b) n = 5 (c) n = 10. | def computer_problems2__2_1(n):
# generate Hilbert matrix H
H = scipy.linalg.hilbert(n)
# generate b
b = np.ones(n).reshape(n, 1)
# combine H:b in tableau form
mat = np.hstack((H, b))
# gaussian elimination
_, x = naive_gaussian_elimination(mat)
return x
with np.printoptions(precision = 6, suppress = True):
print('(a) n = 2 → x = {}'.format(computer_problems2__2_1( 2)))
print('(b) n = 5 → x = {}'.format(computer_problems2__2_1( 5)))
print('(c) n = 10 → x = {}'.format(computer_problems2__2_1(10))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.2 The LU Factorization | def LU_factorization(matrix):
"""
LU decomposition
Arguments:
matrix : numpy 2d array
Return:
L : lower triangular matrix
U : upper triangular matrix
Raises:
ValueError:
- matrix is null
- matrix is not a 2d array
RuntimeError :
- zero pivot encountered
"""
if matrix is None :
raise ValueError('args matrix is null')
if matrix.ndim != 2 :
raise ValueError('matrix is not a 2d-array')
# dimension
dim = matrix.shape[0]
# Prepare LU matrixs
L = np.identity(dim).astype(np.float64)
U = matrix.copy().astype(np.float64)
# Gaussian Elimaination
for i in range(0, dim - 1):
# Check pivot is not zero
if np.abs(U[i , i]) == 0 :
raise RuntimeError('zero pivot encountered')
for j in range(i + 1, dim):
mult = U[j, i] / U[i, i]
for k in range(i, dim):
U[j, k] -= mult * U[i, k]
L[j, i] = mult
return L, U | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
DEFINITION 2.2
An $m \times n$ matrix $L$ is lower triangular if its entries satisfy $l_{ij} = 0$ for $i < j$. An $m \times n$ matrix $U$ is upper triangular if its entries satisfy $u_{ij} = 0$ for $i > j$.
Example
Find the LU factorization for the matrix $A$ in
$$
\large
\begin{bmatrix}
1 & 1 \
3 & -4 \
\end{bmatrix}
$$ | A = np.array([
[1, 1],
[3, -4]
])
L, U = LU_factorization(A)
print('L = ')
print(L)
print()
print('U = ')
print(U) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Find the LU factorization of A =
$$
\large
\begin{bmatrix}
1 & 2 & -1 \
2 & 1 & -2 \
-3 & 1 & 1 \
\end{bmatrix}
$$ | A = np.array([
[ 1, 2, -1],
[ 2, 1, -2],
[-3, 1, 1]
])
L, U = LU_factorization(A)
print('L = ')
print(L)
print()
print('U = ')
print(U) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve system
$$
\large
\begin{bmatrix}
1 & 1 \
3 & -4 \
\end{bmatrix}
\begin{bmatrix}
x_1 \
x_2 \
\end{bmatrix}
=
\begin{bmatrix}
3 \
2 \
\end{bmatrix}
$$
, using the LU factorization | A = np.array([
[ 1, 1],
[ 3, -4]
])
b = np.array([3, 2]).reshape(2, 1)
L, U = LU_factorization(A)
# calculate Lc = b where Ux = c
mat = np.hstack((L, b))
c = naive_gaussian_elimination(mat)[1].reshape(2, 1)
# calculate Ux = c
mat = np.hstack((U, c))
x = naive_gaussian_elimination(mat)[1].reshape(2, 1)
# output the result
print('x1 = {}, x2 = {}'.format(x[0][0], x[1][0])) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve system
\begin{matrix}
x + 2y - z = 3 & \
2x + y - 2z = 3 & \
-3x + y + z = -6
\end{matrix}
using the LU factorization | A = np.array([
[ 1, 2, -1],
[ 2, 1, -2],
[-3, 1, 1]
])
b = np.array([3, 3, -6]).reshape(3, 1)
L, U = LU_factorization(A)
# calculate Lc = b where Ux = c
mat = np.hstack((L, b))
c = naive_gaussian_elimination(mat)[1].reshape(3, 1)
# calculate Ux = c
mat = np.hstack((U, c))
x = naive_gaussian_elimination(mat)[1].reshape(3, 1)
# output the result
print('x1 = {}, x2 = {}, x3 = {}'.format(x[0][0], x[1][0], x[2][0])) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Additional Examples
Solve
$$
\large
\begin{bmatrix}
2 & 4 & -2 \
1 & -2 & 1 \
4 & -4 & 8 \
\end{bmatrix}
\begin{bmatrix}
x_1 \
x_2 \
x_3 \
\end{bmatrix}
=
\begin{bmatrix}
6 \
3 \
0 \
\end{bmatrix}
$$
using the A = LU factorization | A = np.array([
[ 2, 4, -2],
[ 1, -2, 1],
[ 4, -4, 8]
])
b = np.array([6, 3, 0]).reshape(3, 1)
L, U = LU_factorization(A)
# calculate Lc = b where Ux = c
mat = np.hstack((L, b))
c = naive_gaussian_elimination(mat)[1].reshape(3, 1)
# calculate Ux = c
mat = np.hstack((U, c))
x = naive_gaussian_elimination(mat)[1].reshape(3, 1)
# output the result
print('x1 = {}, x2 = {}, x3 = {}'.format(x[0][0], x[1][0], x[2][0])) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.2 Computer Problems
Use the code fragments for Gaussian elimination in the previous section to write a MATLAB script to take a matrix A as input and output L and U. No row exchanges are allowed - the program should be designed to shut down if it encounters a zero pivot. Check your program by factoring the matrices in Exercise 2.
