body
stringlengths 26
98.2k
| body_hash
int64 -9,222,864,604,528,158,000
9,221,803,474B
| docstring
stringlengths 1
16.8k
| path
stringlengths 5
230
| name
stringlengths 1
96
| repository_name
stringlengths 7
89
| lang
stringclasses 1
value | body_without_docstring
stringlengths 20
98.2k
|
---|---|---|---|---|---|---|---|
def blackbody(nu, ref_freq=353.0):
'\n The ratio of the blackbody function for dust at frequency nu\n over the value for reference frequency ref_freq\n\n Arguments\n ---------\n nu : float\n Frequency in GHz.\n ref_freq : float\n Reference frequency in GHz.\n\n Returns\n -------\n blackbody_ratio : float\n B(nu, T_dust) / B(nu_ref, T_dust)\n '
k = 1.38064852e-23
h = 6.62607004e-34
T = 19.6
nu_ref = (ref_freq * 1000000000.0)
nu *= 1000000000.0
x = (((h * nu) / k) / T)
x_ref = (((h * nu_ref) / k) / T)
return ((((x ** 3) / (x_ref ** 3)) * (np.exp(x_ref) - 1)) / (np.exp(x) - 1)) | -3,061,004,010,963,920,400 | The ratio of the blackbody function for dust at frequency nu
over the value for reference frequency ref_freq
Arguments
---------
nu : float
Frequency in GHz.
ref_freq : float
Reference frequency in GHz.
Returns
-------
blackbody_ratio : float
B(nu, T_dust) / B(nu_ref, T_dust) | xfaster/spec_tools.py | blackbody | SPIDER-CMB/xfaster | python | def blackbody(nu, ref_freq=353.0):
'\n The ratio of the blackbody function for dust at frequency nu\n over the value for reference frequency ref_freq\n\n Arguments\n ---------\n nu : float\n Frequency in GHz.\n ref_freq : float\n Reference frequency in GHz.\n\n Returns\n -------\n blackbody_ratio : float\n B(nu, T_dust) / B(nu_ref, T_dust)\n '
k = 1.38064852e-23
h = 6.62607004e-34
T = 19.6
nu_ref = (ref_freq * 1000000000.0)
nu *= 1000000000.0
x = (((h * nu) / k) / T)
x_ref = (((h * nu_ref) / k) / T)
return ((((x ** 3) / (x_ref ** 3)) * (np.exp(x_ref) - 1)) / (np.exp(x) - 1)) |
def rj2cmb(nu_in):
'\n Conversion from Rayleigh-Jeans units to CMB temperature units\n\n Arguments\n ---------\n nu_in : float\n Frequency in GHz.\n\n Returns\n -------\n cal_fac : float\n Number by which to multiply a RJ temperature to get a CMB temp\n '
k = 1.38064852e-23
h = 6.62607004e-34
T = 2.72548
nu = (nu_in * 1000000000.0)
x = (((h * nu) / k) / T)
return (((np.exp(x) - 1.0) ** 2) / ((x ** 2) * np.exp(x))) | 2,812,329,766,020,827,000 | Conversion from Rayleigh-Jeans units to CMB temperature units
Arguments
---------
nu_in : float
Frequency in GHz.
Returns
-------
cal_fac : float
Number by which to multiply a RJ temperature to get a CMB temp | xfaster/spec_tools.py | rj2cmb | SPIDER-CMB/xfaster | python | def rj2cmb(nu_in):
'\n Conversion from Rayleigh-Jeans units to CMB temperature units\n\n Arguments\n ---------\n nu_in : float\n Frequency in GHz.\n\n Returns\n -------\n cal_fac : float\n Number by which to multiply a RJ temperature to get a CMB temp\n '
k = 1.38064852e-23
h = 6.62607004e-34
T = 2.72548
nu = (nu_in * 1000000000.0)
x = (((h * nu) / k) / T)
return (((np.exp(x) - 1.0) ** 2) / ((x ** 2) * np.exp(x))) |
def scale_dust(freq0, freq1, ref_freq, beta, delta_beta=None, deriv=False):
'\n Get the factor by which you must multiply the cross spectrum from maps of\n frequencies freq0 and freq1 to match the dust power at ref_freq given\n spectra index beta.\n\n If deriv is True, return the frequency scaling at the reference beta,\n and the first derivative w.r.t. beta.\n\n Otherwise if delta_beta is given, return the scale factor adjusted\n for a linearized offset delta_beta from the reference beta.\n\n Arguments\n ---------\n freq0 : float\n Frequency of map0 in GHz.\n freq1 : float\n Frequency of map1 in GHz.\n ref_freq : float\n Reference frequency from which to compute relative scaling in GHz.\n beta : float\n Dust spectral index.\n delta_beta : float\n Difference from beta-- scaling computed as a first order Taylor\n expansion from original beta-scaling.\n deriv : bool\n If true, return the frequency scaling at the reference beta, along with\n the first derivative w.r.t. beta at the reference beta.\n\n Returns\n -------\n freq_scale : float\n The relative scaling factor for the dust cross spectrum-- multiply by\n this number to get the dust spectrum at the reference frequency\n -- or --\n freq_scale, deriv : floats\n The relative scaling factor and its derivative\n '
freq_scale = (((((rj2cmb(freq0) * rj2cmb(freq1)) / (rj2cmb(ref_freq) ** 2.0)) * blackbody(freq0, ref_freq=ref_freq)) * blackbody(freq1, ref_freq=ref_freq)) * (((freq0 * freq1) / (ref_freq ** 2)) ** (beta - 2.0)))
if (deriv or (delta_beta is not None)):
delta = np.log(((freq0 * freq1) / (ref_freq ** 2)))
if deriv:
return (freq_scale, (freq_scale * delta))
return (freq_scale * (1 + (delta * delta_beta)))
return freq_scale | 8,050,293,239,967,490,000 | Get the factor by which you must multiply the cross spectrum from maps of
frequencies freq0 and freq1 to match the dust power at ref_freq given
spectra index beta.
If deriv is True, return the frequency scaling at the reference beta,
and the first derivative w.r.t. beta.
Otherwise if delta_beta is given, return the scale factor adjusted
for a linearized offset delta_beta from the reference beta.
Arguments
---------
freq0 : float
Frequency of map0 in GHz.
freq1 : float
Frequency of map1 in GHz.
ref_freq : float
Reference frequency from which to compute relative scaling in GHz.
beta : float
Dust spectral index.
delta_beta : float
Difference from beta-- scaling computed as a first order Taylor
expansion from original beta-scaling.
deriv : bool
If true, return the frequency scaling at the reference beta, along with
the first derivative w.r.t. beta at the reference beta.
Returns
-------
freq_scale : float
The relative scaling factor for the dust cross spectrum-- multiply by
this number to get the dust spectrum at the reference frequency
-- or --
freq_scale, deriv : floats
The relative scaling factor and its derivative | xfaster/spec_tools.py | scale_dust | SPIDER-CMB/xfaster | python | def scale_dust(freq0, freq1, ref_freq, beta, delta_beta=None, deriv=False):
'\n Get the factor by which you must multiply the cross spectrum from maps of\n frequencies freq0 and freq1 to match the dust power at ref_freq given\n spectra index beta.\n\n If deriv is True, return the frequency scaling at the reference beta,\n and the first derivative w.r.t. beta.\n\n Otherwise if delta_beta is given, return the scale factor adjusted\n for a linearized offset delta_beta from the reference beta.\n\n Arguments\n ---------\n freq0 : float\n Frequency of map0 in GHz.\n freq1 : float\n Frequency of map1 in GHz.\n ref_freq : float\n Reference frequency from which to compute relative scaling in GHz.\n beta : float\n Dust spectral index.\n delta_beta : float\n Difference from beta-- scaling computed as a first order Taylor\n expansion from original beta-scaling.\n deriv : bool\n If true, return the frequency scaling at the reference beta, along with\n the first derivative w.r.t. beta at the reference beta.\n\n Returns\n -------\n freq_scale : float\n The relative scaling factor for the dust cross spectrum-- multiply by\n this number to get the dust spectrum at the reference frequency\n -- or --\n freq_scale, deriv : floats\n The relative scaling factor and its derivative\n '
freq_scale = (((((rj2cmb(freq0) * rj2cmb(freq1)) / (rj2cmb(ref_freq) ** 2.0)) * blackbody(freq0, ref_freq=ref_freq)) * blackbody(freq1, ref_freq=ref_freq)) * (((freq0 * freq1) / (ref_freq ** 2)) ** (beta - 2.0)))
if (deriv or (delta_beta is not None)):
delta = np.log(((freq0 * freq1) / (ref_freq ** 2)))
if deriv:
return (freq_scale, (freq_scale * delta))
return (freq_scale * (1 + (delta * delta_beta)))
return freq_scale |
def wigner3j(l2, m2, l3, m3):
'\n Wigner 3j symbols computed for all valid values of ``L``, as in:\n\n .. math::\n\n \\begin{pmatrix}\n \\ell_2 & \\ell_3 & L \\\\\n m_2 & m_3 & 0 \\\\\n \\end{pmatrix}\n\n Arguments\n ---------\n l2, m2, l3, m3 : int\n The ell and m values for which to compute the symbols.\n\n Returns\n -------\n fj : array_like\n Array of size ``l2 + l3 + 2``, indexed by ``L``\n lmin : int\n The minimum value of ``L`` for which ``fj`` is non-zero.\n lmax : int\n The maximum value of ``L`` for which ``fj`` is non-zero.\n '
import camb
try:
from camb.mathutils import threej
except ImportError:
from camb.bispectrum import threej
arr = threej(l2, l3, m2, m3)
lmin = np.max([np.abs((l2 - l3)), np.abs((m2 + m3))])
lmax = (l2 + l3)
fj = np.zeros((lmax + 2), dtype=arr.dtype)
fj[lmin:(lmax + 1)] = arr
return (fj, lmin, lmax) | -2,767,139,856,052,830,000 | Wigner 3j symbols computed for all valid values of ``L``, as in:
.. math::
\begin{pmatrix}
\ell_2 & \ell_3 & L \\
m_2 & m_3 & 0 \\
\end{pmatrix}
Arguments
---------
l2, m2, l3, m3 : int
The ell and m values for which to compute the symbols.
Returns
-------
fj : array_like
Array of size ``l2 + l3 + 2``, indexed by ``L``
lmin : int
The minimum value of ``L`` for which ``fj`` is non-zero.
lmax : int
The maximum value of ``L`` for which ``fj`` is non-zero. | xfaster/spec_tools.py | wigner3j | SPIDER-CMB/xfaster | python | def wigner3j(l2, m2, l3, m3):
'\n Wigner 3j symbols computed for all valid values of ``L``, as in:\n\n .. math::\n\n \\begin{pmatrix}\n \\ell_2 & \\ell_3 & L \\\\\n m_2 & m_3 & 0 \\\\\n \\end{pmatrix}\n\n Arguments\n ---------\n l2, m2, l3, m3 : int\n The ell and m values for which to compute the symbols.\n\n Returns\n -------\n fj : array_like\n Array of size ``l2 + l3 + 2``, indexed by ``L``\n lmin : int\n The minimum value of ``L`` for which ``fj`` is non-zero.\n lmax : int\n The maximum value of ``L`` for which ``fj`` is non-zero.\n '
import camb
try:
from camb.mathutils import threej
except ImportError:
from camb.bispectrum import threej
arr = threej(l2, l3, m2, m3)
lmin = np.max([np.abs((l2 - l3)), np.abs((m2 + m3))])
lmax = (l2 + l3)
fj = np.zeros((lmax + 2), dtype=arr.dtype)
fj[lmin:(lmax + 1)] = arr
return (fj, lmin, lmax) |
def get_camb_cl(r, lmax, nt=None, spec='total', lfac=True):
"\n Compute camb spectrum with tensors and lensing.\n\n Parameter values are from arXiv:1807.06209 Table 1 Plik best fit\n\n Arguments\n ---------\n r : float\n Tensor-to-scalar ratio\n lmax : int\n Maximum ell for which to compute spectra\n nt : scalar, optional\n Tensor spectral index. If not supplied, assumes\n slow-roll consistency relation.\n spec : string, optional\n Spectrum component to return. Can be 'total', 'unlensed_total',\n 'unlensed_scalar', 'lensed_scalar', 'tensor', 'lens_potential'.\n lfac: bool, optional\n If True, multiply Cls by ell*(ell+1)/2/pi\n\n Returns\n -------\n cls : array_like\n Array of spectra of shape (lmax + 1, nspec).\n Diagonal ordering (TT, EE, BB, TE).\n "
import camb
pars = camb.CAMBparams()
pars.set_cosmology(H0=67.32, ombh2=0.022383, omch2=0.12011, mnu=0.06, omk=0, tau=0.0543)
ln1010As = 3.0448
pars.InitPower.set_params(As=(np.exp(ln1010As) / 10000000000.0), ns=0.96605, r=r, nt=nt)
if (lmax < 2500):
lmax0 = 2500
else:
lmax0 = lmax
pars.set_for_lmax(lmax0, lens_potential_accuracy=2)
pars.WantTensors = True
pars.do_lensing = True
results = camb.get_results(pars)
powers = results.get_cmb_power_spectra(pars, CMB_unit='muK', raw_cl=(not lfac))
totCL = powers[spec][:(lmax + 1), :4].T
return totCL | 6,037,776,520,534,010,000 | Compute camb spectrum with tensors and lensing.
Parameter values are from arXiv:1807.06209 Table 1 Plik best fit
Arguments
---------
r : float
Tensor-to-scalar ratio
lmax : int
Maximum ell for which to compute spectra
nt : scalar, optional
Tensor spectral index. If not supplied, assumes
slow-roll consistency relation.
spec : string, optional
Spectrum component to return. Can be 'total', 'unlensed_total',
'unlensed_scalar', 'lensed_scalar', 'tensor', 'lens_potential'.
lfac: bool, optional
If True, multiply Cls by ell*(ell+1)/2/pi
Returns
-------
cls : array_like
Array of spectra of shape (lmax + 1, nspec).
Diagonal ordering (TT, EE, BB, TE). | xfaster/spec_tools.py | get_camb_cl | SPIDER-CMB/xfaster | python | def get_camb_cl(r, lmax, nt=None, spec='total', lfac=True):
"\n Compute camb spectrum with tensors and lensing.\n\n Parameter values are from arXiv:1807.06209 Table 1 Plik best fit\n\n Arguments\n ---------\n r : float\n Tensor-to-scalar ratio\n lmax : int\n Maximum ell for which to compute spectra\n nt : scalar, optional\n Tensor spectral index. If not supplied, assumes\n slow-roll consistency relation.\n spec : string, optional\n Spectrum component to return. Can be 'total', 'unlensed_total',\n 'unlensed_scalar', 'lensed_scalar', 'tensor', 'lens_potential'.\n lfac: bool, optional\n If True, multiply Cls by ell*(ell+1)/2/pi\n\n Returns\n -------\n cls : array_like\n Array of spectra of shape (lmax + 1, nspec).\n Diagonal ordering (TT, EE, BB, TE).\n "
import camb
pars = camb.CAMBparams()
pars.set_cosmology(H0=67.32, ombh2=0.022383, omch2=0.12011, mnu=0.06, omk=0, tau=0.0543)
ln1010As = 3.0448
pars.InitPower.set_params(As=(np.exp(ln1010As) / 10000000000.0), ns=0.96605, r=r, nt=nt)
if (lmax < 2500):
lmax0 = 2500
else:
lmax0 = lmax
pars.set_for_lmax(lmax0, lens_potential_accuracy=2)
pars.WantTensors = True
pars.do_lensing = True
results = camb.get_results(pars)
powers = results.get_cmb_power_spectra(pars, CMB_unit='muK', raw_cl=(not lfac))
totCL = powers[spec][:(lmax + 1), :4].T
return totCL |
def raise_does_not_exist(msg):
'Decorator to turn a function that get a http 404 response to a\n :exc:`DoesNotExist` exception.'
def decorator(func):
@wraps(func)
def wrapped(*args, **kwargs):
try:
return func(*args, **kwargs)
except ClientHttpError as e:
if (e.code == 404):
raise DoesNotExist(msg)
else:
raise
return wrapped
return decorator | -7,812,388,451,997,881,000 | Decorator to turn a function that get a http 404 response to a
:exc:`DoesNotExist` exception. | seafileapi/utils.py | raise_does_not_exist | AdriCueGim/python-seafile | python | def raise_does_not_exist(msg):
'Decorator to turn a function that get a http 404 response to a\n :exc:`DoesNotExist` exception.'
