body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def inverse_deriv(self, z): "\n Derivative of the inverse of the Log-Log transform link function\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the LogLog link function at `p`\n\n Returns\n -------\n g^(-1)'(z) : ndarray\n The derivative of the inverse of the LogLog link function\n " return np.exp(((- np.exp((- z))) - z))
1,061,430,631,846,378,800
Derivative of the inverse of the Log-Log transform link function Parameters ---------- z : array_like The value of the inverse of the LogLog link function at `p` Returns ------- g^(-1)'(z) : ndarray The derivative of the inverse of the LogLog link function
statsmodels/genmod/families/links.py
inverse_deriv
BioGeneTools/statsmodels
python
def inverse_deriv(self, z): "\n Derivative of the inverse of the Log-Log transform link function\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the LogLog link function at `p`\n\n Returns\n -------\n g^(-1)'(z) : ndarray\n The derivative of the inverse of the LogLog link function\n " return np.exp(((- np.exp((- z))) - z))
def inverse_deriv2(self, z): "\n Second derivative of the inverse of the Log-Log transform link function\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the LogLog link function at `p`\n\n Returns\n -------\n g^(-1)''(z) : ndarray\n The second derivative of the inverse of the LogLog link function\n " return (self.inverse_deriv(z) * (np.exp((- z)) - 1))
-7,096,429,890,514,333,000
Second derivative of the inverse of the Log-Log transform link function Parameters ---------- z : array_like The value of the inverse of the LogLog link function at `p` Returns ------- g^(-1)''(z) : ndarray The second derivative of the inverse of the LogLog link function
statsmodels/genmod/families/links.py
inverse_deriv2
BioGeneTools/statsmodels
python
def inverse_deriv2(self, z): "\n Second derivative of the inverse of the Log-Log transform link function\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the LogLog link function at `p`\n\n Returns\n -------\n g^(-1)(z) : ndarray\n The second derivative of the inverse of the LogLog link function\n " return (self.inverse_deriv(z) * (np.exp((- z)) - 1))
def __call__(self, p): '\n Negative Binomial transform link function\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n z : ndarray\n The negative binomial transform of `p`\n\n Notes\n -----\n g(p) = log(p/(p + 1/alpha))\n ' p = self._clean(p) return np.log((p / (p + (1 / self.alpha))))
5,409,394,703,314,850,000
Negative Binomial transform link function Parameters ---------- p : array_like Mean parameters Returns ------- z : ndarray The negative binomial transform of `p` Notes ----- g(p) = log(p/(p + 1/alpha))
statsmodels/genmod/families/links.py
__call__
BioGeneTools/statsmodels
python
def __call__(self, p): '\n Negative Binomial transform link function\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n z : ndarray\n The negative binomial transform of `p`\n\n Notes\n -----\n g(p) = log(p/(p + 1/alpha))\n ' p = self._clean(p) return np.log((p / (p + (1 / self.alpha))))
def inverse(self, z): '\n Inverse of the negative binomial transform\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the negative binomial link at `p`.\n\n Returns\n -------\n p : ndarray\n Mean parameters\n\n Notes\n -----\n g^(-1)(z) = exp(z)/(alpha*(1-exp(z)))\n ' return ((- 1) / (self.alpha * (1 - np.exp((- z)))))
-2,830,177,018,432,326,700
Inverse of the negative binomial transform Parameters ---------- z : array_like The value of the inverse of the negative binomial link at `p`. Returns ------- p : ndarray Mean parameters Notes ----- g^(-1)(z) = exp(z)/(alpha*(1-exp(z)))
statsmodels/genmod/families/links.py
inverse
BioGeneTools/statsmodels
python
def inverse(self, z): '\n Inverse of the negative binomial transform\n\n Parameters\n ----------\n z : array_like\n The value of the inverse of the negative binomial link at `p`.\n\n Returns\n -------\n p : ndarray\n Mean parameters\n\n Notes\n -----\n g^(-1)(z) = exp(z)/(alpha*(1-exp(z)))\n ' return ((- 1) / (self.alpha * (1 - np.exp((- z)))))
def deriv(self, p): "\n Derivative of the negative binomial transform\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n g'(p) : ndarray\n The derivative of the negative binomial transform link function\n\n Notes\n -----\n g'(x) = 1/(x+alpha*x^2)\n " return (1 / (p + (self.alpha * (p ** 2))))
-6,867,509,968,575,642,000
Derivative of the negative binomial transform Parameters ---------- p : array_like Mean parameters Returns ------- g'(p) : ndarray The derivative of the negative binomial transform link function Notes ----- g'(x) = 1/(x+alpha*x^2)
statsmodels/genmod/families/links.py
deriv
BioGeneTools/statsmodels
python
def deriv(self, p): "\n Derivative of the negative binomial transform\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n g'(p) : ndarray\n The derivative of the negative binomial transform link function\n\n Notes\n -----\n g'(x) = 1/(x+alpha*x^2)\n " return (1 / (p + (self.alpha * (p ** 2))))
def deriv2(self, p): "\n Second derivative of the negative binomial link function.\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n g''(p) : ndarray\n The second derivative of the negative binomial transform link\n function\n\n Notes\n -----\n g''(x) = -(1+2*alpha*x)/(x+alpha*x^2)^2\n " numer = (- (1 + ((2 * self.alpha) * p))) denom = ((p + (self.alpha * (p ** 2))) ** 2) return (numer / denom)
521,529,222,361,369,200
Second derivative of the negative binomial link function. Parameters ---------- p : array_like Mean parameters Returns ------- g''(p) : ndarray The second derivative of the negative binomial transform link function Notes ----- g''(x) = -(1+2*alpha*x)/(x+alpha*x^2)^2
statsmodels/genmod/families/links.py
deriv2
BioGeneTools/statsmodels
python
def deriv2(self, p): "\n Second derivative of the negative binomial link function.\n\n Parameters\n ----------\n p : array_like\n Mean parameters\n\n Returns\n -------\n g(p) : ndarray\n The second derivative of the negative binomial transform link\n function\n\n Notes\n -----\n g(x) = -(1+2*alpha*x)/(x+alpha*x^2)^2\n " numer = (- (1 + ((2 * self.alpha) * p))) denom = ((p + (self.alpha * (p ** 2))) ** 2) return (numer / denom)
def inverse_deriv(self, z): "\n Derivative of the inverse of the negative binomial transform\n\n Parameters\n ----------\n z : array_like\n Usually the linear predictor for a GLM or GEE model\n\n Returns\n -------\n g^(-1)'(z) : ndarray\n The value of the derivative of the inverse of the negative\n binomial link\n " t = np.exp(z) return (t / (self.alpha * ((1 - t) ** 2)))
-1,360,131,057,683,691,300
Derivative of the inverse of the negative binomial transform Parameters ---------- z : array_like Usually the linear predictor for a GLM or GEE model Returns ------- g^(-1)'(z) : ndarray The value of the derivative of the inverse of the negative binomial link
statsmodels/genmod/families/links.py
inverse_deriv
BioGeneTools/statsmodels
python
def inverse_deriv(self, z): "\n Derivative of the inverse of the negative binomial transform\n\n Parameters\n ----------\n z : array_like\n Usually the linear predictor for a GLM or GEE model\n\n Returns\n -------\n g^(-1)'(z) : ndarray\n The value of the derivative of the inverse of the negative\n binomial link\n " t = np.exp(z) return (t / (self.alpha * ((1 - t) ** 2)))
def _default_hashfunc(content, hashbits): "\n Default hash function is variable-length version of Python's builtin hash.\n\n :param content: data that needs to hash.\n :return: return a decimal number.\n " if (content == ''): return 0 x = (ord(content[0]) << 7) m = 1000003 mask = ((2 ** hashbits) - 1) for c in content: x = (((x * m) ^ ord(c)) & mask) x ^= len(content) if (x == (- 1)): x = (- 2) return x
2,345,190,079,828,529,700
Default hash function is variable-length version of Python's builtin hash. :param content: data that needs to hash. :return: return a decimal number.
algorithms/hash/simhash.py
_default_hashfunc
SylvanasSun/code-snippets
python
def _default_hashfunc(content, hashbits): "\n Default hash function is variable-length version of Python's builtin hash.\n\n :param content: data that needs to hash.\n :return: return a decimal number.\n " if (content == ): return 0 x = (ord(content[0]) << 7) m = 1000003 mask = ((2 ** hashbits) - 1) for c in content: x = (((x * m) ^ ord(c)) & mask) x ^= len(content) if (x == (- 1)): x = (- 2) return x
def _default_tokenizer_func(content, keyword_weight_pair): "\n Default tokenizer function that uses jieba tokenizer.\n\n :param keyword_weight_pair: maximum pair number of the keyword-weight list.\n :return: return keyword-weight list. Example: [('Example',0.4511233019962264),('Hello',0.25548051420382073),...].\n " seg_list = jieba.lcut_for_search(content) return jieba.analyse.extract_tags(''.join(seg_list), topK=keyword_weight_pair, withWeight=True)
5,208,231,525,523,260,000
Default tokenizer function that uses jieba tokenizer. :param keyword_weight_pair: maximum pair number of the keyword-weight list. :return: return keyword-weight list. Example: [('Example',0.4511233019962264),('Hello',0.25548051420382073),...].
algorithms/hash/simhash.py
_default_tokenizer_func
SylvanasSun/code-snippets
python
def _default_tokenizer_func(content, keyword_weight_pair): "\n Default tokenizer function that uses jieba tokenizer.\n\n :param keyword_weight_pair: maximum pair number of the keyword-weight list.\n :return: return keyword-weight list. Example: [('Example',0.4511233019962264),('Hello',0.25548051420382073),...].\n " seg_list = jieba.lcut_for_search(content) return jieba.analyse.extract_tags(.join(seg_list), topK=keyword_weight_pair, withWeight=True)
def __init__(self, data, keyword_weight_pair=20, hash_bit_number=64, hashfunc=None, tokenizer_func=None): '\n :param data: data that needs to be encode.\n :param keyword_weight_pair: maximum pair number of the keyword-weight list.\n :param hash_bit_number: maximum bit number for hashcode.\n :param hashfunc: hash function,its first parameter must be data that needs to be encode\n and the second parameter must be hash bit number.\n\n :param tokenizer_func: tokenizer function,its first parameter must be content that\n needs to be tokenizer and the second parameter must be\n keyword_weight_pair.\n ' if (hashfunc is None): self.hashfunc = _default_hashfunc else: self.hashfunc = hashfunc if (tokenizer_func is None): self.tokenizer_func = _default_tokenizer_func else: self.tokenizer_func = tokenizer_func self.hash_bit_number = hash_bit_number self.keyword_weight_pari = keyword_weight_pair if isinstance(data, Simhash): self.hash = data.hash elif isinstance(data, int): self.hash = data else: self.simhash(data)
6,896,240,115,283,153,000
:param data: data that needs to be encode. :param keyword_weight_pair: maximum pair number of the keyword-weight list. :param hash_bit_number: maximum bit number for hashcode. :param hashfunc: hash function,its first parameter must be data that needs to be encode and the second parameter must be hash bit number. :param tokenizer_func: tokenizer function,its first parameter must be content that needs to be tokenizer and the second parameter must be keyword_weight_pair.
algorithms/hash/simhash.py
__init__
SylvanasSun/code-snippets
python
def __init__(self, data, keyword_weight_pair=20, hash_bit_number=64, hashfunc=None, tokenizer_func=None): '\n :param data: data that needs to be encode.\n :param keyword_weight_pair: maximum pair number of the keyword-weight list.\n :param hash_bit_number: maximum bit number for hashcode.\n :param hashfunc: hash function,its first parameter must be data that needs to be encode\n and the second parameter must be hash bit number.\n\n :param tokenizer_func: tokenizer function,its first parameter must be content that\n needs to be tokenizer and the second parameter must be\n keyword_weight_pair.\n ' if (hashfunc is None): self.hashfunc = _default_hashfunc else: self.hashfunc = hashfunc if (tokenizer_func is None): self.tokenizer_func = _default_tokenizer_func else: self.tokenizer_func = tokenizer_func self.hash_bit_number = hash_bit_number self.keyword_weight_pari = keyword_weight_pair if isinstance(data, Simhash): self.hash = data.hash elif isinstance(data, int): self.hash = data else: self.simhash(data)
def simhash(self, content): '\n Select policies for simhash on the different types of content.\n ' if (content is None): self.hash = (- 1) return if isinstance(content, str): features = self.tokenizer_func(content, self.keyword_weight_pari) self.hash = self.build_from_features(features) elif isinstance(content, collections.Iterable): self.hash = self.build_from_features(content) elif isinstance(content, int): self.hash = content else: raise Exception(('Unsupported parameter type %s' % type(content)))
358,083,546,286,196,860
Select policies for simhash on the different types of content.
algorithms/hash/simhash.py
simhash
SylvanasSun/code-snippets
python
def simhash(self, content): '\n \n ' if (content is None): self.hash = (- 1) return if isinstance(content, str): features = self.tokenizer_func(content, self.keyword_weight_pari) self.hash = self.build_from_features(features) elif isinstance(content, collections.Iterable): self.hash = self.build_from_features(content) elif isinstance(content, int): self.hash = content else: raise Exception(('Unsupported parameter type %s' % type(content)))
def build_from_features(self, features): '\n :param features: a list of (token,weight) tuples or a token -> weight dict,\n if is a string so it need compute weight (a weight of 1 will be assumed).\n\n :return: a decimal digit for the accumulative result of each after handled features-weight pair.\n ' v = ([0] * self.hash_bit_number) if isinstance(features, dict): features = features.items() for f in features: if isinstance(f, str): h = self.hashfunc(f, self.hash_bit_number) w = 1 else: assert isinstance(f, collections.Iterable) h = self.hashfunc(f[0], self.hash_bit_number) w = f[1] for i in range(self.hash_bit_number): bitmask = (1 << i) v[i] += (w if (h & bitmask) else (- w)) fingerprint = 0 for i in range(self.hash_bit_number): if (v[i] >= 0): fingerprint += (1 << i) return fingerprint
3,623,918,119,554,579,500
:param features: a list of (token,weight) tuples or a token -> weight dict, if is a string so it need compute weight (a weight of 1 will be assumed). :return: a decimal digit for the accumulative result of each after handled features-weight pair.