See my implementation LU_factorization in python. | # Exercise 2 - (a)
A = np.array([
[ 3, 1, 2],
[ 6, 3, 4],
[ 3, 1, 5]
])
L, U = LU_factorization(A)
print('L = ')
print(L)
print()
print('U = ')
print(U)
# Exercise 2 - (b)
A = np.array([
[ 4, 2, 0],
[ 4, 4, 2],
[ 2, 2, 3]
])
L, U = LU_factorization(A)
print('L = ')
print(L)
print()
print('U = ')
print(U)
# Exercise 2 - (c)
A = np.array([
[ 1, -1, 1, 2],
[ 0, 2, 1, 0],
[ 1, 3, 4, 4],
[ 0, 2, 1, -1]
])
L, U = LU_factorization(A)
print('L = ')
print(L)
print()
print('U = ')
print(U) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Add two-step back substitution to your script from Computer Problem 1, and use it to solve the systems in Exercise 4. | def LU_factorization_with_back_substitution(A, b):
"""
LU decomposition with two-step back substitution
where Ax = b
Arguments:
A : coefficient matrix
b : constant vector
Return:
x : solution vector
"""
L, U = LU_factorization(A)
# row size
rowsz = b.size
# calculate Lc = b where Ux = c
matrix = np.hstack((L, b))
c = naive_gaussian_elimination(matrix)[1].reshape(rowsz, 1)
# calculate Ux = c
matrix = np.hstack((U, c))
x = naive_gaussian_elimination(matrix)[1].reshape(rowsz)
return x
# Exercise 4 - (a)
A = np.array([
[ 3, 1, 2],
[ 6, 3, 4],
[ 3, 1, 5]
])
b = np.array([0, 1, 3]).reshape(3, 1)
x = LU_factorization_with_back_substitution(A, b)
print(x)
# Exercise 4 - (b)
A = np.array([
[ 4, 2, 0],
[ 4, 4, 2],
[ 2, 2, 3]
])
b = np.array([2, 4, 6]).reshape(3, 1)
x = LU_factorization_with_back_substitution(A, b)
print(x) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.3 Sources Of Error
DEFINITION 2.3
The infinity norm, or maximum norm, of the vector $x = (x_1, \cdots, x_n)$ is $||x||_{\infty} = \text{max}|x_i|, i = 1,\cdots,n$, that is, the maximum of the absolute values of the components of x.
DEFINITION 2.4
Let $x_a$ be an approximate solution of the linear system $Ax = b$. The residual is the vector $r = b - Ax_a$. The backward error is the norm of the residual $||b - Ax_a||{\infty}$,
and the forward error is $||x - x_a||{\infty}$.
Example
Find the backward and forward errors for the approximate solution $x_a = [1, 1]$ of the system
$$
\large
\begin{bmatrix}
1 & 1 \
3 & -4 \
\end{bmatrix}
\begin{bmatrix}
x_1 \
x_2 \
\end{bmatrix}
=
\begin{bmatrix}
3 \
2 \
\end{bmatrix}
$$ | A = np.array([
[ 1, 1],
[ 3, -4]
])
b = np.array([3, 2])
xa = np.array([1, 1])
# Get correct solution
system = sympy.Matrix(((1, 1, 3), (3, -4, 2)))
solver = sympy.solve_linear_system(system, sympy.abc.x, sympy.abc.y)
# Packed as list
x = np.array([solver[sympy.abc.x].evalf(), solver[sympy.abc.y].evalf()])
# Output
print(x)
# Get backward error (differences in the input)
residual = b - np.matmul(A, xa)
backward_error = np.max(np.abs(residual))
print('backward error is {:f}'.format(backward_error))
# Get fowrawd error (differences in the output)
forward_error = np.max(np.abs(x - xa))
print('forward error is {:f}'.format(forward_error)) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Find the forward and backward errors for the approximate solution [-1, 3.0001] of the system
$$
\large
\begin{align}
x_1 + x_2 &= 2 \
1.0001 x_1 + x_2 &= 2.0001 \
\end{align}
$$ | A = np.array([
[ 1, 1],
[ 1.0001, 1],
])
b = np.array([2, 2.0001])
# approximated solution
xa = np.array([-1, 3.0001])
# correct solution
x = LU_factorization_with_back_substitution(A, b.reshape(2, 1))
# Get backward error
residual = b - np.matmul(A, xa)
backward_error = np.max(np.abs(residual))
print('backward error is {:f}'.format(backward_error))
# Get fowrawd error
forward_error = np.max(np.abs(x - xa))
print('forward error is {:f}'.format(forward_error)) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
The relative backward error of system $Ax = b$ is defined to be $\large \frac{||r||{\infty}}{||b||{\infty}}$.
The relative forward error is $\large \frac{||x - x_a||{\infty}}{||x||{\infty}}$.
The error magnification factor for $Ax = b$ is the ratio of the two, or $\large \text{error magnification factor} = \frac{\text{relative forward error}}{\text{relative backward error}} = \frac{\frac{||x - x_a||{\infty}}{||x||{\infty}}}{\frac{||r||{\infty}}{||b||{\infty}}}$
DEFINITION 2.5
The condition number of a square matrix A, cond(A), is the maximum possible error magnification factor for solving Ax = b, over all right-hand sides b.