def decorator(func):
@wraps(func)
def wrapped(*args, **kwargs):
try:
return func(*args, **kwargs)
except ClientHttpError as e:
if (e.code == 404):
raise DoesNotExist(msg)
else:
raise
return wrapped
return decorator |
def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param ProjectId: 项目ID\n :type ProjectId: int\n '
self.InstanceIds = None
self.ProjectId = None | -6,788,372,924,002,334,000 | :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceIds: list of str
:param ProjectId: 项目ID
:type ProjectId: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param ProjectId: 项目ID\n :type ProjectId: int\n '
self.InstanceIds = None
self.ProjectId = None |
def __init__(self):
'\n :param FlowIds: 返回的异步任务ID列表\n :type FlowIds: list of int non-negative\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.FlowIds = None
self.RequestId = None | 9,070,933,027,787,485,000 | :param FlowIds: 返回的异步任务ID列表
:type FlowIds: list of int non-negative
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param FlowIds: 返回的异步任务ID列表\n :type FlowIds: list of int non-negative\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.FlowIds = None
self.RequestId = None |
def __init__(self):
'\n :param IP: 连接的客户端IP\n :type IP: str\n :param Count: 对应客户端IP的连接数\n :type Count: int\n '
self.IP = None
self.Count = None | 8,443,674,525,877,007,000 | :param IP: 连接的客户端IP
:type IP: str
:param Count: 对应客户端IP的连接数
:type Count: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param IP: 连接的客户端IP\n :type IP: str\n :param Count: 对应客户端IP的连接数\n :type Count: int\n '
self.IP = None
self.Count = None |
def __init__(self):
'\n :param Memory: 实例内存大小,单位:GB\n :type Memory: int\n :param Volume: 实例硬盘大小,单位:GB\n :type Volume: int\n :param ReplicateSetNum: 副本集个数,1为单副本集实例,大于1为分片集群实例,最大不超过10\n :type ReplicateSetNum: int\n :param SecondaryNum: 每个副本集内从节点个数,目前只支持从节点数为2\n :type SecondaryNum: int\n :param EngineVersion: MongoDB引擎版本,值包括MONGO_3_WT 、MONGO_3_ROCKS和MONGO_36_WT\n :type EngineVersion: str\n :param Machine: 实例类型,GIO:高IO版;TGIO:高IO万兆\n :type Machine: str\n :param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10\n :type GoodsNum: int\n :param Zone: 可用区信息,格式如:ap-guangzhou-2\n :type Zone: str\n :param InstanceRole: 实例角色,支持值包括:MASTER-表示主实例,DR-表示灾备实例,RO-表示只读实例\n :type InstanceRole: str\n :param InstanceType: 实例类型,REPLSET-副本集,SHARD-分片集群\n :type InstanceType: str\n :param Encrypt: 数据是否加密,当且仅当引擎版本为MONGO_3_ROCKS,可以选择加密\n :type Encrypt: int\n :param VpcId: 私有网络ID,如果不传则默认选择基础网络\n :type VpcId: str\n :param SubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填\n :type SubnetId: str\n :param ProjectId: 项目ID,不填为默认项目\n :type ProjectId: int\n :param SecurityGroup: 安全组参数\n :type SecurityGroup: list of str\n '
self.Memory = None
self.Volume = None
self.ReplicateSetNum = None
self.SecondaryNum = None
self.EngineVersion = None
self.Machine = None
self.GoodsNum = None
self.Zone = None
self.InstanceRole = None
self.InstanceType = None
self.Encrypt = None
self.VpcId = None
self.SubnetId = None
self.ProjectId = None
self.SecurityGroup = None | 9,074,244,070,652,575,000 | :param Memory: 实例内存大小,单位:GB
:type Memory: int
:param Volume: 实例硬盘大小,单位:GB
:type Volume: int
:param ReplicateSetNum: 副本集个数,1为单副本集实例,大于1为分片集群实例,最大不超过10
:type ReplicateSetNum: int
:param SecondaryNum: 每个副本集内从节点个数,目前只支持从节点数为2
:type SecondaryNum: int
:param EngineVersion: MongoDB引擎版本,值包括MONGO_3_WT 、MONGO_3_ROCKS和MONGO_36_WT
:type EngineVersion: str
:param Machine: 实例类型,GIO:高IO版;TGIO:高IO万兆
:type Machine: str
:param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10
:type GoodsNum: int
:param Zone: 可用区信息,格式如:ap-guangzhou-2
:type Zone: str
:param InstanceRole: 实例角色,支持值包括:MASTER-表示主实例,DR-表示灾备实例,RO-表示只读实例
:type InstanceRole: str
:param InstanceType: 实例类型,REPLSET-副本集,SHARD-分片集群
:type InstanceType: str
:param Encrypt: 数据是否加密,当且仅当引擎版本为MONGO_3_ROCKS,可以选择加密
:type Encrypt: int
:param VpcId: 私有网络ID,如果不传则默认选择基础网络
:type VpcId: str
:param SubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填
:type SubnetId: str
:param ProjectId: 项目ID,不填为默认项目
:type ProjectId: int
:param SecurityGroup: 安全组参数
:type SecurityGroup: list of str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param Memory: 实例内存大小,单位:GB\n :type Memory: int\n :param Volume: 实例硬盘大小,单位:GB\n :type Volume: int\n :param ReplicateSetNum: 副本集个数,1为单副本集实例,大于1为分片集群实例,最大不超过10\n :type ReplicateSetNum: int\n :param SecondaryNum: 每个副本集内从节点个数,目前只支持从节点数为2\n :type SecondaryNum: int\n :param EngineVersion: MongoDB引擎版本,值包括MONGO_3_WT 、MONGO_3_ROCKS和MONGO_36_WT\n :type EngineVersion: str\n :param Machine: 实例类型,GIO:高IO版;TGIO:高IO万兆\n :type Machine: str\n :param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10\n :type GoodsNum: int\n :param Zone: 可用区信息,格式如:ap-guangzhou-2\n :type Zone: str\n :param InstanceRole: 实例角色,支持值包括:MASTER-表示主实例,DR-表示灾备实例,RO-表示只读实例\n :type InstanceRole: str\n :param InstanceType: 实例类型,REPLSET-副本集,SHARD-分片集群\n :type InstanceType: str\n :param Encrypt: 数据是否加密,当且仅当引擎版本为MONGO_3_ROCKS,可以选择加密\n :type Encrypt: int\n :param VpcId: 私有网络ID,如果不传则默认选择基础网络\n :type VpcId: str\n :param SubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填\n :type SubnetId: str\n :param ProjectId: 项目ID,不填为默认项目\n :type ProjectId: int\n :param SecurityGroup: 安全组参数\n :type SecurityGroup: list of str\n '
self.Memory = None
self.Volume = None
self.ReplicateSetNum = None
self.SecondaryNum = None
self.EngineVersion = None
self.Machine = None
self.GoodsNum = None
self.Zone = None
self.InstanceRole = None
self.InstanceType = None
self.Encrypt = None
self.VpcId = None
self.SubnetId = None
self.ProjectId = None
self.SecurityGroup = None |
def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param InstanceIds: 创建的实例ID列表\n :type InstanceIds: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.InstanceIds = None
self.RequestId = None | 1,054,841,195,029,218,000 | :param DealId: 订单ID
:type DealId: str
:param InstanceIds: 创建的实例ID列表
:type InstanceIds: list of str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param InstanceIds: 创建的实例ID列表\n :type InstanceIds: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.InstanceIds = None
self.RequestId = None |
def __init__(self):
'\n :param SecondaryNum: 每个副本集内从节点个数\n :type SecondaryNum: int\n :param Memory: 实例内存大小,单位:GB\n :type Memory: int\n :param Volume: 实例硬盘大小,单位:GB\n :type Volume: int\n :param MongoVersion: 版本号,当前支持 MONGO_3_WT、MONGO_3_ROCKS、MONGO_36_WT\n :type MongoVersion: str\n :param MachineCode: 机器类型,GIO:高IO版;TGIO:高IO万兆\n :type MachineCode: str\n :param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10\n :type GoodsNum: int\n :param Zone: 实例所属区域名称,格式如:ap-guangzhou-2\n :type Zone: str\n :param TimeSpan: 时长,购买月数\n :type TimeSpan: int\n :param Password: 实例密码\n :type Password: str\n :param ProjectId: 项目ID,不填为默认项目\n :type ProjectId: int\n :param SecurityGroup: 安全组参数\n :type SecurityGroup: list of str\n :param UniqVpcId: 私有网络ID,如果不传则默认选择基础网络\n :type UniqVpcId: str\n :param UniqSubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填\n :type UniqSubnetId: str\n '
self.SecondaryNum = None
self.Memory = None
self.Volume = None
self.MongoVersion = None
self.MachineCode = None
self.GoodsNum = None
self.Zone = None
self.TimeSpan = None
self.Password = None
self.ProjectId = None
self.SecurityGroup = None
self.UniqVpcId = None
self.UniqSubnetId = None | 7,096,470,038,123,483,000 | :param SecondaryNum: 每个副本集内从节点个数
:type SecondaryNum: int
:param Memory: 实例内存大小,单位:GB
:type Memory: int
:param Volume: 实例硬盘大小,单位:GB
:type Volume: int
:param MongoVersion: 版本号,当前支持 MONGO_3_WT、MONGO_3_ROCKS、MONGO_36_WT
:type MongoVersion: str
:param MachineCode: 机器类型,GIO:高IO版;TGIO:高IO万兆
:type MachineCode: str
:param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10
:type GoodsNum: int
:param Zone: 实例所属区域名称,格式如:ap-guangzhou-2
:type Zone: str
:param TimeSpan: 时长,购买月数
:type TimeSpan: int
:param Password: 实例密码
:type Password: str
:param ProjectId: 项目ID,不填为默认项目
:type ProjectId: int
:param SecurityGroup: 安全组参数
:type SecurityGroup: list of str
:param UniqVpcId: 私有网络ID,如果不传则默认选择基础网络
:type UniqVpcId: str
:param UniqSubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填
:type UniqSubnetId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param SecondaryNum: 每个副本集内从节点个数\n :type SecondaryNum: int\n :param Memory: 实例内存大小,单位:GB\n :type Memory: int\n :param Volume: 实例硬盘大小,单位:GB\n :type Volume: int\n :param MongoVersion: 版本号,当前支持 MONGO_3_WT、MONGO_3_ROCKS、MONGO_36_WT\n :type MongoVersion: str\n :param MachineCode: 机器类型,GIO:高IO版;TGIO:高IO万兆\n :type MachineCode: str\n :param GoodsNum: 实例数量,默认值为1, 最小值1,最大值为10\n :type GoodsNum: int\n :param Zone: 实例所属区域名称,格式如:ap-guangzhou-2\n :type Zone: str\n :param TimeSpan: 时长,购买月数\n :type TimeSpan: int\n :param Password: 实例密码\n :type Password: str\n :param ProjectId: 项目ID,不填为默认项目\n :type ProjectId: int\n :param SecurityGroup: 安全组参数\n :type SecurityGroup: list of str\n :param UniqVpcId: 私有网络ID,如果不传则默认选择基础网络\n :type UniqVpcId: str\n :param UniqSubnetId: 私有网络下的子网ID,如果设置了 VpcId,则 SubnetId必填\n :type UniqSubnetId: str\n '
self.SecondaryNum = None
self.Memory = None
self.Volume = None
self.MongoVersion = None
self.MachineCode = None
self.GoodsNum = None
self.Zone = None
self.TimeSpan = None
self.Password = None
self.ProjectId = None
self.SecurityGroup = None
self.UniqVpcId = None
self.UniqSubnetId = None |
def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param InstanceIds: 创建的实例ID列表\n :type InstanceIds: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.InstanceIds = None
self.RequestId = None | 1,054,841,195,029,218,000 | :param DealId: 订单ID
:type DealId: str
:param InstanceIds: 创建的实例ID列表
:type InstanceIds: list of str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param InstanceIds: 创建的实例ID列表\n :type InstanceIds: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.InstanceIds = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n '
self.InstanceId = None | 7,466,592,164,755,291,000 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n '
self.InstanceId = None |
def __init__(self):
'\n :param Clients: 客户端连接信息,包括客户端IP和对应IP的连接数量\n注意:此字段可能返回 null,表示取不到有效值。\n :type Clients: list of ClientConnection\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.Clients = None
self.RequestId = None | 4,556,269,938,670,427,600 | :param Clients: 客户端连接信息,包括客户端IP和对应IP的连接数量
注意:此字段可能返回 null,表示取不到有效值。
:type Clients: list of ClientConnection
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param Clients: 客户端连接信息,包括客户端IP和对应IP的连接数量\n注意:此字段可能返回 null,表示取不到有效值。\n :type Clients: list of ClientConnection\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.Clients = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param InstanceType: 实例类型,取值范围:0-所有实例,1-正式实例,2-临时实例, 3-只读实例,-1-正式实例+只读+灾备实例\n :type InstanceType: int\n :param ClusterType: 集群类型,取值范围:0-副本集实例,1-分片实例,-1-所有实例\n :type ClusterType: int\n :param Status: 实例状态,取值范围:0-待初始化,1-流程执行中,2-实例有效,-2-实例已过期\n :type Status: list of int\n :param VpcId: 私有网络的ID,基础网络则不传该参数\n :type VpcId: str\n :param SubnetId: 私有网络的子网ID,基础网络则不传该参数。入参设置该参数的同时,必须设置相应的VpcId\n :type SubnetId: str\n :param PayMode: 付费类型,取值范围:0-按量计费,1-包年包月,-1-按量计费+包年包月\n :type PayMode: int\n :param Limit: 单次请求返回的数量,最小值为1,最大值为100,默认值为20\n :type Limit: int\n :param Offset: 偏移量,默认值为0\n :type Offset: int\n :param OrderBy: 返回结果集排序的字段,目前支持:"ProjectId", "InstanceName", "CreateTime",默认为升序排序\n :type OrderBy: str\n :param OrderByType: 返回结果集排序方式,目前支持:"ASC"或者"DESC"\n :type OrderByType: str\n '
self.InstanceIds = None
self.InstanceType = None
self.ClusterType = None
self.Status = None
self.VpcId = None
self.SubnetId = None
self.PayMode = None
self.Limit = None
self.Offset = None
self.OrderBy = None
self.OrderByType = None | -7,437,992,389,170,799,000 | :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceIds: list of str
:param InstanceType: 实例类型,取值范围:0-所有实例,1-正式实例,2-临时实例, 3-只读实例,-1-正式实例+只读+灾备实例
:type InstanceType: int
:param ClusterType: 集群类型,取值范围:0-副本集实例,1-分片实例,-1-所有实例
:type ClusterType: int
:param Status: 实例状态,取值范围:0-待初始化,1-流程执行中,2-实例有效,-2-实例已过期
:type Status: list of int
:param VpcId: 私有网络的ID,基础网络则不传该参数
:type VpcId: str
:param SubnetId: 私有网络的子网ID,基础网络则不传该参数。入参设置该参数的同时,必须设置相应的VpcId
:type SubnetId: str
:param PayMode: 付费类型,取值范围:0-按量计费,1-包年包月,-1-按量计费+包年包月
:type PayMode: int
:param Limit: 单次请求返回的数量,最小值为1,最大值为100,默认值为20
:type Limit: int
:param Offset: 偏移量,默认值为0
:type Offset: int
:param OrderBy: 返回结果集排序的字段,目前支持:"ProjectId", "InstanceName", "CreateTime",默认为升序排序
:type OrderBy: str
:param OrderByType: 返回结果集排序方式,目前支持:"ASC"或者"DESC"
:type OrderByType: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param InstanceType: 实例类型,取值范围:0-所有实例,1-正式实例,2-临时实例, 3-只读实例,-1-正式实例+只读+灾备实例\n :type InstanceType: int\n :param ClusterType: 集群类型,取值范围:0-副本集实例,1-分片实例,-1-所有实例\n :type ClusterType: int\n :param Status: 实例状态,取值范围:0-待初始化,1-流程执行中,2-实例有效,-2-实例已过期\n :type Status: list of int\n :param VpcId: 私有网络的ID,基础网络则不传该参数\n :type VpcId: str\n :param SubnetId: 私有网络的子网ID,基础网络则不传该参数。入参设置该参数的同时,必须设置相应的VpcId\n :type SubnetId: str\n :param PayMode: 付费类型,取值范围:0-按量计费,1-包年包月,-1-按量计费+包年包月\n :type PayMode: int\n :param Limit: 单次请求返回的数量,最小值为1,最大值为100,默认值为20\n :type Limit: int\n :param Offset: 偏移量,默认值为0\n :type Offset: int\n :param OrderBy: 返回结果集排序的字段,目前支持:"ProjectId", "InstanceName", "CreateTime",默认为升序排序\n :type OrderBy: str\n :param OrderByType: 返回结果集排序方式,目前支持:"ASC"或者"DESC"\n :type OrderByType: str\n '
self.InstanceIds = None
self.InstanceType = None
self.ClusterType = None
self.Status = None
self.VpcId = None
self.SubnetId = None
self.PayMode = None
self.Limit = None
self.Offset = None
self.OrderBy = None
self.OrderByType = None |
def __init__(self):
'\n :param TotalCount: 符合查询条件的实例总数\n :type TotalCount: int\n :param InstanceDetails: 实例详细信息\n :type InstanceDetails: list of MongoDBInstanceDetail\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.TotalCount = None
self.InstanceDetails = None
self.RequestId = None | -5,344,254,023,169,226,000 | :param TotalCount: 符合查询条件的实例总数
:type TotalCount: int
:param InstanceDetails: 实例详细信息
:type InstanceDetails: list of MongoDBInstanceDetail
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param TotalCount: 符合查询条件的实例总数\n :type TotalCount: int\n :param InstanceDetails: 实例详细信息\n :type InstanceDetails: list of MongoDBInstanceDetail\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.TotalCount = None
self.InstanceDetails = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param StartTime: 慢日志起始时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-01 10:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。\n :type StartTime: str\n :param EndTime: 慢日志终止时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-02 12:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。\n :type EndTime: str\n :param SlowMS: 慢日志执行时间阈值,返回执行时间超过该阈值的慢日志,单位为毫秒(ms),最小为100毫秒。\n :type SlowMS: int\n :param Offset: 偏移量,最小值为0,最大值为10000,默认值为0。\n :type Offset: int\n :param Limit: 分页大小,最小值为1,最大值为100,默认值为20。\n :type Limit: int\n '
self.InstanceId = None
self.StartTime = None
self.EndTime = None
self.SlowMS = None
self.Offset = None
self.Limit = None | 3,319,906,674,030,196,700 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceId: str
:param StartTime: 慢日志起始时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-01 10:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。
:type StartTime: str
:param EndTime: 慢日志终止时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-02 12:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。
:type EndTime: str
:param SlowMS: 慢日志执行时间阈值,返回执行时间超过该阈值的慢日志,单位为毫秒(ms),最小为100毫秒。
:type SlowMS: int
:param Offset: 偏移量,最小值为0,最大值为10000,默认值为0。
:type Offset: int
:param Limit: 分页大小,最小值为1,最大值为100,默认值为20。
:type Limit: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param StartTime: 慢日志起始时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-01 10:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。\n :type StartTime: str\n :param EndTime: 慢日志终止时间,格式:yyyy-mm-dd hh:mm:ss,如:2019-06-02 12:00:00。查询起止时间间隔不能超过24小时,只允许查询最近7天内慢日志。\n :type EndTime: str\n :param SlowMS: 慢日志执行时间阈值,返回执行时间超过该阈值的慢日志,单位为毫秒(ms),最小为100毫秒。\n :type SlowMS: int\n :param Offset: 偏移量,最小值为0,最大值为10000,默认值为0。\n :type Offset: int\n :param Limit: 分页大小,最小值为1,最大值为100,默认值为20。\n :type Limit: int\n '
self.InstanceId = None
self.StartTime = None
self.EndTime = None
self.SlowMS = None
self.Offset = None
self.Limit = None |
def __init__(self):
'\n :param TotalCount: 符合查询条件的慢查询日志总数。\n :type TotalCount: int\n :param SlowLogList: 符合查询条件的慢查询日志详情。\n :type SlowLogList: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.TotalCount = None
self.SlowLogList = None
self.RequestId = None | -7,829,219,154,739,202,000 | :param TotalCount: 符合查询条件的慢查询日志总数。
:type TotalCount: int
:param SlowLogList: 符合查询条件的慢查询日志详情。
:type SlowLogList: list of str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param TotalCount: 符合查询条件的慢查询日志总数。\n :type TotalCount: int\n :param SlowLogList: 符合查询条件的慢查询日志详情。\n :type SlowLogList: list of str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.TotalCount = None
self.SlowLogList = None
self.RequestId = None |
def __init__(self):
'\n :param Zone: 可用区\n :type Zone: str\n '
self.Zone = None | -5,430,548,088,093,569,000 | :param Zone: 可用区
:type Zone: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param Zone: 可用区\n :type Zone: str\n '
self.Zone = None |
def __init__(self):
'\n :param SpecInfoList: 实例售卖规格信息列表\n :type SpecInfoList: list of SpecificationInfo\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.SpecInfoList = None
self.RequestId = None | -308,205,219,353,436,860 | :param SpecInfoList: 实例售卖规格信息列表
:type SpecInfoList: list of SpecificationInfo
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param SpecInfoList: 实例售卖规格信息列表\n :type SpecInfoList: list of SpecificationInfo\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.SpecInfoList = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID\n :type InstanceId: str\n :param Region: 地域信息\n :type Region: str\n '
self.InstanceId = None
self.Region = None | -8,440,805,245,017,172,000 | :param InstanceId: 实例ID
:type InstanceId: str
:param Region: 地域信息
:type Region: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID\n :type InstanceId: str\n :param Region: 地域信息\n :type Region: str\n '
self.InstanceId = None
self.Region = None |
def __init__(self):
'\n :param InstanceId: 实例ID\n :type InstanceId: str\n :param InstanceName: 实例名称\n :type InstanceName: str\n :param PayMode: 付费类型,可能的返回值:1-包年包月;0-按量计费\n :type PayMode: int\n :param ProjectId: 项目ID\n :type ProjectId: int\n :param ClusterType: 集群类型,可能的返回值:0-副本集实例,1-分片实例,\n :type ClusterType: int\n :param Region: 地域信息\n :type Region: str\n :param Zone: 可用区信息\n :type Zone: str\n :param NetType: 网络类型,可能的返回值:0-基础网络,1-私有网络\n :type NetType: int\n :param VpcId: 私有网络的ID\n :type VpcId: str\n :param SubnetId: 私有网络的子网ID\n :type SubnetId: str\n :param Status: 实例状态,可能的返回值:0-待初始化,1-流程处理中,2-运行中,-2-实例已过期\n :type Status: int\n :param Vip: 实例IP\n :type Vip: str\n :param Vport: 端口号\n :type Vport: int\n :param CreateTime: 实例创建时间\n :type CreateTime: str\n :param DeadLine: 实例到期时间\n :type DeadLine: str\n :param MongoVersion: 实例版本信息\n :type MongoVersion: str\n :param Memory: 实例内存规格,单位为MB\n :type Memory: int\n :param Volume: 实例磁盘规格,单位为MB\n :type Volume: int\n :param CpuNum: 实例CPU核心数\n :type CpuNum: int\n :param MachineType: 实例机器类型\n :type MachineType: str\n :param SecondaryNum: 实例从节点数\n :type SecondaryNum: int\n :param ReplicationSetNum: 实例分片数\n :type ReplicationSetNum: int\n :param AutoRenewFlag: 实例自动续费标志,可能的返回值:0-手动续费,1-自动续费,2-确认不续费\n :type AutoRenewFlag: int\n :param UsedVolume: 已用容量,单位MB\n :type UsedVolume: int\n :param MaintenanceStart: 维护窗口起始时间\n :type MaintenanceStart: str\n :param MaintenanceEnd: 维护窗口结束时间\n :type MaintenanceEnd: str\n :param ReplicaSets: 分片信息\n :type ReplicaSets: list of MongodbShardInfo\n :param ReadonlyInstances: 只读实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type ReadonlyInstances: list of MongoDBInstance\n :param StandbyInstances: 灾备实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type StandbyInstances: list of MongoDBInstance\n :param CloneInstances: 临时实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type CloneInstances: list of MongoDBInstance\n :param RelatedInstance: 关联实例信息,对于正式实例,该字段表示它的临时实例信息;对于临时实例,则表示它的正式实例信息;如果为只读/灾备实例,则表示他的主实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type RelatedInstance: :class:`tencentcloud.mongodb.v20180408.models.MongoDBInstance`\n :param Tags: 实例标签信息集合\n注意:此字段可能返回 null,表示取不到有效值。\n :type Tags: list of TagInfo\n :param InstanceVer: 实例标记\n :type InstanceVer: int\n :param ClusterVer: 实例标记\n :type ClusterVer: int\n :param Protocol: 协议信息,可能的返回值:1-mongodb,2-dynamodb\n :type Protocol: int\n :param InstanceType: 实例类型,可能的返回值,1-正式实例,2-临时实例,3-只读实例,4-灾备实例\n :type InstanceType: int\n :param InstanceStatusDesc: 实例状态描述\n :type InstanceStatusDesc: str\n :param RealInstanceId: 实例对应的物理实例ID,回档并替换过的实例有不同的InstanceId和RealInstanceId,从barad获取监控数据等场景下需要用物理id获取\n :type RealInstanceId: str\n '
self.InstanceId = None
self.InstanceName = None
self.PayMode = None
self.ProjectId = None
self.ClusterType = None
self.Region = None
self.Zone = None
self.NetType = None
self.VpcId = None
self.SubnetId = None
self.Status = None
self.Vip = None
self.Vport = None
self.CreateTime = None
self.DeadLine = None
self.MongoVersion = None
self.Memory = None
self.Volume = None
self.CpuNum = None
self.MachineType = None
self.SecondaryNum = None
self.ReplicationSetNum = None
self.AutoRenewFlag = None
self.UsedVolume = None
self.MaintenanceStart = None
self.MaintenanceEnd = None
self.ReplicaSets = None
self.ReadonlyInstances = None
self.StandbyInstances = None
self.CloneInstances = None
self.RelatedInstance = None
self.Tags = None
self.InstanceVer = None
self.ClusterVer = None
self.Protocol = None
self.InstanceType = None
self.InstanceStatusDesc = None
self.RealInstanceId = None | 4,477,843,219,725,253,000 | :param InstanceId: 实例ID
:type InstanceId: str
:param InstanceName: 实例名称
:type InstanceName: str
:param PayMode: 付费类型,可能的返回值:1-包年包月;0-按量计费
:type PayMode: int