algorithms/hash/simhash.py
build_from_features
SylvanasSun/code-snippets
python
def build_from_features(self, features): '\n :param features: a list of (token,weight) tuples or a token -> weight dict,\n if is a string so it need compute weight (a weight of 1 will be assumed).\n\n :return: a decimal digit for the accumulative result of each after handled features-weight pair.\n ' v = ([0] * self.hash_bit_number) if isinstance(features, dict): features = features.items() for f in features: if isinstance(f, str): h = self.hashfunc(f, self.hash_bit_number) w = 1 else: assert isinstance(f, collections.Iterable) h = self.hashfunc(f[0], self.hash_bit_number) w = f[1] for i in range(self.hash_bit_number): bitmask = (1 << i) v[i] += (w if (h & bitmask) else (- w)) fingerprint = 0 for i in range(self.hash_bit_number): if (v[i] >= 0): fingerprint += (1 << i) return fingerprint
def is_equal(self, another, limit=0.8): '\n Determine two simhash are similar or not similar.\n\n :param another: another simhash.\n :param limit: a limit of the similarity.\n :return: if similarity greater than limit return true and else return false.\n ' if (another is None): raise Exception('Parameter another is null') if isinstance(another, int): distance = self.hamming_distance(another) elif isinstance(another, Simhash): assert (self.hash_bit_number == another.hash_bit_number) distance = self.hamming_distance(another.hash) else: raise Exception(('Unsupported parameter type %s' % type(another))) similarity = (float((self.hash_bit_number - distance)) / self.hash_bit_number) if (similarity > limit): return True return False
-145,368,186,127,737,300
Determine two simhash are similar or not similar. :param another: another simhash. :param limit: a limit of the similarity. :return: if similarity greater than limit return true and else return false.
algorithms/hash/simhash.py
is_equal
SylvanasSun/code-snippets
python
def is_equal(self, another, limit=0.8): '\n Determine two simhash are similar or not similar.\n\n :param another: another simhash.\n :param limit: a limit of the similarity.\n :return: if similarity greater than limit return true and else return false.\n ' if (another is None): raise Exception('Parameter another is null') if isinstance(another, int): distance = self.hamming_distance(another) elif isinstance(another, Simhash): assert (self.hash_bit_number == another.hash_bit_number) distance = self.hamming_distance(another.hash) else: raise Exception(('Unsupported parameter type %s' % type(another))) similarity = (float((self.hash_bit_number - distance)) / self.hash_bit_number) if (similarity > limit): return True return False
def hamming_distance(self, another): '\n Compute hamming distance,hamming distance is a total number of different bits of two binary numbers.\n\n :param another: another simhash value.\n :return: a hamming distance that current simhash and another simhash.\n ' x = ((self.hash ^ another) & ((1 << self.hash_bit_number) - 1)) result = 0 while x: result += 1 x &= (x - 1) return result
4,441,790,304,206,754,300
Compute hamming distance,hamming distance is a total number of different bits of two binary numbers. :param another: another simhash value. :return: a hamming distance that current simhash and another simhash.
algorithms/hash/simhash.py
hamming_distance
SylvanasSun/code-snippets
python
def hamming_distance(self, another): '\n Compute hamming distance,hamming distance is a total number of different bits of two binary numbers.\n\n :param another: another simhash value.\n :return: a hamming distance that current simhash and another simhash.\n ' x = ((self.hash ^ another) & ((1 << self.hash_bit_number) - 1)) result = 0 while x: result += 1 x &= (x - 1) return result
def relpath(self, current_file, rel_path): '\n Compute path given current file and relative path.\n ' script_dir = os.path.dirname(os.path.abspath(current_file)) rel_path = os.path.abspath(os.path.join(script_dir, rel_path)) return rel_path
-5,430,039,140,372,359,000
Compute path given current file and relative path.
luigi/contrib/scalding.py
relpath
Ali-Tahir/luigi
python
def relpath(self, current_file, rel_path): '\n \n ' script_dir = os.path.dirname(os.path.abspath(current_file)) rel_path = os.path.abspath(os.path.join(script_dir, rel_path)) return rel_path
def source(self): '\n Path to the scala source for this Scalding Job\n\n Either one of source() or jar() must be specified.\n ' return None
-3,100,607,564,920,193,500
Path to the scala source for this Scalding Job Either one of source() or jar() must be specified.
luigi/contrib/scalding.py
source
Ali-Tahir/luigi
python
def source(self): '\n Path to the scala source for this Scalding Job\n\n Either one of source() or jar() must be specified.\n ' return None
def jar(self): '\n Path to the jar file for this Scalding Job\n\n Either one of source() or jar() must be specified.\n ' return None
-6,554,746,075,960,280,000
Path to the jar file for this Scalding Job Either one of source() or jar() must be specified.
luigi/contrib/scalding.py
jar
Ali-Tahir/luigi
python
def jar(self): '\n Path to the jar file for this Scalding Job\n\n Either one of source() or jar() must be specified.\n ' return None
def extra_jars(self): '\n Extra jars for building and running this Scalding Job.\n ' return []
-6,212,587,920,033,463,000
Extra jars for building and running this Scalding Job.
luigi/contrib/scalding.py
extra_jars
Ali-Tahir/luigi
python
def extra_jars(self): '\n \n ' return []
def job_class(self): '\n optional main job class for this Scalding Job.\n ' return None
4,452,208,310,207,736,300
optional main job class for this Scalding Job.
luigi/contrib/scalding.py
job_class
Ali-Tahir/luigi
python
def job_class(self): '\n \n ' return None
def atomic_output(self): '\n If True, then rewrite output arguments to be temp locations and\n atomically move them into place after the job finishes.\n ' return True
5,549,941,568,464,626,000
If True, then rewrite output arguments to be temp locations and atomically move them into place after the job finishes.
luigi/contrib/scalding.py
atomic_output
Ali-Tahir/luigi
python
def atomic_output(self): '\n If True, then rewrite output arguments to be temp locations and\n atomically move them into place after the job finishes.\n ' return True
def job_args(self): '\n Extra arguments to pass to the Scalding job.\n ' return []
7,189,867,044,952,383,000
Extra arguments to pass to the Scalding job.
luigi/contrib/scalding.py
job_args
Ali-Tahir/luigi
python
def job_args(self): '\n \n ' return []
def args(self): '\n Returns an array of args to pass to the job.\n ' arglist = [] for (k, v) in six.iteritems(self.requires_hadoop()): arglist.append(('--' + k)) arglist.extend([t.output().path for t in flatten(v)]) arglist.extend(['--output', self.output()]) arglist.extend(self.job_args()) return arglist
-5,758,166,138,721,626,000
Returns an array of args to pass to the job.
luigi/contrib/scalding.py
args
Ali-Tahir/luigi
python
def args(self): '\n \n ' arglist = [] for (k, v) in six.iteritems(self.requires_hadoop()): arglist.append(('--' + k)) arglist.extend([t.output().path for t in flatten(v)]) arglist.extend(['--output', self.output()]) arglist.extend(self.job_args()) return arglist
def migrate(): ' apply yoyo migrations ' logger.info('Migrating to the latest schema') log.getLogger('yoyo').setLevel(log.DEBUG) backend = get_backend(('sqlite:///' + DB_PATH)) migrations = read_migrations('./migrations') with backend.lock(): backend.apply_migrations(backend.to_apply(migrations))
5,327,263,784,229,965,000
apply yoyo migrations
src/app/fs.py
migrate
ratijas/multi_vote_bot
python
def migrate(): ' ' logger.info('Migrating to the latest schema') log.getLogger('yoyo').setLevel(log.DEBUG) backend = get_backend(('sqlite:///' + DB_PATH)) migrations = read_migrations('./migrations') with backend.lock(): backend.apply_migrations(backend.to_apply(migrations))
def setName(self, name=None): ' Set an individual name for the (sub) test. ' if (name != None): self.name = name else: self.name = self.testName
8,183,793,640,460,031,000
Set an individual name for the (sub) test.
ctsimu/test.py
setName
BAMresearch/ctsimu-toolbox
python
def setName(self, name=None): ' ' if (name != None): self.name = name else: self.name = self.testName
def setResultFileDirectory(self, resultFileDirectory='.'): ' Set the location where test results should be saved. ' self.resultFileDirectory = resultFileDirectory touchDirectory(self.resultFileDirectory)
2,513,719,743,405,659,600
Set the location where test results should be saved.
ctsimu/test.py
setResultFileDirectory
BAMresearch/ctsimu-toolbox
python
def setResultFileDirectory(self, resultFileDirectory='.'): ' ' self.resultFileDirectory = resultFileDirectory touchDirectory(self.resultFileDirectory)
def setRawOutput(self, rawOutput=False): ' Save intermediate projections as RAW instead of TIFF? ' self.rawOutput = rawOutput
1,851,281,245,773,209,000
Save intermediate projections as RAW instead of TIFF?
ctsimu/test.py
setRawOutput
BAMresearch/ctsimu-toolbox
python
def setRawOutput(self, rawOutput=False): ' ' self.rawOutput = rawOutput
def plotResults(self): ' Plot results of evaluation. ' pass
-7,920,522,756,913,202,000
Plot results of evaluation.
ctsimu/test.py
plotResults
BAMresearch/ctsimu-toolbox
python
def plotResults(self): ' ' pass
def process_20_newsgroups(*, extract_dir='20_newsgroups', metadata=None, unpack_dir=None, opts={'subset': 'all', 'remove': "('headers', 'footers', 'quotes')"}): '\n Process 20 newsgroups into (data, target, metadata) format.\n\n\n Parameters\n ----------\n unpack_dir: path\n The interim parent directory the dataset files have been unpacked into.\n extract_dir: str\n Name of the directory of the unpacked files relative to the unpack_dir. Note that\n opts: dict default {"subset":"all", "remove"="(\'headers\', \'footers\', \'quotes\')"}\n Options to pass to sklearn.datasets.fetch_20newsgroups.\n\n\n Returns\n -------\n A tuple:\n (data, target, additional_metadata)\n\n ' if (metadata is None): metadata = {} if (unpack_dir is None): unpack_dir = paths['interim_data_path'] else: unpack_dir = pathlib.Path(unpack_dir) data_dir = (unpack_dir / f'{extract_dir}') news = fetch_20newsgroups(**opts) metadata['target_names'] = news.target_names return (news.data, news.target, metadata)
8,225,099,787,755,758,000
Process 20 newsgroups into (data, target, metadata) format. Parameters ---------- unpack_dir: path The interim parent directory the dataset files have been unpacked into. extract_dir: str Name of the directory of the unpacked files relative to the unpack_dir. Note that opts: dict default {"subset":"all", "remove"="('headers', 'footers', 'quotes')"} Options to pass to sklearn.datasets.fetch_20newsgroups. Returns ------- A tuple: (data, target, additional_metadata)
src/data/process_functions.py
process_20_newsgroups
acwooding/docmap_playground
python
def process_20_newsgroups(*, extract_dir='20_newsgroups', metadata=None, unpack_dir=None, opts={'subset': 'all', 'remove': "('headers', 'footers', 'quotes')"}): '\n Process 20 newsgroups into (data, target, metadata) format.\n\n\n Parameters\n ----------\n unpack_dir: path\n The interim parent directory the dataset files have been unpacked into.\n extract_dir: str\n Name of the directory of the unpacked files relative to the unpack_dir. Note that\n opts: dict default {"subset":"all", "remove"="(\'headers\', \'footers\', \'quotes\')"}\n Options to pass to sklearn.datasets.fetch_20newsgroups.\n\n\n Returns\n -------\n A tuple:\n (data, target, additional_metadata)\n\n ' if (metadata is None): metadata = {} if (unpack_dir is None): unpack_dir = paths['interim_data_path'] else: unpack_dir = pathlib.Path(unpack_dir) data_dir = (unpack_dir / f'{extract_dir}') news = fetch_20newsgroups(**opts) metadata['target_names'] = news.target_names return (news.data, news.target, metadata)
def main(items=None, printmd=None, printcal=False, found=False, save=None, download=None, requestor_pays=False, **kwargs): ' Main function for performing a search ' if (items is None): search = Search.search(**kwargs) if found: num = search.found() print(('%s items found' % num)) return num items = search.items() else: items = Items.load(items) print(('%s items found' % len(items))) if (printmd is not None): print(items.summary(printmd)) if printcal: print(items.calendar()) if (save is not None): items.save(filename=save) if (download is not None): if ('ALL' in download): download = set([k for i in items for k in i.assets]) for key in download: items.download(key=key, path=config.DATADIR, filename=config.FILENAME, requestor_pays=requestor_pays) return items
-3,783,134,709,165,279,000
Main function for performing a search
satsearch/main.py
main
lishrimp/sat-search
python
def main(items=None, printmd=None, printcal=False, found=False, save=None, download=None, requestor_pays=False, **kwargs): ' ' if (items is None): search = Search.search(**kwargs) if found: num = search.found() print(('%s items found' % num)) return num items = search.items() else: items = Items.load(items) print(('%s items found' % len(items))) if (printmd is not None): print(items.summary(printmd)) if printcal: print(items.calendar()) if (save is not None): items.save(filename=save) if (download is not None): if ('ALL' in download): download = set([k for i in items for k in i.assets]) for key in download: items.download(key=key, path=config.DATADIR, filename=config.FILENAME, requestor_pays=requestor_pays) return items
def _nose_tools_functions(): 'Get an iterator of names and bound methods.' module = _BUILDER.string_build(textwrap.dedent('\n import unittest\n\n class Test(unittest.TestCase):\n pass\n a = Test()\n ')) try: case = next(module['a'].infer()) except astroid.InferenceError: return for method in case.methods(): if (method.name.startswith('assert') and ('_' not in method.name)): pep8_name = _pep8(method.name) (yield (pep8_name, astroid.BoundMethod(method, case))) if (method.name == 'assertEqual'): (yield ('assert_equals', astroid.BoundMethod(method, case)))
-155,066,971,101,152,830
Get an iterator of names and bound methods.