The matrix norm of an n x n matrix A as
$$
\large ||A||_{\infty} = \text{maximum absolute row sum}
$$ | def matrix_norm(A):
rowsum = np.sum(np.abs(A), axis = 1)
return np.max(rowsum) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
THEOREM 2.6
The condition number of the n x n matrix A is
$$
\large cond(A) = ||A|| \cdot ||A^{-1}||
$$ | def condition_number(A):
inv_A = np.linalg.inv(A)
cond = matrix_norm(A) * matrix_norm(inv_A)
return cond | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Additional Examples
Find the determinant and the condition number (in the infinity norm) of the matrix
$$
\large
\begin{bmatrix}
811802 & 810901 \
810901 & 810001 \
\end{bmatrix}
$$ | A = np.array([
[ 811802, 810901],
[ 810901, 810001],
])
print('determinant of A is {}'.format(scipy.linalg.det(A)))
print('condition number : {:.4e}'.format(condition_number(A))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
The solution of the system
$$
\large
\begin{bmatrix}
2 & 4.01 \
3 & 6 \
\end{bmatrix}
\begin{bmatrix}
x_1 \
x_2 \
\end{bmatrix}
=
\begin{bmatrix}
6.01 \
9 \
\end{bmatrix}
$$
is $[1, 1]$
(a) Find the relative forward and backward errors and error magnification (in the infinity norm) for the approximate solution [21,-9]. | A = np.array([
[ 2, 4.01],
[ 3, 6.00],
])
b = np.array([6.01, 9])
# approximated solution
xa = np.array([21, -9])
# correct solution
x = LU_factorization_with_back_substitution(A, b.reshape(2, 1))
# forward error
forward_error = np.max(np.abs(x - xa))
# relative forward error
relative_forward_error = forward_error / np.max(np.abs(x))
# backward error
backward_error = np.max(np.abs(b - np.matmul(A, xa)))
# relative backward error
relative_backward_error = backward_error / np.max(np.abs(b))
# error magnification factor
error_magnification_factor = relative_forward_error / relative_backward_error
print('relative forward error : {}'.format(relative_forward_error))
print('relative backward error : {}'.format(relative_backward_error))
print('error magnification factor : {}'.format(error_magnification_factor)) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
(b) Find the condition number of the coefficient matrix. | A = np.array([
[ 2, 4.01],
[ 3, 6.00],
])
print('condition number : {}'.format(condition_number(A))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.3 Computer Problems
For the n x n matrix with entries $A_{ij} = 5 / (i + 2j - 1)$, set $x = [1,\cdots,1]^T$ and $b = Ax$. Use the MATLAB program from Computer Problem 2.1.1 or MATLAB’s backslash command to compute $x_c$, the double precision computed solution. Find the infinity norm of the forward error and the error magnification factor of the problem $Ax = b$, and compare it with the condition number of A: (a) n = 6 (b) n = 10. | def system_provider(n, data_generator):
A = np.zeros([n, n])
x = np.ones(n)
for i in range(n):
for j in range(n):
A[i, j] = data_generator(i + 1, j + 1)
b = np.matmul(A, x)
return A, x, b
def problem_2_3_1_generic_solver(n, data_generator):
A, x, b = system_provider(n, data_generator)
xc = np.linalg.solve(A, b)
# forward error
forward_error = np.max(np.abs(x - xc))
# relative forward error
relative_forward_error = forward_error / np.max(np.abs(x))
# backward error
backward_error = np.max(np.abs(b - np.matmul(A, xc)))
# relative backward error
relative_backward_error = backward_error / np.max(np.abs(b))
# error magnification factor
error_magnification_factor = relative_forward_error / relative_backward_error
# condition number
condA = condition_number(A)
return forward_error, error_magnification_factor, condA
def problem_2_3_1_solver(n):
return problem_2_3_1_generic_solver(n, lambda i, j : 5 / (i + 2 * j - 1))
# (a) n = 6
print('(a) n = 6, forward error = {:.3g}, error magnification factor = {:.3g}, condition number = {:.3g}'.format(*problem_2_3_1_solver(6)))
# (b) n = 10
print('(b) n = 10, forward error = {:.3g}, error magnification factor = {:.3g}, condition number = {:.3g}'.format(*problem_2_3_1_solver(10))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Carry out Computer Problem 1 for the matrix with entries $A_{ij} = 1/(|i - j| + 1)$. | def problem_2_3_2_solver(n):
return problem_2_3_1_generic_solver(n, lambda i, j : 1 / (np.abs(i - j) + 1))
# (a) n = 6
print('(a) n = 6, forward error = {:.3g}, error magnification factor = {:.3g}, condition number = {:.3g}'.format(*problem_2_3_2_solver(6)))
# (b) n = 10
print('(b) n = 10, forward error = {:.3g}, error magnification factor = {:.3g}, condition number = {:.3g}'.format(*problem_2_3_2_solver(10))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Let A be the n x n matrix with entries $A_{ij} = |i - j| + 1$. Define $x = [1,\cdots,1]^T$ and $b = Ax$. For n = 100,200,300,400, and 500, use the MATLAB program from Computer Problem 2.1.1 or MATLAB’s backslash command to compute $x_c$, the double precision computed solution. Calculate the infinity norm of the forward error for each solution. Find the five error magnification factors of the problems $Ax = b$, and compare with the corresponding condition numbers. | def problem_2_3_3_solver(n):
return problem_2_3_1_generic_solver(n, lambda i, j : np.abs(i - j) + 1)
# n = 100
print('n = 100, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_3_solver(100)))
# n = 200
print('n = 200, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_3_solver(200)))
# n = 300
print('n = 300, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_3_solver(300)))
# n = 400
print('n = 400, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_3_solver(400)))
# n = 500
print('n = 500, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_3_solver(500))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Carry out the steps of Computer Problem 3 for the matrix with entries $A_{ij} = \sqrt{(i - j)^2 + n / 10}$. | def problem_2_3_4_solver(n):
