markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
True and snapped crime locations | crimes_df = spgh.element_as_gdf(ntw,
pp_name='crimes',
snapped=False)
snapped_crimes_df = spgh.element_as_gdf(ntw,
pp_name='crimes',
snapped=True) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
Create geopandas.GeoDataFrame objects of the vertices and arcs | # network nodes and edges
vertices_df, arcs_df = spgh.element_as_gdf(ntw,
vertices=True,
arcs=True) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
Plotting geopandas.GeoDataFrame objects | # legend patches
arcs = mlines.Line2D([], [], color='k', label='Network Arcs', alpha=.5)
vtxs = mlines.Line2D([], [], color='k', linewidth=0, markersize=2.5,
marker='o', label='Network Vertices', alpha=1)
schl = mlines.Line2D([], [], color='k', linewidth=0, markersize=25,
marker='X', label='School Locations', alpha=1)
snp_schl = mlines.Line2D([], [], color='k', linewidth=0, markersize=12,
marker='o', label='Snapped Schools', alpha=1)
crme = mlines.Line2D([], [], color='r', linewidth=0, markersize=7,
marker='x', label='Crime Locations', alpha=.75)
snp_crme = mlines.Line2D([], [], color='r', linewidth=0, markersize=3,
marker='o', label='Snapped Crimes', alpha=.75)
patches = [arcs, vtxs, schl, snp_schl, crme, snp_crme]
# plot figure
base = arcs_df.plot(color='k', alpha=.25, figsize=(12,12), zorder=0)
vertices_df.plot(ax=base, color='k', markersize=5, alpha=1)
crimes_df.plot(ax=base, color='r', marker='x',
markersize=50, alpha=.5, zorder=1)
snapped_crimes_df.plot(ax=base, color='r',
markersize=20, alpha=.5, zorder=1)
schools_df.plot(ax=base, cmap='tab20', column='id', marker='X',
markersize=500, alpha=.5, zorder=2)
snapped_schools_df.plot(ax=base,cmap='tab20', column='id',
markersize=200, alpha=.5, zorder=2)
# add legend
plt.legend(handles=patches, fancybox=True, framealpha=0.8,
scatterpoints=1, fontsize="xx-large", bbox_to_anchor=(1.04, .6)) | notebooks/explore/spaghetti/Spaghetti_Pointpatterns_Empirical.ipynb | weikang9009/pysal | bsd-3-clause |
Imports | import multicell
import numpy as np | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Problem definition
Simulation and tissue structure | sim = multicell.simulation_builder.generate_cell_grid_sim(20, 20, 1, 1e-3) | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Tissue growth
We first enable growth and specify the number of growth steps to be applied over the duration of the simulation. Growth steps are spaced evenly.
Note: this should not be used in conjunction with set_time_steps, as the two settings would otherwise conflict. | sim.enable_growth(n_steps=11) | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
We then register the growth method we would like to apply. In this case, it is linear_growth, which requires a coefficient parameter specifying the scaling to be applied at each time step, along each axis. | sim.register_growth_method(multicell.growth.linear_growth, {"coefficient": [1.1, 1.05, 1.]}) | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Cell divisions
We first enable cell divisions and register the method we would like to use. In this case, we use a method called symmetrical_division, which divides a cell through its centroid, perpendicularly to its longest axis. | sim.enable_division()
sim.register_division_method(multicell.division.symmetrical_division) | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
We also register the division trigger, which is used to check if a cell needs to be divided. Here, it is a volume-related trigger, which requires a threshold. | sim.register_division_trigger(multicell.division.volume_trigger, {"volume_threshold": 2.}) | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Rendering | sim.register_renderer(multicell.rendering.MatplotlibRenderer, None, {"view_size": 60, "view": (90, -90), "axes": False})
| examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Visualization of the initial state | sim.renderer.display() | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Simulation
As the tissue grows, it maintains its rectangular shape. Cells grow in a uniform manner (they all grow by the same amount) and all divide at the same time when they reach the volume threshold. | sim.simulate() | examples/06 - Growth and divisions.ipynb | jldinh/multicell | mit |
Load the usual COMMIT structure | from commit import trk2dictionary
trk2dictionary.run(
filename_trk = 'LausanneTwoShell/fibers.trk',
path_out = 'LausanneTwoShell/CommitOutput',
filename_peaks = 'LausanneTwoShell/peaks.nii.gz',
filename_mask = 'LausanneTwoShell/WM.nii.gz',
fiber_shift = 0.5,
peaks_use_affine = True
)
import commit
mit = commit.Evaluation( '.', 'LausanneTwoShell' )
mit.load_data( 'DWI.nii', 'DWI.scheme' )
mit.set_model( 'StickZeppelinBall' )
d_par = 1.7E-3 # Parallel diffusivity [mm^2/s]
ICVFs = [ 0.7 ] # Intra-cellular volume fraction(s) [0..1]
d_ISOs = [ 1.7E-3, 3.0E-3 ] # Isotropic diffusivitie(s) [mm^2/s]
mit.model.set( d_par, ICVFs, d_ISOs )
mit.generate_kernels( regenerate=True )
mit.load_kernels()
mit.load_dictionary( 'CommitOutput' )
mit.set_threads()
mit.build_operator() | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Perform clustering of the streamlines
You will need dipy, which is among the requirements of COMMIT, hence there should be no problem.
The threshold parameter has to be tuned for each brain. Do not consider our choice as a standard one. | from nibabel import trackvis as tv
fname='LausanneTwoShell/fibers.trk'
streams, hdr = tv.read(fname)
streamlines = [i[0] for i in streams]
from dipy.segment.clustering import QuickBundles
threshold = 15.0
qb = QuickBundles(threshold=threshold)
clusters = qb.cluster(streamlines)
import numpy as np
structureIC = np.array([c.indices for c in clusters])
weightsIC = np.array([1.0/np.sqrt(len(c)) for c in structureIC]) | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Notice that we defined structure_IC as a numpy.array that contains a list of lists containing the indices associated to each group. We know it sounds a little bit bizarre but it computationally convenient.