venv/Lib/site-packages/astroid/brain/brain_nose.py
_nose_tools_functions
Nucl3arSn3k/randomplushmiku
python
def _nose_tools_functions(): module = _BUILDER.string_build(textwrap.dedent('\n import unittest\n\n class Test(unittest.TestCase):\n pass\n a = Test()\n ')) try: case = next(module['a'].infer()) except astroid.InferenceError: return for method in case.methods(): if (method.name.startswith('assert') and ('_' not in method.name)): pep8_name = _pep8(method.name) (yield (pep8_name, astroid.BoundMethod(method, case))) if (method.name == 'assertEqual'): (yield ('assert_equals', astroid.BoundMethod(method, case)))
def _nose_tools_trivial_transform(): 'Custom transform for the nose.tools module.' stub = _BUILDER.string_build('__all__ = []') all_entries = ['ok_', 'eq_'] for (pep8_name, method) in _nose_tools_functions(): all_entries.append(pep8_name) stub[pep8_name] = method all_assign = stub['__all__'].parent all_object = astroid.List(all_entries) all_object.parent = all_assign all_assign.value = all_object return stub
4,951,586,181,410,846,000
Custom transform for the nose.tools module.
venv/Lib/site-packages/astroid/brain/brain_nose.py
_nose_tools_trivial_transform
Nucl3arSn3k/randomplushmiku
python
def _nose_tools_trivial_transform(): stub = _BUILDER.string_build('__all__ = []') all_entries = ['ok_', 'eq_'] for (pep8_name, method) in _nose_tools_functions(): all_entries.append(pep8_name) stub[pep8_name] = method all_assign = stub['__all__'].parent all_object = astroid.List(all_entries) all_object.parent = all_assign all_assign.value = all_object return stub
def _flatten_args(pairs_in, args_out, prefix, visited_stack): 'Helper function for flatten_args. See `flatten_args` below for details.' for (key, v) in pairs_in: if (not isinstance(key, str)): raise ValueError(('Keys must be strings. %r' % key)) flat_key = (((prefix + '.') + key) if prefix else key) if (v is None): args_out[flat_key] = 'none' elif isinstance(v, str): args_out[flat_key] = v elif isinstance(v, bool): args_out[flat_key] = ('true' if v else 'false') elif isinstance(v, numbers.Number): args_out[flat_key] = str(v) elif isinstance(v, Mapping): if (not any(((v is entry) for entry in visited_stack))): _flatten_args(v.items(), args_out, flat_key, (visited_stack + [v])) elif isinstance(v, Sequence): if (not any(((v is entry) for entry in visited_stack))): _flatten_args(((str((i + 1)), vv) for (i, vv) in enumerate(v)), args_out, flat_key, (visited_stack + [v])) else: raise ValueError("Value for '{}' cannot be type: '{}'".format(flat_key, str(type(v))))
-496,815,897,776,520,260
Helper function for flatten_args. See `flatten_args` below for details.
dmlab2d/settings_helper.py
_flatten_args
LaudateCorpus1/lab2d
python
def _flatten_args(pairs_in, args_out, prefix, visited_stack): for (key, v) in pairs_in: if (not isinstance(key, str)): raise ValueError(('Keys must be strings. %r' % key)) flat_key = (((prefix + '.') + key) if prefix else key) if (v is None): args_out[flat_key] = 'none' elif isinstance(v, str): args_out[flat_key] = v elif isinstance(v, bool): args_out[flat_key] = ('true' if v else 'false') elif isinstance(v, numbers.Number): args_out[flat_key] = str(v) elif isinstance(v, Mapping): if (not any(((v is entry) for entry in visited_stack))): _flatten_args(v.items(), args_out, flat_key, (visited_stack + [v])) elif isinstance(v, Sequence): if (not any(((v is entry) for entry in visited_stack))): _flatten_args(((str((i + 1)), vv) for (i, vv) in enumerate(v)), args_out, flat_key, (visited_stack + [v])) else: raise ValueError("Value for '{}' cannot be type: '{}'".format(flat_key, str(type(v))))
def flatten_args(args_in): "Converts a dictionary of dictionarys and lists into a flat table.\n\n Args:\n args_in: dictionary containing a hierachy of dictionaries and lists. Leaf\n values can be strings, bools, numbers..\n\n Returns:\n A flat dictionary with keys separated by '.' and string values.\n " args_out = {} _flatten_args(args_in.items(), args_out, None, [args_in]) return args_out
-401,289,397,659,758,140
Converts a dictionary of dictionarys and lists into a flat table. Args: args_in: dictionary containing a hierachy of dictionaries and lists. Leaf values can be strings, bools, numbers.. Returns: A flat dictionary with keys separated by '.' and string values.
dmlab2d/settings_helper.py
flatten_args
LaudateCorpus1/lab2d
python
def flatten_args(args_in): "Converts a dictionary of dictionarys and lists into a flat table.\n\n Args:\n args_in: dictionary containing a hierachy of dictionaries and lists. Leaf\n values can be strings, bools, numbers..\n\n Returns:\n A flat dictionary with keys separated by '.' and string values.\n " args_out = {} _flatten_args(args_in.items(), args_out, None, [args_in]) return args_out
def ReadTxtNet(file_path='', undirected=True): ' Read the txt network file. \n Notations: The network is unweighted.\n\n Parameters\n ----------\n file_path str : path of network file\n undirected bool : whether the edges are undirected\n\n Return\n ------\n net dict : a dict recording the connections in the graph\n node2id dict : a dict mapping the nodes to their embedding indices \n id2node dict : a dict mapping nodes embedding indices to the nodes\n ' if ((file_path == 'youtube') or (file_path == 'blog')): name = file_path dir = get_download_dir() zip_file_path = '{}/{}.zip'.format(dir, name) download(_get_dgl_url(os.path.join('dataset/DeepWalk/', '{}.zip'.format(file_path))), path=zip_file_path) extract_archive(zip_file_path, '{}/{}'.format(dir, name)) file_path = '{}/{}/{}-net.txt'.format(dir, name, name) node2id = {} id2node = {} cid = 0 src = [] dst = [] weight = [] net = {} with open(file_path, 'r') as f: for line in f.readlines(): tup = list(map(int, line.strip().split(' '))) assert (len(tup) in [2, 3]), 'The format of network file is unrecognizable.' if (len(tup) == 3): (n1, n2, w) = tup elif (len(tup) == 2): (n1, n2) = tup w = 1 if (n1 not in node2id): node2id[n1] = cid id2node[cid] = n1 cid += 1 if (n2 not in node2id): node2id[n2] = cid id2node[cid] = n2 cid += 1 n1 = node2id[n1] n2 = node2id[n2] if (n1 not in net): net[n1] = {n2: w} src.append(n1) dst.append(n2) weight.append(w) elif (n2 not in net[n1]): net[n1][n2] = w src.append(n1) dst.append(n2) weight.append(w) if undirected: if (n2 not in net): net[n2] = {n1: w} src.append(n2) dst.append(n1) weight.append(w) elif (n1 not in net[n2]): net[n2][n1] = w src.append(n2) dst.append(n1) weight.append(w) print(('node num: %d' % len(net))) print(('edge num: %d' % len(src))) assert (max(net.keys()) == (len(net) - 1)), 'error reading net, quit' sm = sp.coo_matrix((np.array(weight), (src, dst)), dtype=np.float32) return (net, node2id, id2node, sm)
3,508,495,473,879,411,700
Read the txt network file. Notations: The network is unweighted. Parameters ---------- file_path str : path of network file undirected bool : whether the edges are undirected Return ------ net dict : a dict recording the connections in the graph node2id dict : a dict mapping the nodes to their embedding indices id2node dict : a dict mapping nodes embedding indices to the nodes
examples/pytorch/ogb/line/reading_data.py
ReadTxtNet
IzabelaMazur/dgl
python
def ReadTxtNet(file_path=, undirected=True): ' Read the txt network file. \n Notations: The network is unweighted.\n\n Parameters\n ----------\n file_path str : path of network file\n undirected bool : whether the edges are undirected\n\n Return\n ------\n net dict : a dict recording the connections in the graph\n node2id dict : a dict mapping the nodes to their embedding indices \n id2node dict : a dict mapping nodes embedding indices to the nodes\n ' if ((file_path == 'youtube') or (file_path == 'blog')): name = file_path dir = get_download_dir() zip_file_path = '{}/{}.zip'.format(dir, name) download(_get_dgl_url(os.path.join('dataset/DeepWalk/', '{}.zip'.format(file_path))), path=zip_file_path) extract_archive(zip_file_path, '{}/{}'.format(dir, name)) file_path = '{}/{}/{}-net.txt'.format(dir, name, name) node2id = {} id2node = {} cid = 0 src = [] dst = [] weight = [] net = {} with open(file_path, 'r') as f: for line in f.readlines(): tup = list(map(int, line.strip().split(' '))) assert (len(tup) in [2, 3]), 'The format of network file is unrecognizable.' if (len(tup) == 3): (n1, n2, w) = tup elif (len(tup) == 2): (n1, n2) = tup w = 1 if (n1 not in node2id): node2id[n1] = cid id2node[cid] = n1 cid += 1 if (n2 not in node2id): node2id[n2] = cid id2node[cid] = n2 cid += 1 n1 = node2id[n1] n2 = node2id[n2] if (n1 not in net): net[n1] = {n2: w} src.append(n1) dst.append(n2) weight.append(w) elif (n2 not in net[n1]): net[n1][n2] = w src.append(n1) dst.append(n2) weight.append(w) if undirected: if (n2 not in net): net[n2] = {n1: w} src.append(n2) dst.append(n1) weight.append(w) elif (n1 not in net[n2]): net[n2][n1] = w src.append(n2) dst.append(n1) weight.append(w) print(('node num: %d' % len(net))) print(('edge num: %d' % len(src))) assert (max(net.keys()) == (len(net) - 1)), 'error reading net, quit' sm = sp.coo_matrix((np.array(weight), (src, dst)), dtype=np.float32) return (net, node2id, id2node, sm)
def net2graph(net_sm): ' Transform the network to DGL graph\n\n Return \n ------\n G DGLGraph : graph by DGL\n ' start = time.time() G = dgl.DGLGraph(net_sm) end = time.time() t = (end - start) print(('Building DGLGraph in %.2fs' % t)) return G
5,918,307,427,968,118,000
Transform the network to DGL graph Return ------ G DGLGraph : graph by DGL
examples/pytorch/ogb/line/reading_data.py
net2graph
IzabelaMazur/dgl
python
def net2graph(net_sm): ' Transform the network to DGL graph\n\n Return \n ------\n G DGLGraph : graph by DGL\n ' start = time.time() G = dgl.DGLGraph(net_sm) end = time.time() t = (end - start) print(('Building DGLGraph in %.2fs' % t)) return G
def __init__(self, net_file, batch_size, num_samples, negative=5, gpus=[0], fast_neg=True, ogbl_name='', load_from_ogbl=False, ogbn_name='', load_from_ogbn=False): " This class has the following functions:\n 1. Transform the txt network file into DGL graph;\n 2. Generate random walk sequences for the trainer;\n 3. Provide the negative table if the user hopes to sample negative\n nodes according to nodes' degrees;\n\n Parameter\n ---------\n net_file str : path of the dgl network file\n walk_length int : number of nodes in a sequence\n window_size int : context window size\n num_walks int : number of walks for each node\n batch_size int : number of node sequences in each batch\n negative int : negative samples for each positve node pair\n fast_neg bool : whether do negative sampling inside a batch\n " self.batch_size = batch_size self.negative = negative self.num_samples = num_samples self.num_procs = len(gpus) self.fast_neg = fast_neg if load_from_ogbl: assert (len(gpus) == 1), 'ogb.linkproppred is not compatible with multi-gpu training.' from load_dataset import load_from_ogbl_with_name self.G = load_from_ogbl_with_name(ogbl_name) elif load_from_ogbn: assert (len(gpus) == 1), 'ogb.linkproppred is not compatible with multi-gpu training.' from load_dataset import load_from_ogbn_with_name self.G = load_from_ogbn_with_name(ogbn_name) else: self.G = dgl.load_graphs(net_file)[0][0] self.G = make_undirected(self.G) print('Finish reading graph') self.num_nodes = self.G.number_of_nodes() start = time.time() seeds = np.random.choice(np.arange(self.G.number_of_edges()), self.num_samples, replace=True) self.seeds = torch.split(torch.LongTensor(seeds), int(np.ceil((self.num_samples / self.num_procs))), 0) end = time.time() t = (end - start) print(('generate %d samples in %.2fs' % (len(seeds), t))) self.valid_nodes = find_connected_nodes(self.G) if (not fast_neg): node_degree = self.G.out_degrees(self.valid_nodes).numpy() node_degree = np.power(node_degree, 0.75) node_degree /= np.sum(node_degree) node_degree = np.array((node_degree * 100000000.0), dtype=np.int) self.neg_table = [] for (idx, node) in enumerate(self.valid_nodes): self.neg_table += ([node] * node_degree[idx]) self.neg_table_size = len(self.neg_table) self.neg_table = np.array(self.neg_table, dtype=np.long) del node_degree