return problem_2_3_1_generic_solver(n, lambda i, j : np.sqrt(np.power(i - j, 2) + n / 10))
# n = 100
print('n = 100, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_4_solver(100)))
# n = 200
print('n = 200, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_4_solver(200)))
# n = 300
print('n = 300, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_4_solver(300)))
# n = 400
print('n = 400, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_4_solver(400)))
# n = 500
print('n = 500, forward error = {:.2g}, error magnification factor = {:.2g}, condition number = {:.2g}'.format(*problem_2_3_4_solver(500))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
For what values of n does the solution in Computer Problem 1 have no correct significant digits? | print('n = 11, forward error = {:.3g}, error magnification factor = {:.3g}, condition number = {:.3g}'.format(*problem_2_3_1_solver(11))) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.4 The PA=LU Factorization
Example
Apply Gaussian elimination with partial pivoting to solve the system
\begin{matrix}
x_1 - x_2 + 3x_3 = -3 & \
-1x_1 - 2x_3 = 1 & \
2x_1 + 2x_2 + 4x_3 = 0
\end{matrix} | A = np.array([1, -1, 3, -1, 0, -2, 2, 2, 4]).reshape(3, 3)
b = np.array([-3, 1, 0])
lu, piv = linalg.lu_factor(A)
x = linalg.lu_solve([lu, piv], b)
print(x) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve the system $2x_1 + 3x_2 = 4$,$3x_1 + 2x_2 = 1$ using the PA = LU factorization with partial pivoting | """
[[2, 3]
[3, 2]]
"""
A = np.array([2, 3, 3, 2]).reshape(2, 2)
b = np.array([4, 1])
lu, piv = linalg.lu_factor(A)
x = linalg.lu_solve([lu, piv], b)
print(x) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.5 Iterative Methods
Jacobi Method | def jacobi_method(A, b, x0, k):
"""
Use jacobi method to solve equations
Args:
A (numpy 2d array): the matrix
b (numpy 1d array): the right hand side vector
x0 (numpy 1d array): initial guess
k (real number): iterations
Return:
The approximate solution
Exceptions:
ValueError
The size of matrix's column is not equal to the size of vector's size
"""
if A.shape[1] is not x0.shape[0] :
raise ValueError('The size of the columns of matrix A must be equal to the size of the x0')
D = np.diag(A.diagonal())
inv_D = linalg.inv(D)
LU = A - D
xk = x0
for _ in range(k):
xk = np.matmul(b - np.matmul(LU, xk), inv_D)
return xk | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Apply the Jacobi Method to the system $3u + v = 5$, $u + 2v = 5$ | A = np.array([3, 1, 1, 2]).reshape(2, 2)
b = np.array([5, 5])
x = jacobi_method(A, b, np.array([0, 0]), 20)
print('x = %s' %x) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Gauss-Seidel Method | def gauss_seidel_method(A, b, x0, k):
"""
Use gauss seidel method to solve equations
Args:
A (numpy 2d array): the matrix
b (numpy 1d array): the right hand side vector
x0 (numpy 1d array): initial guess
k (real number): iterations
Return:
The approximate solution
Exceptions:
ValueError
The size of matrix's column is not equal to the size of vector's size
"""
if A.shape[1] is not x0.shape[0] :
raise ValueError('The size of the columns of matrix A must be equal to the size of the x0')
D = np.diag(A.diagonal())
L = np.tril(A) - D
U = np.triu(A) - D
inv_LD = linalg.inv(L + D)
xk = x0
for _ in range(k):
xk = np.matmul(inv_LD, -np.matmul(U, xk) + b)
return xk | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Apply the Gauss-Seidel Method to the system
$$
\begin{bmatrix}
3 & 1 & -1 \
2 & 4 & 1 \
-1 & 2 & 5
\end{bmatrix}
\begin{bmatrix}
u \
v \
w
\end{bmatrix}
=
\begin{bmatrix}
4 \
1 \
1
\end{bmatrix}
$$ | A = np.array([3, 1, -1, 2, 4, 1, -1, 2, 5]).reshape(3, 3)
b = np.array([4, 1, 1])
x0 = np.array([0, 0, 0])
gauss_seidel_method(A, b, x0, 24) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Successive Over-Relaxation | def gauss_seidel_sor_method(A, b, w, x0, k):
"""
Use gauss seidel method with sor to solve equations
Args:
A (numpy 2d array): the matrix
b (numpy 1d array): the right hand side vector
w (real number): weight
x0 (numpy 1d array): initial guess
k (real number): iterations
Return:
The approximate solution
Exceptions:
ValueError
The size of matrix's column is not equal to the size of vector's size
"""
if A.shape[1] is not x0.shape[0] :
raise ValueError('The size of the columns of matrix A must be equal to the size of the x0')
D = np.diag(A.diagonal())
L = np.tril(A) - D
U = np.triu(A) - D
inv_LD = linalg.inv(w * L + D)
xk = x0
for _ in range(k):
xk = np.matmul(w * inv_LD, b) + np.matmul(inv_LD, (1 - w) * np.matmul(D, xk) - w * np.matmul(U, xk))
return xk | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Apply the Gauss-Seidel Method with sor to the system
$$
\begin{bmatrix}
3 & 1 & -1 \
2 & 4 & 1 \
-1 & 2 & 5
\end{bmatrix}
\begin{bmatrix}
u \
v \
w
\end{bmatrix}
=
\begin{bmatrix}
4 \
1 \
1
\end{bmatrix}
$$ | A = np.array([3, 1, -1, 2, 4, 1, -1, 2, 5]).reshape(3, 3)
b = np.array([4, 1, 1])
x0 = np.array([0, 0, 0])
w = 1.25
gauss_seidel_sor_method(A, b, w, x0, 14) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
2.6 Methods for symmetric positive-definite matrices
Cholesky factorization
Example
Find the Cholesky factorization of
$\begin{bmatrix}
4 & -2 & 2 \
-2 & 2 & -4 \
2 & -4 & 11
\end{bmatrix}$ | A = np.array([4, -2, 2, -2, 2, -4, 2, -4, 11]).reshape(3, 3)
R = linalg.cholesky(A)
print(R) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Conjugate Gradient Method | def conjugate_gradient_method(A, b, x0, k):
"""
Use conjugate gradient to solve linear equations
Args:
A : input matrix
b : input right hand side vector
x0 : initial guess
k : iteration
Returns:
approximate solution
"""
xk = x0