Define the regularisation term
Each compartment must be regularised separately. The user can choose among the following penalties:
$\sum_{g\in G}w_g\|x_g\|_k$ : commit.solvers.group_sparsity with $k\in {2, \infty}$ (only for IC compartment)
$\|x\|_1$ : commit.solvers.norm1
$\|x\|_2$ : commit.solvers.norm2
$\iota_{\ge 0}(x)$ : commit.solvers.non_negative (Default for all compartments)
If the chosen regularisation for the IC compartment is $\sum_{g\in G}\|x_g\|_k$, we can define $k$ via the group_norm field, which must be one between
$\|x\|_2$ : commit.solvers.norm2 (Default)
$\|x\|_\infty$ : commit.solvers.norminf
In this example we consider the following penalties:
Intracellular: group sparsity with 2-norm of each group
Extracellular: 2-norm
Isotropic: 1-norm | regnorms = [commit.solvers.group_sparsity, commit.solvers.norm2, commit.solvers.norm1]
group_norm = 2 # each group is penalised with its 2-norm | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
The regularisation parameters are specified within the lambdas field. Again, do not consider our choice as a standard one. | lambdas = [10.,10.,10.] | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Call the constructor of the data structure | regterm = commit.solvers.init_regularisation(mit,
regnorms = regnorms,
structureIC = structureIC,
weightsIC = weightsIC,
group_norm = group_norm,
lambdas = lambdas) | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Call the fit function to perform the optimisation | mit.fit(regularisation=regterm, max_iter=1000) | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Save the results | suffix = 'IC'+str(regterm[0])+'EC'+str(regterm[1])+'ISO'+str(regterm[2])
mit.save_results(path_suffix=suffix) | doc/tutorials/AdvancedSolvers/tutorial_solvers.ipynb | barakovic/COMMIT | gpl-3.0 |
Representamos ambos diámetro y la velocidad de la tractora en la misma gráfica | #datos.ix[:, "Diametro X":"Diametro Y"].plot(secondary_y=['VELOCIDAD'],figsize=(16,10),ylim=(0.5,3)).hlines([1.85,1.65],0,3500,colors='r')
datos[columns].plot(secondary_y=['VELOCIDAD'],figsize=(10,5),title='Modelo matemático del sistema').hlines([1.6 ,1.8],0,2000,colors='r')
#datos['RPM TRAC'].plot(secondary_y='RPM TRAC')
datos.ix[:, "Diametro X":"Diametro Y"].boxplot(return_type='axes') | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
Con esta segunda aproximación se ha conseguido estabilizar los datos. Se va a tratar de bajar ese porcentaje. Como cuarta aproximación, vamos a modificar las velocidades de tracción. El rango de velocidades propuesto es de 1.5 a 5.3, manteniendo los incrementos del sistema experto como en el actual ensayo.
Comparativa de Diametro X frente a Diametro Y para ver el ratio del filamento | plt.scatter(x=datos['Diametro X'], y=datos['Diametro Y'], marker='.') | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
Filtrado de datos
Las muestras tomadas $d_x >= 0.9$ or $d_y >= 0.9$ las asumimos como error del sensor, por ello las filtramos de las muestras tomadas. | datos_filtrados = datos[(datos['Diametro X'] >= 0.9) & (datos['Diametro Y'] >= 0.9)]
#datos_filtrados.ix[:, "Diametro X":"Diametro Y"].boxplot(return_type='axes') | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
Representación de X/Y | plt.scatter(x=datos_filtrados['Diametro X'], y=datos_filtrados['Diametro Y'], marker='.') | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
Analizamos datos del ratio | ratio = datos_filtrados['Diametro X']/datos_filtrados['Diametro Y']
ratio.describe()
rolling_mean = pd.rolling_mean(ratio, 50)
rolling_std = pd.rolling_std(ratio, 50)
rolling_mean.plot(figsize=(12,6))
# plt.fill_between(ratio, y1=rolling_mean+rolling_std, y2=rolling_mean-rolling_std, alpha=0.5)
ratio.plot(figsize=(12,6), alpha=0.6, ylim=(0.5,1.5)) | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
Límites de calidad
Calculamos el número de veces que traspasamos unos límites de calidad.
$Th^+ = 1.85$ and $Th^- = 1.65$ | Th_u = 1.85
Th_d = 1.65
data_violations = datos[(datos['Diametro X'] > Th_u) | (datos['Diametro X'] < Th_d) |
(datos['Diametro Y'] > Th_u) | (datos['Diametro Y'] < Th_d)]
data_violations.describe()
data_violations.plot(subplots=True, figsize=(12,12)) | medidas/20072015/FILAEXTRUDER/.ipynb_checkpoints/Analisis-checkpoint.ipynb | darkomen/TFG | cc0-1.0 |
How would we go about understanding the trends from the data on global temperature?
The first step in analyzing unknown data is to generate some simple plots. We are going to look at the temperature-anomaly history, contained in a file, and make our first plot to explore this data.
We are going to smooth the data and then we'll fit a line to it to find a trend, plotting along the way to see how it all looks.
Let's get started!
The first thing to do is to load our favorite library: the NumPy library for array operations. | import numpy | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Make sure you have studied the introduction to JITcode in Python to know a bit about this library and why we need it.
Step 1: Read a data file
The data is contained in the file:
GlobalTemperatureAnomaly-1958-2008.csv
with the year on the first column and 12 monthly averages of temperature anomaly listed sequentially on the second column. We will read the file, then make an initial plot to see what it looks like.
To load the file, we use a function from the NumPy library called loadtxt(). To tell Python where to look for this function, we precede the function name with the library name, and use a dot between the two names. This is how it works: | numpy.loadtxt(fname='./resources/GlobalTemperatureAnomaly-1958-2008.csv', delimiter=',') | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Note that we called the function with two parameters: the file name and path, and the delimiter that separates each value on a line (a comma). Both parameters are strings (made up of characters) and we put them in single quotes.
As the output of the function, we get an array. Because it's rather big, Python shows only a few rows and columns of the array.