6,236,040,157,673,685,000
This class has the following functions: 1. Transform the txt network file into DGL graph; 2. Generate random walk sequences for the trainer; 3. Provide the negative table if the user hopes to sample negative nodes according to nodes' degrees; Parameter --------- net_file str : path of the dgl network file walk_length int : number of nodes in a sequence window_size int : context window size num_walks int : number of walks for each node batch_size int : number of node sequences in each batch negative int : negative samples for each positve node pair fast_neg bool : whether do negative sampling inside a batch
examples/pytorch/ogb/line/reading_data.py
__init__
IzabelaMazur/dgl
python
def __init__(self, net_file, batch_size, num_samples, negative=5, gpus=[0], fast_neg=True, ogbl_name=, load_from_ogbl=False, ogbn_name=, load_from_ogbn=False): " This class has the following functions:\n 1. Transform the txt network file into DGL graph;\n 2. Generate random walk sequences for the trainer;\n 3. Provide the negative table if the user hopes to sample negative\n nodes according to nodes' degrees;\n\n Parameter\n ---------\n net_file str : path of the dgl network file\n walk_length int : number of nodes in a sequence\n window_size int : context window size\n num_walks int : number of walks for each node\n batch_size int : number of node sequences in each batch\n negative int : negative samples for each positve node pair\n fast_neg bool : whether do negative sampling inside a batch\n " self.batch_size = batch_size self.negative = negative self.num_samples = num_samples self.num_procs = len(gpus) self.fast_neg = fast_neg if load_from_ogbl: assert (len(gpus) == 1), 'ogb.linkproppred is not compatible with multi-gpu training.' from load_dataset import load_from_ogbl_with_name self.G = load_from_ogbl_with_name(ogbl_name) elif load_from_ogbn: assert (len(gpus) == 1), 'ogb.linkproppred is not compatible with multi-gpu training.' from load_dataset import load_from_ogbn_with_name self.G = load_from_ogbn_with_name(ogbn_name) else: self.G = dgl.load_graphs(net_file)[0][0] self.G = make_undirected(self.G) print('Finish reading graph') self.num_nodes = self.G.number_of_nodes() start = time.time() seeds = np.random.choice(np.arange(self.G.number_of_edges()), self.num_samples, replace=True) self.seeds = torch.split(torch.LongTensor(seeds), int(np.ceil((self.num_samples / self.num_procs))), 0) end = time.time() t = (end - start) print(('generate %d samples in %.2fs' % (len(seeds), t))) self.valid_nodes = find_connected_nodes(self.G) if (not fast_neg): node_degree = self.G.out_degrees(self.valid_nodes).numpy() node_degree = np.power(node_degree, 0.75) node_degree /= np.sum(node_degree) node_degree = np.array((node_degree * 100000000.0), dtype=np.int) self.neg_table = [] for (idx, node) in enumerate(self.valid_nodes): self.neg_table += ([node] * node_degree[idx]) self.neg_table_size = len(self.neg_table) self.neg_table = np.array(self.neg_table, dtype=np.long) del node_degree
def create_sampler(self, i): ' create random walk sampler ' return EdgeSampler(self.G, self.seeds[i])
9,179,441,167,527,142,000
create random walk sampler
examples/pytorch/ogb/line/reading_data.py
create_sampler
IzabelaMazur/dgl
python
def create_sampler(self, i): ' ' return EdgeSampler(self.G, self.seeds[i])
def sample(self, seeds): ' seeds torch.LongTensor : a batch of indices of edges ' return self.edges[torch.LongTensor(seeds)]
-4,032,532,657,934,077,000
seeds torch.LongTensor : a batch of indices of edges
examples/pytorch/ogb/line/reading_data.py
sample
IzabelaMazur/dgl
python
def sample(self, seeds): ' ' return self.edges[torch.LongTensor(seeds)]
def mock_connection(aioclient_mock: AiohttpClientMocker) -> None: 'Mock the DirecTV connection for Home Assistant.' aioclient_mock.get(f'http://{HOST}:8080/info/getVersion', text=load_fixture('directv/info-get-version.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/getLocations', text=load_fixture('directv/info-get-locations.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', params={'clientAddr': 'B01234567890'}, text=load_fixture('directv/info-mode-standby.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', params={'clientAddr': '9XXXXXXXXXX9'}, status=HTTPStatus.INTERNAL_SERVER_ERROR, text=load_fixture('directv/info-mode-error.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', text=load_fixture('directv/info-mode.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/remote/processKey', text=load_fixture('directv/remote-process-key.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/tune', text=load_fixture('directv/tv-tune.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': '2CA17D1CD30X'}, text=load_fixture('directv/tv-get-tuned.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': 'A01234567890'}, text=load_fixture('directv/tv-get-tuned-music.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': 'C01234567890'}, status=HTTPStatus.FORBIDDEN, text=load_fixture('directv/tv-get-tuned-restricted.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', text=load_fixture('directv/tv-get-tuned-movie.json'), headers={'Content-Type': CONTENT_TYPE_JSON})
-5,259,314,499,135,104,000
Mock the DirecTV connection for Home Assistant.
tests/components/directv/__init__.py
mock_connection
2Fake/core
python
def mock_connection(aioclient_mock: AiohttpClientMocker) -> None: aioclient_mock.get(f'http://{HOST}:8080/info/getVersion', text=load_fixture('directv/info-get-version.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/getLocations', text=load_fixture('directv/info-get-locations.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', params={'clientAddr': 'B01234567890'}, text=load_fixture('directv/info-mode-standby.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', params={'clientAddr': '9XXXXXXXXXX9'}, status=HTTPStatus.INTERNAL_SERVER_ERROR, text=load_fixture('directv/info-mode-error.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/info/mode', text=load_fixture('directv/info-mode.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/remote/processKey', text=load_fixture('directv/remote-process-key.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/tune', text=load_fixture('directv/tv-tune.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': '2CA17D1CD30X'}, text=load_fixture('directv/tv-get-tuned.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': 'A01234567890'}, text=load_fixture('directv/tv-get-tuned-music.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', params={'clientAddr': 'C01234567890'}, status=HTTPStatus.FORBIDDEN, text=load_fixture('directv/tv-get-tuned-restricted.json'), headers={'Content-Type': CONTENT_TYPE_JSON}) aioclient_mock.get(f'http://{HOST}:8080/tv/getTuned', text=load_fixture('directv/tv-get-tuned-movie.json'), headers={'Content-Type': CONTENT_TYPE_JSON})
async def setup_integration(hass: HomeAssistant, aioclient_mock: AiohttpClientMocker, skip_entry_setup: bool=False, setup_error: bool=False) -> MockConfigEntry: 'Set up the DirecTV integration in Home Assistant.' if setup_error: aioclient_mock.get(f'http://{HOST}:8080/info/getVersion', status=HTTPStatus.INTERNAL_SERVER_ERROR) else: mock_connection(aioclient_mock) entry = MockConfigEntry(domain=DOMAIN, unique_id=RECEIVER_ID, data={CONF_HOST: HOST, CONF_RECEIVER_ID: RECEIVER_ID}) entry.add_to_hass(hass) if (not skip_entry_setup): (await hass.config_entries.async_setup(entry.entry_id)) (await hass.async_block_till_done()) return entry
-8,370,659,672,752,647,000
Set up the DirecTV integration in Home Assistant.
tests/components/directv/__init__.py
setup_integration
2Fake/core
python
async def setup_integration(hass: HomeAssistant, aioclient_mock: AiohttpClientMocker, skip_entry_setup: bool=False, setup_error: bool=False) -> MockConfigEntry: if setup_error: aioclient_mock.get(f'http://{HOST}:8080/info/getVersion', status=HTTPStatus.INTERNAL_SERVER_ERROR) else: mock_connection(aioclient_mock) entry = MockConfigEntry(domain=DOMAIN, unique_id=RECEIVER_ID, data={CONF_HOST: HOST, CONF_RECEIVER_ID: RECEIVER_ID}) entry.add_to_hass(hass) if (not skip_entry_setup): (await hass.config_entries.async_setup(entry.entry_id)) (await hass.async_block_till_done()) return entry
def __init__(self, **kwargs): '\n Convolutional model\n :param kwargs:\n window_size: int\n stride_size: int\n test_percentage: float\n n_features: int\n n_outputs: int\n ' self.window_size = kwargs['window_size'] self.stride_size = kwargs['stride_size'] self.test_percentage = kwargs['test_percentage'] self.verbose = 0 self.epochs = 10 self.batch_size = 32 self.model = self.__create_model(kwargs['n_features'], kwargs['n_outputs'])
434,908,339,896,038,900
Convolutional model :param kwargs: window_size: int stride_size: int test_percentage: float n_features: int n_outputs: int
archive/model_archive/ConvModel.py
__init__
Sensors-in-Paradise/OpportunityML
python
def __init__(self, **kwargs): '\n Convolutional model\n :param kwargs:\n window_size: int\n stride_size: int\n test_percentage: float\n n_features: int\n n_outputs: int\n ' self.window_size = kwargs['window_size'] self.stride_size = kwargs['stride_size'] self.test_percentage = kwargs['test_percentage'] self.verbose = 0 self.epochs = 10 self.batch_size = 32 self.model = self.__create_model(kwargs['n_features'], kwargs['n_outputs'])
def _get(self, *args, **kwargs): "\n Retrieves a list of messages from the request's session. This storage\n always stores everything it is given, so return True for the\n all_retrieved flag.\n " return (self.deserialize_messages(self.request.session.get(self.session_key)), True)
5,995,305,131,204,208,000
Retrieves a list of messages from the request's session. This storage always stores everything it is given, so return True for the all_retrieved flag.
django/contrib/messages/storage/session.py
_get
Acidburn0zzz/django
python
def _get(self, *args, **kwargs): "\n Retrieves a list of messages from the request's session. This storage\n always stores everything it is given, so return True for the\n all_retrieved flag.\n " return (self.deserialize_messages(self.request.session.get(self.session_key)), True)
def _store(self, messages, response, *args, **kwargs): "\n Stores a list of messages to the request's session.\n " if messages: self.request.session[self.session_key] = self.serialize_messages(messages) else: self.request.session.pop(self.session_key, None) return []
-7,376,848,117,602,780,000
Stores a list of messages to the request's session.