dk = rk = b - np.matmul(A, x0)
for _ in range(k):
if not np.any(rk) or all( abs(i) <= 1e-16 for i in rk) is True:
break
ak = float(np.matmul(rk.T, rk)) / float(np.matmul(dk.T, np.matmul(A, dk)))
xk = xk + ak * dk
rk1 = rk - ak * np.matmul(A, dk)
bk = np.matmul(rk1.T, rk1) / np.matmul(rk.T, rk)
dk = rk1 + bk * dk
rk = rk1
return xk | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve
$$
\begin{bmatrix}
2 & 2 \
2 & 5 \
\end{bmatrix}
\begin{bmatrix}
u \
v
\end{bmatrix}
=
\begin{bmatrix}
6 \
3
\end{bmatrix}
$$
using the Conjugate Gradient Method | A = np.array([2, 2, 2, 5]).reshape(2, 2)
b = np.array([6, 3])
x0 = np.array([0, 0])
conjugate_gradient_method(A, b, x0, 2) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve
$$
\begin{bmatrix}
1 & -1 & 0 \
-1 & 2 & 1 \
0 & 1 & 2 \
\end{bmatrix}
\begin{bmatrix}
u \
v \
w \
\end{bmatrix}
=
\begin{bmatrix}
0 \
2 \
3 \
\end{bmatrix}
$$ | A = np.array([1, -1, 0, -1, 2, 1, 0, 1, 2]).reshape(3, 3)
b = np.array([0, 2, 3])
x0 = np.array([0, 0, 0])
conjugate_gradient_method(A, b, x0, 10) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Solve
$$
\begin{bmatrix}
1 & -1 & 0 \
-1 & 2 & 1 \
0 & 1 & 5 \
\end{bmatrix}
\begin{bmatrix}
u \
v \
w \
\end{bmatrix}
=
\begin{bmatrix}
3 \
-3 \
4 \
\end{bmatrix}
$$ | A = np.array([1, -1, 0, -1, 2, 1, 0, 1, 5]).reshape(3, 3)
b = np.array([3, -3, 4])
x0 = np.array([0, 0, 0])
x = slinalg.cg(A, b, x0)[0]
print('x = %s' %x ) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Preconditioning
2.7 Nonlinear Systems Of Equations
Multivariate Newton's Method | def multivariate_newton_method(fA, fDA, x0, k):
"""
Args:
fA (function handle) : coefficient matrix with arguments
fDA (function handle) : right-hand side vector with arguments
x0 (numpy 2d array) : initial guess
k (real number) : iteration
Return:
Approximate solution xk after k iterations
"""
xk = x0
for _ in range(k):
lu, piv = linalg.lu_factor(fDA(*xk))
s = linalg.lu_solve([lu, piv], -fA(*xk))
xk = xk + s
return xk | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Use Newton's method with starting guess $(1,2)$ to find a solution of the system
$$
v - u^3 = 0 \
u^2 + v^2 - 1 = 0
$$ | fA = lambda u,v : np.array([v - pow(u, 3), pow(u, 2) + pow(v, 2) - 1], dtype=np.float64)
fDA = lambda u,v : np.array([-3 * pow(u, 2), 1, 2 * u, 2 * v], dtype=np.float64).reshape(2, 2)
x0 = np.array([1, 2])
multivariate_newton_method(fA, fDA, x0, 10) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Use Newton's method to find the solutions of the system
$$
f_1(u,v) = 6u^3 + uv - 3^3 - 4 = 0 \
f_2(u,v) = u^2 - 18uv^2 + 16v^3 + 1 = 0
$$ | fA = lambda u,v : np.array([6 * pow(u, 3) + u * v - 3 * pow(v, 3) - 4,
pow(u, 2) - 18 * u * pow(v, 2) + 16 * pow(v, 3) + 1],
dtype=np.float64)
fDA = lambda u,v : np.array([18 * pow(u, 2) + v,
u - 9 * pow(v, 2),
2 * u - 18 * pow(v, 2),
-36 * u * v + 48 * pow(v, 2)],
dtype=np.float64).reshape(2, 2)
x0 = np.array([2, 2], dtype=np.float64)
multivariate_newton_method(fA, fDA, x0, 5) | 2_Systems_Of_Equations.ipynb | Jim00000/Numerical-Analysis | unlicense |
Attributes and functions
Each solver has some attributes:
solver_name
The name of the solver. This is the name which will be used to select the solver in cobrapy functions. | solver.solver_name
model.optimize(solver="cglpk") | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
_SUPPORTS_MILP
The presence of this attribute tells cobrapy that the solver supports mixed-integer linear programming | solver._SUPPORTS_MILP | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
solve
Model.optimize is a wrapper for each solver's solve function. It takes in a cobra model and returns a solution | solver.solve(model) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
create_problem
This creates the LP object for the solver. | lp = solver.create_problem(model, objective_sense="maximize")
lp | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
solve_problem
Solve the LP object and return the solution status | solver.solve_problem(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
format_solution
Extract a cobra.Solution object from a solved LP object | solver.format_solution(lp, model) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
get_objective_value
Extract the objective value from a solved LP object | solver.get_objective_value(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
get_status
Get the solution status of a solved LP object | solver.get_status(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
change_variable_objective
change the objective coefficient a reaction at a particular index. This does not change any of the other objectives which have already been set. This example will double and then revert the biomass coefficient. | model.reactions.index("Biomass_Ecoli_core")
solver.change_variable_objective(lp, 12, 2)
solver.solve_problem(lp)
solver.get_objective_value(lp)
solver.change_variable_objective(lp, 12, 1)
solver.solve_problem(lp)
solver.get_objective_value(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
change variable_bounds
change the lower and upper bounds of a reaction at a particular index. This example will set the lower bound of the biomass to an infeasible value, then revert it. | solver.change_variable_bounds(lp, 12, 1000, 1000)
solver.solve_problem(lp)
solver.change_variable_bounds(lp, 12, 0, 1000)
solver.solve_problem(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
change_coefficient
Change a coefficient in the stoichiometric matrix. In this example, we will set the entry for ADP in the ATMP reaction to in infeasible value, then reset it. | model.metabolites.index("atp_c")
model.reactions.index("ATPM")
solver.change_coefficient(lp, 16, 10, -10)
solver.solve_problem(lp)