So far, so good. Now, what if we want to manipulate this data? Or plot it? We need to refer to it with a name. We've only just read the file, but we did not assign the array any name! Let's try again. | T=numpy.loadtxt(fname='./resources/GlobalTemperatureAnomaly-1958-2008.csv', delimiter=',') | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
That's interesting. Now, we don't see any output from the function call. Why? It's simply that the output was stored into the variable T, so to see it, we can do: | print(T) | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Ah, there it is! Let's find out how big the array is. For that, we use a cool NumPy function called shape(): | numpy.shape(T) | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Again, we've told Python where to find the function shape() by attaching it to the library name with a dot. However, NumPy arrays also happen to have a property shape that will return the same value, so we can get the same result another way: | T.shape | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
It's just shorter. The array T holding our temperature-anomaly data has two columns and 612 rows. Since we said we had monthly data, how many years is that? | 612/12 | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
That's right: from 1958 through 2008.
Step 2: Plot the data
We will display the data in two ways: as a time series of the monthly temperature anomalies versus time, and as a histogram. To be fancy, we'll put both plots in one figure.
Let's first load our plotting library, called matplotlib. To get the plots inside the notebook (rather than as popups), we use a special command, %matplotlib inline: | from matplotlib import pyplot
%matplotlib inline | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
What's this from business about? matplotlib is a pretty big (and awesome!) library. All that we need is a subset of the library for creating 2D plots, so we ask for the pyplot module of the matplotlib library.
Plotting the time series of temperature is as easy as calling the function plot() from the module pyplot.
But remember the shape of T? It has two columns and the temperature-anomaly values are in the second column. We extract the values of the second column by specifying 1 as the second index (the first column has index 0) and using the colon notation : to mean all rows. Check it out: | pyplot.plot(T[:,1]) | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
You can add a semicolon at the end of the plotting command to avoid that stuff that appeared on top of the figure, that Out[x]: [< ...>] ugliness. Try it.
Do you see a trend in the data?
The plot above is certainly useful, but wouldn't it be nicer if we could look at the data relative to the year, instead of the location of the data in the array?
The plot function can take another input; let's get the year displayed as well. | pyplot.plot(T[:,0],T[:,1]); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
The temperature anomaly certainly seems to show an increasing trend. But we're not going to stop there, of course. It's not that easy to convince people that the planet is warming, as you know.
Plotting a histogram is as easy as calling the function hist(). Why should it be any harder? | pyplot.hist(T[:,1]); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
What does this plot tell you about the data? It's more interesting than just an increasing trend, that's for sure. You might want to look at more statistics now: mean, median, standard deviation ... NumPy makes that easy for you: | meanT = numpy.mean(T[:,1])
medianT = numpy.median(T[:,1])
print( meanT, medianT) | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
You can control several parameters of the hist() plot. Learn more by reading the manual page (yes, you have to read the manual sometimes!). The first option is the number of bins—the default is 10—but you can also change the appearance (color, transparency). Try some things out. | pyplot.hist(T[:,1], 20, normed=1, facecolor='g', alpha=0.55); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
This is fun. Finally, we'll put both plots on the same figure using the subplot() function, which creates a grid of plots. The argument tells this function how many rows and columns of sub-plots we want, and where in the grid each plot will go.
To help you see what each plotting command is doing, we added comments, which in Python follow the # symbol. | pyplot.figure(figsize=(12,4)) # the size of the figure area
pyplot.subplot(121) # creates a grid of 1 row, 2 columns and selects the first plot
pyplot.plot(T[:,0],T[:,1],'g') # our time series, but now green
pyplot.xlim(1958,2008) # set the x-axis limits
pyplot.subplot(122) # prepares for the second plot
pyplot.hist(T[:,1], 20, normed=1, facecolor='g', alpha=0.55); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Step 3: Smooth the data and do regression
You see a lot of fluctuations on the time series, so you might be asking yourself "How can I smooth it out?" No? Let's do it anyway.
One possible approach to smooth the data (there are others) is using a moving average, also known as a sliding-window average. This is defined as:
$$\hat{x}{i,n} = \frac{1}{n} \sum{j=1}^{n} x_{i-j}$$
The only parameter to the moving average is the value $n$. As you can see, the moving average smooths the set of data points by creating a new data set consisting of local averages (of the $n$ previous data points) at each point in the new set.
A moving average is technically a convolution, and luckily NumPy has a built-in function for that, convolve(). We use it like this: | N = 12
window = numpy.ones(N)/N
smooth = numpy.convolve(T[:,1], window, 'same')
pyplot.figure(figsize=(10, 4))
pyplot.plot(T[:,0], smooth, 'r')
pyplot.xlim(1958,2008); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Did you notice the function ones()? It creates an array filled with ... you guessed it: ones!
We use a window of 12 data points, meaning that the plot shows the average temperature over the last 12 months. Looking at the plot, we can still see a trend, but the range of values is smaller. Let's plot the original time series together with the smoothed version: | pyplot.figure(figsize=(10, 4))
pyplot.plot(T[:,0], T[:,1], 'g', linewidth=1) # we specify the line width here ...
pyplot.plot(T[:,0], smooth, 'r', linewidth=2) # making the smoothed data a thicker line
pyplot.xlim(1958, 2008); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
That is interesting! The smoothed data follows the trend nicely but has much less noise. Well, that is what filtering data is all about.
Let's now fit a straight line through the temperature-anomaly data, to see the trends. We need to perform a least-squares linear regression to find the slope and intercept of a line
$$y = mx+b$$
that fits our data. Thankfully, Python and NumPy are here to help with the polyfit() function. The function takes three arguments: the two array variables $x$ and $y$, and the order of the polynomial for the fit (in this case, 1 for linear regression). | year = T[:,0] # it's time to use a more friendly name for column 1 of our data
m,b = numpy.polyfit(year, T[:,1], 1)
pyplot.figure(figsize=(10, 4))
pyplot.plot(year, T[:,1], 'g', linewidth=1)
pyplot.plot(year, m * year + b, 'k--', linewidth=2)
pyplot.xlim(1958, 2008); | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
There is more than one way to do this. Another of the favorite Python libraries is SciPy, and it has a linregress(x,y) function that will work as well. But let's not get carried away.