django/contrib/messages/storage/session.py
_store
Acidburn0zzz/django
python
def _store(self, messages, response, *args, **kwargs): "\n \n " if messages: self.request.session[self.session_key] = self.serialize_messages(messages) else: self.request.session.pop(self.session_key, None) return []
def rad2deg(tensor: torch.Tensor) -> torch.Tensor: 'Function that converts angles from radians to degrees.\n\n Args:\n tensor (torch.Tensor): Tensor of arbitrary shape.\n\n Returns:\n torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> input = torch.tensor(3.1415926535) * torch.rand(1, 3, 3)\n >>> output = rad2deg(input)\n ' if (not isinstance(tensor, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(tensor))) return ((180.0 * tensor) / pi.to(tensor.device).type(tensor.dtype))
-1,196,111,188,359,121,200
Function that converts angles from radians to degrees. Args: tensor (torch.Tensor): Tensor of arbitrary shape. Returns: torch.Tensor: Tensor with same shape as input. Example: >>> input = torch.tensor(3.1415926535) * torch.rand(1, 3, 3) >>> output = rad2deg(input)
kornia/geometry/conversions.py
rad2deg
anthonytec2/kornia
python
def rad2deg(tensor: torch.Tensor) -> torch.Tensor: 'Function that converts angles from radians to degrees.\n\n Args:\n tensor (torch.Tensor): Tensor of arbitrary shape.\n\n Returns:\n torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> input = torch.tensor(3.1415926535) * torch.rand(1, 3, 3)\n >>> output = rad2deg(input)\n ' if (not isinstance(tensor, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(tensor))) return ((180.0 * tensor) / pi.to(tensor.device).type(tensor.dtype))
def deg2rad(tensor: torch.Tensor) -> torch.Tensor: 'Function that converts angles from degrees to radians.\n\n Args:\n tensor (torch.Tensor): Tensor of arbitrary shape.\n\n Returns:\n torch.Tensor: tensor with same shape as input.\n\n Examples::\n\n >>> input = 360. * torch.rand(1, 3, 3)\n >>> output = deg2rad(input)\n ' if (not isinstance(tensor, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(tensor))) return ((tensor * pi.to(tensor.device).type(tensor.dtype)) / 180.0)
-2,303,698,553,219,946,800
Function that converts angles from degrees to radians. Args: tensor (torch.Tensor): Tensor of arbitrary shape. Returns: torch.Tensor: tensor with same shape as input. Examples:: >>> input = 360. * torch.rand(1, 3, 3) >>> output = deg2rad(input)
kornia/geometry/conversions.py
deg2rad
anthonytec2/kornia
python
def deg2rad(tensor: torch.Tensor) -> torch.Tensor: 'Function that converts angles from degrees to radians.\n\n Args:\n tensor (torch.Tensor): Tensor of arbitrary shape.\n\n Returns:\n torch.Tensor: tensor with same shape as input.\n\n Examples::\n\n >>> input = 360. * torch.rand(1, 3, 3)\n >>> output = deg2rad(input)\n ' if (not isinstance(tensor, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(tensor))) return ((tensor * pi.to(tensor.device).type(tensor.dtype)) / 180.0)
def pol2cart(rho: torch.Tensor, phi: torch.Tensor) -> Tuple[(torch.Tensor, torch.Tensor)]: 'Function that converts polar coordinates to cartesian coordinates.\n\n Args:\n rho (torch.Tensor): Tensor of arbitrary shape.\n phi (torch.Tensor): Tensor of same arbitrary shape.\n\n Returns:\n torch.Tensor, torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> rho = torch.rand(1, 3, 3)\n >>> phi = torch.rand(1, 3, 3)\n >>> x, y = pol2cart(rho, phi)\n ' if (not (isinstance(rho, torch.Tensor) & isinstance(phi, torch.Tensor))): raise TypeError('Input type is not a torch.Tensor. Got {}, {}'.format(type(rho), type(phi))) x = (rho * torch.cos(phi)) y = (rho * torch.sin(phi)) return (x, y)
-7,582,725,315,099,155,000
Function that converts polar coordinates to cartesian coordinates. Args: rho (torch.Tensor): Tensor of arbitrary shape. phi (torch.Tensor): Tensor of same arbitrary shape. Returns: torch.Tensor, torch.Tensor: Tensor with same shape as input. Example: >>> rho = torch.rand(1, 3, 3) >>> phi = torch.rand(1, 3, 3) >>> x, y = pol2cart(rho, phi)
kornia/geometry/conversions.py
pol2cart
anthonytec2/kornia
python
def pol2cart(rho: torch.Tensor, phi: torch.Tensor) -> Tuple[(torch.Tensor, torch.Tensor)]: 'Function that converts polar coordinates to cartesian coordinates.\n\n Args:\n rho (torch.Tensor): Tensor of arbitrary shape.\n phi (torch.Tensor): Tensor of same arbitrary shape.\n\n Returns:\n torch.Tensor, torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> rho = torch.rand(1, 3, 3)\n >>> phi = torch.rand(1, 3, 3)\n >>> x, y = pol2cart(rho, phi)\n ' if (not (isinstance(rho, torch.Tensor) & isinstance(phi, torch.Tensor))): raise TypeError('Input type is not a torch.Tensor. Got {}, {}'.format(type(rho), type(phi))) x = (rho * torch.cos(phi)) y = (rho * torch.sin(phi)) return (x, y)
def cart2pol(x: torch.Tensor, y: torch.Tensor, eps: float=1e-08) -> Tuple[(torch.Tensor, torch.Tensor)]: 'Function that converts cartesian coordinates to polar coordinates.\n\n Args:\n rho (torch.Tensor): Tensor of arbitrary shape.\n phi (torch.Tensor): Tensor of same arbitrary shape.\n eps (float): To avoid division by zero. Default is 1e-8\n\n Returns:\n torch.Tensor, torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> x = torch.rand(1, 3, 3)\n >>> y = torch.rand(1, 3, 3)\n >>> rho, phi = cart2pol(x, y)\n ' if (not (isinstance(x, torch.Tensor) & isinstance(y, torch.Tensor))): raise TypeError('Input type is not a torch.Tensor. Got {}, {}'.format(type(x), type(y))) rho = torch.sqrt((((x ** 2) + (y ** 2)) + eps)) phi = torch.atan2(y, x) return (rho, phi)
6,833,031,384,997,357,000
Function that converts cartesian coordinates to polar coordinates. Args: rho (torch.Tensor): Tensor of arbitrary shape. phi (torch.Tensor): Tensor of same arbitrary shape. eps (float): To avoid division by zero. Default is 1e-8 Returns: torch.Tensor, torch.Tensor: Tensor with same shape as input. Example: >>> x = torch.rand(1, 3, 3) >>> y = torch.rand(1, 3, 3) >>> rho, phi = cart2pol(x, y)
kornia/geometry/conversions.py
cart2pol
anthonytec2/kornia
python
def cart2pol(x: torch.Tensor, y: torch.Tensor, eps: float=1e-08) -> Tuple[(torch.Tensor, torch.Tensor)]: 'Function that converts cartesian coordinates to polar coordinates.\n\n Args:\n rho (torch.Tensor): Tensor of arbitrary shape.\n phi (torch.Tensor): Tensor of same arbitrary shape.\n eps (float): To avoid division by zero. Default is 1e-8\n\n Returns:\n torch.Tensor, torch.Tensor: Tensor with same shape as input.\n\n Example:\n >>> x = torch.rand(1, 3, 3)\n >>> y = torch.rand(1, 3, 3)\n >>> rho, phi = cart2pol(x, y)\n ' if (not (isinstance(x, torch.Tensor) & isinstance(y, torch.Tensor))): raise TypeError('Input type is not a torch.Tensor. Got {}, {}'.format(type(x), type(y))) rho = torch.sqrt((((x ** 2) + (y ** 2)) + eps)) phi = torch.atan2(y, x) return (rho, phi)
def convert_points_from_homogeneous(points: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Function that converts points from homogeneous to Euclidean space.\n\n Examples::\n\n >>> input = torch.rand(2, 4, 3) # BxNx3\n >>> output = convert_points_from_homogeneous(input) # BxNx2\n ' if (not isinstance(points, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(points))) if (len(points.shape) < 2): raise ValueError('Input must be at least a 2D tensor. Got {}'.format(points.shape)) z_vec: torch.Tensor = points[..., (- 1):] mask: torch.Tensor = (torch.abs(z_vec) > eps) scale: torch.Tensor = torch.ones_like(z_vec).masked_scatter_(mask, (torch.tensor(1.0).to(points.device) / z_vec[mask])) return (scale * points[..., :(- 1)])
-4,069,164,611,214,838,300
Function that converts points from homogeneous to Euclidean space. Examples:: >>> input = torch.rand(2, 4, 3) # BxNx3 >>> output = convert_points_from_homogeneous(input) # BxNx2
kornia/geometry/conversions.py
convert_points_from_homogeneous
anthonytec2/kornia
python
def convert_points_from_homogeneous(points: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Function that converts points from homogeneous to Euclidean space.\n\n Examples::\n\n >>> input = torch.rand(2, 4, 3) # BxNx3\n >>> output = convert_points_from_homogeneous(input) # BxNx2\n ' if (not isinstance(points, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(points))) if (len(points.shape) < 2): raise ValueError('Input must be at least a 2D tensor. Got {}'.format(points.shape)) z_vec: torch.Tensor = points[..., (- 1):] mask: torch.Tensor = (torch.abs(z_vec) > eps) scale: torch.Tensor = torch.ones_like(z_vec).masked_scatter_(mask, (torch.tensor(1.0).to(points.device) / z_vec[mask])) return (scale * points[..., :(- 1)])
def convert_points_to_homogeneous(points: torch.Tensor) -> torch.Tensor: 'Function that converts points from Euclidean to homogeneous space.\n\n Examples::\n\n >>> input = torch.rand(2, 4, 3) # BxNx3\n >>> output = convert_points_to_homogeneous(input) # BxNx4\n ' if (not isinstance(points, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(points))) if (len(points.shape) < 2): raise ValueError('Input must be at least a 2D tensor. Got {}'.format(points.shape)) return torch.nn.functional.pad(points, [0, 1], 'constant', 1.0)
-5,162,432,132,527,074,000
Function that converts points from Euclidean to homogeneous space. Examples:: >>> input = torch.rand(2, 4, 3) # BxNx3 >>> output = convert_points_to_homogeneous(input) # BxNx4
kornia/geometry/conversions.py
convert_points_to_homogeneous
anthonytec2/kornia
python
def convert_points_to_homogeneous(points: torch.Tensor) -> torch.Tensor: 'Function that converts points from Euclidean to homogeneous space.\n\n Examples::\n\n >>> input = torch.rand(2, 4, 3) # BxNx3\n >>> output = convert_points_to_homogeneous(input) # BxNx4\n ' if (not isinstance(points, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(points))) if (len(points.shape) < 2): raise ValueError('Input must be at least a 2D tensor. Got {}'.format(points.shape)) return torch.nn.functional.pad(points, [0, 1], 'constant', 1.0)
def convert_affinematrix_to_homography(A: torch.Tensor) -> torch.Tensor: 'Function that converts batch of affine matrices from [Bx2x3] to [Bx3x3].\n\n Examples::\n\n >>> input = torch.rand(2, 2, 3) # Bx2x3\n >>> output = convert_affinematrix_to_homography(input) # Bx3x3\n ' if (not isinstance(A, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(A))) if (not ((len(A.shape) == 3) and (A.shape[(- 2):] == (2, 3)))): raise ValueError('Input matrix must be a Bx2x3 tensor. Got {}'.format(A.shape)) return _convert_affinematrix_to_homography_impl(A)
-7,483,404,685,304,305,000
Function that converts batch of affine matrices from [Bx2x3] to [Bx3x3]. Examples:: >>> input = torch.rand(2, 2, 3) # Bx2x3 >>> output = convert_affinematrix_to_homography(input) # Bx3x3
kornia/geometry/conversions.py
convert_affinematrix_to_homography
anthonytec2/kornia
python
def convert_affinematrix_to_homography(A: torch.Tensor) -> torch.Tensor: 'Function that converts batch of affine matrices from [Bx2x3] to [Bx3x3].\n\n Examples::\n\n >>> input = torch.rand(2, 2, 3) # Bx2x3\n >>> output = convert_affinematrix_to_homography(input) # Bx3x3\n ' if (not isinstance(A, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(A))) if (not ((len(A.shape) == 3) and (A.shape[(- 2):] == (2, 3)))): raise ValueError('Input matrix must be a Bx2x3 tensor. Got {}'.format(A.shape)) return _convert_affinematrix_to_homography_impl(A)
def convert_affinematrix_to_homography3d(A: torch.Tensor) -> torch.Tensor: 'Function that converts batch of affine matrices from [Bx3x4] to [Bx4x4].\n\n Examples::\n\n >>> input = torch.rand(2, 3, 4) # Bx3x4\n >>> output = convert_affinematrix_to_homography3d(input) # Bx4x4\n ' if (not isinstance(A, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(A))) if (not ((len(A.shape) == 3) and (A.shape[(- 2):] == (3, 4)))): raise ValueError('Input matrix must be a Bx3x4 tensor. Got {}'.format(A.shape)) return _convert_affinematrix_to_homography_impl(A)
2,660,687,678,206,777,300
Function that converts batch of affine matrices from [Bx3x4] to [Bx4x4]. Examples:: >>> input = torch.rand(2, 3, 4) # Bx3x4 >>> output = convert_affinematrix_to_homography3d(input) # Bx4x4
kornia/geometry/conversions.py
convert_affinematrix_to_homography3d
anthonytec2/kornia
python
def convert_affinematrix_to_homography3d(A: torch.Tensor) -> torch.Tensor: 'Function that converts batch of affine matrices from [Bx3x4] to [Bx4x4].\n\n Examples::\n\n >>> input = torch.rand(2, 3, 4) # Bx3x4\n >>> output = convert_affinematrix_to_homography3d(input) # Bx4x4\n ' if (not isinstance(A, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(A))) if (not ((len(A.shape) == 3) and (A.shape[(- 2):] == (3, 4)))): raise ValueError('Input matrix must be a Bx3x4 tensor. Got {}'.format(A.shape)) return _convert_affinematrix_to_homography_impl(A)