solver.change_coefficient(lp, 16, 10, -1)
solver.solve_problem(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
set_parameter
Set a solver parameter. Each solver will have its own particular set of unique paramters. However, some have unified names. For example, all solvers should accept "tolerance_feasibility." | solver.set_parameter(lp, "tolerance_feasibility", 1e-9)
solver.set_parameter(lp, "objective_sense", "minimize")
solver.solve_problem(lp)
solver.get_objective_value(lp)
solver.set_parameter(lp, "objective_sense", "maximize")
solver.solve_problem(lp)
solver.get_objective_value(lp) | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
Example with FVA
Consider flux variability analysis (FVA), which requires maximizing and minimizing every reaction with the original biomass value fixed at its optimal value. If we used the cobra Model API in a naive implementation, we would do the following: | %%time
# work on a copy of the model so the original is not changed
m = model.copy()
# set the lower bound on the objective to be the optimal value
f = m.optimize().f
for objective_reaction, coefficient in m.objective.items():
objective_reaction.lower_bound = coefficient * f
# now maximize and minimze every reaction to find its bounds
fva_result = {}
for r in m.reactions:
m.change_objective(r)
fva_result[r.id] = {
"maximum": m.optimize(objective_sense="maximize").f,
"minimum": m.optimize(objective_sense="minimize").f
} | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
Instead, we could use the solver API to do this more efficiently. This is roughly how cobrapy implementes FVA. It keeps uses the same LP object and repeatedly maximizes and minimizes it. This allows the solver to preserve the basis, and is much faster. The speed increase is even more noticeable the larger the model gets. | %%time
# create the LP object
lp = solver.create_problem(model)
# set the lower bound on the objective to be the optimal value
solver.solve_problem(lp)
f = solver.get_objective_value(lp)
for objective_reaction, coefficient in model.objective.items():
objective_index = model.reactions.index(objective_reaction)
# old objective is no longer the objective
solver.change_variable_objective(lp, objective_index, 0.)
solver.change_variable_bounds(
lp, objective_index, f * coefficient,
objective_reaction.upper_bound)
# now maximize and minimze every reaction to find its bounds
fva_result = {}
for index, r in enumerate(model.reactions):
solver.change_variable_objective(lp, index, 1.)
result = {}
solver.solve_problem(lp, objective_sense="maximize")
result["maximum"] = solver.get_objective_value(lp)
solver.solve_problem(lp, objective_sense="minimize")
result["minimum"] = solver.get_objective_value(lp)
solver.change_variable_objective(lp, index, 0.)
fva_result[r.id] = result | documentation_builder/solvers.ipynb | jeicher/cobrapy | lgpl-2.1 |
1. Background Information
1.1 Introduction to the Second Half of the Class
The remainder of this course will be divided into three two week modules, each dealing with a different dataset. During the first week of each module, you will complete a (two class) lab in which you are introduced to the dataset and various techniques that you need to use to explore it.
At the end of Week 1, you and your lab partner will write a brief (1 paragraph) proposal to Professor Follette detailing an investigation that you would like to complete using that dataset in Week 2. You and your partener will complete this investigation and write it up as your lab the following week. Detailed instructions for submitting your proposal are at the end of this lab. Detailed instructions for the lab writeups will be provided next week.
1.2. Introduction to the QuaRCS Dataset
The Quantitative Reasoning for College Science (QuaRCS) assessment is an assessment instrument that Profssor Follette has been administering in general education science classes across the country since 2012. It consists of 25 quantitative questions involving "real world" mathematical skills plus 24 attitudinal and demographic questions. It has been administered to more than 5000 students at eleven institutions. You will be reading the published results of this study for class on Thursday, and exploring the data in class this week and next.
A description of all of the variables (pandas dataframe columns) in the QuaRCS dataset and what each numerical answer choice "stands for" is in the file QuaRCS_descriptions.pdf.
2. Investigating Tabular Data with Pandas
2.1 Reading In and Cleaning Data | # these set the pandas defaults so that it will print ALL values, even for very long lists and large dataframes
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None) | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Read in the QuaRCS data as a pandas dataframe called "data". | data=pd.read_csv('AST200_data_anonymized.csv', encoding="ISO-8859-1")
mask = np.where(data == 999)
data = data.replace(999,np.nan) | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Once a dataset has been read in as a pandas dataframe, several useful built-in pandas methods are made available to us. Recall that you call methods with data.method. Check out each of the following | # the * is a trick to print without the ...s for an ordinary python object
print(*data.columns)
data.dtypes | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
2.2 The describe() method
There are also a whole bunch of built in functions that can operate on a pandas dataframe that become available once you've defined it. To see a full list type data. in an empty frame and then hit tab.
An especially useful one is dataframe.describe() method, which creates a summary table with some common statistics for all of the columns in the dataframe.