Step 4: Checking for auto-correlation in the data
We won't go into details, but you will learn more about all this if you take a course on experimental methods—for example, at GW, the Mechanical and Aerospace Engineering department offers "Methods of Engineering Experimentation" (MAE-3120).
The fact is that in time series (like global temperature anomaly, stock values, etc.), the fluctuations in the data are not random: adjacent data points are not independent. We say that there is auto-correlation in the data.
The problem with auto-correlation is that various techniques in statistical analysis rely on the assumption that scatter (or error) is random. If you apply these techniques willy-nilly, you can get false trends, overestimate uncertainties or exaggerate the goodness of a fit. All bad things!
For the global temperature anomaly, this discussion is crucial: many critics claim that since there is auto-correlation in the data, no reliable trends can be obtained
As a well-educated engineering student who cares about the planet, you will appreciate this: we can estimate the trend for the global temperature anomalies taking into account that the data points are not independent. We just need to use more advanced techniques of data analysis.
To finish off this lesson, your first in data analysis with Python, we'll put all our nice plots in one figure frame, and add the residual. Because the residual is not random "white" noise, you can conclude that there is auto-correlation in this time series.
Finally, we'll save the plot to an image file using the savefig() command of Pyplot—this will be useful to you when you have to prepare reports for your engineering courses! | pyplot.figure(figsize=(10, 8)) # the size of the figure area
pyplot.subplot(311) # creates a grid of 3 columns, 1 row and place the first plot
pyplot.plot(year, T[:,1], 'g', linewidth=1) # we specify the line width here ...
pyplot.plot(year, smooth, 'r', linewidth=2) # making the smoothed data a thicker line
pyplot.xlim(1958, 2008)
pyplot.subplot(312)
pyplot.plot(year, T[:,1], 'g', linewidth=1)
pyplot.plot(year, m * year + b, 'k--', linewidth=2)
pyplot.xlim(1958, 2008)
pyplot.subplot(313)
pyplot.plot(year, T[:,1] - m * year + b, 'o', linewidth=2)
pyplot.xlim(1958, 2008)
pyplot.savefig("TemperatureAnomaly.png") | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Step 5: Generating useful output
Here, we'll use our linear fit to project the temperature into the future. We'll also save some image files that we could later add to a document or report based on our findings. First, let's create an expectation of the temperature difference up to the year 2100. | spacing = (2008 + 11 / 12 - 1958) / 612
length = (2100 - 1958) / spacing
length = int(length) #we'll need an integer for the length of our array
years = numpy.linspace(1958, 2100, num = length)
temp = m * years + b#use our linear regression to estimate future temperature change
pyplot.figure(figsize=(10, 4))
pyplot.plot(years, temp)
pyplot.xlim(1958, 2100)
out=(years, temp) #create a tuple out of years and temperature we can output
out = numpy.array(out).T #form an array and transpose it | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Ok, that estimation looks reasonable. Let's save the data that describes it back to a .csv file, like the one we originally imported. | numpy.savetxt('./resources/GlobalTemperatureEstimate-1958-2100.csv', out, delimiter=",") | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Now, lets make a nicer picture that we can show to back up some of our information. We can plot the linear regression as well as the original data and then save the figure. | pyplot.figure(figsize = (10, 4))
pyplot.plot(year, T[:,1], 'g')
pyplot.plot(years, temp, 'k--')
pyplot.xlim(1958, 2100)
pyplot.savefig('./resources/GlobalTempPlot.png') | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
Nice! Now we've got some stuff that we could use in a report, or show to someone unfamiliar with coding. Remember to play with our settings; I'm sure you could get an even nicer-looking plot if you try!
Dig Deeper & Think
How is the global temperature anomaly calculated?
What does it mean and why is it employed instead of the global mean temperature to quantify global warming?
Why is it important to check that the residuals are independent and random when performing linear regression?
In this particular case, is it possible to still estimate a trend with confidence?
What is your best estimate of the global temperature by the end of the 22nd century?
What did we learn?
You should have played around with the embedded code in this notebook, and also written your own version of all the code in a separate Python script to learn:
how to read data from a comma-separated file
how to plot the data
how to do some basic analysis on the data
how to write to a file | from IPython.core.display import HTML
def css_styling():
styles = open("../styles/custom.css", "r").read()
return HTML(styles)
css_styling() | module00_Introduction_to_Python/01_Lesson01_Playing_with_data.ipynb | barbagroup/JITcode-MechE | mit |
<img src="figures/unsupervised_workflow.svg" width=100%> | from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
import numpy as np
np.set_printoptions(suppress=True)
digits = load_digits()
X, y = digits.data, digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Removing mean and scaling variance | from sklearn.preprocessing import StandardScaler | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
1) Instantiate the model | scaler = StandardScaler() | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
2) Fit using only the data. | scaler.fit(X_train) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
3) transform the data (not predict). | X_train_scaled = scaler.transform(X_train)
X_train.shape
X_train_scaled.shape | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
The transformed version of the data has the mean removed: | X_train_scaled.mean(axis=0)
X_train_scaled.std(axis=0)
X_test_transformed = scaler.transform(X_test) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Principal Component Analysis
0) Import the model | from sklearn.decomposition import PCA | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
1) Instantiate the model | pca = PCA(n_components=2) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
2) Fit to training data | pca.fit(X) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
3) Transform to lower-dimensional representation | print(X.shape)
X_pca = pca.transform(X)
X_pca.shape | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Visualize | plt.figure()
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)
pca.components_.shape
plt.matshow(pca.components_[0].reshape(8, 8), cmap="gray")
plt.colorbar()
plt.matshow(pca.components_[1].reshape(8, 8), cmap="gray")
plt.colorbar() | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Manifold Learning | from sklearn.manifold import Isomap
isomap = Isomap()
X_isomap = isomap.fit_transform(X)
plt.scatter(X_isomap[:, 0], X_isomap[:, 1], c=y) | Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Exercises
Visualize the digits dataset using the TSNE algorithm from the sklearn.manifold module (it runs for a couple of seconds).