:param ProjectId: 项目ID
:type ProjectId: int
:param ClusterType: 集群类型,可能的返回值:0-副本集实例,1-分片实例,
:type ClusterType: int
:param Region: 地域信息
:type Region: str
:param Zone: 可用区信息
:type Zone: str
:param NetType: 网络类型,可能的返回值:0-基础网络,1-私有网络
:type NetType: int
:param VpcId: 私有网络的ID
:type VpcId: str
:param SubnetId: 私有网络的子网ID
:type SubnetId: str
:param Status: 实例状态,可能的返回值:0-待初始化,1-流程处理中,2-运行中,-2-实例已过期
:type Status: int
:param Vip: 实例IP
:type Vip: str
:param Vport: 端口号
:type Vport: int
:param CreateTime: 实例创建时间
:type CreateTime: str
:param DeadLine: 实例到期时间
:type DeadLine: str
:param MongoVersion: 实例版本信息
:type MongoVersion: str
:param Memory: 实例内存规格,单位为MB
:type Memory: int
:param Volume: 实例磁盘规格,单位为MB
:type Volume: int
:param CpuNum: 实例CPU核心数
:type CpuNum: int
:param MachineType: 实例机器类型
:type MachineType: str
:param SecondaryNum: 实例从节点数
:type SecondaryNum: int
:param ReplicationSetNum: 实例分片数
:type ReplicationSetNum: int
:param AutoRenewFlag: 实例自动续费标志,可能的返回值:0-手动续费,1-自动续费,2-确认不续费
:type AutoRenewFlag: int
:param UsedVolume: 已用容量,单位MB
:type UsedVolume: int
:param MaintenanceStart: 维护窗口起始时间
:type MaintenanceStart: str
:param MaintenanceEnd: 维护窗口结束时间
:type MaintenanceEnd: str
:param ReplicaSets: 分片信息
:type ReplicaSets: list of MongodbShardInfo
:param ReadonlyInstances: 只读实例信息
注意:此字段可能返回 null,表示取不到有效值。
:type ReadonlyInstances: list of MongoDBInstance
:param StandbyInstances: 灾备实例信息
注意:此字段可能返回 null,表示取不到有效值。
:type StandbyInstances: list of MongoDBInstance
:param CloneInstances: 临时实例信息
注意:此字段可能返回 null,表示取不到有效值。
:type CloneInstances: list of MongoDBInstance
:param RelatedInstance: 关联实例信息,对于正式实例,该字段表示它的临时实例信息;对于临时实例,则表示它的正式实例信息;如果为只读/灾备实例,则表示他的主实例信息
注意:此字段可能返回 null,表示取不到有效值。
:type RelatedInstance: :class:`tencentcloud.mongodb.v20180408.models.MongoDBInstance`
:param Tags: 实例标签信息集合
注意:此字段可能返回 null,表示取不到有效值。
:type Tags: list of TagInfo
:param InstanceVer: 实例标记
:type InstanceVer: int
:param ClusterVer: 实例标记
:type ClusterVer: int
:param Protocol: 协议信息,可能的返回值:1-mongodb,2-dynamodb
:type Protocol: int
:param InstanceType: 实例类型,可能的返回值,1-正式实例,2-临时实例,3-只读实例,4-灾备实例
:type InstanceType: int
:param InstanceStatusDesc: 实例状态描述
:type InstanceStatusDesc: str
:param RealInstanceId: 实例对应的物理实例ID,回档并替换过的实例有不同的InstanceId和RealInstanceId,从barad获取监控数据等场景下需要用物理id获取
:type RealInstanceId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID\n :type InstanceId: str\n :param InstanceName: 实例名称\n :type InstanceName: str\n :param PayMode: 付费类型,可能的返回值:1-包年包月;0-按量计费\n :type PayMode: int\n :param ProjectId: 项目ID\n :type ProjectId: int\n :param ClusterType: 集群类型,可能的返回值:0-副本集实例,1-分片实例,\n :type ClusterType: int\n :param Region: 地域信息\n :type Region: str\n :param Zone: 可用区信息\n :type Zone: str\n :param NetType: 网络类型,可能的返回值:0-基础网络,1-私有网络\n :type NetType: int\n :param VpcId: 私有网络的ID\n :type VpcId: str\n :param SubnetId: 私有网络的子网ID\n :type SubnetId: str\n :param Status: 实例状态,可能的返回值:0-待初始化,1-流程处理中,2-运行中,-2-实例已过期\n :type Status: int\n :param Vip: 实例IP\n :type Vip: str\n :param Vport: 端口号\n :type Vport: int\n :param CreateTime: 实例创建时间\n :type CreateTime: str\n :param DeadLine: 实例到期时间\n :type DeadLine: str\n :param MongoVersion: 实例版本信息\n :type MongoVersion: str\n :param Memory: 实例内存规格,单位为MB\n :type Memory: int\n :param Volume: 实例磁盘规格,单位为MB\n :type Volume: int\n :param CpuNum: 实例CPU核心数\n :type CpuNum: int\n :param MachineType: 实例机器类型\n :type MachineType: str\n :param SecondaryNum: 实例从节点数\n :type SecondaryNum: int\n :param ReplicationSetNum: 实例分片数\n :type ReplicationSetNum: int\n :param AutoRenewFlag: 实例自动续费标志,可能的返回值:0-手动续费,1-自动续费,2-确认不续费\n :type AutoRenewFlag: int\n :param UsedVolume: 已用容量,单位MB\n :type UsedVolume: int\n :param MaintenanceStart: 维护窗口起始时间\n :type MaintenanceStart: str\n :param MaintenanceEnd: 维护窗口结束时间\n :type MaintenanceEnd: str\n :param ReplicaSets: 分片信息\n :type ReplicaSets: list of MongodbShardInfo\n :param ReadonlyInstances: 只读实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type ReadonlyInstances: list of MongoDBInstance\n :param StandbyInstances: 灾备实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type StandbyInstances: list of MongoDBInstance\n :param CloneInstances: 临时实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type CloneInstances: list of MongoDBInstance\n :param RelatedInstance: 关联实例信息,对于正式实例,该字段表示它的临时实例信息;对于临时实例,则表示它的正式实例信息;如果为只读/灾备实例,则表示他的主实例信息\n注意:此字段可能返回 null,表示取不到有效值。\n :type RelatedInstance: :class:`tencentcloud.mongodb.v20180408.models.MongoDBInstance`\n :param Tags: 实例标签信息集合\n注意:此字段可能返回 null,表示取不到有效值。\n :type Tags: list of TagInfo\n :param InstanceVer: 实例标记\n :type InstanceVer: int\n :param ClusterVer: 实例标记\n :type ClusterVer: int\n :param Protocol: 协议信息,可能的返回值:1-mongodb,2-dynamodb\n :type Protocol: int\n :param InstanceType: 实例类型,可能的返回值,1-正式实例,2-临时实例,3-只读实例,4-灾备实例\n :type InstanceType: int\n :param InstanceStatusDesc: 实例状态描述\n :type InstanceStatusDesc: str\n :param RealInstanceId: 实例对应的物理实例ID,回档并替换过的实例有不同的InstanceId和RealInstanceId,从barad获取监控数据等场景下需要用物理id获取\n :type RealInstanceId: str\n '
self.InstanceId = None
self.InstanceName = None
self.PayMode = None
self.ProjectId = None
self.ClusterType = None
self.Region = None
self.Zone = None
self.NetType = None
self.VpcId = None
self.SubnetId = None
self.Status = None
self.Vip = None
self.Vport = None
self.CreateTime = None
self.DeadLine = None
self.MongoVersion = None
self.Memory = None
self.Volume = None
self.CpuNum = None
self.MachineType = None
self.SecondaryNum = None
self.ReplicationSetNum = None
self.AutoRenewFlag = None
self.UsedVolume = None
self.MaintenanceStart = None
self.MaintenanceEnd = None
self.ReplicaSets = None
self.ReadonlyInstances = None
self.StandbyInstances = None
self.CloneInstances = None
self.RelatedInstance = None
self.Tags = None
self.InstanceVer = None
self.ClusterVer = None
self.Protocol = None
self.InstanceType = None
self.InstanceStatusDesc = None
self.RealInstanceId = None |
def __init__(self):
'\n :param UsedVolume: 分片已使用容量\n :type UsedVolume: float\n :param ReplicaSetId: 分片ID\n :type ReplicaSetId: str\n :param ReplicaSetName: 分片名\n :type ReplicaSetName: str\n :param Memory: 分片内存规格,单位为MB\n :type Memory: int\n :param Volume: 分片磁盘规格,单位为MB\n :type Volume: int\n :param OplogSize: 分片Oplog大小,单位为MB\n :type OplogSize: int\n :param SecondaryNum: 分片从节点数\n :type SecondaryNum: int\n :param RealReplicaSetId: 分片物理ID\n :type RealReplicaSetId: str\n '
self.UsedVolume = None
self.ReplicaSetId = None
self.ReplicaSetName = None
self.Memory = None
self.Volume = None
self.OplogSize = None
self.SecondaryNum = None
self.RealReplicaSetId = None | -5,998,285,072,832,786,000 | :param UsedVolume: 分片已使用容量
:type UsedVolume: float
:param ReplicaSetId: 分片ID
:type ReplicaSetId: str
:param ReplicaSetName: 分片名
:type ReplicaSetName: str
:param Memory: 分片内存规格,单位为MB
:type Memory: int
:param Volume: 分片磁盘规格,单位为MB
:type Volume: int
:param OplogSize: 分片Oplog大小,单位为MB
:type OplogSize: int
:param SecondaryNum: 分片从节点数
:type SecondaryNum: int
:param RealReplicaSetId: 分片物理ID
:type RealReplicaSetId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param UsedVolume: 分片已使用容量\n :type UsedVolume: float\n :param ReplicaSetId: 分片ID\n :type ReplicaSetId: str\n :param ReplicaSetName: 分片名\n :type ReplicaSetName: str\n :param Memory: 分片内存规格,单位为MB\n :type Memory: int\n :param Volume: 分片磁盘规格,单位为MB\n :type Volume: int\n :param OplogSize: 分片Oplog大小,单位为MB\n :type OplogSize: int\n :param SecondaryNum: 分片从节点数\n :type SecondaryNum: int\n :param RealReplicaSetId: 分片物理ID\n :type RealReplicaSetId: str\n '
self.UsedVolume = None
self.ReplicaSetId = None
self.ReplicaSetName = None
self.Memory = None
self.Volume = None
self.OplogSize = None
self.SecondaryNum = None
self.RealReplicaSetId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param NewName: 实例名称\n :type NewName: str\n '
self.InstanceId = None
self.NewName = None | -1,895,953,465,478,440,000 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceId: str
:param NewName: 实例名称
:type NewName: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param NewName: 实例名称\n :type NewName: str\n '
self.InstanceId = None
self.NewName = None |
def __init__(self):
'\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.RequestId = None | -5,957,967,262,820,529,000 | :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.RequestId = None |
def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param AutoRenewFlag: 续费选项,取值范围:0-手动续费,1-自动续费,2-确认不续费\n :type AutoRenewFlag: int\n '
self.InstanceIds = None
self.AutoRenewFlag = None | -1,801,866,595,669,366,500 | :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceIds: list of str
:param AutoRenewFlag: 续费选项,取值范围:0-手动续费,1-自动续费,2-确认不续费
:type AutoRenewFlag: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceIds: 实例ID列表,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceIds: list of str\n :param AutoRenewFlag: 续费选项,取值范围:0-手动续费,1-自动续费,2-确认不续费\n :type AutoRenewFlag: int\n '
self.InstanceIds = None
self.AutoRenewFlag = None |
def __init__(self):
'\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.RequestId = None | -5,957,967,262,820,529,000 | :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param UserName: 实例账户名称\n :type UserName: str\n :param Password: 实例新密码,至少包含字母、数字和字符(!@#%^*())中的两种,长度为8-16个字符\n :type Password: str\n '
self.InstanceId = None
self.UserName = None
self.Password = None | 2,673,499,813,344,423,400 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceId: str
:param UserName: 实例账户名称
:type UserName: str
:param Password: 实例新密码,至少包含字母、数字和字符(!@#%^*())中的两种,长度为8-16个字符
:type Password: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param UserName: 实例账户名称\n :type UserName: str\n :param Password: 实例新密码,至少包含字母、数字和字符(!@#%^*())中的两种,长度为8-16个字符\n :type Password: str\n '
self.InstanceId = None
self.UserName = None
self.Password = None |
def __init__(self):
'\n :param FlowId: 返回的异步任务ID\n :type FlowId: int\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.FlowId = None
self.RequestId = None | 168,431,123,442,788,260 | :param FlowId: 返回的异步任务ID
:type FlowId: int
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param FlowId: 返回的异步任务ID\n :type FlowId: int\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.FlowId = None
self.RequestId = None |
def __init__(self):
'\n :param SpecCode: 规格信息标识\n :type SpecCode: str\n :param Status: 规格有效标志,取值:0-停止售卖,1-开放售卖\n :type Status: int\n :param MachineType: 机器类型,取值:0-HIO,4-HIO10G\n :type MachineType: str\n :param Cpu: cpu核心数\n :type Cpu: int\n :param Memory: 内存规格,单位为MB\n :type Memory: int\n :param DefaultStorage: 默认磁盘规格,单位MB\n :type DefaultStorage: int\n :param MaxStorage: 最大磁盘规格,单位MB\n :type MaxStorage: int\n :param MinStorage: 最小磁盘规格,单位MB\n :type MinStorage: int\n :param Qps: 可承载qps信息\n :type Qps: int\n :param Conns: 连接数限制\n :type Conns: int\n :param MongoVersionCode: 实例mongodb版本信息\n :type MongoVersionCode: str\n :param MongoVersionValue: 实例mongodb版本号\n :type MongoVersionValue: int\n :param Version: 实例mongodb版本号(短)\n :type Version: str\n :param EngineName: 存储引擎\n :type EngineName: str\n :param ClusterType: 集群类型,取值:1-分片集群,0-副本集集群\n :type ClusterType: int\n :param MinNodeNum: 最小副本集从节点数\n :type MinNodeNum: int\n :param MaxNodeNum: 最大副本集从节点数\n :type MaxNodeNum: int\n :param MinReplicateSetNum: 最小分片数\n :type MinReplicateSetNum: int\n :param MaxReplicateSetNum: 最大分片数\n :type MaxReplicateSetNum: int\n :param MinReplicateSetNodeNum: 最小分片从节点数\n :type MinReplicateSetNodeNum: int\n :param MaxReplicateSetNodeNum: 最大分片从节点数\n :type MaxReplicateSetNodeNum: int\n '
self.SpecCode = None
self.Status = None
self.MachineType = None
self.Cpu = None
self.Memory = None
self.DefaultStorage = None
self.MaxStorage = None
self.MinStorage = None
self.Qps = None
self.Conns = None
self.MongoVersionCode = None
self.MongoVersionValue = None
self.Version = None
self.EngineName = None
self.ClusterType = None
self.MinNodeNum = None
self.MaxNodeNum = None
self.MinReplicateSetNum = None
self.MaxReplicateSetNum = None
self.MinReplicateSetNodeNum = None
self.MaxReplicateSetNodeNum = None | 342,077,246,768,402,050 | :param SpecCode: 规格信息标识
:type SpecCode: str
:param Status: 规格有效标志,取值:0-停止售卖,1-开放售卖
:type Status: int
:param MachineType: 机器类型,取值:0-HIO,4-HIO10G
:type MachineType: str
:param Cpu: cpu核心数
:type Cpu: int
:param Memory: 内存规格,单位为MB
:type Memory: int
:param DefaultStorage: 默认磁盘规格,单位MB
:type DefaultStorage: int
:param MaxStorage: 最大磁盘规格,单位MB
:type MaxStorage: int
:param MinStorage: 最小磁盘规格,单位MB
:type MinStorage: int
:param Qps: 可承载qps信息
:type Qps: int
:param Conns: 连接数限制
:type Conns: int
:param MongoVersionCode: 实例mongodb版本信息
:type MongoVersionCode: str
:param MongoVersionValue: 实例mongodb版本号
:type MongoVersionValue: int
:param Version: 实例mongodb版本号(短)
:type Version: str
:param EngineName: 存储引擎
:type EngineName: str
:param ClusterType: 集群类型,取值:1-分片集群,0-副本集集群
:type ClusterType: int
:param MinNodeNum: 最小副本集从节点数
:type MinNodeNum: int
:param MaxNodeNum: 最大副本集从节点数
:type MaxNodeNum: int
:param MinReplicateSetNum: 最小分片数
:type MinReplicateSetNum: int
:param MaxReplicateSetNum: 最大分片数
:type MaxReplicateSetNum: int
:param MinReplicateSetNodeNum: 最小分片从节点数
:type MinReplicateSetNodeNum: int
:param MaxReplicateSetNodeNum: 最大分片从节点数
:type MaxReplicateSetNodeNum: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param SpecCode: 规格信息标识\n :type SpecCode: str\n :param Status: 规格有效标志,取值:0-停止售卖,1-开放售卖\n :type Status: int\n :param MachineType: 机器类型,取值:0-HIO,4-HIO10G\n :type MachineType: str\n :param Cpu: cpu核心数\n :type Cpu: int\n :param Memory: 内存规格,单位为MB\n :type Memory: int\n :param DefaultStorage: 默认磁盘规格,单位MB\n :type DefaultStorage: int\n :param MaxStorage: 最大磁盘规格,单位MB\n :type MaxStorage: int\n :param MinStorage: 最小磁盘规格,单位MB\n :type MinStorage: int\n :param Qps: 可承载qps信息\n :type Qps: int\n :param Conns: 连接数限制\n :type Conns: int\n :param MongoVersionCode: 实例mongodb版本信息\n :type MongoVersionCode: str\n :param MongoVersionValue: 实例mongodb版本号\n :type MongoVersionValue: int\n :param Version: 实例mongodb版本号(短)\n :type Version: str\n :param EngineName: 存储引擎\n :type EngineName: str\n :param ClusterType: 集群类型,取值:1-分片集群,0-副本集集群\n :type ClusterType: int\n :param MinNodeNum: 最小副本集从节点数\n :type MinNodeNum: int\n :param MaxNodeNum: 最大副本集从节点数\n :type MaxNodeNum: int\n :param MinReplicateSetNum: 最小分片数\n :type MinReplicateSetNum: int\n :param MaxReplicateSetNum: 最大分片数\n :type MaxReplicateSetNum: int\n :param MinReplicateSetNodeNum: 最小分片从节点数\n :type MinReplicateSetNodeNum: int\n :param MaxReplicateSetNodeNum: 最大分片从节点数\n :type MaxReplicateSetNodeNum: int\n '
self.SpecCode = None
self.Status = None
self.MachineType = None
self.Cpu = None
self.Memory = None
self.DefaultStorage = None
self.MaxStorage = None
self.MinStorage = None
self.Qps = None
self.Conns = None
self.MongoVersionCode = None
self.MongoVersionValue = None
self.Version = None
self.EngineName = None
self.ClusterType = None
self.MinNodeNum = None
self.MaxNodeNum = None
self.MinReplicateSetNum = None
self.MaxReplicateSetNum = None
self.MinReplicateSetNodeNum = None
self.MaxReplicateSetNodeNum = None |
def __init__(self):
'\n :param Region: 地域信息\n :type Region: str\n :param Zone: 可用区信息\n :type Zone: str\n :param SpecItems: 售卖规格信息\n :type SpecItems: list of SpecItem\n '
self.Region = None
self.Zone = None
self.SpecItems = None | 2,896,008,479,591,454,700 | :param Region: 地域信息
:type Region: str
:param Zone: 可用区信息
:type Zone: str
:param SpecItems: 售卖规格信息
:type SpecItems: list of SpecItem | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param Region: 地域信息\n :type Region: str\n :param Zone: 可用区信息\n :type Zone: str\n :param SpecItems: 售卖规格信息\n :type SpecItems: list of SpecItem\n '
self.Region = None
self.Zone = None
self.SpecItems = None |
def __init__(self):
'\n :param TagKey: 标签Key值\n :type TagKey: str\n :param TagValue: 标签值\n :type TagValue: str\n '
self.TagKey = None
self.TagValue = None | 2,818,798,211,660,525,600 | :param TagKey: 标签Key值
:type TagKey: str
:param TagValue: 标签值
:type TagValue: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param TagKey: 标签Key值\n :type TagKey: str\n :param TagValue: 标签值\n :type TagValue: str\n '
self.TagKey = None
self.TagValue = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。\n :type InstanceId: str\n '
self.InstanceId = None | -4,814,981,435,062,103,000 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。
:type InstanceId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。\n :type InstanceId: str\n '
self.InstanceId = None |
def __init__(self):
'\n :param AsyncRequestId: 订单ID,表示注销实例成功\n :type AsyncRequestId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.AsyncRequestId = None
self.RequestId = None | 1,323,675,753,685,545,500 | :param AsyncRequestId: 订单ID,表示注销实例成功
:type AsyncRequestId: str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param AsyncRequestId: 订单ID,表示注销实例成功\n :type AsyncRequestId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.AsyncRequestId = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5\n :type InstanceId: str\n :param Memory: 升级后的内存大小,单位:GB\n :type Memory: int\n :param Volume: 升级后的硬盘大小,单位:GB\n :type Volume: int\n :param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%\n :type OplogSize: int\n '
self.InstanceId = None
self.Memory = None
self.Volume = None
self.OplogSize = None | -4,952,864,791,188,179,000 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5
:type InstanceId: str
:param Memory: 升级后的内存大小,单位:GB
:type Memory: int
:param Volume: 升级后的硬盘大小,单位:GB
:type Volume: int
:param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%
:type OplogSize: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5\n :type InstanceId: str\n :param Memory: 升级后的内存大小,单位:GB\n :type Memory: int\n :param Volume: 升级后的硬盘大小,单位:GB\n :type Volume: int\n :param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%\n :type OplogSize: int\n '
self.InstanceId = None
self.Memory = None
self.Volume = None
self.OplogSize = None |
def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.RequestId = None | 4,609,315,430,297,468,400 | :param DealId: 订单ID
:type DealId: str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.RequestId = None |
def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param Memory: 升级后的内存大小,单位:GB\n :type Memory: int\n :param Volume: 升级后的硬盘大小,单位:GB\n :type Volume: int\n :param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%\n :type OplogSize: int\n '
self.InstanceId = None
self.Memory = None
self.Volume = None
self.OplogSize = None | 3,858,098,735,489,418,000 | :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同
:type InstanceId: str
:param Memory: 升级后的内存大小,单位:GB
:type Memory: int
:param Volume: 升级后的硬盘大小,单位:GB
:type Volume: int
:param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%
:type OplogSize: int | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param InstanceId: 实例ID,格式如:cmgo-p8vnipr5。与云数据库控制台页面中显示的实例ID相同\n :type InstanceId: str\n :param Memory: 升级后的内存大小,单位:GB\n :type Memory: int\n :param Volume: 升级后的硬盘大小,单位:GB\n :type Volume: int\n :param OplogSize: 升级后oplog的大小,单位:GB,默认为磁盘空间的10%,允许设置的最小值为磁盘的10%,最大值为磁盘的90%\n :type OplogSize: int\n '
self.InstanceId = None
self.Memory = None
self.Volume = None
self.OplogSize = None |
def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.RequestId = None | 4,609,315,430,297,468,400 | :param DealId: 订单ID
:type DealId: str
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | tencentcloud/mongodb/v20180408/models.py | __init__ | qin5506/tencentcloud-sdk-python | python | def __init__(self):
'\n :param DealId: 订单ID\n :type DealId: str\n :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。\n :type RequestId: str\n '
self.DealId = None
self.RequestId = None |
def __init__(self, row, to_account):
'Build a Skype Event from a single row.\n\n Args:\n row: A row object (instance of sqlite3.Row) that contains the\n extracted data from a single row in the database.\n to_account: A string containing the accounts (excluding the\n author) of the conversation.\n '
super(SkypeChatEvent, self).__init__(row['timestamp'], u'Chat from Skype', self.DATA_TYPE)
self.title = row['title']
self.text = row['body_xml']
self.from_account = u'{0:s} <{1:s}>'.format(row['from_displayname'], row['author'])
self.to_account = to_account | -2,209,459,207,477,835,500 | Build a Skype Event from a single row.
Args:
row: A row object (instance of sqlite3.Row) that contains the
extracted data from a single row in the database.
to_account: A string containing the accounts (excluding the
author) of the conversation. | plaso/parsers/sqlite_plugins/skype.py | __init__ | Defense-Cyber-Crime-Center/plaso | python | def __init__(self, row, to_account):
'Build a Skype Event from a single row.\n\n Args:\n row: A row object (instance of sqlite3.Row) that contains the\n extracted data from a single row in the database.\n to_account: A string containing the accounts (excluding the\n author) of the conversation.\n '
super(SkypeChatEvent, self).__init__(row['timestamp'], u'Chat from Skype', self.DATA_TYPE)
self.title = row['title']
self.text = row['body_xml']
self.from_account = u'{0:s} <{1:s}>'.format(row['from_displayname'], row['author'])
self.to_account = to_account |
def __init__(self, timestamp, usage, identifier, full_name, display_name, email, country):
'Initialize the event.\n\n Args:\n timestamp: The POSIX timestamp value.\n usage: A string containing the description string of the timestamp.\n identifier: The row identifier.\n full_name: A string containing the full name of the Skype account holder.\n display_name: A string containing the chosen display name of the account\n holder.\n email: A string containing the registered email address of the account\n holder.\n country: A string containing the chosen home country of the account\n holder.\n '
super(SkypeAccountEvent, self).__init__(timestamp, usage)
self.offset = identifier
self.username = u'{0:s} <{1:s}>'.format(full_name, display_name)
self.display_name = display_name
self.email = email
self.country = country
self.data_type = self.DATA_TYPE | -1,848,867,815,453,986,800 | Initialize the event.