In our case here there are a number of NaNs in our table (cases where an answer was left blank), and the describe method ignores them for mean, standard deviation (std), min and max. However, there is a known bug in the pandas module that cause NaNs to break the quartiles in the describe method, so these will always be NaN for any column that has a NaN anywhere in it, rendering them mostly useless here. Still, this is a nice quick way to get descriptive statistics for a table. | data.describe() | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
2.3. Computing Descriptive Statistics
You can also of course compute descriptive statistics for columns in a pandas dataframe individually. Examples of each one applied to a single column - student scores on the assessment (PRE_SCORE) are shown below. | np.mean(data["PRE_SCORE"])
#or
data["PRE_SCORE"].mean()
np.nanmedian(data["PRE_SCORE"])
#or
data["PRE_SCORE"].median()
data["PRE_SCORE"].max()
data["PRE_SCORE"].min()
data["PRE_SCORE"].mode()
#where first number is the index (should be zero unless column has multiple dimensions
# and second number is the mode
#not super useful for continuous variables for example, if you put in a continuous variable (like ZPR_1) it won't
#return anything because there are no repeat values
#perhaps equally useful is the value_counts method, which will tell you how many times each value appears int he column
data["PRE_SCORE"].value_counts()
#and to count all of the non-zero values
data["PRE_SCORE"].count()
#different generally from len(dataframe["column name]) because len will count NaNs
# but the Score column has no NaNs, so swap this cell and the one before our with
#a column that does have NaNs to verify
len(data["PRE_SCORE"])
#standard deviation
data["PRE_SCORE"].std()
#variance
data["PRE_SCORE"].var()
#verify relationship between variance and standard deviation
np.sqrt(data["PRE_SCORE"].var())
#quantiles
data["PRE_SCORE"].quantile(0.5) # should return the median!
data["PRE_SCORE"].quantile(0.25)
data["PRE_SCORE"].quantile(0.75)
#interquartile range
data["PRE_SCORE"].quantile(0.75)-data["PRE_SCORE"].quantile(0.25)
data["PRE_SCORE"].skew()
data["PRE_SCORE"].kurtosis() | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
<div class=hw>
### Exercise 1
------------------
Choose one categorical (answer to any demographic or attitudinal question) and one continuous variable (e.g. PRE_TIME, ZPR_1) and compute all of the statistics from the list above ***in one code cell*** (use print statements) for each variable. Write a paragraph describing all of the statistics that are informative for that variable in words. An example is given below for PRE_SCORE. Because score is numerical ***and*** discrete, all of the statistics above are informative. In your two cases, fewer statistics will be informative, so your explanations may be shorter, though you should challenge yourselves to go beyond merely reporting the statistcs, and should interpret them as well, as below.
*QuaRCS score can take discrete integer values between 0 and 25. The minimum score for this dataset is 1 and the maximum is 25. There are 2,777 valid entries for score in this QuaRCS dataset, for which the mean is 13.9 and the median is 14 (both 56\% of the maximum score). These are very close together, suggesting a reasonably centrally-concentrated score distrubution, and the low skewness value of 0.1 supports this. The kurtosis of the distribution is negative (platykurtic), which tells us that the distribution of scores is flat rather than peaky. The most common score ("mode") is 10, with 197 (~7%) of participants getting this score, however all score values from 7-21 have counts of greater than 100, supporting the flat nature of the distribution suggested by the negative kurtosis. The interquartile range (25-75 percentiles) is 8 points, and the standard deviation is 5.3. These represent a large fraction (20 and 32\%) of the entire available score range, respectively, making the distribution quite wide.
*Your description of categorical distribution here*
*Your description of continuous distribution here* | #your code computing all descriptive statistics for your categorical variable here
#your code computing all descriptive statistics for your categorical variable here | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
2.4. Creating Statistical Graphics
<div class=hw>
### Exercise 2 - Summary plots for distributions
*Warning: Although you will be using QuaRCS data to investigate and experiment with each type of plot below, when you write up your descriptions, they should refer to the **general properties** of the plots, and not to the QuaRCS data specifically. In other words, your descriptions should be general descriptions of the plot types that could be applied to any dataset.*
### 2a - Histogram
The syntax for creating a histogram for a pandas dataframe column is:
dataframe["Column Name"].hist(bins=nbins)
Play around with the column name and bins and refer to the docstring as needed until you understand thoroughly what is being shown. Describe what this ***type of plot*** (not any individual plot that you've made) shows in words and describe when you think it might be useful.
Play around with inputs (e.g. column name) until you find a case (dataframe column) where you think the histogram tells you something important and use it as an example to inform your answer. Inputs that do not produce informative histograms should also help to inform your answer. Save a couple of representative histograms (good and bad, use plt.savefig("figure name")) and integrate them into your written (markdown) explanation to support your argument. | #this cell is for playing around with histograms | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Your explanation here, with figures
<div class=hw>
### 2b - Box plot
The syntax for creating a box plot for a pair of pandas dataframe columns is:
dataframe.boxplot(column="column name 1", by="column name 2")
Play around with the column and by variables and refer to the docstring as needed until you understand thoroughly what is being shown. Describe what this ***type of plot*** (not any individual plot that you've made) shows in words and describe when you think it might be useful.
Play around with inputs (e.g. column names) until you find a case that you think is well-described by a box and whisker plot and use it as an example to inform your answer. Inputs that do not produce informative box plots should also help to inform your answer. Save a couple of representative box plots (good and bad) and integrate them into your written explanation. | #your sample boxplot code here | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Your explanation here
<div class=hw>
### 2c - Pie Chart
The format for making the kind of pie chart that might be useful in this context is as follows:
newdataframe = dataframe["column name"].value()counts
newdataframe.plot.pie(figsize=(6,6))
Play around with the column and refer to the docstring as needed until you understand thoroughly what is being shown. Describe what this ***type of plot*** (not any individual plot that you've made) shows in words and describe when you think it might be useful. In your explanation here, focus on how a bar chart compares to a histogram, and when you think one or the other might be useful.