Extract non-negative components from the digits dataset using NMF. Visualize the resulting components. The interface of NMF is identical to the PCA one. What qualitative difference can you find compared to PCA? | # %load solutions/digits_unsupervised.py
from sklearn.manifold import TSNE
from sklearn.decomposition import NMF
# Compute TSNE embedding
tsne = TSNE()
X_tsne = tsne.fit_transform(X)
# Visualize TSNE results
plt.title("All classes")
plt.figure()
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y)
# build an NMF factorization of the digits dataset
nmf = NMF(n_components=16).fit(X)
# visualize the components
fig, axes = plt.subplots(4, 4)
for ax, component in zip(axes.ravel(), nmf.components_):
ax.imshow(component.reshape(8, 8), cmap="gray", interpolation="nearest")
| Unsupervised Transformers.ipynb | amueller/nyu_ml_lectures | bsd-2-clause |
Next, let's define a vertical coordinate system that minimises missing data values, and gives good resolution at the (orographic) surface.
To achieve this we invent a scheme where the "bottom" of the model closely follows the orography/bathymetry, and as we reach the "top" of the model we get levels of approximately constant height. | nz = 9
model_levels = np.arange(nz)
model_top = 5000 # m
# The proportion of orographic influence on the model altitude. In this case,
# we define this as a log progression from full influence to no influence.
sigma = 1.1 - np.logspace(-1, np.log10(1.1), nz)
# Broadcast sigma so that when we multiply the orography we get a 3D array of z, y, x.
sigma = sigma[:, np.newaxis, np.newaxis]
# Combine sigma with the orography and model top value to
# produce 3d (z, y, x) altitude data for our "model levels".
altitude = (orography * sigma) + (model_top * (1 - sigma)) | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
Our new 3d array now represents altitude (height above sea surface) at each of our "model levels".
Let's look at a cross-section of the data to see how these levels: | plt.fill_between(np.arange(6), np.zeros(6), orography[1, :],
color='green', linewidth=2, label='Orography')
plt.plot(np.zeros(nx),
color='blue', linewidth=1.2,
label='Sea level')
for i in range(9):
plt.plot(altitude[i, 1, :], color='gray', linestyle='--',
label='Model levels' if i == 0 else None)
plt.ylabel('altitude / m')
plt.margins(0.1)
plt.legend()
plt.show() | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
To recap, we now have a model vertical coordinate system that maximises the number grid-point locations close to the orography. In addition, we have a 3d array of "altitudes" so that we can relate any phenomenon measured on this grid to useful vertical coordinate information.
Let's now define the temperature at each of our x, y, z points. We use the International Standard Atmosphere lapse rate of $ -6.5\ ^{\circ}C\ /\ km $ combined with our sea level standard temperature as an appoximate model for our temperature profile. | lapse = -6.5 / 1000 # degC / m
temperature = sea_level_temp + lapse * altitude
from matplotlib.colors import LogNorm
fig = plt.figure(figsize=(6, 6))
norm = plt.Normalize(vmin=temperature.min(), vmax=temperature.max())
for i in range(nz):
plt.subplot(3, 3, i + 1)
qm = plt.pcolormesh(temperature[i], cmap='viridis', norm=norm)
plt.subplots_adjust(right=0.84, wspace=0.3, hspace=0.3)
cax = plt.axes([0.85, 0.1, 0.03, 0.8])
plt.colorbar(cax=cax)
plt.suptitle('Temperature (K) at each "model level"')
plt.show() | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
Restratification / vertical interpolation
Our data is in the form:
1d "model level" vertical coordinate (z axis)
2 x 1d horizontal coordinates (x, y)
3d "altitude" variable (x, y, z)
3d "temperature" variable (x, y, z)
Suppose we now want to change the vertical coordinate system of our variables so that they are on levels of constant altitude, not levels of constant "model levels": | target_altitudes = np.linspace(700, 5500, 5) # m | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
If we visualise this, we can see that we need to consider the behaviour for a number of situations, including what should happen when we are sampling below the orography, and when we are above the model top. | plt.figure(figsize=(7, 5))
plt.fill_between(np.arange(6), np.zeros(6), orography[1, :],
color='green', linewidth=2, label='Orography')
for i in range(9):
plt.plot(altitude[i, 1, :],
color='gray', lw=1.2,
label=None if i > 0 else 'Source levels \n(model levels)')
for i, target in enumerate(target_altitudes):
plt.plot(np.repeat(target, 6),
color='gray', linestyle='--', lw=1.4, alpha=0.6,
label=None if i > 0 else 'Target levels \n(altitude)')
plt.ylabel('height / m')
plt.margins(top=0.1)
plt.legend()
plt.savefig('summary.png')
plt.show() | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
The default behaviour depends on the scheme, but for linear interpolation we recieve NaNs both below the orography and above the model top: | import stratify
target_nz = 20
target_altitudes = np.linspace(400, 5200, target_nz) # m
new_temperature = stratify.interpolate(target_altitudes, altitude, temperature,
axis=0) | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
With some work, we can visualise this result to compare a cross-section before and after. In particular this will allow us to see precisely what the interpolator has done at the extremes of our target levels: | ax1 = plt.subplot(1, 2, 1)
plt.fill_between(np.arange(6), np.zeros(6), orography[1, :],
color='green', linewidth=2, label='Orography')
cs = plt.contourf(np.tile(np.arange(6), nz).reshape(nz, 6),
altitude[:, 1],
temperature[:, 1])
plt.scatter(np.tile(np.arange(6), nz).reshape(nz, 6),
altitude[:, 1],
c=temperature[:, 1])
plt.subplot(1, 2, 2, sharey=ax1)
plt.fill_between(np.arange(6), np.zeros(6), orography[1, :],
color='green', linewidth=2, label='Orography')
plt.contourf(np.arange(6), target_altitudes,
np.ma.masked_invalid(new_temperature[:, 1]),
cmap=cs.cmap, norm=cs.norm)
plt.scatter(np.tile(np.arange(nx), target_nz).reshape(target_nz, nx),
np.repeat(target_altitudes, nx).reshape(target_nz, nx),
c=new_temperature[:, 1])
plt.scatter(np.tile(np.arange(nx), target_nz).reshape(target_nz, nx),
np.repeat(target_altitudes, nx).reshape(target_nz, nx),
s=np.isnan(new_temperature[:, 1]) * 15, marker='x')
plt.suptitle('Temperature cross-section before and after restratification')
plt.show() | INTRO.ipynb | pelson/python-stratify | bsd-3-clause |
Select live births, then make a CDF of <tt>totalwgt_lb</tt>. | import thinkstats2 as ts
live = preg[preg.outcome == 1]
wgt_cdf = ts.Cdf(live.totalwgt_lb, label = 'weight') | code/chap04ex.ipynb | John-Keating/ThinkStats2 | gpl-3.0 |
Display the CDF. | import thinkplot as tp
tp.Cdf(wgt_cdf, label = 'weight')
tp.Show() | code/chap04ex.ipynb | John-Keating/ThinkStats2 | gpl-3.0 |
Find out how much you weighed at birth, if you can, and compute CDF(x).