Args:
timestamp: The POSIX timestamp value.
usage: A string containing the description string of the timestamp.
identifier: The row identifier.
full_name: A string containing the full name of the Skype account holder.
display_name: A string containing the chosen display name of the account
holder.
email: A string containing the registered email address of the account
holder.
country: A string containing the chosen home country of the account
holder. | plaso/parsers/sqlite_plugins/skype.py | __init__ | Defense-Cyber-Crime-Center/plaso | python | def __init__(self, timestamp, usage, identifier, full_name, display_name, email, country):
'Initialize the event.\n\n Args:\n timestamp: The POSIX timestamp value.\n usage: A string containing the description string of the timestamp.\n identifier: The row identifier.\n full_name: A string containing the full name of the Skype account holder.\n display_name: A string containing the chosen display name of the account\n holder.\n email: A string containing the registered email address of the account\n holder.\n country: A string containing the chosen home country of the account\n holder.\n '
super(SkypeAccountEvent, self).__init__(timestamp, usage)
self.offset = identifier
self.username = u'{0:s} <{1:s}>'.format(full_name, display_name)
self.display_name = display_name
self.email = email
self.country = country
self.data_type = self.DATA_TYPE |
def __init__(self, row, dst_number):
"Read the information related with the SMS.\n\n Args:\n row: row form the sql query.\n row['time_sms']: timestamp when the sms was send.\n row['dstnum_sms']: number which receives the sms.\n row['msg_sms']: text send to this sms.\n dst_number: phone number where the user send the sms.\n "
super(SkypeSMSEvent, self).__init__(row['time_sms'], u'SMS from Skype', self.DATA_TYPE)
self.number = dst_number
self.text = row['msg_sms'] | 7,238,326,909,042,559,000 | Read the information related with the SMS.
Args:
row: row form the sql query.
row['time_sms']: timestamp when the sms was send.
row['dstnum_sms']: number which receives the sms.
row['msg_sms']: text send to this sms.
dst_number: phone number where the user send the sms. | plaso/parsers/sqlite_plugins/skype.py | __init__ | Defense-Cyber-Crime-Center/plaso | python | def __init__(self, row, dst_number):
"Read the information related with the SMS.\n\n Args:\n row: row form the sql query.\n row['time_sms']: timestamp when the sms was send.\n row['dstnum_sms']: number which receives the sms.\n row['msg_sms']: text send to this sms.\n dst_number: phone number where the user send the sms.\n "
super(SkypeSMSEvent, self).__init__(row['time_sms'], u'SMS from Skype', self.DATA_TYPE)
self.number = dst_number
self.text = row['msg_sms'] |
def __init__(self, timestamp, call_type, user_start_call, source, destination, video_conference):
'Contains information if the call was cancelled, accepted or finished.\n\n Args:\n timestamp: the timestamp of the event.\n call_type: WAITING, STARTED, FINISHED.\n user_start_call: boolean, true indicates that the owner\n account started the call.\n source: the account which started the call.\n destination: the account which gets the call.\n video_conference: boolean, if is true it was a videoconference.\n '
super(SkypeCallEvent, self).__init__(timestamp, u'Call from Skype', self.DATA_TYPE)
self.call_type = call_type
self.user_start_call = user_start_call
self.src_call = source
self.dst_call = destination
self.video_conference = video_conference | 3,729,223,191,627,515,400 | Contains information if the call was cancelled, accepted or finished.
Args:
timestamp: the timestamp of the event.
call_type: WAITING, STARTED, FINISHED.
user_start_call: boolean, true indicates that the owner
account started the call.
source: the account which started the call.
destination: the account which gets the call.
video_conference: boolean, if is true it was a videoconference. | plaso/parsers/sqlite_plugins/skype.py | __init__ | Defense-Cyber-Crime-Center/plaso | python | def __init__(self, timestamp, call_type, user_start_call, source, destination, video_conference):
'Contains information if the call was cancelled, accepted or finished.\n\n Args:\n timestamp: the timestamp of the event.\n call_type: WAITING, STARTED, FINISHED.\n user_start_call: boolean, true indicates that the owner\n account started the call.\n source: the account which started the call.\n destination: the account which gets the call.\n video_conference: boolean, if is true it was a videoconference.\n '
super(SkypeCallEvent, self).__init__(timestamp, u'Call from Skype', self.DATA_TYPE)
self.call_type = call_type
self.user_start_call = user_start_call
self.src_call = source
self.dst_call = destination
self.video_conference = video_conference |
def __init__(self, row, timestamp, action_type, source, destination):
'Actions related with sending files.\n\n Args:\n row:\n filepath: path from the file.\n filename: name of the file.\n filesize: size of the file.\n timestamp: when the action happens.\n action_type: GETSOLICITUDE, SENDSOLICITUDE, ACCEPTED, FINISHED.\n source: The account that sent the file.\n destination: The account that received the file.\n '
super(SkypeTransferFileEvent, self).__init__(timestamp, u'File transfer from Skype', self.DATA_TYPE)
self.offset = row['id']
self.action_type = action_type
self.source = source
self.destination = destination
self.transferred_filepath = row['filepath']
self.transferred_filename = row['filename']
try:
self.transferred_filesize = int(row['filesize'])
except ValueError:
logging.debug(u'Unknown filesize {0:s}'.format(self.transferred_filename))
self.transferred_filesize = 0 | -365,589,398,346,313,150 | Actions related with sending files.
Args:
row:
filepath: path from the file.
filename: name of the file.
filesize: size of the file.
timestamp: when the action happens.
action_type: GETSOLICITUDE, SENDSOLICITUDE, ACCEPTED, FINISHED.
source: The account that sent the file.
destination: The account that received the file. | plaso/parsers/sqlite_plugins/skype.py | __init__ | Defense-Cyber-Crime-Center/plaso | python | def __init__(self, row, timestamp, action_type, source, destination):
'Actions related with sending files.\n\n Args:\n row:\n filepath: path from the file.\n filename: name of the file.\n filesize: size of the file.\n timestamp: when the action happens.\n action_type: GETSOLICITUDE, SENDSOLICITUDE, ACCEPTED, FINISHED.\n source: The account that sent the file.\n destination: The account that received the file.\n '
super(SkypeTransferFileEvent, self).__init__(timestamp, u'File transfer from Skype', self.DATA_TYPE)
self.offset = row['id']
self.action_type = action_type
self.source = source
self.destination = destination
self.transferred_filepath = row['filepath']
self.transferred_filename = row['filename']
try:
self.transferred_filesize = int(row['filesize'])
except ValueError:
logging.debug(u'Unknown filesize {0:s}'.format(self.transferred_filename))
self.transferred_filesize = 0 |
def ParseAccountInformation(self, parser_mediator, row, query=None, **unused_kwargs):
'Parses the Accounts database.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
if row['profile_timestamp']:
event_object = SkypeAccountEvent(row['profile_timestamp'], u'Profile Changed', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['authreq_timestamp']:
event_object = SkypeAccountEvent(row['authreq_timestamp'], u'Authenticate Request', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['lastonline_timestamp']:
event_object = SkypeAccountEvent(row['lastonline_timestamp'], u'Last Online', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['mood_timestamp']:
event_object = SkypeAccountEvent(row['mood_timestamp'], u'Mood Event', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['sent_authrequest_time']:
event_object = SkypeAccountEvent(row['sent_authrequest_time'], u'Auth Request Sent', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['lastused_timestamp']:
event_object = SkypeAccountEvent(row['lastused_timestamp'], u'Last Used', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query) | 1,106,927,174,727,200,300 | Parses the Accounts database.
Args:
parser_mediator: A parser mediator object (instance of ParserMediator).
row: The row resulting from the query.
query: Optional query string. The default is None. | plaso/parsers/sqlite_plugins/skype.py | ParseAccountInformation | Defense-Cyber-Crime-Center/plaso | python | def ParseAccountInformation(self, parser_mediator, row, query=None, **unused_kwargs):
'Parses the Accounts database.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
if row['profile_timestamp']:
event_object = SkypeAccountEvent(row['profile_timestamp'], u'Profile Changed', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['authreq_timestamp']:
event_object = SkypeAccountEvent(row['authreq_timestamp'], u'Authenticate Request', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['lastonline_timestamp']:
event_object = SkypeAccountEvent(row['lastonline_timestamp'], u'Last Online', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['mood_timestamp']:
event_object = SkypeAccountEvent(row['mood_timestamp'], u'Mood Event', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['sent_authrequest_time']:
event_object = SkypeAccountEvent(row['sent_authrequest_time'], u'Auth Request Sent', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query)
if row['lastused_timestamp']:
event_object = SkypeAccountEvent(row['lastused_timestamp'], u'Last Used', row['id'], row['fullname'], row['given_displayname'], row['emails'], row['country'])
parser_mediator.ProduceEvent(event_object, query=query) |
def ParseChat(self, parser_mediator, row, query=None, **unused_kwargs):
'Parses a chat message row.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
to_account = u''
accounts = []
participants = row['participants'].split(' ')
for participant in participants:
if (participant != row['author']):
accounts.append(participant)
to_account = u', '.join(accounts)
if (not to_account):
if row['dialog_partner']:
to_account = row['dialog_partner']
else:
to_account = u'Unknown User'
event_object = SkypeChatEvent(row, to_account)
parser_mediator.ProduceEvent(event_object, query=query) | 4,747,559,496,911,788,000 | Parses a chat message row.
Args:
parser_mediator: A parser mediator object (instance of ParserMediator).
row: The row resulting from the query.
query: Optional query string. The default is None. | plaso/parsers/sqlite_plugins/skype.py | ParseChat | Defense-Cyber-Crime-Center/plaso | python | def ParseChat(self, parser_mediator, row, query=None, **unused_kwargs):
'Parses a chat message row.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
to_account = u
accounts = []
participants = row['participants'].split(' ')
for participant in participants:
if (participant != row['author']):
accounts.append(participant)
to_account = u', '.join(accounts)
if (not to_account):
if row['dialog_partner']:
to_account = row['dialog_partner']
else:
to_account = u'Unknown User'
event_object = SkypeChatEvent(row, to_account)
parser_mediator.ProduceEvent(event_object, query=query) |
def ParseSMS(self, parser_mediator, row, query=None, **unused_kwargs):
'Parse SMS.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
dst_number = row['dstnum_sms'].replace(u' ', u'')
event_object = SkypeSMSEvent(row, dst_number)
parser_mediator.ProduceEvent(event_object, query=query) | 8,635,166,024,142,017,000 | Parse SMS.
Args:
parser_mediator: A parser mediator object (instance of ParserMediator).
row: The row resulting from the query.
query: Optional query string. The default is None. | plaso/parsers/sqlite_plugins/skype.py | ParseSMS | Defense-Cyber-Crime-Center/plaso | python | def ParseSMS(self, parser_mediator, row, query=None, **unused_kwargs):
'Parse SMS.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
dst_number = row['dstnum_sms'].replace(u' ', u)
event_object = SkypeSMSEvent(row, dst_number)
parser_mediator.ProduceEvent(event_object, query=query) |
def ParseCall(self, parser_mediator, row, query=None, **unused_kwargs):
'Parse the calls taking into accounts some rows.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
try:
aux = row['guid']
if aux:
aux_list = aux.split(u'-')
src_aux = aux_list[0]
dst_aux = aux_list[1]
else:
src_aux = u'Unknown [no GUID]'
dst_aux = u'Unknown [no GUID]'
except IndexError:
src_aux = u'Unknown [{0:s}]'.format(row['guid'])
dst_aux = u'Unknown [{0:s}]'.format(row['guid'])
if (row['is_incoming'] == u'0'):
user_start_call = True
source = src_aux
if row['ip_address']:
destination = u'{0:s} <{1:s}>'.format(dst_aux, row['ip_address'])
else:
destination = dst_aux
else:
user_start_call = False
source = src_aux
destination = dst_aux
if (row['videostatus'] == u'3'):
video_conference = True
else:
video_conference = False
event_object = SkypeCallEvent(row['try_call'], u'WAITING', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
if row['accept_call']:
event_object = SkypeCallEvent(row['accept_call'], u'ACCEPTED', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
if row['call_duration']:
try:
timestamp = (int(row['accept_call']) + int(row['call_duration']))
event_object = SkypeCallEvent(timestamp, u'FINISHED', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
except ValueError:
logging.debug(u'[{0:s}] Unable to determine when the call {1:s} was finished.'.format(self.NAME, row['id'])) | 3,052,790,095,354,990,600 | Parse the calls taking into accounts some rows.
Args:
parser_mediator: A parser mediator object (instance of ParserMediator).
row: The row resulting from the query.
query: Optional query string. The default is None. | plaso/parsers/sqlite_plugins/skype.py | ParseCall | Defense-Cyber-Crime-Center/plaso | python | def ParseCall(self, parser_mediator, row, query=None, **unused_kwargs):
'Parse the calls taking into accounts some rows.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: The row resulting from the query.\n query: Optional query string. The default is None.\n '
try:
aux = row['guid']
if aux:
aux_list = aux.split(u'-')
src_aux = aux_list[0]
dst_aux = aux_list[1]
else:
src_aux = u'Unknown [no GUID]'
dst_aux = u'Unknown [no GUID]'
except IndexError:
src_aux = u'Unknown [{0:s}]'.format(row['guid'])
dst_aux = u'Unknown [{0:s}]'.format(row['guid'])
if (row['is_incoming'] == u'0'):
user_start_call = True
source = src_aux
if row['ip_address']:
destination = u'{0:s} <{1:s}>'.format(dst_aux, row['ip_address'])
else:
destination = dst_aux
else:
user_start_call = False
source = src_aux
destination = dst_aux
if (row['videostatus'] == u'3'):
video_conference = True
else:
video_conference = False
event_object = SkypeCallEvent(row['try_call'], u'WAITING', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
if row['accept_call']:
event_object = SkypeCallEvent(row['accept_call'], u'ACCEPTED', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
if row['call_duration']:
try:
timestamp = (int(row['accept_call']) + int(row['call_duration']))
event_object = SkypeCallEvent(timestamp, u'FINISHED', user_start_call, source, destination, video_conference)
parser_mediator.ProduceEvent(event_object, query=query)
except ValueError:
logging.debug(u'[{0:s}] Unable to determine when the call {1:s} was finished.'.format(self.NAME, row['id'])) |
def ParseFileTransfer(self, parser_mediator, row, cache=None, database=None, query=None, **unused_kwargs):
'Parse the transfer files.\n\n There is no direct relationship between who sends the file and\n who accepts the file.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: the row with all information related with the file transfers.\n query: Optional query string. The default is None.\n cache: a cache object (instance of SQLiteCache).\n database: A database object (instance of SQLiteDatabase).\n '
source_dict = cache.GetResults(u'source')
if (not source_dict):
cursor = database.cursor
results = cursor.execute(self.QUERY_SOURCE_FROM_TRANSFER)
cache.CacheQueryResults(results, 'source', 'pk_id', ('skypeid', 'skypename'))
source_dict = cache.GetResults(u'source')
dest_dict = cache.GetResults(u'destination')
if (not dest_dict):
cursor = database.cursor
results = cursor.execute(self.QUERY_DEST_FROM_TRANSFER)
cache.CacheQueryResults(results, 'destination', 'parent_id', ('skypeid', 'skypename'))
dest_dict = cache.GetResults(u'destination')
source = u'Unknown'
destination = u'Unknown'
if row['parent_id']:
destination = u'{0:s} <{1:s}>'.format(row['partner_handle'], row['partner_dispname'])
(skype_id, skype_name) = source_dict.get(row['parent_id'], [None, None])
if skype_name:
source = u'{0:s} <{1:s}>'.format(skype_id, skype_name)
else:
source = u'{0:s} <{1:s}>'.format(row['partner_handle'], row['partner_dispname'])
if row['pk_id']:
(skype_id, skype_name) = dest_dict.get(row['pk_id'], [None, None])
if skype_name:
destination = u'{0:s} <{1:s}>'.format(skype_id, skype_name)
if (row['status'] == 8):
if row['starttime']:
event_object = SkypeTransferFileEvent(row, row['starttime'], u'GETSOLICITUDE', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
if row['accepttime']:
event_object = SkypeTransferFileEvent(row, row['accepttime'], u'ACCEPTED', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
if row['finishtime']:
event_object = SkypeTransferFileEvent(row, row['finishtime'], u'FINISHED', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
elif ((row['status'] == 2) and row['starttime']):
event_object = SkypeTransferFileEvent(row, row['starttime'], u'SENDSOLICITUDE', source, destination)
parser_mediator.ProduceEvent(event_object, query=query) | -4,675,259,592,888,954,000 | Parse the transfer files.
There is no direct relationship between who sends the file and
who accepts the file.
Args:
parser_mediator: A parser mediator object (instance of ParserMediator).
row: the row with all information related with the file transfers.
query: Optional query string. The default is None.
cache: a cache object (instance of SQLiteCache).
database: A database object (instance of SQLiteDatabase). | plaso/parsers/sqlite_plugins/skype.py | ParseFileTransfer | Defense-Cyber-Crime-Center/plaso | python | def ParseFileTransfer(self, parser_mediator, row, cache=None, database=None, query=None, **unused_kwargs):
'Parse the transfer files.\n\n There is no direct relationship between who sends the file and\n who accepts the file.\n\n Args:\n parser_mediator: A parser mediator object (instance of ParserMediator).\n row: the row with all information related with the file transfers.\n query: Optional query string. The default is None.\n cache: a cache object (instance of SQLiteCache).\n database: A database object (instance of SQLiteDatabase).\n '
source_dict = cache.GetResults(u'source')
if (not source_dict):
cursor = database.cursor
results = cursor.execute(self.QUERY_SOURCE_FROM_TRANSFER)
cache.CacheQueryResults(results, 'source', 'pk_id', ('skypeid', 'skypename'))
source_dict = cache.GetResults(u'source')
dest_dict = cache.GetResults(u'destination')
if (not dest_dict):
cursor = database.cursor
results = cursor.execute(self.QUERY_DEST_FROM_TRANSFER)
cache.CacheQueryResults(results, 'destination', 'parent_id', ('skypeid', 'skypename'))
dest_dict = cache.GetResults(u'destination')
source = u'Unknown'
destination = u'Unknown'
if row['parent_id']:
destination = u'{0:s} <{1:s}>'.format(row['partner_handle'], row['partner_dispname'])
(skype_id, skype_name) = source_dict.get(row['parent_id'], [None, None])
if skype_name:
source = u'{0:s} <{1:s}>'.format(skype_id, skype_name)
else:
source = u'{0:s} <{1:s}>'.format(row['partner_handle'], row['partner_dispname'])
if row['pk_id']:
(skype_id, skype_name) = dest_dict.get(row['pk_id'], [None, None])
if skype_name:
destination = u'{0:s} <{1:s}>'.format(skype_id, skype_name)
if (row['status'] == 8):
if row['starttime']:
event_object = SkypeTransferFileEvent(row, row['starttime'], u'GETSOLICITUDE', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
if row['accepttime']:
event_object = SkypeTransferFileEvent(row, row['accepttime'], u'ACCEPTED', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
if row['finishtime']:
event_object = SkypeTransferFileEvent(row, row['finishtime'], u'FINISHED', source, destination)
parser_mediator.ProduceEvent(event_object, query=query)
elif ((row['status'] == 2) and row['starttime']):
event_object = SkypeTransferFileEvent(row, row['starttime'], u'SENDSOLICITUDE', source, destination)
parser_mediator.ProduceEvent(event_object, query=query) |
def searchable(self):
'Enable search line edit visible.'
self._search_line_edit.setVisible(True)
return self | -8,225,402,888,302,331,000 | Enable search line edit visible. | dayu_widgets/item_view_set.py | searchable | kanbang/dayu_widgets | python | def searchable(self):
self._search_line_edit.setVisible(True)
return self |
def setUp(self):
'\n Set up method to run before each test case\n '
self.new_user = credentials('Paul', '123') | 4,424,100,375,332,029,000 | Set up method to run before each test case | credentials_test.py | setUp | paulmunyao/Password-Locker | python | def setUp(self):
'\n \n '
self.new_user = credentials('Paul', '123') |
def test__init__(self):
'\n test__init__ test case to test if the object is initialized properly\n '
self.assertEqual(self.new_user.user_name, 'Paul')
self.assertEqual(self.new_user.password, '123') | 734,204,525,461,232,000 | test__init__ test case to test if the object is initialized properly | credentials_test.py | test__init__ | paulmunyao/Password-Locker | python | def test__init__(self):
'\n \n '
self.assertEqual(self.new_user.user_name, 'Paul')
self.assertEqual(self.new_user.password, '123') |
def test__save_user(self):
'\n test to see if the user is saved\n '
self.new_credentials.save_credentials()
self.assertEqual(len(credentials.user_list), 1) | -8,293,255,632,897,053,000 | test to see if the user is saved | credentials_test.py | test__save_user | paulmunyao/Password-Locker | python | def test__save_user(self):
'\n \n '
self.new_credentials.save_credentials()
self.assertEqual(len(credentials.user_list), 1) |
@property
def verbosity(self) -> Verbosity:
"\n Verbosity level (default `warning`)\n\n Level 0: only show 'error' messages.\n Level 1: also show 'warning' messages.\n Level 2: also show 'info' messages.\n Level 3: also show 'hint' messages.\n Level 4: also show very detailed progress for 'debug'ging.\n "
return self._verbosity | 6,424,720,869,344,444,000 | Verbosity level (default `warning`)
Level 0: only show 'error' messages.
Level 1: also show 'warning' messages.
Level 2: also show 'info' messages.
Level 3: also show 'hint' messages.
Level 4: also show very detailed progress for 'debug'ging. | scanpy/_settings.py | verbosity | gamazeps/scanpy | python | @property
def verbosity(self) -> Verbosity:
"\n Verbosity level (default `warning`)\n\n Level 0: only show 'error' messages.\n Level 1: also show 'warning' messages.\n Level 2: also show 'info' messages.\n Level 3: also show 'hint' messages.\n Level 4: also show very detailed progress for 'debug'ging.\n "
return self._verbosity |
@property
def plot_suffix(self) -> str:
'Global suffix that is appended to figure filenames.\n '
return self._plot_suffix | 3,859,983,572,578,482,000 | Global suffix that is appended to figure filenames. | scanpy/_settings.py | plot_suffix | gamazeps/scanpy | python | @property
def plot_suffix(self) -> str:
'\n '
return self._plot_suffix |
@property
def file_format_data(self) -> str:
"File format for saving AnnData objects.\n\n Allowed are 'txt', 'csv' (comma separated value file) for exporting and 'h5ad'\n (hdf5) for lossless saving.\n "
return self._file_format_data | -3,070,800,732,118,796,300 | File format for saving AnnData objects.
Allowed are 'txt', 'csv' (comma separated value file) for exporting and 'h5ad'
(hdf5) for lossless saving. | scanpy/_settings.py | file_format_data | gamazeps/scanpy | python | @property
def file_format_data(self) -> str:
"File format for saving AnnData objects.\n\n Allowed are 'txt', 'csv' (comma separated value file) for exporting and 'h5ad'\n (hdf5) for lossless saving.\n "
return self._file_format_data |
@property
def file_format_figs(self) -> str:
"File format for saving figures.\n\n For example 'png', 'pdf' or 'svg'. Many other formats work as well (see\n `matplotlib.pyplot.savefig`).\n "
return self._file_format_figs | -1,319,306,077,014,287,400 | File format for saving figures.
For example 'png', 'pdf' or 'svg'. Many other formats work as well (see
`matplotlib.pyplot.savefig`). | scanpy/_settings.py | file_format_figs | gamazeps/scanpy | python | @property
def file_format_figs(self) -> str:
"File format for saving figures.\n\n For example 'png', 'pdf' or 'svg'. Many other formats work as well (see\n `matplotlib.pyplot.savefig`).\n "
return self._file_format_figs |
@property
def autosave(self) -> bool:
' Automatically save figures in :attr:`~scanpy._settings.ScanpyConfig.figdir` (default `False`).\n\n Do not show plots/figures interactively.\n '
return self._autosave | 3,660,266,334,677,051,400 | Automatically save figures in :attr:`~scanpy._settings.ScanpyConfig.figdir` (default `False`).