def angle_axis_to_rotation_matrix(angle_axis: torch.Tensor) -> torch.Tensor: 'Convert 3d vector of axis-angle rotation to 3x3 rotation matrix\n\n Args:\n angle_axis (torch.Tensor): tensor of 3d vector of axis-angle rotations.\n\n Returns:\n torch.Tensor: tensor of 3x3 rotation matrices.\n\n Shape:\n - Input: :math:`(N, 3)`\n - Output: :math:`(N, 3, 3)`\n\n Example:\n >>> input = torch.rand(1, 3) # Nx3\n >>> output = angle_axis_to_rotation_matrix(input) # Nx3x3\n ' if (not isinstance(angle_axis, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(angle_axis))) if (not (angle_axis.shape[(- 1)] == 3)): raise ValueError('Input size must be a (*, 3) tensor. Got {}'.format(angle_axis.shape)) def _compute_rotation_matrix(angle_axis, theta2, eps=1e-06): k_one = 1.0 theta = torch.sqrt(theta2) wxyz = (angle_axis / (theta + eps)) (wx, wy, wz) = torch.chunk(wxyz, 3, dim=1) cos_theta = torch.cos(theta) sin_theta = torch.sin(theta) r00 = (cos_theta + ((wx * wx) * (k_one - cos_theta))) r10 = ((wz * sin_theta) + ((wx * wy) * (k_one - cos_theta))) r20 = (((- wy) * sin_theta) + ((wx * wz) * (k_one - cos_theta))) r01 = (((wx * wy) * (k_one - cos_theta)) - (wz * sin_theta)) r11 = (cos_theta + ((wy * wy) * (k_one - cos_theta))) r21 = ((wx * sin_theta) + ((wy * wz) * (k_one - cos_theta))) r02 = ((wy * sin_theta) + ((wx * wz) * (k_one - cos_theta))) r12 = (((- wx) * sin_theta) + ((wy * wz) * (k_one - cos_theta))) r22 = (cos_theta + ((wz * wz) * (k_one - cos_theta))) rotation_matrix = torch.cat([r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1) return rotation_matrix.view((- 1), 3, 3) def _compute_rotation_matrix_taylor(angle_axis): (rx, ry, rz) = torch.chunk(angle_axis, 3, dim=1) k_one = torch.ones_like(rx) rotation_matrix = torch.cat([k_one, (- rz), ry, rz, k_one, (- rx), (- ry), rx, k_one], dim=1) return rotation_matrix.view((- 1), 3, 3) _angle_axis = torch.unsqueeze(angle_axis, dim=1) theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2)) theta2 = torch.squeeze(theta2, dim=1) rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2) rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis) eps = 1e-06 mask = (theta2 > eps).view((- 1), 1, 1).to(theta2.device) mask_pos = mask.type_as(theta2) mask_neg = (mask == False).type_as(theta2) batch_size = angle_axis.shape[0] rotation_matrix = torch.eye(3).to(angle_axis.device).type_as(angle_axis) rotation_matrix = rotation_matrix.view(1, 3, 3).repeat(batch_size, 1, 1) rotation_matrix[..., :3, :3] = ((mask_pos * rotation_matrix_normal) + (mask_neg * rotation_matrix_taylor)) return rotation_matrix
-3,174,089,505,320,541,000
Convert 3d vector of axis-angle rotation to 3x3 rotation matrix Args: angle_axis (torch.Tensor): tensor of 3d vector of axis-angle rotations. Returns: torch.Tensor: tensor of 3x3 rotation matrices. Shape: - Input: :math:`(N, 3)` - Output: :math:`(N, 3, 3)` Example: >>> input = torch.rand(1, 3) # Nx3 >>> output = angle_axis_to_rotation_matrix(input) # Nx3x3
kornia/geometry/conversions.py
angle_axis_to_rotation_matrix
anthonytec2/kornia
python
def angle_axis_to_rotation_matrix(angle_axis: torch.Tensor) -> torch.Tensor: 'Convert 3d vector of axis-angle rotation to 3x3 rotation matrix\n\n Args:\n angle_axis (torch.Tensor): tensor of 3d vector of axis-angle rotations.\n\n Returns:\n torch.Tensor: tensor of 3x3 rotation matrices.\n\n Shape:\n - Input: :math:`(N, 3)`\n - Output: :math:`(N, 3, 3)`\n\n Example:\n >>> input = torch.rand(1, 3) # Nx3\n >>> output = angle_axis_to_rotation_matrix(input) # Nx3x3\n ' if (not isinstance(angle_axis, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(angle_axis))) if (not (angle_axis.shape[(- 1)] == 3)): raise ValueError('Input size must be a (*, 3) tensor. Got {}'.format(angle_axis.shape)) def _compute_rotation_matrix(angle_axis, theta2, eps=1e-06): k_one = 1.0 theta = torch.sqrt(theta2) wxyz = (angle_axis / (theta + eps)) (wx, wy, wz) = torch.chunk(wxyz, 3, dim=1) cos_theta = torch.cos(theta) sin_theta = torch.sin(theta) r00 = (cos_theta + ((wx * wx) * (k_one - cos_theta))) r10 = ((wz * sin_theta) + ((wx * wy) * (k_one - cos_theta))) r20 = (((- wy) * sin_theta) + ((wx * wz) * (k_one - cos_theta))) r01 = (((wx * wy) * (k_one - cos_theta)) - (wz * sin_theta)) r11 = (cos_theta + ((wy * wy) * (k_one - cos_theta))) r21 = ((wx * sin_theta) + ((wy * wz) * (k_one - cos_theta))) r02 = ((wy * sin_theta) + ((wx * wz) * (k_one - cos_theta))) r12 = (((- wx) * sin_theta) + ((wy * wz) * (k_one - cos_theta))) r22 = (cos_theta + ((wz * wz) * (k_one - cos_theta))) rotation_matrix = torch.cat([r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1) return rotation_matrix.view((- 1), 3, 3) def _compute_rotation_matrix_taylor(angle_axis): (rx, ry, rz) = torch.chunk(angle_axis, 3, dim=1) k_one = torch.ones_like(rx) rotation_matrix = torch.cat([k_one, (- rz), ry, rz, k_one, (- rx), (- ry), rx, k_one], dim=1) return rotation_matrix.view((- 1), 3, 3) _angle_axis = torch.unsqueeze(angle_axis, dim=1) theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2)) theta2 = torch.squeeze(theta2, dim=1) rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2) rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis) eps = 1e-06 mask = (theta2 > eps).view((- 1), 1, 1).to(theta2.device) mask_pos = mask.type_as(theta2) mask_neg = (mask == False).type_as(theta2) batch_size = angle_axis.shape[0] rotation_matrix = torch.eye(3).to(angle_axis.device).type_as(angle_axis) rotation_matrix = rotation_matrix.view(1, 3, 3).repeat(batch_size, 1, 1) rotation_matrix[..., :3, :3] = ((mask_pos * rotation_matrix_normal) + (mask_neg * rotation_matrix_taylor)) return rotation_matrix
def rotation_matrix_to_angle_axis(rotation_matrix: torch.Tensor) -> torch.Tensor: 'Convert 3x3 rotation matrix to Rodrigues vector.\n\n Args:\n rotation_matrix (torch.Tensor): rotation matrix.\n\n Returns:\n torch.Tensor: Rodrigues vector transformation.\n\n Shape:\n - Input: :math:`(N, 3, 3)`\n - Output: :math:`(N, 3)`\n\n Example:\n >>> input = torch.rand(2, 3, 3) # Nx3x3\n >>> output = rotation_matrix_to_angle_axis(input) # Nx3\n ' if (not isinstance(rotation_matrix, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(rotation_matrix))) if (not (rotation_matrix.shape[(- 2):] == (3, 3))): raise ValueError('Input size must be a (*, 3, 3) tensor. Got {}'.format(rotation_matrix.shape)) quaternion: torch.Tensor = rotation_matrix_to_quaternion(rotation_matrix) return quaternion_to_angle_axis(quaternion)
-4,264,213,605,656,858,000
Convert 3x3 rotation matrix to Rodrigues vector. Args: rotation_matrix (torch.Tensor): rotation matrix. Returns: torch.Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 3)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 3) # Nx3x3 >>> output = rotation_matrix_to_angle_axis(input) # Nx3
kornia/geometry/conversions.py
rotation_matrix_to_angle_axis
anthonytec2/kornia
python
def rotation_matrix_to_angle_axis(rotation_matrix: torch.Tensor) -> torch.Tensor: 'Convert 3x3 rotation matrix to Rodrigues vector.\n\n Args:\n rotation_matrix (torch.Tensor): rotation matrix.\n\n Returns:\n torch.Tensor: Rodrigues vector transformation.\n\n Shape:\n - Input: :math:`(N, 3, 3)`\n - Output: :math:`(N, 3)`\n\n Example:\n >>> input = torch.rand(2, 3, 3) # Nx3x3\n >>> output = rotation_matrix_to_angle_axis(input) # Nx3\n ' if (not isinstance(rotation_matrix, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(rotation_matrix))) if (not (rotation_matrix.shape[(- 2):] == (3, 3))): raise ValueError('Input size must be a (*, 3, 3) tensor. Got {}'.format(rotation_matrix.shape)) quaternion: torch.Tensor = rotation_matrix_to_quaternion(rotation_matrix) return quaternion_to_angle_axis(quaternion)
def rotation_matrix_to_quaternion(rotation_matrix: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Convert 3x3 rotation matrix to 4d quaternion vector.\n The quaternion vector has components in (x, y, z, w) format.\n\n Args:\n rotation_matrix (torch.Tensor): the rotation matrix to convert.\n eps (float): small value to avoid zero division. Default: 1e-8.\n\n Return:\n torch.Tensor: the rotation in quaternion.\n\n Shape:\n - Input: :math:`(*, 3, 3)`\n - Output: :math:`(*, 4)`\n\n Example:\n >>> input = torch.rand(4, 3, 3) # Nx3x3\n >>> output = rotation_matrix_to_quaternion(input) # Nx4\n ' if (not isinstance(rotation_matrix, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(rotation_matrix))) if (not (rotation_matrix.shape[(- 2):] == (3, 3))): raise ValueError('Input size must be a (*, 3, 3) tensor. Got {}'.format(rotation_matrix.shape)) def safe_zero_division(numerator: torch.Tensor, denominator: torch.Tensor) -> torch.Tensor: eps: float = torch.finfo(numerator.dtype).tiny return (numerator / torch.clamp(denominator, min=eps)) rotation_matrix_vec: torch.Tensor = rotation_matrix.view(*rotation_matrix.shape[:(- 2)], 9) (m00, m01, m02, m10, m11, m12, m20, m21, m22) = torch.chunk(rotation_matrix_vec, chunks=9, dim=(- 1)) trace: torch.Tensor = ((m00 + m11) + m22) def trace_positive_cond(): sq = (torch.sqrt((trace + 1.0)) * 2.0) qw = (0.25 * sq) qx = safe_zero_division((m21 - m12), sq) qy = safe_zero_division((m02 - m20), sq) qz = safe_zero_division((m10 - m01), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_1(): sq = (torch.sqrt(((((1.0 + m00) - m11) - m22) + eps)) * 2.0) qw = safe_zero_division((m21 - m12), sq) qx = (0.25 * sq) qy = safe_zero_division((m01 + m10), sq) qz = safe_zero_division((m02 + m20), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_2(): sq = (torch.sqrt(((((1.0 + m11) - m00) - m22) + eps)) * 2.0) qw = safe_zero_division((m02 - m20), sq) qx = safe_zero_division((m01 + m10), sq) qy = (0.25 * sq) qz = safe_zero_division((m12 + m21), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_3(): sq = (torch.sqrt(((((1.0 + m22) - m00) - m11) + eps)) * 2.0) qw = safe_zero_division((m10 - m01), sq) qx = safe_zero_division((m02 + m20), sq) qy = safe_zero_division((m12 + m21), sq) qz = (0.25 * sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) where_2 = torch.where((m11 > m22), cond_2(), cond_3()) where_1 = torch.where(((m00 > m11) & (m00 > m22)), cond_1(), where_2) quaternion: torch.Tensor = torch.where((trace > 0.0), trace_positive_cond(), where_1) return quaternion
-6,200,754,844,404,515,000
Convert 3x3 rotation matrix to 4d quaternion vector. The quaternion vector has components in (x, y, z, w) format. Args: rotation_matrix (torch.Tensor): the rotation matrix to convert. eps (float): small value to avoid zero division. Default: 1e-8. Return: torch.Tensor: the rotation in quaternion. Shape: - Input: :math:`(*, 3, 3)` - Output: :math:`(*, 4)` Example: >>> input = torch.rand(4, 3, 3) # Nx3x3 >>> output = rotation_matrix_to_quaternion(input) # Nx4
kornia/geometry/conversions.py
rotation_matrix_to_quaternion
anthonytec2/kornia
python
def rotation_matrix_to_quaternion(rotation_matrix: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Convert 3x3 rotation matrix to 4d quaternion vector.\n The quaternion vector has components in (x, y, z, w) format.\n\n Args:\n rotation_matrix (torch.Tensor): the rotation matrix to convert.\n eps (float): small value to avoid zero division. Default: 1e-8.\n\n Return:\n torch.Tensor: the rotation in quaternion.\n\n Shape:\n - Input: :math:`(*, 3, 3)`\n - Output: :math:`(*, 4)`\n\n Example:\n >>> input = torch.rand(4, 3, 3) # Nx3x3\n >>> output = rotation_matrix_to_quaternion(input) # Nx4\n ' if (not isinstance(rotation_matrix, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(rotation_matrix))) if (not (rotation_matrix.shape[(- 2):] == (3, 3))): raise ValueError('Input size must be a (*, 3, 3) tensor. Got {}'.format(rotation_matrix.shape)) def safe_zero_division(numerator: torch.Tensor, denominator: torch.Tensor) -> torch.Tensor: eps: float = torch.finfo(numerator.dtype).tiny return (numerator / torch.clamp(denominator, min=eps)) rotation_matrix_vec: torch.Tensor = rotation_matrix.view(*rotation_matrix.shape[:(- 2)], 9) (m00, m01, m02, m10, m11, m12, m20, m21, m22) = torch.chunk(rotation_matrix_vec, chunks=9, dim=(- 1)) trace: torch.Tensor = ((m00 + m11) + m22) def trace_positive_cond(): sq = (torch.sqrt((trace + 1.0)) * 2.0) qw = (0.25 * sq) qx = safe_zero_division((m21 - m12), sq) qy = safe_zero_division((m02 - m20), sq) qz = safe_zero_division((m10 - m01), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_1(): sq = (torch.sqrt(((((1.0 + m00) - m11) - m22) + eps)) * 2.0) qw = safe_zero_division((m21 - m12), sq) qx = (0.25 * sq) qy = safe_zero_division((m01 + m10), sq) qz = safe_zero_division((m02 + m20), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_2(): sq = (torch.sqrt(((((1.0 + m11) - m00) - m22) + eps)) * 2.0) qw = safe_zero_division((m02 - m20), sq) qx = safe_zero_division((m01 + m10), sq) qy = (0.25 * sq) qz = safe_zero_division((m12 + m21), sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) def cond_3(): sq = (torch.sqrt(((((1.0 + m22) - m00) - m11) + eps)) * 2.0) qw = safe_zero_division((m10 - m01), sq) qx = safe_zero_division((m02 + m20), sq) qy = safe_zero_division((m12 + m21), sq) qz = (0.25 * sq) return torch.cat([qx, qy, qz, qw], dim=(- 1)) where_2 = torch.where((m11 > m22), cond_2(), cond_3()) where_1 = torch.where(((m00 > m11) & (m00 > m22)), cond_1(), where_2) quaternion: torch.Tensor = torch.where((trace > 0.0), trace_positive_cond(), where_1) return quaternion