If you are a first child, look up your birthweight in the CDF of first children; otherwise use the CDF of other children.
Compute the percentile rank of your birthweight
Compute the median birth weight by looking up the value associated with p=0.5.
Compute the interquartile range (IQR) by computing percentiles corresponding to 25 and 75.
Make a random selection from <tt>cdf</tt>.
Draw a random sample from <tt>cdf</tt>.
Draw a random sample from <tt>cdf</tt>, then compute the percentile rank for each value, and plot the distribution of the percentile ranks.
Generate 1000 random values using <tt>random.random()</tt> and plot their PMF. | import random
random.random?
import random
thousand = [random.random() for x in range(1000)]
thousand_pmf = ts.Pmf(thousand, label = 'rando')
tp.Pmf(thousand_pmf, linewidth=0.1)
tp.Show()
t_hist = ts.Hist(thousand)
tp.Hist(t_hist, label = "rando")
tp.Show() | code/chap04ex.ipynb | John-Keating/ThinkStats2 | gpl-3.0 |
Assuming that the PMF doesn't work very well, try plotting the CDF instead. | thousand_cdf = ts.Cdf(thousand, label='rando')
tp.Cdf(thousand_cdf)
tp.Show()
import scipy.stats
scipy.stats? | code/chap04ex.ipynb | John-Keating/ThinkStats2 | gpl-3.0 |
<a id='tree'></a>
Tree
Let's play with a toy example and write our own decion-regression stamp. First, consider following toy dataset: | X_train = np.linspace(0, 1, 100)
X_test = np.linspace(0, 1, 1000)
@np.vectorize
def target(x):
return x > 0.5
Y_train = target(X_train) + np.random.randn(*X_train.shape) * 0.1
Y_test = target(X_test) + np.random.randn(*X_test.shape) * 0.1
plt.figure(figsize = (16, 9));
plt.scatter(X_train, Y_train, s=50);
plt.title('Train dataset');
plt.xlabel('X');
plt.ylabel('Y'); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
<a id='stamp'></a>
Task 1
To define tree (even that simple), we need to define following functions:
Loss function
For regression it can be MSE, MAE .etc We will use MSE
$$
\begin{aligned}
& y \in \mathbb{R}^N \
& \text{MSE}(\hat{y}, y) = \dfrac{1}{N}\|\hat{y} - y\|_2^2
\end{aligned}
$$
Note, that for MSE optimal prediction will be just mean value of the target.
Gain function
We need to select over different splitting by comparing them with their gain value. It is also reasonable to take into account number of points at the area of belongs to the split.
$$
\begin{aligned}
& R_i := \text{region i; c = current, l = left, r = right} \
& Gain(R_c, R_l, R_r) = Loss(R_c) - \left(\frac{|R_l|}{|R_c|}Loss(R_l) + \frac{|R_r|}{|R_c|}Loss(R_r)\right)
\end{aligned}
$$
Also for efficiency, we should not try all the x values, but just according to the histogram
<img src="stamp.jpg" alt="Stamp Algo" style="height: 700px;"/>
Also don't forget return left and right leaf predictions
Implement algorithm and please, put your loss rounded to the 3 decimals at the form: https://goo.gl/forms/AshZ8gyirm0Zftz53 | def loss_mse(predict, true):
return np.mean((predict - true) ** 2)
def stamp_fit(x, y):
root_prediction = np.mean(y)
root_loss = loss_mse(root_prediction, y)
gain = []
_, thresholds = np.histogram(x)
thresholds = thresholds[1:-1]
for i in thresholds:
left_predict = np.mean(y[x < i])
left_weight = np.sum(x < i) / x.shape[0]
right_predict = np.mean(y[x >= i])
right_weight = np.sum(x >= i) / x.shape[0]
loss = left_weight * loss_mse(left_predict, y[x < i]) + right_weight * loss_mse(right_predict, y[x >= i])
gain.append(root_loss - loss)
threshold = thresholds[np.argmax(gain)]
left_predict = np.mean(y[x < threshold])
right_predict = np.mean(y[x >= threshold])
return threshold, left_predict, right_predict
@np.vectorize
def stamp_predict(x, threshold, predict_l, predict_r):
prediction = predict_l if x < threshold else predict_r
return prediction
predict_params = stamp_fit(X_train, Y_train)
prediction = stamp_predict(X_test, *predict_params)
loss_mse(prediction, Y_test)
plt.figure(figsize = (16, 9));
plt.scatter(X_test, Y_test, s=50);
plt.plot(X_test, prediction, 'r');
plt.title('Test dataset');
plt.xlabel('X');
plt.ylabel('Y'); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
<a id='lim'></a>
Limitations
Now let's discuss some limitations of decision trees. Consider another toy example. Our target is distance between the origin $(0;0)$ and data point $(x_1, x_2)$ | from sklearn.tree import DecisionTreeRegressor
def get_grid(data):
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1
return np.meshgrid(np.arange(x_min, x_max, 0.01),
np.arange(y_min, y_max, 0.01))
data_x = np.random.normal(size=(100, 2))
data_y = (data_x[:, 0] ** 2 + data_x[:, 1] ** 2) ** 0.5
plt.figure(figsize=(8, 8));
plt.scatter(data_x[:, 0], data_x[:, 1], c=data_y, s=100, cmap='spring'); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Sensitivity with respect to the subsample
Let's see how predictions and structure of tree change, if we fit them at the random $90\%$ subset if the data. | plt.figure(figsize=(20, 6))
for i in range(3):
clf = DecisionTreeRegressor(random_state=42)
indecies = np.random.randint(data_x.shape[0], size=int(data_x.shape[0] * 0.9))