Play around with inputs (e.g. column names) until you find a case that you think is well-described by a pie chart and use it as an example to inform your answer. Inputs that do not produce informative pie charts should also help to inform your answer. Save a couple of representative pie charts (good and bad) and integrate them into your written explanation. | #your sample pie chart code here | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Your explanation here
<div class=hw>
### 2d - Scatter Plot
The syntax for creating a scatter plot is:
dataframe.plot.scatter(x='column name',y='column name')
Play around with the column and refer to the docstring as needed until you understand thoroughly what is being shown. Describe what this ***type of plot*** (not any individual plot that you've made) shows in words and describe when you think it might be useful.
Play around with inputs (e.g. column names) until you find a case that you think is well-described by a scatter plot and use it as an example to inform your answer. Inputs that do not produce informative scatter plots should also help to inform your answer. Save a couple of representative pie charts (good and bad) and integrate them into your written explanation. | #your sample scatter plot code here | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
Your explanation here
2.5. Selecting a Subset of Data
<div class=hw>
### Exercise 3
--------------
Write a function called "filter" that takes a dataframe, column name, and value for that column as input and returns a new dataframe containing only those rows where column name = value. For example filter(data, "PRE_GENDER", 1) should return a dataframe about half the size of the original dataframe where all values in the PRE_GENDER column are 1. | #your function here
#your tests here | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
If you get to this point during lab time on Tuesday, stop here
3. Testing Differences Between Datasets
3.1 Computing Confidence Intervals
Now that we have a mechanism for filtering the dataset, we can test differences between groups with confidence intervals. The syntax for computing the confidence interval on a mean for a given variable is as follows.
variable1 = st.t.interval(conf_level,n,loc=np.nanmean(variable2), scale=st.sem(variable2))
where conf_level is the confidence level you with to calculate (e.g. 0.95 is 95% confidence, 0.98 is 98%, etc.)
n is the number of samples and should generally be set to the number of valid entries in variable2 -1.
An example can be found below. | ## apply filter to select only men from data, and pull the scores from this group into a variable
df2=filter(data,'PRE_GENDER',1)
men_scores=df2['PRE_SCORE']
#compute 95% confidence intervals on the mean (low and high)
men_conf=st.t.interval(0.95, len(men_scores)-1, loc=np.mean(men_scores), scale=st.sem(men_scores))
men_conf | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
<div class=hw>
### Exercise 4
------------------
Choose a categorical variable (any demographic or attitudinal variable) that you find interesting and that has at least four possible values and calculate the condifence intervals on the mean score for each group. Then write a paragraph describing the results. Are the differences between the groups significant according to your data? Would they still be significant if you were to compute the 98% (3-sigma) confidence intervals? | #code to filter data and compute confidence intervals for each answer choice | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
explanatory text
3.2 Visualizing Differences with Overlapping Plots
<div class=hw>
### Exercise 5
---------------
Make another dataframe consisting only of students who "devoted effort" to the assessment, meaning their answer for PRE_EFFORT was EITHER a 4 or a 5 (you may have to modify your filter function to accept more than one value for "value").
Make overlapping histograms showing (a) scores for the entire student population and (b) scores for this "high effort" subset. The "alpha" keyword inside the plot commands will set the transparency of your histogram so that you can see both. Play around with it until it looks good. Make sure your chart includes a legend, and describe what conclusions you can draw from the result in a paragraph below the final chart. | #modified filter function here
#define your new high effort dataframe using the filter
#plot two overlapping histograms | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
explanatory text here
4. Data Investigation - Week 2 Instructions
Now that you are familar with the QuaRCS dataset, you and your partner must come up with an investigation that you would like to complete using this data. For the next two modules, this will be more open, but for this first investigation, I will suggest the following three options, of which each group will need to pick one (we will divide in class):
Design visualizations that compare student attitudes pre and post-semester
Design visualizations that compare student skills (by topical area) pre and post semester
Design visualizations that compare students' awareness of their own skills pre and post semester
Before 5pm next Monday evening (3/27), you must send Professor Follette a brief e-mail (that you write together, one e-mail per group) describing a plan for how you will approach the problem you've been assigned. What do you need to know that you don't know already? What kind of plots will you make and what kinds of statistics will you compute? What is your first thought for what your final data representations will look like (histograms? box and whisker plots? overlapping plots or side by side?). | from IPython.core.display import HTML
def css_styling():
styles = open("../custom.css", "r").read()
return HTML(styles)
css_styling() | Labs/Lab9/Lab 9.ipynb | kfollette/ASTR200-Spring2017 | mit |
from pysal.explore import spaghetti as spgh
from pysal.lib import examples
import geopandas as gpd
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
from shapely.geometry import Point, LineString
%matplotlib inline
__author__ = "James Gaboardi <[email protected]>" | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
|
1. Instantiating a pysal.spaghetti.Network
Instantiate the network from .shp file | ntw = spgh.Network(in_data=examples.get_path('streets.shp')) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
2. Allocating observations to a network
Snap point patterns to the network | # Crimes with attributes
ntw.snapobservations(examples.get_path('crimes.shp'),
'crimes',
attribute=True)
# Schools without attributes
ntw.snapobservations(examples.get_path('schools.shp'),
'schools',
attribute=False) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
3. Visualizing original and snapped locations
True and snapped school locations | schools_df = spgh.element_as_gdf(ntw,
pp_name='schools',
snapped=False)
snapped_schools_df = spgh.element_as_gdf(ntw,
pp_name='schools',
snapped=True) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.