Do not show plots/figures interactively. | scanpy/_settings.py | autosave | gamazeps/scanpy | python | @property
def autosave(self) -> bool:
' Automatically save figures in :attr:`~scanpy._settings.ScanpyConfig.figdir` (default `False`).\n\n Do not show plots/figures interactively.\n '
return self._autosave |
@property
def autoshow(self) -> bool:
' Automatically show figures if `autosave == False` (default `True`).\n\n There is no need to call the matplotlib pl.show() in this case.\n '
return self._autoshow | -6,447,307,756,049,594,000 | Automatically show figures if `autosave == False` (default `True`).
There is no need to call the matplotlib pl.show() in this case. | scanpy/_settings.py | autoshow | gamazeps/scanpy | python | @property
def autoshow(self) -> bool:
' Automatically show figures if `autosave == False` (default `True`).\n\n There is no need to call the matplotlib pl.show() in this case.\n '
return self._autoshow |
@property
def writedir(self) -> Path:
' Directory where the function scanpy.write writes to by default.\n '
return self._writedir | -5,245,418,655,141,521,000 | Directory where the function scanpy.write writes to by default. | scanpy/_settings.py | writedir | gamazeps/scanpy | python | @property
def writedir(self) -> Path:
' \n '
return self._writedir |
@property
def cachedir(self) -> Path:
" Directory for cache files (default `'./cache/'`).\n "
return self._cachedir | -1,021,373,160,847,789,800 | Directory for cache files (default `'./cache/'`). | scanpy/_settings.py | cachedir | gamazeps/scanpy | python | @property
def cachedir(self) -> Path:
" \n "
return self._cachedir |
@property
def datasetdir(self) -> Path:
" Directory for example :mod:`~scanpy.datasets` (default `'./data/'`).\n "
return self._datasetdir | 6,038,991,707,708,268,000 | Directory for example :mod:`~scanpy.datasets` (default `'./data/'`). | scanpy/_settings.py | datasetdir | gamazeps/scanpy | python | @property
def datasetdir(self) -> Path:
" \n "
return self._datasetdir |
@property
def figdir(self) -> Path:
" Directory for saving figures (default `'./figures/'`).\n "
return self._figdir | 3,064,606,170,553,432,600 | Directory for saving figures (default `'./figures/'`). | scanpy/_settings.py | figdir | gamazeps/scanpy | python | @property
def figdir(self) -> Path:
" \n "
return self._figdir |
@property
def max_memory(self) -> Union[(int, float)]:
' Maximal memory usage in Gigabyte.\n\n Is currently not well respected....\n '
return self._max_memory | -7,489,614,085,946,220,000 | Maximal memory usage in Gigabyte.
Is currently not well respected.... | scanpy/_settings.py | max_memory | gamazeps/scanpy | python | @property
def max_memory(self) -> Union[(int, float)]:
' Maximal memory usage in Gigabyte.\n\n Is currently not well respected....\n '
return self._max_memory |
@property
def n_jobs(self) -> int:
' Default number of jobs/ CPUs to use for parallel computing.\n '
return self._n_jobs | 1,803,948,937,692,783,000 | Default number of jobs/ CPUs to use for parallel computing. | scanpy/_settings.py | n_jobs | gamazeps/scanpy | python | @property
def n_jobs(self) -> int:
' \n '
return self._n_jobs |
@property
def logpath(self) -> Optional[Path]:
' The file path `logfile` was set to.\n '
return self._logpath | -2,058,415,471,124,060,200 | The file path `logfile` was set to. | scanpy/_settings.py | logpath | gamazeps/scanpy | python | @property
def logpath(self) -> Optional[Path]:
' \n '
return self._logpath |
@property
def logfile(self) -> TextIO:
" The open file to write logs to.\n\n Set it to a :class:`~pathlib.Path` or :class:`str` to open a new one.\n The default `None` corresponds to :obj:`sys.stdout` in jupyter notebooks\n and to :obj:`sys.stderr` otherwise.\n\n For backwards compatibility, setting it to `''` behaves like setting it to `None`.\n "
return self._logfile | 629,563,856,985,492,100 | The open file to write logs to.
Set it to a :class:`~pathlib.Path` or :class:`str` to open a new one.
The default `None` corresponds to :obj:`sys.stdout` in jupyter notebooks
and to :obj:`sys.stderr` otherwise.
For backwards compatibility, setting it to `''` behaves like setting it to `None`. | scanpy/_settings.py | logfile | gamazeps/scanpy | python | @property
def logfile(self) -> TextIO:
" The open file to write logs to.\n\n Set it to a :class:`~pathlib.Path` or :class:`str` to open a new one.\n The default `None` corresponds to :obj:`sys.stdout` in jupyter notebooks\n and to :obj:`sys.stderr` otherwise.\n\n For backwards compatibility, setting it to `` behaves like setting it to `None`.\n "
return self._logfile |
@property
def categories_to_ignore(self) -> List[str]:
' Categories that are omitted in plotting etc.\n '
return self._categories_to_ignore | -7,675,846,271,189,168,000 | Categories that are omitted in plotting etc. | scanpy/_settings.py | categories_to_ignore | gamazeps/scanpy | python | @property
def categories_to_ignore(self) -> List[str]:
' \n '
return self._categories_to_ignore |
def set_figure_params(self, scanpy: bool=True, dpi: int=80, dpi_save: int=150, frameon: bool=True, vector_friendly: bool=True, fontsize: int=14, color_map: Optional[str]=None, format: Union[(str, Iterable[str])]='pdf', transparent: bool=False, ipython_format: str='png2x'):
" Set resolution/size, styling and format of figures.\n\n Parameters\n ----------\n scanpy\n Init default values for :obj:`matplotlib.rcParams` suited for Scanpy.\n dpi\n Resolution of rendered figures - this influences the size of figures in notebooks.\n dpi_save\n Resolution of saved figures. This should typically be higher to achieve\n publication quality.\n frameon\n Add frames and axes labels to scatter plots.\n vector_friendly\n Plot scatter plots using `png` backend even when exporting as `pdf` or `svg`.\n fontsize\n Set the fontsize for several `rcParams` entries. Ignored if `scanpy=False`.\n color_map\n Convenience method for setting the default color map. Ignored if `scanpy=False`.\n format: {`'png'`, `'pdf'`, `'svg'`, etc.}, optional (default: `'pdf'`)\n This sets the default format for saving figures: `file_format_figs`.\n transparent\n Save figures with transparent back ground. Sets\n `rcParams['savefig.transparent']`.\n ipython_format\n Only concerns the notebook/IPython environment; see\n :func:`~IPython.display.set_matplotlib_formats` for details.\n "
try:
import IPython
if isinstance(ipython_format, str):
ipython_format = [ipython_format]
IPython.display.set_matplotlib_formats(*ipython_format)
except Exception:
pass
from matplotlib import rcParams
self._vector_friendly = vector_friendly
self.file_format_figs = format
if (dpi is not None):
rcParams['figure.dpi'] = dpi
if (dpi_save is not None):
rcParams['savefig.dpi'] = dpi_save
if (transparent is not None):
rcParams['savefig.transparent'] = transparent
if scanpy:
from .plotting._rcmod import set_rcParams_scanpy
set_rcParams_scanpy(fontsize=fontsize, color_map=color_map)
self._frameon = frameon | 7,115,684,889,461,385,000 | Set resolution/size, styling and format of figures.
Parameters
----------
scanpy
Init default values for :obj:`matplotlib.rcParams` suited for Scanpy.
dpi
Resolution of rendered figures - this influences the size of figures in notebooks.
dpi_save
Resolution of saved figures. This should typically be higher to achieve
publication quality.
frameon
Add frames and axes labels to scatter plots.
vector_friendly
Plot scatter plots using `png` backend even when exporting as `pdf` or `svg`.
fontsize
Set the fontsize for several `rcParams` entries. Ignored if `scanpy=False`.
color_map
Convenience method for setting the default color map. Ignored if `scanpy=False`.
format: {`'png'`, `'pdf'`, `'svg'`, etc.}, optional (default: `'pdf'`)
This sets the default format for saving figures: `file_format_figs`.
transparent
Save figures with transparent back ground. Sets
`rcParams['savefig.transparent']`.
ipython_format
Only concerns the notebook/IPython environment; see
:func:`~IPython.display.set_matplotlib_formats` for details. | scanpy/_settings.py | set_figure_params | gamazeps/scanpy | python | def set_figure_params(self, scanpy: bool=True, dpi: int=80, dpi_save: int=150, frameon: bool=True, vector_friendly: bool=True, fontsize: int=14, color_map: Optional[str]=None, format: Union[(str, Iterable[str])]='pdf', transparent: bool=False, ipython_format: str='png2x'):
" Set resolution/size, styling and format of figures.\n\n Parameters\n ----------\n scanpy\n Init default values for :obj:`matplotlib.rcParams` suited for Scanpy.\n dpi\n Resolution of rendered figures - this influences the size of figures in notebooks.\n dpi_save\n Resolution of saved figures. This should typically be higher to achieve\n publication quality.\n frameon\n Add frames and axes labels to scatter plots.\n vector_friendly\n Plot scatter plots using `png` backend even when exporting as `pdf` or `svg`.\n fontsize\n Set the fontsize for several `rcParams` entries. Ignored if `scanpy=False`.\n color_map\n Convenience method for setting the default color map. Ignored if `scanpy=False`.\n format: {`'png'`, `'pdf'`, `'svg'`, etc.}, optional (default: `'pdf'`)\n This sets the default format for saving figures: `file_format_figs`.\n transparent\n Save figures with transparent back ground. Sets\n `rcParams['savefig.transparent']`.\n ipython_format\n Only concerns the notebook/IPython environment; see\n :func:`~IPython.display.set_matplotlib_formats` for details.\n "
try:
import IPython
if isinstance(ipython_format, str):
ipython_format = [ipython_format]
IPython.display.set_matplotlib_formats(*ipython_format)
except Exception:
pass
from matplotlib import rcParams
self._vector_friendly = vector_friendly
self.file_format_figs = format
if (dpi is not None):
rcParams['figure.dpi'] = dpi
if (dpi_save is not None):
rcParams['savefig.dpi'] = dpi_save
if (transparent is not None):
rcParams['savefig.transparent'] = transparent
if scanpy:
from .plotting._rcmod import set_rcParams_scanpy
set_rcParams_scanpy(fontsize=fontsize, color_map=color_map)
self._frameon = frameon |
@staticmethod
def _is_run_from_ipython():
'Determines whether run from Ipython.\n\n Only affects progress bars.\n '
try:
__IPYTHON__
return True
except NameError:
return False | -3,831,951,316,772,162,000 | Determines whether run from Ipython.
Only affects progress bars. | scanpy/_settings.py | _is_run_from_ipython | gamazeps/scanpy | python | @staticmethod
def _is_run_from_ipython():
'Determines whether run from Ipython.\n\n Only affects progress bars.\n '
try:
__IPYTHON__
return True
except NameError:
return False |
def fps(src: torch.Tensor, batch=None, ratio=None, random_start=True):
'"A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature\n Learning on Point Sets in a Metric Space"\n <https://arxiv.org/abs/1706.02413>`_ paper, which iteratively samples the\n most distant point with regard to the rest points.\n\n Args:\n src (Tensor): Point feature matrix\n :math:`\\mathbf{X} \\in \\mathbb{R}^{N \\times F}`.\n batch (LongTensor, optional): Batch vector\n :math:`\\mathbf{b} \\in {\\{ 0, \\ldots, B-1\\}}^N`, which assigns each\n node to a specific example. (default: :obj:`None`)\n ratio (float or Tensor, optional): Sampling ratio.\n (default: :obj:`0.5`)\n random_start (bool, optional): If set to :obj:`False`, use the first\n node in :math:`\\mathbf{X}` as starting node. (default: obj:`True`)\n\n :rtype: :class:`LongTensor`\n\n\n .. code-block:: python\n\n import torch\n from torch_cluster import fps\n\n src = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])\n batch = torch.tensor([0, 0, 0, 0])\n index = fps(src, batch, ratio=0.5)\n '
r: Optional[Tensor] = None
if (ratio is None):
r = torch.tensor(0.5, dtype=src.dtype, device=src.device)
elif isinstance(ratio, float):
r = torch.tensor(ratio, dtype=src.dtype, device=src.device)
else:
r = ratio
assert (r is not None)
if (batch is not None):
assert (src.size(0) == batch.numel())
batch_size = (int(batch.max()) + 1)
deg = src.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr = deg.new_zeros((batch_size + 1))
torch.cumsum(deg, 0, out=ptr[1:])
else:
ptr = torch.tensor([0, src.size(0)], device=src.device)
return torch.ops.torch_cluster.fps(src, ptr, r, random_start) | -3,016,408,835,132,523,000 | "A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space"
<https://arxiv.org/abs/1706.02413>`_ paper, which iteratively samples the
most distant point with regard to the rest points.
Args:
src (Tensor): Point feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
ratio (float or Tensor, optional): Sampling ratio.
(default: :obj:`0.5`)
random_start (bool, optional): If set to :obj:`False`, use the first
node in :math:`\mathbf{X}` as starting node. (default: obj:`True`)
:rtype: :class:`LongTensor`
.. code-block:: python
import torch
from torch_cluster import fps
src = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(src, batch, ratio=0.5) | torch_cluster/fps.py | fps | Hacky-DH/pytorch_cluster | python | def fps(src: torch.Tensor, batch=None, ratio=None, random_start=True):
'"A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature\n Learning on Point Sets in a Metric Space"\n <https://arxiv.org/abs/1706.02413>`_ paper, which iteratively samples the\n most distant point with regard to the rest points.\n\n Args:\n src (Tensor): Point feature matrix\n :math:`\\mathbf{X} \\in \\mathbb{R}^{N \\times F}`.\n batch (LongTensor, optional): Batch vector\n :math:`\\mathbf{b} \\in {\\{ 0, \\ldots, B-1\\}}^N`, which assigns each\n node to a specific example. (default: :obj:`None`)\n ratio (float or Tensor, optional): Sampling ratio.\n (default: :obj:`0.5`)\n random_start (bool, optional): If set to :obj:`False`, use the first\n node in :math:`\\mathbf{X}` as starting node. (default: obj:`True`)\n\n :rtype: :class:`LongTensor`\n\n\n .. code-block:: python\n\n import torch\n from torch_cluster import fps\n\n src = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])\n batch = torch.tensor([0, 0, 0, 0])\n index = fps(src, batch, ratio=0.5)\n '
r: Optional[Tensor] = None
if (ratio is None):
r = torch.tensor(0.5, dtype=src.dtype, device=src.device)
elif isinstance(ratio, float):
r = torch.tensor(ratio, dtype=src.dtype, device=src.device)
else:
r = ratio
assert (r is not None)
if (batch is not None):
assert (src.size(0) == batch.numel())
batch_size = (int(batch.max()) + 1)
deg = src.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr = deg.new_zeros((batch_size + 1))
torch.cumsum(deg, 0, out=ptr[1:])
else:
ptr = torch.tensor([0, src.size(0)], device=src.device)
return torch.ops.torch_cluster.fps(src, ptr, r, random_start) |
def request_endpoint(audio, speech_config, output_directory, lexical):
'Request the speech service endpoint\n Args:\n audio: Input data frame\n speech_config: Choice between scoring and \n output_folder: LUIS app ID\n case: LUIS subscription key\n lexical: Minimum confidence score for LUIS result, between 0.00 and 1.00\n Returns:\n df: Scoring data frame with predicted intents and scores\n Raises:\n ConnectionError: If file is not found\n '
audio_config = speechsdk.audio.AudioConfig(filename=audio)
speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
result = speech_recognizer.recognize_once()
filename = audio[(audio.rindex('\\') + 1):]
text = process_recognition(result, filename, output_directory, lexical)
return (text, filename) | 6,316,814,903,347,039,000 | Request the speech service endpoint
Args:
audio: Input data frame
speech_config: Choice between scoring and
output_folder: LUIS app ID
case: LUIS subscription key
lexical: Minimum confidence score for LUIS result, between 0.00 and 1.00
Returns:
df: Scoring data frame with predicted intents and scores
Raises:
ConnectionError: If file is not found | src/stt.py | request_endpoint | microsoft/SpeechServices | python | def request_endpoint(audio, speech_config, output_directory, lexical):
'Request the speech service endpoint\n Args:\n audio: Input data frame\n speech_config: Choice between scoring and \n output_folder: LUIS app ID\n case: LUIS subscription key\n lexical: Minimum confidence score for LUIS result, between 0.00 and 1.00\n Returns:\n df: Scoring data frame with predicted intents and scores\n Raises:\n ConnectionError: If file is not found\n '
audio_config = speechsdk.audio.AudioConfig(filename=audio)
speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
result = speech_recognizer.recognize_once()
filename = audio[(audio.rindex('\\') + 1):]
text = process_recognition(result, filename, output_directory, lexical)
return (text, filename) |
def process_recognition(result, filename, output_directory, lexical):
'Process recognition received from the speech service\n Args:\n result: Result object returned by STT-service\n filename: Filename for output file\n output_directory: Output directory for the file\n lexical: Boolean to enable extended lexical version of STT-result\n Returns:\n text: Processed recognition as string\n '
if (result.reason == speechsdk.ResultReason.RecognizedSpeech):
if lexical:
text = f"{format(result.text)} {json.loads(result.json)['NBest'][0]['Lexical']}"
else:
text = f'{format(result.text)}'
logging.info(f'[INFO] - Recognition successful: {filename} -> {result.text}')
elif (result.reason == speechsdk.ResultReason.NoMatch):
logging.warning(((filename + '\t') + f'No speech could be recognized: {result.no_match_details}'))
text = ''
elif (result.reason == speechsdk.ResultReason.Canceled):
cancellation_details = result.cancellation_details
logging.error(((filename + '\t') + f'Speech Recognition canceled: {cancellation_details.reason}'))
if (cancellation_details.reason == speechsdk.CancellationReason.Error):
logging.error(f'Error details: {cancellation_details.error_details}')
text = ''
return text | 7,902,317,877,991,636,000 | Process recognition received from the speech service
Args:
result: Result object returned by STT-service
filename: Filename for output file
output_directory: Output directory for the file
lexical: Boolean to enable extended lexical version of STT-result
Returns:
text: Processed recognition as string | src/stt.py | process_recognition | microsoft/SpeechServices | python | def process_recognition(result, filename, output_directory, lexical):
'Process recognition received from the speech service\n Args:\n result: Result object returned by STT-service\n filename: Filename for output file\n output_directory: Output directory for the file\n lexical: Boolean to enable extended lexical version of STT-result\n Returns:\n text: Processed recognition as string\n '
if (result.reason == speechsdk.ResultReason.RecognizedSpeech):
if lexical:
text = f"{format(result.text)} {json.loads(result.json)['NBest'][0]['Lexical']}"
else:
text = f'{format(result.text)}'
logging.info(f'[INFO] - Recognition successful: {filename} -> {result.text}')
elif (result.reason == speechsdk.ResultReason.NoMatch):
logging.warning(((filename + '\t') + f'No speech could be recognized: {result.no_match_details}'))
text =
elif (result.reason == speechsdk.ResultReason.Canceled):
cancellation_details = result.cancellation_details
logging.error(((filename + '\t') + f'Speech Recognition canceled: {cancellation_details.reason}'))
if (cancellation_details.reason == speechsdk.CancellationReason.Error):
logging.error(f'Error details: {cancellation_details.error_details}')
text =
return text |
def write_transcription(output_directory, text):
'Write transcription to file\n Args:\n text: Processed recognition as string\n output_directory: Output directory for the file\n Returns:\n Writes output to file\n '
if (not os.path.exists(f'{output_directory}/transcriptions.txt')):
transfile = codecs.open(f'{output_directory}/transcriptions.txt', 'w', encoding='utf-8-sig')
transfile.close()
logging.warning(f'[INFO] - Created transcript file with utf-8 bom encoding.')
with open(f'{output_directory}/transcriptions.txt', 'a', encoding='utf-8-sig') as transfile:
transfile.write(f'''{text}
''')
transfile.close() | 5,400,919,661,310,008,000 | Write transcription to file
Args:
text: Processed recognition as string
output_directory: Output directory for the file
Returns:
Writes output to file | src/stt.py | write_transcription | microsoft/SpeechServices | python | def write_transcription(output_directory, text):
'Write transcription to file\n Args:\n text: Processed recognition as string\n output_directory: Output directory for the file\n Returns:\n Writes output to file\n '
if (not os.path.exists(f'{output_directory}/transcriptions.txt')):
transfile = codecs.open(f'{output_directory}/transcriptions.txt', 'w', encoding='utf-8-sig')
transfile.close()
logging.warning(f'[INFO] - Created transcript file with utf-8 bom encoding.')