clf.fit(data_x[indecies], data_y[indecies])
xx, yy = get_grid(data_x)
predicted = clf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
plt.subplot2grid((1, 3), (0, i))
plt.pcolormesh(xx, yy, predicted, cmap='winter')
plt.scatter(data_x[:, 0], data_x[:, 1], c=data_y, s=30, cmap='winter', edgecolor='k')
| _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Sensitivity with respect to the hyper parameters | plt.figure(figsize=(14, 14))
for i, max_depth in enumerate([2, 4, None]):
for j, min_samples_leaf in enumerate([15, 5, 1]):
clf = DecisionTreeRegressor(max_depth=max_depth, min_samples_leaf=min_samples_leaf)
clf.fit(data_x, data_y)
xx, yy = get_grid(data_x)
predicted = clf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
plt.subplot2grid((3, 3), (i, j))
plt.pcolormesh(xx, yy, predicted, cmap='spring')
plt.scatter(data_x[:, 0], data_x[:, 1], c=data_y, s=30, cmap='spring', edgecolor='k')
plt.title('max_depth=' + str(max_depth) + ', min_samples_leaf: ' + str(min_samples_leaf)) | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
To overcome this disadvantages, we will consider bagging or bootstrap aggregation
<a id='bootbag'></a>
Bagging
<a id='bootbag'></a>
Bootstrap
Usually, we apply the following approach to the ML problem:
We have some finite sample $X={x_i}_{i=1}^{N}$, $x_i\in\mathbb{R}^{d}$ from unknown complex distirubution $F$
Inference some machine learning algorithm $T = T(x_1,\dots,x_N)$
However, if we want to study statistical proporities of the algorithm, we are in the trouble. For variance:
$$
\mathbb{V}T = \int_{\text{range } x}(T(x))^2dF(x) - \left(\int_{\text{range } x}T(x)dF(x)\right)^2
$$
Troubles:
* We do not have the true distribution $F(x)$
* We can not analytically integrate over complex ml-algorithm $T$ as tree, or even median
Solutions:
* Model $F(y)$ with emperical density $p_e(y)$:
$$ p_{e}(y) = \sum\limits_{i=1}^{N}\frac{1}{N}\delta(y-x_i) $$
Esitemate any integral of the form $\int f(T(x))dF(x)\approx \int f(T(x))dF_{e}(x)$ via Mone-Carlo:
$$
\int f(T(x))dF(x)\approx \int f(T(x))dF_{e}(x) \approx \frac{1}{B}\sum\limits_{j=1}^{B}f(T_j),\text{where } T_j = T(X^j), X^j\sim F_e
$$
Note, that sampling from $p_e(y)$ is just selection with repetition from $X={x_i}_{i=1}^{N}$. So it is the cheap and simple procedure.
Let's play with model example and estimate variance of the algorithm:
$$
\begin{aligned}
& x_i \in \mathbb{R} \
& T(X) = \text{median }X
\end{aligned}
$$
Task 1
For this example let's make simultated data from Cauchy distribution | def median(X):
return np.median(X)
def make_sample_cauchy(n_samples):
sample = np.random.standard_cauchy(size=n_samples)
return sample
X = make_sample_cauchy(int(1e2))
plt.hist(X, bins=int(1e1)); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
So, our model median will be: | med = median(X)
med | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Exact variance formula for sample cauchy median is following:
$$
\mathbb{V}\text{med($X_n$)} = \dfrac{2n!}{(k!)^2\pi^n}\int\limits_{0}^{\pi/2}x^k(\pi-x)^k(\text{cot}x)^2dx
$$
So hard! We will find it by bootstrap method.
Now, please apply boostrap algorithm to calculate its variance.
First, you need to write bootstrap sampler. It will be usefull https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.random.choice.html#numpy.random.choice | def make_sample_bootstrap(X):
size = X.shape[0]
idx_range = range(size)
new_idx = np.random.choice(idx_range, size, replace=True)
return X[new_idx] | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Second, for $K$ bootstrap samples your shoud estimate its median.
Make K=500 samples
For each samples estimate median ont it
save in median_boot_samples array | K = 500
median_boot_samples = []
for i in range(K):
boot_sample = make_sample_bootstrap(X)
meadian_boot_sample = median(boot_sample)
median_boot_samples.append(meadian_boot_sample)
median_boot_samples = np.array(median_boot_samples) | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Now we can obtain mean and variance from median_boot_samples as we are usually done it in statistics | mean = np.mean(median_boot_samples)
std = np.std(median_boot_samples)
print(mean, std) | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Please, put your estimation of std rounded to the 3 decimals at the form:
https://goo.gl/forms/Qgs4O7U1Yvs5csnM2 | plt.hist(median_boot_samples, bins=int(50)); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
<a id='rf'></a>
Tree + Bootstrap = Random Forest
We want to make many different trees and then aggregate score. So, we need to specify what is different and how to aggregate.
How to aggregate
For base algorithms $b_1(x),\dots, b_N(x)$
For classification task => majority vote: $a(x) = \text{arg}\max_{y}\sum_{i=1}^N[b_i(x) = y]$
For regression task => $a(x) = \frac{1}{N}\sum_{i=1}^{N}b_i(x)$
Different trees
Note, that more different trees, than less covariance their predictions have. Hence then we get more gain from aggregation.