def normalize_quaternion(quaternion: torch.Tensor, eps: float=1e-12) -> torch.Tensor: 'Normalizes a quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n normalized. The tensor can be of shape :math:`(*, 4)`.\n eps (Optional[bool]): small value to avoid division by zero.\n Default: 1e-12.\n\n Return:\n torch.Tensor: the normalized quaternion of shape :math:`(*, 4)`.\n\n Example:\n >>> quaternion = torch.tensor([1., 0., 1., 0.])\n >>> normalize_quaternion(quaternion)\n tensor([0.7071, 0.0000, 0.7071, 0.0000])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) return F.normalize(quaternion, p=2, dim=(- 1), eps=eps)
7,512,849,630,321,726,000
Normalizes a quaternion. The quaternion should be in (x, y, z, w) format. Args: quaternion (torch.Tensor): a tensor containing a quaternion to be normalized. The tensor can be of shape :math:`(*, 4)`. eps (Optional[bool]): small value to avoid division by zero. Default: 1e-12. Return: torch.Tensor: the normalized quaternion of shape :math:`(*, 4)`. Example: >>> quaternion = torch.tensor([1., 0., 1., 0.]) >>> normalize_quaternion(quaternion) tensor([0.7071, 0.0000, 0.7071, 0.0000])
kornia/geometry/conversions.py
normalize_quaternion
anthonytec2/kornia
python
def normalize_quaternion(quaternion: torch.Tensor, eps: float=1e-12) -> torch.Tensor: 'Normalizes a quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n normalized. The tensor can be of shape :math:`(*, 4)`.\n eps (Optional[bool]): small value to avoid division by zero.\n Default: 1e-12.\n\n Return:\n torch.Tensor: the normalized quaternion of shape :math:`(*, 4)`.\n\n Example:\n >>> quaternion = torch.tensor([1., 0., 1., 0.])\n >>> normalize_quaternion(quaternion)\n tensor([0.7071, 0.0000, 0.7071, 0.0000])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) return F.normalize(quaternion, p=2, dim=(- 1), eps=eps)
def quaternion_to_rotation_matrix(quaternion: torch.Tensor) -> torch.Tensor: 'Converts a quaternion to a rotation matrix.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 4)`.\n\n Return:\n torch.Tensor: the rotation matrix of shape :math:`(*, 3, 3)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 1., 0.])\n >>> quaternion_to_rotation_matrix(quaternion)\n tensor([[-1., 0., 0.],\n [ 0., -1., 0.],\n [ 0., 0., 1.]])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) quaternion_norm: torch.Tensor = normalize_quaternion(quaternion) (x, y, z, w) = torch.chunk(quaternion_norm, chunks=4, dim=(- 1)) tx: torch.Tensor = (2.0 * x) ty: torch.Tensor = (2.0 * y) tz: torch.Tensor = (2.0 * z) twx: torch.Tensor = (tx * w) twy: torch.Tensor = (ty * w) twz: torch.Tensor = (tz * w) txx: torch.Tensor = (tx * x) txy: torch.Tensor = (ty * x) txz: torch.Tensor = (tz * x) tyy: torch.Tensor = (ty * y) tyz: torch.Tensor = (tz * y) tzz: torch.Tensor = (tz * z) one: torch.Tensor = torch.tensor(1.0) matrix: torch.Tensor = torch.stack([(one - (tyy + tzz)), (txy - twz), (txz + twy), (txy + twz), (one - (txx + tzz)), (tyz - twx), (txz - twy), (tyz + twx), (one - (txx + tyy))], dim=(- 1)).view((- 1), 3, 3) if (len(quaternion.shape) == 1): matrix = torch.squeeze(matrix, dim=0) return matrix
3,522,370,856,670,667,300
Converts a quaternion to a rotation matrix. The quaternion should be in (x, y, z, w) format. Args: quaternion (torch.Tensor): a tensor containing a quaternion to be converted. The tensor can be of shape :math:`(*, 4)`. Return: torch.Tensor: the rotation matrix of shape :math:`(*, 3, 3)`. Example: >>> quaternion = torch.tensor([0., 0., 1., 0.]) >>> quaternion_to_rotation_matrix(quaternion) tensor([[-1., 0., 0.], [ 0., -1., 0.], [ 0., 0., 1.]])
kornia/geometry/conversions.py
quaternion_to_rotation_matrix
anthonytec2/kornia
python
def quaternion_to_rotation_matrix(quaternion: torch.Tensor) -> torch.Tensor: 'Converts a quaternion to a rotation matrix.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 4)`.\n\n Return:\n torch.Tensor: the rotation matrix of shape :math:`(*, 3, 3)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 1., 0.])\n >>> quaternion_to_rotation_matrix(quaternion)\n tensor([[-1., 0., 0.],\n [ 0., -1., 0.],\n [ 0., 0., 1.]])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) quaternion_norm: torch.Tensor = normalize_quaternion(quaternion) (x, y, z, w) = torch.chunk(quaternion_norm, chunks=4, dim=(- 1)) tx: torch.Tensor = (2.0 * x) ty: torch.Tensor = (2.0 * y) tz: torch.Tensor = (2.0 * z) twx: torch.Tensor = (tx * w) twy: torch.Tensor = (ty * w) twz: torch.Tensor = (tz * w) txx: torch.Tensor = (tx * x) txy: torch.Tensor = (ty * x) txz: torch.Tensor = (tz * x) tyy: torch.Tensor = (ty * y) tyz: torch.Tensor = (tz * y) tzz: torch.Tensor = (tz * z) one: torch.Tensor = torch.tensor(1.0) matrix: torch.Tensor = torch.stack([(one - (tyy + tzz)), (txy - twz), (txz + twy), (txy + twz), (one - (txx + tzz)), (tyz - twx), (txz - twy), (tyz + twx), (one - (txx + tyy))], dim=(- 1)).view((- 1), 3, 3) if (len(quaternion.shape) == 1): matrix = torch.squeeze(matrix, dim=0) return matrix
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: 'Convert quaternion vector to angle axis of rotation.\n The quaternion should be in (x, y, z, w) format.\n\n Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h\n\n Args:\n quaternion (torch.Tensor): tensor with quaternions.\n\n Return:\n torch.Tensor: tensor with angle axis of rotation.\n\n Shape:\n - Input: :math:`(*, 4)` where `*` means, any number of dimensions\n - Output: :math:`(*, 3)`\n\n Example:\n >>> quaternion = torch.rand(2, 4) # Nx4\n >>> angle_axis = quaternion_to_angle_axis(quaternion) # Nx3\n ' if (not torch.is_tensor(quaternion)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape Nx4 or 4. Got {}'.format(quaternion.shape)) q1: torch.Tensor = quaternion[(..., 1)] q2: torch.Tensor = quaternion[(..., 2)] q3: torch.Tensor = quaternion[(..., 3)] sin_squared_theta: torch.Tensor = (((q1 * q1) + (q2 * q2)) + (q3 * q3)) sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[(..., 0)] two_theta: torch.Tensor = (2.0 * torch.where((cos_theta < 0.0), torch.atan2((- sin_theta), (- cos_theta)), torch.atan2(sin_theta, cos_theta))) k_pos: torch.Tensor = (two_theta / sin_theta) k_neg: torch.Tensor = (2.0 * torch.ones_like(sin_theta)) k: torch.Tensor = torch.where((sin_squared_theta > 0.0), k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[(..., 0)] += (q1 * k) angle_axis[(..., 1)] += (q2 * k) angle_axis[(..., 2)] += (q3 * k) return angle_axis
-3,117,967,537,888,511,000
Convert quaternion vector to angle axis of rotation. The quaternion should be in (x, y, z, w) format. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = quaternion_to_angle_axis(quaternion) # Nx3
kornia/geometry/conversions.py
quaternion_to_angle_axis
anthonytec2/kornia
python
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: 'Convert quaternion vector to angle axis of rotation.\n The quaternion should be in (x, y, z, w) format.\n\n Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h\n\n Args:\n quaternion (torch.Tensor): tensor with quaternions.\n\n Return:\n torch.Tensor: tensor with angle axis of rotation.\n\n Shape:\n - Input: :math:`(*, 4)` where `*` means, any number of dimensions\n - Output: :math:`(*, 3)`\n\n Example:\n >>> quaternion = torch.rand(2, 4) # Nx4\n >>> angle_axis = quaternion_to_angle_axis(quaternion) # Nx3\n ' if (not torch.is_tensor(quaternion)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape Nx4 or 4. Got {}'.format(quaternion.shape)) q1: torch.Tensor = quaternion[(..., 1)] q2: torch.Tensor = quaternion[(..., 2)] q3: torch.Tensor = quaternion[(..., 3)] sin_squared_theta: torch.Tensor = (((q1 * q1) + (q2 * q2)) + (q3 * q3)) sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[(..., 0)] two_theta: torch.Tensor = (2.0 * torch.where((cos_theta < 0.0), torch.atan2((- sin_theta), (- cos_theta)), torch.atan2(sin_theta, cos_theta))) k_pos: torch.Tensor = (two_theta / sin_theta) k_neg: torch.Tensor = (2.0 * torch.ones_like(sin_theta)) k: torch.Tensor = torch.where((sin_squared_theta > 0.0), k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[(..., 0)] += (q1 * k) angle_axis[(..., 1)] += (q2 * k) angle_axis[(..., 2)] += (q3 * k) return angle_axis
def quaternion_log_to_exp(quaternion: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Applies exponential map to log quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 3)`.\n\n Return:\n torch.Tensor: the quaternion exponential map of shape :math:`(*, 4)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 0.])\n >>> quaternion_log_to_exp(quaternion)\n tensor([0., 0., 0., 1.])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 3)): raise ValueError('Input must be a tensor of shape (*, 3). Got {}'.format(quaternion.shape)) norm_q: torch.Tensor = torch.norm(quaternion, p=2, dim=(- 1), keepdim=True).clamp(min=eps) quaternion_vector: torch.Tensor = ((quaternion * torch.sin(norm_q)) / norm_q) quaternion_scalar: torch.Tensor = torch.cos(norm_q) quaternion_exp: torch.Tensor = torch.cat([quaternion_vector, quaternion_scalar], dim=(- 1)) return quaternion_exp
-2,785,614,319,673,772,500
Applies exponential map to log quaternion. The quaternion should be in (x, y, z, w) format. Args: quaternion (torch.Tensor): a tensor containing a quaternion to be converted. The tensor can be of shape :math:`(*, 3)`. Return: torch.Tensor: the quaternion exponential map of shape :math:`(*, 4)`. Example: >>> quaternion = torch.tensor([0., 0., 0.]) >>> quaternion_log_to_exp(quaternion) tensor([0., 0., 0., 1.])
kornia/geometry/conversions.py
quaternion_log_to_exp
anthonytec2/kornia
python
def quaternion_log_to_exp(quaternion: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Applies exponential map to log quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 3)`.\n\n Return:\n torch.Tensor: the quaternion exponential map of shape :math:`(*, 4)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 0.])\n >>> quaternion_log_to_exp(quaternion)\n tensor([0., 0., 0., 1.])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 3)): raise ValueError('Input must be a tensor of shape (*, 3). Got {}'.format(quaternion.shape)) norm_q: torch.Tensor = torch.norm(quaternion, p=2, dim=(- 1), keepdim=True).clamp(min=eps) quaternion_vector: torch.Tensor = ((quaternion * torch.sin(norm_q)) / norm_q) quaternion_scalar: torch.Tensor = torch.cos(norm_q) quaternion_exp: torch.Tensor = torch.cat([quaternion_vector, quaternion_scalar], dim=(- 1)) return quaternion_exp
def quaternion_exp_to_log(quaternion: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Applies the log map to a quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 4)`.\n\n Return:\n torch.Tensor: the quaternion log map of shape :math:`(*, 3)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 0., 1.])\n >>> quaternion_exp_to_log(quaternion)\n tensor([0., 0., 0.])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) quaternion_vector: torch.Tensor = quaternion[..., 0:3] quaternion_scalar: torch.Tensor = quaternion[..., 3:4] norm_q: torch.Tensor = torch.norm(quaternion_vector, p=2, dim=(- 1), keepdim=True).clamp(min=eps) quaternion_log: torch.Tensor = ((quaternion_vector * torch.acos(torch.clamp(quaternion_scalar, min=(- 1.0), max=1.0))) / norm_q) return quaternion_log
769,276,519,921,463,600
Applies the log map to a quaternion. The quaternion should be in (x, y, z, w) format. Args: quaternion (torch.Tensor): a tensor containing a quaternion to be converted. The tensor can be of shape :math:`(*, 4)`. Return: torch.Tensor: the quaternion log map of shape :math:`(*, 3)`. Example: >>> quaternion = torch.tensor([0., 0., 0., 1.]) >>> quaternion_exp_to_log(quaternion) tensor([0., 0., 0.])