with open(f'{output_directory}/transcriptions.txt', 'a', encoding='utf-8-sig') as transfile:
transfile.write(f'{text}
')
transfile.close() |
def main(speech_files, output_directory, lexical=False, enable_proxy=False, *argv):
'Main function for STT-functionality\n Args:\n speech_files: Directory of audio files to be transcribed\n output_directory: Output directory for the file\n lexical: Boolean to enable extended lexical version of STT-result\n enable_proxy: Boolean to enable proxy function in case you need it\n *argv: Proxy information if enable_proxy is True -> hostname: str, port: str, username: str, password: str\n Returns:\n zip(filenames, results): Zipped lists of filenames and STT-results as string\n '
try:
speech_config = speechsdk.SpeechConfig(subscription=pa.config_data['stt_key'], region=pa.config_data['stt_region'])
except RuntimeError:
logging.error('[ERROR] - Could not retrieve speech config')
if enable_proxy:
speech_config.set_proxy(argv[0], argv[1], argv[2], argv[3])
speech_config.set_service_property(name='format', value='detailed', channel=speechsdk.ServicePropertyChannel.UriQueryParameter)
if (pa.config_data['stt_endpoint'] != ''):
speech_config.endpoint_id = pa.config_data['stt_endpoint']
logging.info(f'[INFO] - Starting to transcribe {len(next(os.walk(speech_files))[2])} audio files')
results = []
filenames = []
for audio in glob.iglob(f'{speech_files}*av'):
(result, filename) = request_endpoint(audio, speech_config, output_directory, lexical)
results.append(result)
filenames.append(filename)
return zip(filenames, results) | 4,704,541,752,918,082,000 | Main function for STT-functionality
Args:
speech_files: Directory of audio files to be transcribed
output_directory: Output directory for the file
lexical: Boolean to enable extended lexical version of STT-result
enable_proxy: Boolean to enable proxy function in case you need it
*argv: Proxy information if enable_proxy is True -> hostname: str, port: str, username: str, password: str
Returns:
zip(filenames, results): Zipped lists of filenames and STT-results as string | src/stt.py | main | microsoft/SpeechServices | python | def main(speech_files, output_directory, lexical=False, enable_proxy=False, *argv):
'Main function for STT-functionality\n Args:\n speech_files: Directory of audio files to be transcribed\n output_directory: Output directory for the file\n lexical: Boolean to enable extended lexical version of STT-result\n enable_proxy: Boolean to enable proxy function in case you need it\n *argv: Proxy information if enable_proxy is True -> hostname: str, port: str, username: str, password: str\n Returns:\n zip(filenames, results): Zipped lists of filenames and STT-results as string\n '
try:
speech_config = speechsdk.SpeechConfig(subscription=pa.config_data['stt_key'], region=pa.config_data['stt_region'])
except RuntimeError:
logging.error('[ERROR] - Could not retrieve speech config')
if enable_proxy:
speech_config.set_proxy(argv[0], argv[1], argv[2], argv[3])
speech_config.set_service_property(name='format', value='detailed', channel=speechsdk.ServicePropertyChannel.UriQueryParameter)
if (pa.config_data['stt_endpoint'] != ):
speech_config.endpoint_id = pa.config_data['stt_endpoint']
logging.info(f'[INFO] - Starting to transcribe {len(next(os.walk(speech_files))[2])} audio files')
results = []
filenames = []
for audio in glob.iglob(f'{speech_files}*av'):
(result, filename) = request_endpoint(audio, speech_config, output_directory, lexical)
results.append(result)
filenames.append(filename)
return zip(filenames, results) |
def get_params() -> AttributeDict:
'Return a dict containing training parameters.\n\n All training related parameters that are not passed from the commandline\n is saved in the variable `params`.\n\n Commandline options are merged into `params` after they are parsed, so\n you can also access them via `params`.\n\n Explanation of options saved in `params`:\n\n - exp_dir: It specifies the directory where all training related\n files, e.g., checkpoints, log, etc, are saved\n\n - lang_dir: It contains language related input files such as\n "lexicon.txt"\n\n - lr: It specifies the initial learning rate\n\n - feature_dim: The model input dim. It has to match the one used\n in computing features.\n\n - weight_decay: The weight_decay for the optimizer.\n\n - subsampling_factor: The subsampling factor for the model.\n\n - best_train_loss: Best training loss so far. It is used to select\n the model that has the lowest training loss. It is\n updated during the training.\n\n - best_valid_loss: Best validation loss so far. It is used to select\n the model that has the lowest validation loss. It is\n updated during the training.\n\n - best_train_epoch: It is the epoch that has the best training loss.\n\n - best_valid_epoch: It is the epoch that has the best validation loss.\n\n - batch_idx_train: Used to writing statistics to tensorboard. It\n contains number of batches trained so far across\n epochs.\n\n - log_interval: Print training loss if batch_idx % log_interval` is 0\n\n - reset_interval: Reset statistics if batch_idx % reset_interval is 0\n\n - valid_interval: Run validation if batch_idx % valid_interval` is 0\n\n - beam_size: It is used in k2.ctc_loss\n\n - reduction: It is used in k2.ctc_loss\n\n - use_double_scores: It is used in k2.ctc_loss\n '
params = AttributeDict({'exp_dir': Path('tdnn_lstm_ctc/exp'), 'lang_dir': Path('data/lang_phone'), 'lr': 0.001, 'feature_dim': 80, 'weight_decay': 0.0005, 'subsampling_factor': 3, 'best_train_loss': float('inf'), 'best_valid_loss': float('inf'), 'best_train_epoch': (- 1), 'best_valid_epoch': (- 1), 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 200, 'valid_interval': 1000, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'env_info': get_env_info()})
return params | -8,064,291,771,705,554,000 | Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
is saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- exp_dir: It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
- lang_dir: It contains language related input files such as
"lexicon.txt"
- lr: It specifies the initial learning rate
- feature_dim: The model input dim. It has to match the one used
in computing features.
- weight_decay: The weight_decay for the optimizer.
- subsampling_factor: The subsampling factor for the model.
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- valid_interval: Run validation if batch_idx % valid_interval` is 0
- beam_size: It is used in k2.ctc_loss
- reduction: It is used in k2.ctc_loss
- use_double_scores: It is used in k2.ctc_loss | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | get_params | aarora8/icefall | python | def get_params() -> AttributeDict:
'Return a dict containing training parameters.\n\n All training related parameters that are not passed from the commandline\n is saved in the variable `params`.\n\n Commandline options are merged into `params` after they are parsed, so\n you can also access them via `params`.\n\n Explanation of options saved in `params`:\n\n - exp_dir: It specifies the directory where all training related\n files, e.g., checkpoints, log, etc, are saved\n\n - lang_dir: It contains language related input files such as\n "lexicon.txt"\n\n - lr: It specifies the initial learning rate\n\n - feature_dim: The model input dim. It has to match the one used\n in computing features.\n\n - weight_decay: The weight_decay for the optimizer.\n\n - subsampling_factor: The subsampling factor for the model.\n\n - best_train_loss: Best training loss so far. It is used to select\n the model that has the lowest training loss. It is\n updated during the training.\n\n - best_valid_loss: Best validation loss so far. It is used to select\n the model that has the lowest validation loss. It is\n updated during the training.\n\n - best_train_epoch: It is the epoch that has the best training loss.\n\n - best_valid_epoch: It is the epoch that has the best validation loss.\n\n - batch_idx_train: Used to writing statistics to tensorboard. It\n contains number of batches trained so far across\n epochs.\n\n - log_interval: Print training loss if batch_idx % log_interval` is 0\n\n - reset_interval: Reset statistics if batch_idx % reset_interval is 0\n\n - valid_interval: Run validation if batch_idx % valid_interval` is 0\n\n - beam_size: It is used in k2.ctc_loss\n\n - reduction: It is used in k2.ctc_loss\n\n - use_double_scores: It is used in k2.ctc_loss\n '
params = AttributeDict({'exp_dir': Path('tdnn_lstm_ctc/exp'), 'lang_dir': Path('data/lang_phone'), 'lr': 0.001, 'feature_dim': 80, 'weight_decay': 0.0005, 'subsampling_factor': 3, 'best_train_loss': float('inf'), 'best_valid_loss': float('inf'), 'best_train_epoch': (- 1), 'best_valid_epoch': (- 1), 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 200, 'valid_interval': 1000, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'env_info': get_env_info()})
return params |
def load_checkpoint_if_available(params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer]=None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler]=None) -> None:
'Load checkpoint from file.\n\n If params.start_epoch is positive, it will load the checkpoint from\n `params.start_epoch - 1`. Otherwise, this function does nothing.\n\n Apart from loading state dict for `model`, `optimizer` and `scheduler`,\n it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,\n and `best_valid_loss` in `params`.\n\n Args:\n params:\n The return value of :func:`get_params`.\n model:\n The training model.\n optimizer:\n The optimizer that we are using.\n scheduler:\n The learning rate scheduler we are using.\n Returns:\n Return None.\n '
if (params.start_epoch <= 0):
return
filename = (params.exp_dir / f'epoch-{(params.start_epoch - 1)}.pt')
saved_params = load_checkpoint(filename, model=model, optimizer=optimizer, scheduler=scheduler)
keys = ['best_train_epoch', 'best_valid_epoch', 'batch_idx_train', 'best_train_loss', 'best_valid_loss']
for k in keys:
params[k] = saved_params[k]
return saved_params | -8,657,515,020,424,165,000 | Load checkpoint from file.
If params.start_epoch is positive, it will load the checkpoint from
`params.start_epoch - 1`. Otherwise, this function does nothing.
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
optimizer:
The optimizer that we are using.
scheduler:
The learning rate scheduler we are using.
Returns:
Return None. | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | load_checkpoint_if_available | aarora8/icefall | python | def load_checkpoint_if_available(params: AttributeDict, model: nn.Module, optimizer: Optional[torch.optim.Optimizer]=None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler]=None) -> None:
'Load checkpoint from file.\n\n If params.start_epoch is positive, it will load the checkpoint from\n `params.start_epoch - 1`. Otherwise, this function does nothing.\n\n Apart from loading state dict for `model`, `optimizer` and `scheduler`,\n it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,\n and `best_valid_loss` in `params`.\n\n Args:\n params:\n The return value of :func:`get_params`.\n model:\n The training model.\n optimizer:\n The optimizer that we are using.\n scheduler:\n The learning rate scheduler we are using.\n Returns:\n Return None.\n '
if (params.start_epoch <= 0):
return
filename = (params.exp_dir / f'epoch-{(params.start_epoch - 1)}.pt')
saved_params = load_checkpoint(filename, model=model, optimizer=optimizer, scheduler=scheduler)
keys = ['best_train_epoch', 'best_valid_epoch', 'batch_idx_train', 'best_train_loss', 'best_valid_loss']
for k in keys:
params[k] = saved_params[k]
return saved_params |
def save_checkpoint(params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler._LRScheduler, rank: int=0) -> None:
'Save model, optimizer, scheduler and training stats to file.\n\n Args:\n params:\n It is returned by :func:`get_params`.\n model:\n The training model.\n '
if (rank != 0):
return
filename = (params.exp_dir / f'epoch-{params.cur_epoch}.pt')
save_checkpoint_impl(filename=filename, model=model, params=params, optimizer=optimizer, scheduler=scheduler, rank=rank)
if (params.best_train_epoch == params.cur_epoch):
best_train_filename = (params.exp_dir / 'best-train-loss.pt')
copyfile(src=filename, dst=best_train_filename)
if (params.best_valid_epoch == params.cur_epoch):
best_valid_filename = (params.exp_dir / 'best-valid-loss.pt')
copyfile(src=filename, dst=best_valid_filename) | 4,040,369,752,138,356,000 | Save model, optimizer, scheduler and training stats to file.
Args:
params:
It is returned by :func:`get_params`.
model:
The training model. | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | save_checkpoint | aarora8/icefall | python | def save_checkpoint(params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler._LRScheduler, rank: int=0) -> None:
'Save model, optimizer, scheduler and training stats to file.\n\n Args:\n params:\n It is returned by :func:`get_params`.\n model:\n The training model.\n '
if (rank != 0):
return
filename = (params.exp_dir / f'epoch-{params.cur_epoch}.pt')
save_checkpoint_impl(filename=filename, model=model, params=params, optimizer=optimizer, scheduler=scheduler, rank=rank)
if (params.best_train_epoch == params.cur_epoch):
best_train_filename = (params.exp_dir / 'best-train-loss.pt')
copyfile(src=filename, dst=best_train_filename)
if (params.best_valid_epoch == params.cur_epoch):
best_valid_filename = (params.exp_dir / 'best-valid-loss.pt')
copyfile(src=filename, dst=best_valid_filename) |
def compute_loss(params: AttributeDict, model: nn.Module, batch: dict, graph_compiler: CtcTrainingGraphCompiler, is_training: bool) -> Tuple[(Tensor, MetricsTracker)]:
'\n Compute CTC loss given the model and its inputs.\n\n Args:\n params:\n Parameters for training. See :func:`get_params`.\n model:\n The model for training. It is an instance of TdnnLstm in our case.\n batch:\n A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`\n for the content in it.\n graph_compiler:\n It is used to build a decoding graph from a ctc topo and training\n transcript. The training transcript is contained in the given `batch`,\n while the ctc topo is built when this compiler is instantiated.\n is_training:\n True for training. False for validation. When it is True, this\n function enables autograd during computation; when it is False, it\n disables autograd.\n '
device = graph_compiler.device
feature = batch['inputs']
feature = feature.permute(0, 2, 1)
assert (feature.ndim == 3)
feature = feature.to(device)
with torch.set_grad_enabled(is_training):
nnet_output = model(feature)
supervisions = batch['supervisions']
(supervision_segments, texts) = encode_supervisions(supervisions, subsampling_factor=params.subsampling_factor)
decoding_graph = graph_compiler.compile(texts)
dense_fsa_vec = k2.DenseFsaVec(nnet_output, supervision_segments, allow_truncate=(params.subsampling_factor - 1))
loss = k2.ctc_loss(decoding_graph=decoding_graph, dense_fsa_vec=dense_fsa_vec, output_beam=params.beam_size, reduction=params.reduction, use_double_scores=params.use_double_scores)
assert (loss.requires_grad == is_training)
info = MetricsTracker()
info['frames'] = supervision_segments[:, 2].sum().item()
info['loss'] = loss.detach().cpu().item()
return (loss, info) | -85,694,476,020,040,110 | Compute CTC loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of TdnnLstm in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
graph_compiler:
It is used to build a decoding graph from a ctc topo and training
transcript. The training transcript is contained in the given `batch`,
while the ctc topo is built when this compiler is instantiated.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd. | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | compute_loss | aarora8/icefall | python | def compute_loss(params: AttributeDict, model: nn.Module, batch: dict, graph_compiler: CtcTrainingGraphCompiler, is_training: bool) -> Tuple[(Tensor, MetricsTracker)]:
'\n Compute CTC loss given the model and its inputs.\n\n Args:\n params:\n Parameters for training. See :func:`get_params`.\n model:\n The model for training. It is an instance of TdnnLstm in our case.\n batch:\n A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`\n for the content in it.\n graph_compiler:\n It is used to build a decoding graph from a ctc topo and training\n transcript. The training transcript is contained in the given `batch`,\n while the ctc topo is built when this compiler is instantiated.\n is_training:\n True for training. False for validation. When it is True, this\n function enables autograd during computation; when it is False, it\n disables autograd.\n '
device = graph_compiler.device
feature = batch['inputs']
feature = feature.permute(0, 2, 1)
assert (feature.ndim == 3)
feature = feature.to(device)
with torch.set_grad_enabled(is_training):
nnet_output = model(feature)
supervisions = batch['supervisions']
(supervision_segments, texts) = encode_supervisions(supervisions, subsampling_factor=params.subsampling_factor)
decoding_graph = graph_compiler.compile(texts)
dense_fsa_vec = k2.DenseFsaVec(nnet_output, supervision_segments, allow_truncate=(params.subsampling_factor - 1))
loss = k2.ctc_loss(decoding_graph=decoding_graph, dense_fsa_vec=dense_fsa_vec, output_beam=params.beam_size, reduction=params.reduction, use_double_scores=params.use_double_scores)
assert (loss.requires_grad == is_training)
info = MetricsTracker()
info['frames'] = supervision_segments[:, 2].sum().item()
info['loss'] = loss.detach().cpu().item()
return (loss, info) |
def compute_validation_loss(params: AttributeDict, model: nn.Module, graph_compiler: CtcTrainingGraphCompiler, valid_dl: torch.utils.data.DataLoader, world_size: int=1) -> MetricsTracker:
'Run the validation process. The validation loss\n is saved in `params.valid_loss`.\n '
model.eval()
tot_loss = MetricsTracker()
for (batch_idx, batch) in enumerate(valid_dl):
(loss, loss_info) = compute_loss(params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=False)
assert (loss.requires_grad is False)
tot_loss = (tot_loss + loss_info)
if (world_size > 1):
tot_loss.reduce(loss.device)
loss_value = (tot_loss['loss'] / tot_loss['frames'])
if (loss_value < params.best_valid_loss):
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss | 5,921,257,761,175,695,000 | Run the validation process. The validation loss
is saved in `params.valid_loss`. | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | compute_validation_loss | aarora8/icefall | python | def compute_validation_loss(params: AttributeDict, model: nn.Module, graph_compiler: CtcTrainingGraphCompiler, valid_dl: torch.utils.data.DataLoader, world_size: int=1) -> MetricsTracker:
'Run the validation process. The validation loss\n is saved in `params.valid_loss`.\n '
model.eval()
tot_loss = MetricsTracker()
for (batch_idx, batch) in enumerate(valid_dl):
(loss, loss_info) = compute_loss(params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=False)
assert (loss.requires_grad is False)
tot_loss = (tot_loss + loss_info)
if (world_size > 1):
tot_loss.reduce(loss.device)
loss_value = (tot_loss['loss'] / tot_loss['frames'])
if (loss_value < params.best_valid_loss):
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss |
def train_one_epoch(params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, graph_compiler: CtcTrainingGraphCompiler, train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, tb_writer: Optional[SummaryWriter]=None, world_size: int=1) -> None:
'Train the model for one epoch.\n\n The training loss from the mean of all frames is saved in\n `params.train_loss`. It runs the validation process every\n `params.valid_interval` batches.\n\n Args:\n params:\n It is returned by :func:`get_params`.\n model:\n The model for training.\n optimizer:\n The optimizer we are using.\n graph_compiler:\n It is used to convert transcripts to FSAs.\n train_dl:\n Dataloader for the training dataset.\n valid_dl:\n Dataloader for the validation dataset.\n tb_writer:\n Writer to write log messages to tensorboard.\n world_size:\n Number of nodes in DDP training. If it is 1, DDP is disabled.\n '
model.train()
tot_loss = MetricsTracker()
for (batch_idx, batch) in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch['supervisions']['text'])
(loss, loss_info) = compute_loss(params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=True)
tot_loss = ((tot_loss * (1 - (1 / params.reset_interval))) + loss_info)
optimizer.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
if ((batch_idx % params.log_interval) == 0):
logging.info(f'Epoch {params.cur_epoch}, batch {batch_idx}, loss[{loss_info}], tot_loss[{tot_loss}], batch size: {batch_size}')
if ((batch_idx % params.log_interval) == 0):
if (tb_writer is not None):
loss_info.write_summary(tb_writer, 'train/current_', params.batch_idx_train)
tot_loss.write_summary(tb_writer, 'train/tot_', params.batch_idx_train)
if ((batch_idx > 0) and ((batch_idx % params.valid_interval) == 0)):
valid_info = compute_validation_loss(params=params, model=model, graph_compiler=graph_compiler, valid_dl=valid_dl, world_size=world_size)
model.train()
logging.info(f'Epoch {params.cur_epoch}, validation {valid_info}')
if (tb_writer is not None):
valid_info.write_summary(tb_writer, 'train/valid_', params.batch_idx_train)
loss_value = (tot_loss['loss'] / tot_loss['frames'])
params.train_loss = loss_value
if (params.train_loss < params.best_train_loss):
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss | 6,525,583,933,407,344,000 | Train the model for one epoch.
The training loss from the mean of all frames is saved in
`params.train_loss`. It runs the validation process every
`params.valid_interval` batches.
Args:
params:
It is returned by :func:`get_params`.
model:
The model for training.
optimizer:
The optimizer we are using.
graph_compiler:
It is used to convert transcripts to FSAs.
train_dl:
Dataloader for the training dataset.
valid_dl:
Dataloader for the validation dataset.
tb_writer:
Writer to write log messages to tensorboard.
world_size:
Number of nodes in DDP training. If it is 1, DDP is disabled. | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | train_one_epoch | aarora8/icefall | python | def train_one_epoch(params: AttributeDict, model: nn.Module, optimizer: torch.optim.Optimizer, graph_compiler: CtcTrainingGraphCompiler, train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, tb_writer: Optional[SummaryWriter]=None, world_size: int=1) -> None:
'Train the model for one epoch.\n\n The training loss from the mean of all frames is saved in\n `params.train_loss`. It runs the validation process every\n `params.valid_interval` batches.\n\n Args:\n params:\n It is returned by :func:`get_params`.\n model:\n The model for training.\n optimizer:\n The optimizer we are using.\n graph_compiler:\n It is used to convert transcripts to FSAs.\n train_dl:\n Dataloader for the training dataset.\n valid_dl:\n Dataloader for the validation dataset.\n tb_writer:\n Writer to write log messages to tensorboard.\n world_size:\n Number of nodes in DDP training. If it is 1, DDP is disabled.\n '
model.train()
tot_loss = MetricsTracker()
for (batch_idx, batch) in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch['supervisions']['text'])
(loss, loss_info) = compute_loss(params=params, model=model, batch=batch, graph_compiler=graph_compiler, is_training=True)
tot_loss = ((tot_loss * (1 - (1 / params.reset_interval))) + loss_info)
optimizer.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
if ((batch_idx % params.log_interval) == 0):
logging.info(f'Epoch {params.cur_epoch}, batch {batch_idx}, loss[{loss_info}], tot_loss[{tot_loss}], batch size: {batch_size}')
if ((batch_idx % params.log_interval) == 0):
if (tb_writer is not None):
loss_info.write_summary(tb_writer, 'train/current_', params.batch_idx_train)
tot_loss.write_summary(tb_writer, 'train/tot_', params.batch_idx_train)
if ((batch_idx > 0) and ((batch_idx % params.valid_interval) == 0)):
valid_info = compute_validation_loss(params=params, model=model, graph_compiler=graph_compiler, valid_dl=valid_dl, world_size=world_size)
model.train()
logging.info(f'Epoch {params.cur_epoch}, validation {valid_info}')
if (tb_writer is not None):
valid_info.write_summary(tb_writer, 'train/valid_', params.batch_idx_train)
loss_value = (tot_loss['loss'] / tot_loss['frames'])
params.train_loss = loss_value
if (params.train_loss < params.best_train_loss):
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss |
def run(rank, world_size, args):
'\n Args:\n rank:\n It is a value between 0 and `world_size-1`, which is\n passed automatically by `mp.spawn()` in :func:`main`.\n The node with rank 0 is responsible for saving checkpoint.\n world_size:\n Number of GPUs for DDP training.\n args:\n The return value of get_parser().parse_args()\n '
params = get_params()
params.update(vars(args))
fix_random_seed(42)
if (world_size > 1):
setup_dist(rank, world_size, params.master_port)
setup_logger(f'{params.exp_dir}/log/log-train')
logging.info('Training started')
logging.info(params)
if (args.tensorboard and (rank == 0)):
tb_writer = SummaryWriter(log_dir=f'{params.exp_dir}/tensorboard')
else:
tb_writer = None
lexicon = Lexicon(params.lang_dir)
max_phone_id = max(lexicon.tokens)
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda', rank)
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
model = TdnnLstm(num_features=params.feature_dim, num_classes=(max_phone_id + 1), subsampling_factor=params.subsampling_factor)
checkpoints = load_checkpoint_if_available(params=params, model=model)
model.to(device)
if (world_size > 1):
model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(model.parameters(), lr=params.lr, weight_decay=params.weight_decay)
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
if checkpoints:
optimizer.load_state_dict(checkpoints['optimizer'])
scheduler.load_state_dict(checkpoints['scheduler'])
librispeech = LibriSpeechAsrDataModule(args)
train_dl = librispeech.train_dataloaders()
valid_dl = librispeech.valid_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
train_dl.sampler.set_epoch(epoch)
if (epoch > params.start_epoch):
logging.info(f'epoch {epoch}, lr: {scheduler.get_last_lr()[0]}')
if (tb_writer is not None):
tb_writer.add_scalar('train/lr', scheduler.get_last_lr()[0], params.batch_idx_train)
tb_writer.add_scalar('train/epoch', epoch, params.batch_idx_train)
params.cur_epoch = epoch
train_one_epoch(params=params, model=model, optimizer=optimizer, graph_compiler=graph_compiler, train_dl=train_dl, valid_dl=valid_dl, tb_writer=tb_writer, world_size=world_size)
scheduler.step()
save_checkpoint(params=params, model=model, optimizer=optimizer, scheduler=scheduler, rank=rank)
logging.info('Done!')