One source of the difference: bootstrap sample, as we consider above
Another one: select random subset of features for each $b_i(x)$ fitting
Let' see how it works on our toy task | from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(n_estimators=100)
clf.fit(data_x, data_y)
xx, yy = get_grid(data_x)
predicted = clf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
plt.figure(figsize=(8, 8));
plt.pcolormesh(xx, yy, predicted, cmap='spring');
plt.scatter(data_x[:, 0], data_x[:, 1], c=data_y, s=100, cmap='spring', edgecolor='k'); | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
You can note, that all boundaries become much more smoother. Now we will compare methods on the Boston Dataset | from sklearn.datasets import load_boston
data = load_boston()
X = data.data
y = data.target | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Task 1
Get cross validation score for variety of algorithms: BaggingRegressor and RandomForestRegressor with different parameters.
For example, for simple decision tree: | from sklearn.model_selection import KFold, cross_val_score
cv = KFold(shuffle=True, random_state=1011)
regr = DecisionTreeRegressor()
print(cross_val_score(regr, X, y, cv=cv,
scoring='r2').mean()) | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Find best parameter with CV. Please put score at the https://goo.gl/forms/XZ7xHR54Fjk5cBy92 | from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
# usuall cv code | _posts/Seminar+5+Trees+Bagging+%28with+Solutions%29.ipynb | evgeniiegorov/evgeniiegorov.github.io | mit |
Create synthetic dataset 1
For the first technology, where "JDBC" was used.
Create committed lines | import numpy as np
import pandas as pd
np.random.seed(0)
# adding period
added_lines = [int(np.random.normal(30,50)) for i in range(0,600)]
# deleting period
added_lines.extend([int(np.random.normal(-50,100)) for i in range(0,200)])
added_lines.extend([int(np.random.normal(-2,20)) for i in range(0,200)])
added_lines.extend([int(np.random.normal(-3,10)) for i in range(0,200)])
df_jdbc = pd.DataFrame()
df_jdbc['lines'] = added_lines
df_jdbc.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Add timestamp | times = pd.timedelta_range("00:00:00","23:59:59", freq="s")
times = pd.Series(times)
times.head()
dates = pd.date_range('2013-05-15', '2017-07-23')
dates = pd.to_datetime(dates)
dates = dates[~dates.dayofweek.isin([5,6])]
dates = pd.Series(dates)
dates = dates.add(times.sample(len(dates), replace=True).values)
dates.head()
df_jdbc['timestamp'] = dates.sample(len(df_jdbc), replace=True).sort_values().reset_index(drop=True)
df_jdbc = df_jdbc.sort_index()
df_jdbc.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Treat first commit separetely
Set a fixed value because we have to start with some code at the beginning | df_jdbc.loc[0, 'lines'] = 250
df_jdbc.head()
df_jdbc = df_jdbc | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Add file names
Sample file names including their paths from an existing dataset | df_jdbc['file'] = log[log['type'] == 'jdbc']['file'].sample(len(df_jdbc), replace=True).values | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Check dataset | %matplotlib inline
df_jdbc.lines.hist() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Sum up the data and check if it was created as wanted. | df_jdbc_timed = df_jdbc.set_index('timestamp')
df_jdbc_timed['count'] = df_jdbc_timed.lines.cumsum()
df_jdbc_timed['count'].plot()
last_non_zero_timestamp = df_jdbc_timed[df_jdbc_timed['count'] >= 0].index.max()
last_non_zero_timestamp
df_jdbc = df_jdbc[df_jdbc.timestamp <= last_non_zero_timestamp]
df_jdbc.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Create synthetic dataset 2 | df_jpa = pd.DataFrame([int(np.random.normal(20,50)) for i in range(0,600)], columns=['lines'])
df_jpa.loc[0,'lines'] = 150
df_jpa['timestamp'] = pd.DateOffset(years=2) + dates.sample(len(df_jpa), replace=True).sort_values().reset_index(drop=True)
df_jpa = df_jpa.sort_index()
df_jpa['file'] = log[log['type'] == 'jpa']['file'].sample(len(df_jpa), replace=True).values
df_jpa.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Check dataset | df_jpa.lines.hist()
df_jpa_timed = df_jpa.set_index('timestamp')
df_jpa_timed['count'] = df_jpa_timed.lines.cumsum()
df_jpa_timed['count'].plot() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Add some noise | dates_other = pd.date_range(df_jdbc.timestamp.min(), df_jpa.timestamp.max())
dates_other = pd.to_datetime(dates_other)
dates_other = dates_other[~dates_other.dayofweek.isin([5,6])]
dates_other = pd.Series(dates_other)
dates_other = dates_other.add(times.sample(len(dates_other), replace=True).values)
dates_other.head()
df_other = pd.DataFrame([int(np.random.normal(5,100)) for i in range(0,40000)], columns=['lines'])
df_other['timestamp'] = dates_other.sample(len(df_other), replace=True).sort_values().reset_index(drop=True)
df_other = df_other.sort_index()
df_other['file'] = log[log['type'] == 'other']['file'].sample(len(df_other), replace=True).values
df_other.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Check dataset | df_other.lines.hist()
df_other_timed = df_other.set_index('timestamp')
df_other_timed['count'] = df_other_timed.lines.cumsum()
df_other_timed['count'].plot() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Concatenate all datasets | df = pd.concat([df_jpa, df_jdbc, df_other], ignore_index=True).sort_values(by='timestamp')
df.loc[df.lines > 0, 'additions'] = df.lines
df.loc[df.lines < 0, 'deletions'] = df.lines * -1
df = df.fillna(0).reset_index(drop=True)
df = df[['additions', 'deletions', 'file', 'timestamp']]
df.loc[(df.deletions > 0) & (df.loc[0].timestamp == df.timestamp),'additions'] = df.deletions
df.loc[df.loc[0].timestamp == df.timestamp,'deletions'] = 0
df['additions'] = df.additions.astype(int)
df['deletions'] = df.deletions.astype(int)
df = df.sort_values(by='timestamp', ascending=False)
df.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Truncate data until fixed date | df = df[df.timestamp < pd.Timestamp('2018-01-01')]
df.head() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Export the data | df.to_csv("datasets/git_log_refactoring.gz", index=None, compression='gzip') | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Check loaded data | df_loaded = pd.read_csv("datasets/git_log_refactoring.gz")
df_loaded.head()
df_loaded.info() | notebooks/Generating Synthetic Data based on a Git Log.ipynb | feststelltaste/software-analytics | gpl-3.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.