if (world_size > 1):
torch.distributed.barrier()
cleanup_dist() | 1,424,617,520,821,463,800 | Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
The return value of get_parser().parse_args() | egs/librispeech/ASR/tdnn_lstm_ctc/train.py | run | aarora8/icefall | python | def run(rank, world_size, args):
'\n Args:\n rank:\n It is a value between 0 and `world_size-1`, which is\n passed automatically by `mp.spawn()` in :func:`main`.\n The node with rank 0 is responsible for saving checkpoint.\n world_size:\n Number of GPUs for DDP training.\n args:\n The return value of get_parser().parse_args()\n '
params = get_params()
params.update(vars(args))
fix_random_seed(42)
if (world_size > 1):
setup_dist(rank, world_size, params.master_port)
setup_logger(f'{params.exp_dir}/log/log-train')
logging.info('Training started')
logging.info(params)
if (args.tensorboard and (rank == 0)):
tb_writer = SummaryWriter(log_dir=f'{params.exp_dir}/tensorboard')
else:
tb_writer = None
lexicon = Lexicon(params.lang_dir)
max_phone_id = max(lexicon.tokens)
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda', rank)
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
model = TdnnLstm(num_features=params.feature_dim, num_classes=(max_phone_id + 1), subsampling_factor=params.subsampling_factor)
checkpoints = load_checkpoint_if_available(params=params, model=model)
model.to(device)
if (world_size > 1):
model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(model.parameters(), lr=params.lr, weight_decay=params.weight_decay)
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
if checkpoints:
optimizer.load_state_dict(checkpoints['optimizer'])
scheduler.load_state_dict(checkpoints['scheduler'])
librispeech = LibriSpeechAsrDataModule(args)
train_dl = librispeech.train_dataloaders()
valid_dl = librispeech.valid_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
train_dl.sampler.set_epoch(epoch)
if (epoch > params.start_epoch):
logging.info(f'epoch {epoch}, lr: {scheduler.get_last_lr()[0]}')
if (tb_writer is not None):
tb_writer.add_scalar('train/lr', scheduler.get_last_lr()[0], params.batch_idx_train)
tb_writer.add_scalar('train/epoch', epoch, params.batch_idx_train)
params.cur_epoch = epoch
train_one_epoch(params=params, model=model, optimizer=optimizer, graph_compiler=graph_compiler, train_dl=train_dl, valid_dl=valid_dl, tb_writer=tb_writer, world_size=world_size)
scheduler.step()
save_checkpoint(params=params, model=model, optimizer=optimizer, scheduler=scheduler, rank=rank)
logging.info('Done!')
if (world_size > 1):
torch.distributed.barrier()
cleanup_dist() |
def __init__(self):
'\n The schema generator generates a GraphQL schema.\n The purpose is to provide a schema to which resolvers are then\n attached, which is then given to Ariadne, and for resolvers to\n have information about expected types.\n\n For RPSL queries and types, this is dynamically generated based on\n the RPSL objects from irrd.rpsl. Other parts are fixed.\n This means that the schema is always the same for a given IRRd\n codebase - there are no runtime or user configurable parts.\n\n Along with generating the schema, some metadata is saved, e.g.\n self.graphql_types which allows resolvers to learn the GraphQL\n type for a certain field.\n\n This generator also creates Ariadne object types on self, which\n are used to attach resolvers to them.\n '
self._set_rpsl_query_fields()
self._set_rpsl_object_interface_schema()
self._set_rpsl_contact_schema()
self._set_rpsl_object_schemas()
self._set_enums()
schema = self.enums
schema += (('\n scalar ASN\n scalar IP\n\n schema {\n query: Query\n }\n\n type Query {\n rpslObjects(' + self.rpsl_query_fields) + '): [RPSLObject!]\n databaseStatus(sources: [String!]): [DatabaseStatus]\n asnPrefixes(asns: [ASN!]!, ipVersion: Int, sources: [String!]): [ASNPrefixes!]\n asSetPrefixes(setNames: [String!]!, ipVersion: Int, sources: [String!], excludeSets: [String!], sqlTrace: Boolean): [AsSetPrefixes!]\n recursiveSetMembers(setNames: [String!]!, depth: Int, sources: [String!], excludeSets: [String!], sqlTrace: Boolean): [SetMembers!]\n }\n\n type DatabaseStatus {\n source: String!\n authoritative: Boolean!\n objectClassFilter: [String!]\n rpkiRovFilter: Boolean!\n scopefilterEnabled: Boolean!\n localJournalKept: Boolean!\n serialOldestJournal: Int\n serialNewestJournal: Int\n serialLastExport: Int\n serialNewestMirror: Int\n lastUpdate: String\n synchronisedSerials: Boolean!\n }\n\n type RPSLJournalEntry {\n rpslPk: String!\n source: String!\n serialNrtm: Int!\n operation: String!\n origin: String\n objectClass: String!\n objectText: String!\n timestamp: String!\n }\n\n type ASNPrefixes {\n asn: ASN!\n prefixes: [IP!]\n }\n\n type AsSetPrefixes {\n rpslPk: String!\n prefixes: [IP!]\n }\n\n type SetMembers {\n rpslPk: String!\n members: [String!]\n }\n ')
schema += self.rpsl_object_interface_schema
schema += self.rpsl_contact_schema
schema += ''.join(self.rpsl_object_schemas.values())
schema += 'union RPSLContactUnion = RPSLPerson | RPSLRole'
self.type_defs = ariadne.gql(schema)
self.query_type = ariadne.QueryType()
self.rpsl_object_type = ariadne.InterfaceType('RPSLObject')
self.rpsl_contact_union_type = ariadne.UnionType('RPSLContactUnion')
self.asn_scalar_type = ariadne.ScalarType('ASN')
self.ip_scalar_type = ariadne.ScalarType('IP')
self.object_types = [self.query_type, self.rpsl_object_type, self.rpsl_contact_union_type, self.asn_scalar_type, self.ip_scalar_type]
for name in self.rpsl_object_schemas.keys():
self.object_types.append(ariadne.ObjectType(name))
self.object_types.append(ariadne.ObjectType('ASNPrefixes'))
self.object_types.append(ariadne.ObjectType('AsSetPrefixes'))
self.object_types.append(ariadne.ObjectType('SetMembers'))
self.object_types.append(ariadne.EnumType('RPKIStatus', RPKIStatus))
self.object_types.append(ariadne.EnumType('ScopeFilterStatus', ScopeFilterStatus)) | -6,691,687,725,778,370,000 | The schema generator generates a GraphQL schema.
The purpose is to provide a schema to which resolvers are then
attached, which is then given to Ariadne, and for resolvers to
have information about expected types.
For RPSL queries and types, this is dynamically generated based on
the RPSL objects from irrd.rpsl. Other parts are fixed.
This means that the schema is always the same for a given IRRd
codebase - there are no runtime or user configurable parts.
Along with generating the schema, some metadata is saved, e.g.
self.graphql_types which allows resolvers to learn the GraphQL
type for a certain field.
This generator also creates Ariadne object types on self, which
are used to attach resolvers to them. | irrd/server/graphql/schema_generator.py | __init__ | morrowc/irrd | python | def __init__(self):
'\n The schema generator generates a GraphQL schema.\n The purpose is to provide a schema to which resolvers are then\n attached, which is then given to Ariadne, and for resolvers to\n have information about expected types.\n\n For RPSL queries and types, this is dynamically generated based on\n the RPSL objects from irrd.rpsl. Other parts are fixed.\n This means that the schema is always the same for a given IRRd\n codebase - there are no runtime or user configurable parts.\n\n Along with generating the schema, some metadata is saved, e.g.\n self.graphql_types which allows resolvers to learn the GraphQL\n type for a certain field.\n\n This generator also creates Ariadne object types on self, which\n are used to attach resolvers to them.\n '
self._set_rpsl_query_fields()
self._set_rpsl_object_interface_schema()
self._set_rpsl_contact_schema()
self._set_rpsl_object_schemas()
self._set_enums()
schema = self.enums
schema += (('\n scalar ASN\n scalar IP\n\n schema {\n query: Query\n }\n\n type Query {\n rpslObjects(' + self.rpsl_query_fields) + '): [RPSLObject!]\n databaseStatus(sources: [String!]): [DatabaseStatus]\n asnPrefixes(asns: [ASN!]!, ipVersion: Int, sources: [String!]): [ASNPrefixes!]\n asSetPrefixes(setNames: [String!]!, ipVersion: Int, sources: [String!], excludeSets: [String!], sqlTrace: Boolean): [AsSetPrefixes!]\n recursiveSetMembers(setNames: [String!]!, depth: Int, sources: [String!], excludeSets: [String!], sqlTrace: Boolean): [SetMembers!]\n }\n\n type DatabaseStatus {\n source: String!\n authoritative: Boolean!\n objectClassFilter: [String!]\n rpkiRovFilter: Boolean!\n scopefilterEnabled: Boolean!\n localJournalKept: Boolean!\n serialOldestJournal: Int\n serialNewestJournal: Int\n serialLastExport: Int\n serialNewestMirror: Int\n lastUpdate: String\n synchronisedSerials: Boolean!\n }\n\n type RPSLJournalEntry {\n rpslPk: String!\n source: String!\n serialNrtm: Int!\n operation: String!\n origin: String\n objectClass: String!\n objectText: String!\n timestamp: String!\n }\n\n type ASNPrefixes {\n asn: ASN!\n prefixes: [IP!]\n }\n\n type AsSetPrefixes {\n rpslPk: String!\n prefixes: [IP!]\n }\n\n type SetMembers {\n rpslPk: String!\n members: [String!]\n }\n ')
schema += self.rpsl_object_interface_schema
schema += self.rpsl_contact_schema
schema += .join(self.rpsl_object_schemas.values())
schema += 'union RPSLContactUnion = RPSLPerson | RPSLRole'
self.type_defs = ariadne.gql(schema)
self.query_type = ariadne.QueryType()
self.rpsl_object_type = ariadne.InterfaceType('RPSLObject')
self.rpsl_contact_union_type = ariadne.UnionType('RPSLContactUnion')
self.asn_scalar_type = ariadne.ScalarType('ASN')
self.ip_scalar_type = ariadne.ScalarType('IP')
self.object_types = [self.query_type, self.rpsl_object_type, self.rpsl_contact_union_type, self.asn_scalar_type, self.ip_scalar_type]
for name in self.rpsl_object_schemas.keys():
self.object_types.append(ariadne.ObjectType(name))
self.object_types.append(ariadne.ObjectType('ASNPrefixes'))
self.object_types.append(ariadne.ObjectType('AsSetPrefixes'))
self.object_types.append(ariadne.ObjectType('SetMembers'))
self.object_types.append(ariadne.EnumType('RPKIStatus', RPKIStatus))
self.object_types.append(ariadne.EnumType('ScopeFilterStatus', ScopeFilterStatus)) |
def _set_rpsl_query_fields(self):
'\n Create a sub-schema for the fields that can be queried for RPSL objects.\n This includes all fields from all objects, along with a few\n special fields.\n '
string_list_fields = {'rpsl_pk', 'sources', 'object_class'}.union(lookup_field_names())
params = [(snake_to_camel_case(p) + ': [String!]') for p in sorted(string_list_fields)]
params += ['ipExact: IP', 'ipLessSpecific: IP', 'ipLessSpecificOneLevel: IP', 'ipMoreSpecific: IP', 'ipAny: IP', 'asn: [ASN!]', 'rpkiStatus: [RPKIStatus!]', 'scopeFilterStatus: [ScopeFilterStatus!]', 'textSearch: String', 'recordLimit: Int', 'sqlTrace: Boolean']
self.rpsl_query_fields = ', '.join(params) | -5,529,400,313,608,977,000 | Create a sub-schema for the fields that can be queried for RPSL objects.
This includes all fields from all objects, along with a few
special fields. | irrd/server/graphql/schema_generator.py | _set_rpsl_query_fields | morrowc/irrd | python | def _set_rpsl_query_fields(self):
'\n Create a sub-schema for the fields that can be queried for RPSL objects.\n This includes all fields from all objects, along with a few\n special fields.\n '
string_list_fields = {'rpsl_pk', 'sources', 'object_class'}.union(lookup_field_names())
params = [(snake_to_camel_case(p) + ': [String!]') for p in sorted(string_list_fields)]
params += ['ipExact: IP', 'ipLessSpecific: IP', 'ipLessSpecificOneLevel: IP', 'ipMoreSpecific: IP', 'ipAny: IP', 'asn: [ASN!]', 'rpkiStatus: [RPKIStatus!]', 'scopeFilterStatus: [ScopeFilterStatus!]', 'textSearch: String', 'recordLimit: Int', 'sqlTrace: Boolean']
self.rpsl_query_fields = ', '.join(params) |
def _set_enums(self):
'\n Create the schema for enums, current RPKI and scope filter status.\n '
self.enums = ''
for enum in [RPKIStatus, ScopeFilterStatus]:
self.enums += f'''enum {enum.__name__} {{
'''
for value in enum:
self.enums += f''' {value.name}
'''
self.enums += '}\n\n' | 3,618,900,208,178,960,000 | Create the schema for enums, current RPKI and scope filter status. | irrd/server/graphql/schema_generator.py | _set_enums | morrowc/irrd | python | def _set_enums(self):
'\n \n '
self.enums =
for enum in [RPKIStatus, ScopeFilterStatus]:
self.enums += f'enum {enum.__name__} {{
'
for value in enum:
self.enums += f' {value.name}
'
self.enums += '}\n\n' |
def _set_rpsl_object_interface_schema(self):
'\n Create the schema for RPSLObject, which contains only fields that\n are common to every known RPSL object, along with meta\n '
common_fields = None
for rpsl_object_class in OBJECT_CLASS_MAPPING.values():
if (common_fields is None):
common_fields = set(rpsl_object_class.fields.keys())
else:
common_fields = common_fields.intersection(set(rpsl_object_class.fields.keys()))
common_fields = list(common_fields)
common_fields = (['rpslPk', 'objectClass', 'objectText', 'updated'] + common_fields)
common_field_dict = self._dict_for_common_fields(common_fields)
common_field_dict['journal'] = '[RPSLJournalEntry]'
schema = self._generate_schema_str('RPSLObject', 'interface', common_field_dict)
self.rpsl_object_interface_schema = schema | -4,808,421,517,788,839,000 | Create the schema for RPSLObject, which contains only fields that
are common to every known RPSL object, along with meta | irrd/server/graphql/schema_generator.py | _set_rpsl_object_interface_schema | morrowc/irrd | python | def _set_rpsl_object_interface_schema(self):
'\n Create the schema for RPSLObject, which contains only fields that\n are common to every known RPSL object, along with meta\n '
common_fields = None
for rpsl_object_class in OBJECT_CLASS_MAPPING.values():
if (common_fields is None):
common_fields = set(rpsl_object_class.fields.keys())
else:
common_fields = common_fields.intersection(set(rpsl_object_class.fields.keys()))
common_fields = list(common_fields)
common_fields = (['rpslPk', 'objectClass', 'objectText', 'updated'] + common_fields)
common_field_dict = self._dict_for_common_fields(common_fields)
common_field_dict['journal'] = '[RPSLJournalEntry]'
schema = self._generate_schema_str('RPSLObject', 'interface', common_field_dict)
self.rpsl_object_interface_schema = schema |
def _set_rpsl_contact_schema(self):
'\n Create the schema for RPSLContact. This contains shared fields between\n RPSLPerson and RPSLRole, as they are so similar.\n '
common_fields = set(RPSLPerson.fields.keys()).intersection(set(RPSLRole.fields.keys()))
common_fields = common_fields.union({'rpslPk', 'objectClass', 'objectText', 'updated'})
common_field_dict = self._dict_for_common_fields(list(common_fields))
schema = self._generate_schema_str('RPSLContact', 'interface', common_field_dict)
self.rpsl_contact_schema = schema | 6,149,839,233,699,117,000 | Create the schema for RPSLContact. This contains shared fields between
RPSLPerson and RPSLRole, as they are so similar. | irrd/server/graphql/schema_generator.py | _set_rpsl_contact_schema | morrowc/irrd | python | def _set_rpsl_contact_schema(self):
'\n Create the schema for RPSLContact. This contains shared fields between\n RPSLPerson and RPSLRole, as they are so similar.\n '
common_fields = set(RPSLPerson.fields.keys()).intersection(set(RPSLRole.fields.keys()))
common_fields = common_fields.union({'rpslPk', 'objectClass', 'objectText', 'updated'})
common_field_dict = self._dict_for_common_fields(list(common_fields))
schema = self._generate_schema_str('RPSLContact', 'interface', common_field_dict)
self.rpsl_contact_schema = schema |
def _set_rpsl_object_schemas(self):
'\n Create the schemas for each specific RPSL object class.\n Each of these implements RPSLObject, and RPSLPerson/RPSLRole\n implement RPSLContact as well.\n '
self.graphql_types = defaultdict(dict)
schemas = OrderedDict()
for (object_class, klass) in OBJECT_CLASS_MAPPING.items():
object_name = klass.__name__
graphql_fields = OrderedDict()
graphql_fields['rpslPk'] = 'String'
graphql_fields['objectClass'] = 'String'
graphql_fields['objectText'] = 'String'
graphql_fields['updated'] = 'String'
graphql_fields['journal'] = '[RPSLJournalEntry]'
for (field_name, field) in klass.fields.items():
graphql_type = self._graphql_type_for_rpsl_field(field)
graphql_fields[snake_to_camel_case(field_name)] = graphql_type
self.graphql_types[snake_to_camel_case(object_name)][field_name] = graphql_type
(reference_name, reference_type) = self._grapql_type_for_reference_field(field_name, field)
if (reference_name and reference_type):
graphql_fields[reference_name] = reference_type
self.graphql_types[object_name][reference_name] = reference_type
for field_name in klass.field_extracts:
if field_name.startswith('asn'):
graphql_type = 'ASN'
elif (field_name == 'prefix'):
graphql_type = 'IP'
elif (field_name == 'prefix_length'):
graphql_type = 'Int'
else:
graphql_type = 'String'
graphql_fields[snake_to_camel_case(field_name)] = graphql_type
if klass.rpki_relevant:
graphql_fields['rpkiStatus'] = 'RPKIStatus'
graphql_fields['rpkiMaxLength'] = 'Int'
self.graphql_types[object_name]['rpki_max_length'] = 'Int'
implements = ('RPSLContact & RPSLObject' if (klass in [RPSLPerson, RPSLRole]) else 'RPSLObject')
schema = self._generate_schema_str(object_name, 'type', graphql_fields, implements)
schemas[object_name] = schema
self.rpsl_object_schemas = schemas | -2,214,039,650,622,902,500 | Create the schemas for each specific RPSL object class.
Each of these implements RPSLObject, and RPSLPerson/RPSLRole
implement RPSLContact as well. | irrd/server/graphql/schema_generator.py | _set_rpsl_object_schemas | morrowc/irrd | python | def _set_rpsl_object_schemas(self):
'\n Create the schemas for each specific RPSL object class.\n Each of these implements RPSLObject, and RPSLPerson/RPSLRole\n implement RPSLContact as well.\n '
self.graphql_types = defaultdict(dict)
schemas = OrderedDict()
for (object_class, klass) in OBJECT_CLASS_MAPPING.items():
object_name = klass.__name__
graphql_fields = OrderedDict()
graphql_fields['rpslPk'] = 'String'
graphql_fields['objectClass'] = 'String'
graphql_fields['objectText'] = 'String'
graphql_fields['updated'] = 'String'
graphql_fields['journal'] = '[RPSLJournalEntry]'
for (field_name, field) in klass.fields.items():
graphql_type = self._graphql_type_for_rpsl_field(field)
graphql_fields[snake_to_camel_case(field_name)] = graphql_type
self.graphql_types[snake_to_camel_case(object_name)][field_name] = graphql_type
(reference_name, reference_type) = self._grapql_type_for_reference_field(field_name, field)
if (reference_name and reference_type):
graphql_fields[reference_name] = reference_type
self.graphql_types[object_name][reference_name] = reference_type
for field_name in klass.field_extracts:
if field_name.startswith('asn'):
graphql_type = 'ASN'
elif (field_name == 'prefix'):
graphql_type = 'IP'
elif (field_name == 'prefix_length'):
graphql_type = 'Int'
else:
graphql_type = 'String'
graphql_fields[snake_to_camel_case(field_name)] = graphql_type
if klass.rpki_relevant:
graphql_fields['rpkiStatus'] = 'RPKIStatus'
graphql_fields['rpkiMaxLength'] = 'Int'
self.graphql_types[object_name]['rpki_max_length'] = 'Int'
implements = ('RPSLContact & RPSLObject' if (klass in [RPSLPerson, RPSLRole]) else 'RPSLObject')
schema = self._generate_schema_str(object_name, 'type', graphql_fields, implements)
schemas[object_name] = schema
self.rpsl_object_schemas = schemas |
def _graphql_type_for_rpsl_field(self, field: RPSLTextField) -> str:
'\n Return the GraphQL type for a regular RPSL field.\n This is always a list of strings if the field is a list and/or\n can occur multiple times.\n '
if ((RPSLFieldListMixin in field.__class__.__bases__) or field.multiple):
return '[String!]'
return 'String' | -4,626,389,360,198,936,000 | Return the GraphQL type for a regular RPSL field.
This is always a list of strings if the field is a list and/or
can occur multiple times. | irrd/server/graphql/schema_generator.py | _graphql_type_for_rpsl_field | morrowc/irrd | python | def _graphql_type_for_rpsl_field(self, field: RPSLTextField) -> str:
'\n Return the GraphQL type for a regular RPSL field.\n This is always a list of strings if the field is a list and/or\n can occur multiple times.\n '
if ((RPSLFieldListMixin in field.__class__.__bases__) or field.multiple):
return '[String!]'
return 'String' |
def _grapql_type_for_reference_field(self, field_name: str, rpsl_field: RPSLTextField) -> Tuple[(Optional[str], Optional[str])]:
'\n Return the GraphQL name and type for a reference field.\n For example, for a field "admin-c" that refers to person/role,\n returns (\'adminC\', \'[RPSLContactUnion!]\').\n Some fields are excluded because they are syntactical references,\n not real references.\n '
if (isinstance(rpsl_field, RPSLReferenceField) and getattr(rpsl_field, 'referring', None)):
rpsl_field.resolve_references()
graphql_name = (snake_to_camel_case(field_name) + 'Objs')
grapql_referring = set(rpsl_field.referring_object_classes)
if (RPSLAutNum in grapql_referring):
grapql_referring.remove(RPSLAutNum)
if (RPSLInetRtr in grapql_referring):
grapql_referring.remove(RPSLInetRtr)
if (grapql_referring == {RPSLPerson, RPSLRole}):
graphql_type = '[RPSLContactUnion!]'
else:
graphql_type = (('[' + grapql_referring.pop().__name__) + '!]')
return (graphql_name, graphql_type)
return (None, None) | -6,929,608,980,858,813,000 | Return the GraphQL name and type for a reference field.
For example, for a field "admin-c" that refers to person/role,
returns ('adminC', '[RPSLContactUnion!]').
Some fields are excluded because they are syntactical references,
not real references. | irrd/server/graphql/schema_generator.py | _grapql_type_for_reference_field | morrowc/irrd | python | def _grapql_type_for_reference_field(self, field_name: str, rpsl_field: RPSLTextField) -> Tuple[(Optional[str], Optional[str])]:
'\n Return the GraphQL name and type for a reference field.\n For example, for a field "admin-c" that refers to person/role,\n returns (\'adminC\', \'[RPSLContactUnion!]\').\n Some fields are excluded because they are syntactical references,\n not real references.\n '
if (isinstance(rpsl_field, RPSLReferenceField) and getattr(rpsl_field, 'referring', None)):
rpsl_field.resolve_references()
graphql_name = (snake_to_camel_case(field_name) + 'Objs')
grapql_referring = set(rpsl_field.referring_object_classes)
if (RPSLAutNum in grapql_referring):
grapql_referring.remove(RPSLAutNum)
if (RPSLInetRtr in grapql_referring):
grapql_referring.remove(RPSLInetRtr)
if (grapql_referring == {RPSLPerson, RPSLRole}):
graphql_type = '[RPSLContactUnion!]'
else:
graphql_type = (('[' + grapql_referring.pop().__name__) + '!]')
return (graphql_name, graphql_type)
return (None, None) |
def _generate_schema_str(self, name: str, graphql_type: str, fields: Dict[(str, str)], implements: Optional[str]=None) -> str:
'\n Generate a schema string for a given name, object type and dict of fields.\n '
schema = f'{graphql_type} {name} '
if implements:
schema += f'implements {implements} '
schema += '{\n'
for (field, field_type) in fields.items():
schema += f''' {field}: {field_type}
'''
schema += '}\n\n'
return schema | -3,460,663,556,156,464,000 | Generate a schema string for a given name, object type and dict of fields. | irrd/server/graphql/schema_generator.py | _generate_schema_str | morrowc/irrd | python | def _generate_schema_str(self, name: str, graphql_type: str, fields: Dict[(str, str)], implements: Optional[str]=None) -> str:
'\n \n '
schema = f'{graphql_type} {name} '
if implements:
schema += f'implements {implements} '
schema += '{\n'
for (field, field_type) in fields.items():
schema += f' {field}: {field_type}
'
schema += '}\n\n'
return schema |
@cached_property
def additional_properties_type():
'\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n '
lazy_import()
return (bool, date, datetime, dict, float, int, list, str, none_type) | 1,702,168,743,392,494,600 | This must be a method because a model may have properties that are
of type self, this must run after the class is loaded | sdks/python/client/argo_workflows/model/lifecycle_handler.py | additional_properties_type | AnuragThePathak/argo-workflows | python | @cached_property
def additional_properties_type():
'\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n '
lazy_import()
return (bool, date, datetime, dict, float, int, list, str, none_type) |
@cached_property
def openapi_types():
'\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n '
lazy_import()
return {'_exec': (ExecAction,), 'http_get': (HTTPGetAction,), 'tcp_socket': (TCPSocketAction,)} | -7,129,412,387,319,964,000 | This must be a method because a model may have properties that are
of type self, this must run after the class is loaded
Returns
openapi_types (dict): The key is attribute name
and the value is attribute type. | sdks/python/client/argo_workflows/model/lifecycle_handler.py | openapi_types | AnuragThePathak/argo-workflows | python | @cached_property
def openapi_types():
'\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n '
lazy_import()
return {'_exec': (ExecAction,), 'http_get': (HTTPGetAction,), 'tcp_socket': (TCPSocketAction,)} |
@classmethod
@convert_js_args_to_python_args
def _from_openapi_data(cls, *args, **kwargs):
'LifecycleHandler - a model defined in OpenAPI\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n _exec (ExecAction): [optional] # noqa: E501\n http_get (HTTPGetAction): [optional] # noqa: E501\n tcp_socket (TCPSocketAction): [optional] # noqa: E501\n '
_check_type = kwargs.pop('_check_type', True)
_spec_property_naming = kwargs.pop('_spec_property_naming', False)
_path_to_item = kwargs.pop('_path_to_item', ())
_configuration = kwargs.pop('_configuration', None)
_visited_composed_classes = kwargs.pop('_visited_composed_classes', ())
self = super(OpenApiModel, cls).__new__(cls)
if args:
raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,))
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = (_visited_composed_classes + (self.__class__,))
for (var_name, var_value) in kwargs.items():
if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)):
continue
setattr(self, var_name, var_value)
return self | 7,650,468,161,058,138,000 | LifecycleHandler - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_spec_property_naming (bool): True if the variable names in the input data
are serialized names, as specified in the OpenAPI document.
False if the variable names in the input data
are pythonic names, e.g. snake case (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
_visited_composed_classes (tuple): This stores a tuple of
classes that we have traveled through so that
if we see that class again we will not use its
discriminator again.
When traveling through a discriminator, the
composed schema that is
is traveled through is added to this set.
For example if Animal has a discriminator
petType and we pass in "Dog", and the class Dog
allOf includes Animal, we move through Animal
once using the discriminator, and pick Dog.
Then in Dog, we will make an instance of the
Animal class but this time we won't travel
through its discriminator because we passed in
_visited_composed_classes = (Animal,)
_exec (ExecAction): [optional] # noqa: E501
http_get (HTTPGetAction): [optional] # noqa: E501
tcp_socket (TCPSocketAction): [optional] # noqa: E501 | sdks/python/client/argo_workflows/model/lifecycle_handler.py | _from_openapi_data | AnuragThePathak/argo-workflows | python | @classmethod
@convert_js_args_to_python_args
def _from_openapi_data(cls, *args, **kwargs):
'LifecycleHandler - a model defined in OpenAPI\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n _exec (ExecAction): [optional] # noqa: E501\n http_get (HTTPGetAction): [optional] # noqa: E501\n tcp_socket (TCPSocketAction): [optional] # noqa: E501\n '
_check_type = kwargs.pop('_check_type', True)
_spec_property_naming = kwargs.pop('_spec_property_naming', False)
_path_to_item = kwargs.pop('_path_to_item', ())
_configuration = kwargs.pop('_configuration', None)
_visited_composed_classes = kwargs.pop('_visited_composed_classes', ())
self = super(OpenApiModel, cls).__new__(cls)
if args:
raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,))
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = (_visited_composed_classes + (self.__class__,))
for (var_name, var_value) in kwargs.items():
if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)):
continue
setattr(self, var_name, var_value)
return self |
@convert_js_args_to_python_args
def __init__(self, *args, **kwargs):
'LifecycleHandler - a model defined in OpenAPI\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n _exec (ExecAction): [optional] # noqa: E501\n http_get (HTTPGetAction): [optional] # noqa: E501\n tcp_socket (TCPSocketAction): [optional] # noqa: E501\n '
_check_type = kwargs.pop('_check_type', True)
_spec_property_naming = kwargs.pop('_spec_property_naming', False)
_path_to_item = kwargs.pop('_path_to_item', ())
_configuration = kwargs.pop('_configuration', None)
_visited_composed_classes = kwargs.pop('_visited_composed_classes', ())
if args:
raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,))
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = (_visited_composed_classes + (self.__class__,))
for (var_name, var_value) in kwargs.items():
if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)):
continue
setattr(self, var_name, var_value)
if (var_name in self.read_only_vars):
raise ApiAttributeError(f'`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate class with read only attributes.') | -4,069,975,532,339,985,000 | LifecycleHandler - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_spec_property_naming (bool): True if the variable names in the input data
are serialized names, as specified in the OpenAPI document.
False if the variable names in the input data
are pythonic names, e.g. snake case (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
_visited_composed_classes (tuple): This stores a tuple of
classes that we have traveled through so that
if we see that class again we will not use its
discriminator again.
When traveling through a discriminator, the
composed schema that is
is traveled through is added to this set.
For example if Animal has a discriminator
petType and we pass in "Dog", and the class Dog
allOf includes Animal, we move through Animal
once using the discriminator, and pick Dog.
Then in Dog, we will make an instance of the
Animal class but this time we won't travel
through its discriminator because we passed in
_visited_composed_classes = (Animal,)
_exec (ExecAction): [optional] # noqa: E501
http_get (HTTPGetAction): [optional] # noqa: E501
tcp_socket (TCPSocketAction): [optional] # noqa: E501 | sdks/python/client/argo_workflows/model/lifecycle_handler.py | __init__ | AnuragThePathak/argo-workflows | python | @convert_js_args_to_python_args
def __init__(self, *args, **kwargs):
'LifecycleHandler - a model defined in OpenAPI\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n _exec (ExecAction): [optional] # noqa: E501\n http_get (HTTPGetAction): [optional] # noqa: E501\n tcp_socket (TCPSocketAction): [optional] # noqa: E501\n '
_check_type = kwargs.pop('_check_type', True)
_spec_property_naming = kwargs.pop('_spec_property_naming', False)
_path_to_item = kwargs.pop('_path_to_item', ())
_configuration = kwargs.pop('_configuration', None)
_visited_composed_classes = kwargs.pop('_visited_composed_classes', ())
if args:
raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,))
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = (_visited_composed_classes + (self.__class__,))
for (var_name, var_value) in kwargs.items():
if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)):
continue
setattr(self, var_name, var_value)
if (var_name in self.read_only_vars):
raise ApiAttributeError(f'`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate class with read only attributes.') |
def addTableEntry(self, tableEntry=None):
'\n Add a table entry to the switch\n '
response = self.stub.AddEntry(tableEntry)
if (response.code == 0):
Log.error('Error for entry:', tableEntry, 'on switch', self.name) | -3,067,755,745,714,994,000 | Add a table entry to the switch | Controller-Implementation/libs/core/SwitchConnection.py | addTableEntry | qcz994/p4-bier | python | def addTableEntry(self, tableEntry=None):
'\n \n '
response = self.stub.AddEntry(tableEntry)
if (response.code == 0):
Log.error('Error for entry:', tableEntry, 'on switch', self.name) |
def removeTableEntry(self, tableEntry=None):
'\n Remove a table entry from the switch\n '
response = self.stub.RemoveEntry(tableEntry)
if (response.code == 0):
Log.error('Error while removing entry:', tableEntry, 'on switch', self.name) | 4,002,122,230,061,831,000 | Remove a table entry from the switch | Controller-Implementation/libs/core/SwitchConnection.py | removeTableEntry | qcz994/p4-bier | python | def removeTableEntry(self, tableEntry=None):
'\n \n '
response = self.stub.RemoveEntry(tableEntry)
if (response.code == 0):
Log.error('Error while removing entry:', tableEntry, 'on switch', self.name) |
@read_session
def get_bad_replicas_summary(rse_expression=None, from_date=None, to_date=None, filter=None, session=None):
"\n List the bad file replicas summary. Method used by the rucio-ui.\n :param rse_expression: The RSE expression.\n :param from_date: The start date.\n :param to_date: The end date.\n :param filter: Dictionary of attributes by which the RSE results should be filtered. e.g.: {'availability_write': True}\n :param session: The database session in use.\n "
result = []
incidents = {}
rse_clause = []
if rse_expression:
for rse in parse_expression(expression=rse_expression, filter=filter, session=session):
rse_clause.append((models.BadReplicas.rse_id == rse['id']))
elif filter:
for rse in list_rses(filters=filter, session=session):
rse_clause.append((models.BadReplicas.rse_id == rse['id']))
if (session.bind.dialect.name == 'oracle'):
to_days = func.trunc(models.BadReplicas.created_at, str('DD'))
elif (session.bind.dialect.name == 'mysql'):
to_days = func.date(models.BadReplicas.created_at)
elif (session.bind.dialect.name == 'postgresql'):
to_days = func.date_trunc('day', models.BadReplicas.created_at)
else:
to_days = func.strftime(models.BadReplicas.created_at, '%Y-%m-%d')
query = session.query(func.count(), to_days, models.BadReplicas.rse_id, models.BadReplicas.state, models.BadReplicas.reason)
if (rse_clause != []):
query = query.filter(or_(*rse_clause))
if from_date:
query = query.filter((models.BadReplicas.created_at > from_date))
if to_date:
query = query.filter((models.BadReplicas.created_at < to_date))
summary = query.group_by(to_days, models.BadReplicas.rse_id, models.BadReplicas.reason, models.BadReplicas.state).all()
for row in summary:
if ((row[2], row[1], row[4]) not in incidents):
incidents[(row[2], row[1], row[4])] = {}
incidents[(row[2], row[1], row[4])][str(row[3].name)] = row[0]
for incident in incidents:
res = incidents[incident]
res['rse_id'] = incident[0]
res['rse'] = get_rse_name(rse_id=incident[0], session=session)
res['created_at'] = incident[1]
res['reason'] = incident[2]
result.append(res)
return result | 6,065,724,123,909,250,000 | List the bad file replicas summary. Method used by the rucio-ui.
:param rse_expression: The RSE expression.
:param from_date: The start date.
:param to_date: The end date.
:param filter: Dictionary of attributes by which the RSE results should be filtered. e.g.: {'availability_write': True}
:param session: The database session in use. | lib/rucio/core/replica.py | get_bad_replicas_summary | bari12/rucio | python | @read_session
def get_bad_replicas_summary(rse_expression=None, from_date=None, to_date=None, filter=None, session=None):
"\n List the bad file replicas summary. Method used by the rucio-ui.\n :param rse_expression: The RSE expression.\n :param from_date: The start date.\n :param to_date: The end date.\n :param filter: Dictionary of attributes by which the RSE results should be filtered. e.g.: {'availability_write': True}\n :param session: The database session in use.\n "
result = []
incidents = {}
rse_clause = []
if rse_expression:
for rse in parse_expression(expression=rse_expression, filter=filter, session=session):
rse_clause.append((models.BadReplicas.rse_id == rse['id']))
elif filter:
for rse in list_rses(filters=filter, session=session):
rse_clause.append((models.BadReplicas.rse_id == rse['id']))
if (session.bind.dialect.name == 'oracle'):
to_days = func.trunc(models.BadReplicas.created_at, str('DD'))
elif (session.bind.dialect.name == 'mysql'):
to_days = func.date(models.BadReplicas.created_at)
elif (session.bind.dialect.name == 'postgresql'):
to_days = func.date_trunc('day', models.BadReplicas.created_at)
else:
to_days = func.strftime(models.BadReplicas.created_at, '%Y-%m-%d')
query = session.query(func.count(), to_days, models.BadReplicas.rse_id, models.BadReplicas.state, models.BadReplicas.reason)
if (rse_clause != []):
query = query.filter(or_(*rse_clause))
if from_date:
query = query.filter((models.BadReplicas.created_at > from_date))
if to_date:
query = query.filter((models.BadReplicas.created_at < to_date))
summary = query.group_by(to_days, models.BadReplicas.rse_id, models.BadReplicas.reason, models.BadReplicas.state).all()
for row in summary:
if ((row[2], row[1], row[4]) not in incidents):
incidents[(row[2], row[1], row[4])] = {}
incidents[(row[2], row[1], row[4])][str(row[3].name)] = row[0]
for incident in incidents:
res = incidents[incident]
res['rse_id'] = incident[0]
res['rse'] = get_rse_name(rse_id=incident[0], session=session)
res['created_at'] = incident[1]
res['reason'] = incident[2]
result.append(res)
return result |
@read_session
def __exists_replicas(rse_id, scope=None, name=None, path=None, session=None):
'\n Internal method to check if a replica exists at a given site.\n :param rse_id: The RSE id.\n :param scope: The scope of the file.\n :param name: The name of the file.\n :param path: The path of the replica.\n :param session: The database session in use.\n '
already_declared = False
if path:
path_clause = [(models.RSEFileAssociation.path == path)]
if path.startswith('/'):
path_clause.append((models.RSEFileAssociation.path == path[1:]))
else:
path_clause.append((models.RSEFileAssociation.path == ('/%s' % path)))
query = session.query(models.RSEFileAssociation.path, models.RSEFileAssociation.scope, models.RSEFileAssociation.name, models.RSEFileAssociation.rse_id, models.RSEFileAssociation.bytes).with_hint(models.RSEFileAssociation, '+ index(replicas REPLICAS_PATH_IDX', 'oracle').filter((models.RSEFileAssociation.rse_id == rse_id)).filter(or_(*path_clause))
else:
query = session.query(models.RSEFileAssociation.path, models.RSEFileAssociation.scope, models.RSEFileAssociation.name, models.RSEFileAssociation.rse_id, models.RSEFileAssociation.bytes).filter_by(rse_id=rse_id, scope=scope, name=name)
if query.count():
result = query.first()
(path, scope, name, rse_id, size) = result
query = session.query(models.BadReplicas.scope, models.BadReplicas.name, models.BadReplicas.rse_id, models.BadReplicas.state).filter_by(rse_id=rse_id, scope=scope, name=name, state=BadFilesStatus.BAD)
if query.count():
already_declared = True
return (True, scope, name, already_declared, size)
else:
return (False, None, None, already_declared, None) | 2,500,845,477,038,364,000 | Internal method to check if a replica exists at a given site.
:param rse_id: The RSE id.
:param scope: The scope of the file.
:param name: The name of the file.
:param path: The path of the replica.
:param session: The database session in use. | lib/rucio/core/replica.py | __exists_replicas | bari12/rucio | python | @read_session
def __exists_replicas(rse_id, scope=None, name=None, path=None, session=None):
'\n Internal method to check if a replica exists at a given site.\n :param rse_id: The RSE id.\n :param scope: The scope of the file.\n :param name: The name of the file.\n :param path: The path of the replica.\n :param session: The database session in use.\n '
already_declared = False
if path:
path_clause = [(models.RSEFileAssociation.path == path)]
if path.startswith('/'):
path_clause.append((models.RSEFileAssociation.path == path[1:]))
else:
path_clause.append((models.RSEFileAssociation.path == ('/%s' % path)))
query = session.query(models.RSEFileAssociation.path, models.RSEFileAssociation.scope, models.RSEFileAssociation.name, models.RSEFileAssociation.rse_id, models.RSEFileAssociation.bytes).with_hint(models.RSEFileAssociation, '+ index(replicas REPLICAS_PATH_IDX', 'oracle').filter((models.RSEFileAssociation.rse_id == rse_id)).filter(or_(*path_clause))
else:
query = session.query(models.RSEFileAssociation.path, models.RSEFileAssociation.scope, models.RSEFileAssociation.name, models.RSEFileAssociation.rse_id, models.RSEFileAssociation.bytes).filter_by(rse_id=rse_id, scope=scope, name=name)
if query.count():
result = query.first()
(path, scope, name, rse_id, size) = result
query = session.query(models.BadReplicas.scope, models.BadReplicas.name, models.BadReplicas.rse_id, models.BadReplicas.state).filter_by(rse_id=rse_id, scope=scope, name=name, state=BadFilesStatus.BAD)
if query.count():
already_declared = True
return (True, scope, name, already_declared, size)
else:
return (False, None, None, already_declared, None) |
@read_session
def list_bad_replicas_status(state=BadFilesStatus.BAD, rse_id=None, younger_than=None, older_than=None, limit=None, list_pfns=False, vo='def', session=None):
'\n List the bad file replicas history states. Method used by the rucio-ui.\n :param state: The state of the file (SUSPICIOUS or BAD).\n :param rse_id: The RSE id.\n :param younger_than: datetime object to select bad replicas younger than this date.\n :param older_than: datetime object to select bad replicas older than this date.\n :param limit: The maximum number of replicas returned.\n :param vo: The VO to find replicas from.\n :param session: The database session in use.\n '
result = []
query = session.query(models.BadReplicas.scope, models.BadReplicas.name, models.BadReplicas.rse_id, models.BadReplicas.state, models.BadReplicas.created_at, models.BadReplicas.updated_at)
if state:
query = query.filter((models.BadReplicas.state == state))
if rse_id:
query = query.filter((models.BadReplicas.rse_id == rse_id))
if younger_than:
query = query.filter((models.BadReplicas.created_at >= younger_than))
if older_than:
query = query.filter((models.BadReplicas.created_at <= older_than))
if limit:
query = query.limit(limit)
for badfile in query.yield_per(1000):
if (badfile.scope.vo == vo):
if list_pfns:
result.append({'scope': badfile.scope, 'name': badfile.name, 'type': DIDType.FILE})
else:
result.append({'scope': badfile.scope, 'name': badfile.name, 'rse': get_rse_name(rse_id=badfile.rse_id, session=session), 'rse_id': badfile.rse_id, 'state': badfile.state, 'created_at': badfile.created_at, 'updated_at': badfile.updated_at})
if list_pfns:
reps = []
for rep in list_replicas(result, schemes=None, unavailable=False, request_id=None, ignore_availability=True, all_states=True, session=session):
pfn = None
if ((rse_id in rep['rses']) and rep['rses'][rse_id]):
pfn = rep['rses'][rse_id][0]
if (pfn and (pfn not in reps)):
reps.append(pfn)
else:
reps.extend([item for row in rep['rses'].values() for item in row])
list(set(reps))
result = reps
return result | -5,288,423,726,230,488,000 | List the bad file replicas history states. Method used by the rucio-ui.
:param state: The state of the file (SUSPICIOUS or BAD).
:param rse_id: The RSE id.
:param younger_than: datetime object to select bad replicas younger than this date.
:param older_than: datetime object to select bad replicas older than this date.
:param limit: The maximum number of replicas returned.
:param vo: The VO to find replicas from.
:param session: The database session in use. | lib/rucio/core/replica.py | list_bad_replicas_status | bari12/rucio | python | @read_session
def list_bad_replicas_status(state=BadFilesStatus.BAD, rse_id=None, younger_than=None, older_than=None, limit=None, list_pfns=False, vo='def', session=None):
'\n List the bad file replicas history states. Method used by the rucio-ui.\n :param state: The state of the file (SUSPICIOUS or BAD).\n :param rse_id: The RSE id.\n :param younger_than: datetime object to select bad replicas younger than this date.\n :param older_than: datetime object to select bad replicas older than this date.\n :param limit: The maximum number of replicas returned.\n :param vo: The VO to find replicas from.\n :param session: The database session in use.\n '
result = []
query = session.query(models.BadReplicas.scope, models.BadReplicas.name, models.BadReplicas.rse_id, models.BadReplicas.state, models.BadReplicas.created_at, models.BadReplicas.updated_at)
if state:
query = query.filter((models.BadReplicas.state == state))
if rse_id:
query = query.filter((models.BadReplicas.rse_id == rse_id))
if younger_than:
query = query.filter((models.BadReplicas.created_at >= younger_than))
if older_than:
query = query.filter((models.BadReplicas.created_at <= older_than))
if limit:
query = query.limit(limit)
for badfile in query.yield_per(1000):
if (badfile.scope.vo == vo):
if list_pfns:
result.append({'scope': badfile.scope, 'name': badfile.name, 'type': DIDType.FILE})
else:
result.append({'scope': badfile.scope, 'name': badfile.name, 'rse': get_rse_name(rse_id=badfile.rse_id, session=session), 'rse_id': badfile.rse_id, 'state': badfile.state, 'created_at': badfile.created_at, 'updated_at': badfile.updated_at})
if list_pfns:
reps = []
for rep in list_replicas(result, schemes=None, unavailable=False, request_id=None, ignore_availability=True, all_states=True, session=session):
pfn = None
if ((rse_id in rep['rses']) and rep['rses'][rse_id]):
pfn = rep['rses'][rse_id][0]
if (pfn and (pfn not in reps)):
reps.append(pfn)
else:
reps.extend([item for row in rep['rses'].values() for item in row])
list(set(reps))
result = reps
return result |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.