kornia/geometry/conversions.py
quaternion_exp_to_log
anthonytec2/kornia
python
def quaternion_exp_to_log(quaternion: torch.Tensor, eps: float=1e-08) -> torch.Tensor: 'Applies the log map to a quaternion.\n The quaternion should be in (x, y, z, w) format.\n\n Args:\n quaternion (torch.Tensor): a tensor containing a quaternion to be\n converted. The tensor can be of shape :math:`(*, 4)`.\n\n Return:\n torch.Tensor: the quaternion log map of shape :math:`(*, 3)`.\n\n Example:\n >>> quaternion = torch.tensor([0., 0., 0., 1.])\n >>> quaternion_exp_to_log(quaternion)\n tensor([0., 0., 0.])\n ' if (not isinstance(quaternion, torch.Tensor)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(quaternion))) if (not (quaternion.shape[(- 1)] == 4)): raise ValueError('Input must be a tensor of shape (*, 4). Got {}'.format(quaternion.shape)) quaternion_vector: torch.Tensor = quaternion[..., 0:3] quaternion_scalar: torch.Tensor = quaternion[..., 3:4] norm_q: torch.Tensor = torch.norm(quaternion_vector, p=2, dim=(- 1), keepdim=True).clamp(min=eps) quaternion_log: torch.Tensor = ((quaternion_vector * torch.acos(torch.clamp(quaternion_scalar, min=(- 1.0), max=1.0))) / norm_q) return quaternion_log
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: 'Convert an angle axis to a quaternion.\n The quaternion vector has components in (x, y, z, w) format.\n\n Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h\n\n Args:\n angle_axis (torch.Tensor): tensor with angle axis.\n\n Return:\n torch.Tensor: tensor with quaternion.\n\n Shape:\n - Input: :math:`(*, 3)` where `*` means, any number of dimensions\n - Output: :math:`(*, 4)`\n\n Example:\n >>> angle_axis = torch.rand(2, 3) # Nx3\n >>> quaternion = angle_axis_to_quaternion(angle_axis) # Nx4\n ' if (not torch.is_tensor(angle_axis)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(angle_axis))) if (not (angle_axis.shape[(- 1)] == 3)): raise ValueError('Input must be a tensor of shape Nx3 or 3. Got {}'.format(angle_axis.shape)) a0: torch.Tensor = angle_axis[..., 0:1] a1: torch.Tensor = angle_axis[..., 1:2] a2: torch.Tensor = angle_axis[..., 2:3] theta_squared: torch.Tensor = (((a0 * a0) + (a1 * a1)) + (a2 * a2)) theta: torch.Tensor = torch.sqrt(theta_squared) half_theta: torch.Tensor = (theta * 0.5) mask: torch.Tensor = (theta_squared > 0.0) ones: torch.Tensor = torch.ones_like(half_theta) k_neg: torch.Tensor = (0.5 * ones) k_pos: torch.Tensor = (torch.sin(half_theta) / theta) k: torch.Tensor = torch.where(mask, k_pos, k_neg) w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) quaternion: torch.Tensor = torch.zeros_like(angle_axis) quaternion[..., 0:1] += (a0 * k) quaternion[..., 1:2] += (a1 * k) quaternion[..., 2:3] += (a2 * k) return torch.cat([w, quaternion], dim=(- 1))
-4,953,389,899,023,492,000
Convert an angle axis to a quaternion. The quaternion vector has components in (x, y, z, w) format. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: angle_axis (torch.Tensor): tensor with angle axis. Return: torch.Tensor: tensor with quaternion. Shape: - Input: :math:`(*, 3)` where `*` means, any number of dimensions - Output: :math:`(*, 4)` Example: >>> angle_axis = torch.rand(2, 3) # Nx3 >>> quaternion = angle_axis_to_quaternion(angle_axis) # Nx4
kornia/geometry/conversions.py
angle_axis_to_quaternion
anthonytec2/kornia
python
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: 'Convert an angle axis to a quaternion.\n The quaternion vector has components in (x, y, z, w) format.\n\n Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h\n\n Args:\n angle_axis (torch.Tensor): tensor with angle axis.\n\n Return:\n torch.Tensor: tensor with quaternion.\n\n Shape:\n - Input: :math:`(*, 3)` where `*` means, any number of dimensions\n - Output: :math:`(*, 4)`\n\n Example:\n >>> angle_axis = torch.rand(2, 3) # Nx3\n >>> quaternion = angle_axis_to_quaternion(angle_axis) # Nx4\n ' if (not torch.is_tensor(angle_axis)): raise TypeError('Input type is not a torch.Tensor. Got {}'.format(type(angle_axis))) if (not (angle_axis.shape[(- 1)] == 3)): raise ValueError('Input must be a tensor of shape Nx3 or 3. Got {}'.format(angle_axis.shape)) a0: torch.Tensor = angle_axis[..., 0:1] a1: torch.Tensor = angle_axis[..., 1:2] a2: torch.Tensor = angle_axis[..., 2:3] theta_squared: torch.Tensor = (((a0 * a0) + (a1 * a1)) + (a2 * a2)) theta: torch.Tensor = torch.sqrt(theta_squared) half_theta: torch.Tensor = (theta * 0.5) mask: torch.Tensor = (theta_squared > 0.0) ones: torch.Tensor = torch.ones_like(half_theta) k_neg: torch.Tensor = (0.5 * ones) k_pos: torch.Tensor = (torch.sin(half_theta) / theta) k: torch.Tensor = torch.where(mask, k_pos, k_neg) w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) quaternion: torch.Tensor = torch.zeros_like(angle_axis) quaternion[..., 0:1] += (a0 * k) quaternion[..., 1:2] += (a1 * k) quaternion[..., 2:3] += (a2 * k) return torch.cat([w, quaternion], dim=(- 1))
def normalize_pixel_coordinates(pixel_coordinates: torch.Tensor, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Normalize pixel coordinates between -1 and 1.\n\n Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the grid with pixel coordinates.\n Shape can be :math:`(*, 2)`.\n width (int): the maximum width in the x-axis.\n height (int): the maximum height in the y-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the normalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 2): raise ValueError('Input pixel_coordinates must be of shape (*, 2). Got {}'.format(pixel_coordinates.shape)) hw: torch.Tensor = torch.stack([torch.tensor(width, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype), torch.tensor(height, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype)]) factor: torch.Tensor = (torch.tensor(2.0, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype) / (hw - 1).clamp(eps)) return ((factor * pixel_coordinates) - 1)
5,259,801,237,466,521,000
Normalize pixel coordinates between -1 and 1. Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1). Args: pixel_coordinates (torch.Tensor): the grid with pixel coordinates. Shape can be :math:`(*, 2)`. width (int): the maximum width in the x-axis. height (int): the maximum height in the y-axis. eps (float): safe division by zero. (default 1e-8). Return: torch.Tensor: the normalized pixel coordinates.
kornia/geometry/conversions.py
normalize_pixel_coordinates
anthonytec2/kornia
python
def normalize_pixel_coordinates(pixel_coordinates: torch.Tensor, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Normalize pixel coordinates between -1 and 1.\n\n Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the grid with pixel coordinates.\n Shape can be :math:`(*, 2)`.\n width (int): the maximum width in the x-axis.\n height (int): the maximum height in the y-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the normalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 2): raise ValueError('Input pixel_coordinates must be of shape (*, 2). Got {}'.format(pixel_coordinates.shape)) hw: torch.Tensor = torch.stack([torch.tensor(width, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype), torch.tensor(height, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype)]) factor: torch.Tensor = (torch.tensor(2.0, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype) / (hw - 1).clamp(eps)) return ((factor * pixel_coordinates) - 1)
def denormalize_pixel_coordinates(pixel_coordinates: torch.Tensor, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Denormalize pixel coordinates.\n\n The input is assumed to be -1 if on extreme left, 1 if on\n extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the normalized grid coordinates.\n Shape can be :math:`(*, 2)`.\n width (int): the maximum width in the x-axis.\n height (int): the maximum height in the y-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the denormalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 2): raise ValueError('Input pixel_coordinates must be of shape (*, 2). Got {}'.format(pixel_coordinates.shape)) hw: torch.Tensor = torch.stack([torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (hw - 1).clamp(eps)) return ((torch.tensor(1.0) / factor) * (pixel_coordinates + 1))
4,021,415,155,370,516,000
Denormalize pixel coordinates. The input is assumed to be -1 if on extreme left, 1 if on extreme right (x = w-1). Args: pixel_coordinates (torch.Tensor): the normalized grid coordinates. Shape can be :math:`(*, 2)`. width (int): the maximum width in the x-axis. height (int): the maximum height in the y-axis. eps (float): safe division by zero. (default 1e-8). Return: torch.Tensor: the denormalized pixel coordinates.
kornia/geometry/conversions.py
denormalize_pixel_coordinates
anthonytec2/kornia
python
def denormalize_pixel_coordinates(pixel_coordinates: torch.Tensor, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Denormalize pixel coordinates.\n\n The input is assumed to be -1 if on extreme left, 1 if on\n extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the normalized grid coordinates.\n Shape can be :math:`(*, 2)`.\n width (int): the maximum width in the x-axis.\n height (int): the maximum height in the y-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the denormalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 2): raise ValueError('Input pixel_coordinates must be of shape (*, 2). Got {}'.format(pixel_coordinates.shape)) hw: torch.Tensor = torch.stack([torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (hw - 1).clamp(eps)) return ((torch.tensor(1.0) / factor) * (pixel_coordinates + 1))
def normalize_pixel_coordinates3d(pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Normalize pixel coordinates between -1 and 1.\n\n Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the grid with pixel coordinates.\n Shape can be :math:`(*, 3)`.\n depth (int): the maximum depth in the z-axis.\n height (int): the maximum height in the y-axis.\n width (int): the maximum width in the x-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the normalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 3): raise ValueError('Input pixel_coordinates must be of shape (*, 3). Got {}'.format(pixel_coordinates.shape)) dhw: torch.Tensor = torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (dhw - 1).clamp(eps)) return ((factor * pixel_coordinates) - 1)
-7,054,624,372,842,433,000
Normalize pixel coordinates between -1 and 1. Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1). Args: pixel_coordinates (torch.Tensor): the grid with pixel coordinates. Shape can be :math:`(*, 3)`. depth (int): the maximum depth in the z-axis. height (int): the maximum height in the y-axis. width (int): the maximum width in the x-axis. eps (float): safe division by zero. (default 1e-8). Return: torch.Tensor: the normalized pixel coordinates.
kornia/geometry/conversions.py
normalize_pixel_coordinates3d
anthonytec2/kornia
python
def normalize_pixel_coordinates3d(pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Normalize pixel coordinates between -1 and 1.\n\n Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the grid with pixel coordinates.\n Shape can be :math:`(*, 3)`.\n depth (int): the maximum depth in the z-axis.\n height (int): the maximum height in the y-axis.\n width (int): the maximum width in the x-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n Return:\n torch.Tensor: the normalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 3): raise ValueError('Input pixel_coordinates must be of shape (*, 3). Got {}'.format(pixel_coordinates.shape)) dhw: torch.Tensor = torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (dhw - 1).clamp(eps)) return ((factor * pixel_coordinates) - 1)
def denormalize_pixel_coordinates3d(pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Denormalize pixel coordinates.\n\n The input is assumed to be -1 if on extreme left, 1 if on\n extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the normalized grid coordinates.\n Shape can be :math:`(*, 3)`.\n depth (int): the maximum depth in the x-axis.\n height (int): the maximum height in the y-axis.\n width (int): the maximum width in the x-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n\n Return:\n torch.Tensor: the denormalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 3): raise ValueError('Input pixel_coordinates must be of shape (*, 3). Got {}'.format(pixel_coordinates.shape)) dhw: torch.Tensor = torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (dhw - 1).clamp(eps)) return ((torch.tensor(1.0) / factor) * (pixel_coordinates + 1))
9,005,497,196,688,565,000
Denormalize pixel coordinates. The input is assumed to be -1 if on extreme left, 1 if on extreme right (x = w-1). Args: pixel_coordinates (torch.Tensor): the normalized grid coordinates. Shape can be :math:`(*, 3)`. depth (int): the maximum depth in the x-axis. height (int): the maximum height in the y-axis. width (int): the maximum width in the x-axis. eps (float): safe division by zero. (default 1e-8). Return: torch.Tensor: the denormalized pixel coordinates.
kornia/geometry/conversions.py
denormalize_pixel_coordinates3d
anthonytec2/kornia
python
def denormalize_pixel_coordinates3d(pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float=1e-08) -> torch.Tensor: 'Denormalize pixel coordinates.\n\n The input is assumed to be -1 if on extreme left, 1 if on\n extreme right (x = w-1).\n\n Args:\n pixel_coordinates (torch.Tensor): the normalized grid coordinates.\n Shape can be :math:`(*, 3)`.\n depth (int): the maximum depth in the x-axis.\n height (int): the maximum height in the y-axis.\n width (int): the maximum width in the x-axis.\n eps (float): safe division by zero. (default 1e-8).\n\n\n Return:\n torch.Tensor: the denormalized pixel coordinates.\n ' if (pixel_coordinates.shape[(- 1)] != 3): raise ValueError('Input pixel_coordinates must be of shape (*, 3). Got {}'.format(pixel_coordinates.shape)) dhw: torch.Tensor = torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]).to(pixel_coordinates.device).to(pixel_coordinates.dtype) factor: torch.Tensor = (torch.tensor(2.0) / (dhw - 1).clamp(eps)) return ((torch.tensor(1.0) / factor) * (pixel_coordinates + 1))
def _set_group_flag(self): 'Set flag according to image aspect ratio.\n\n Images with aspect ratio greater than 1 will be set as group 1,\n otherwise group 0.\n ' self.flag = np.zeros(len(self), dtype=np.uint8)
1,523,723,425,331,464,400
Set flag according to image aspect ratio. Images with aspect ratio greater than 1 will be set as group 1, otherwise group 0.
mmdet/datasets/classify/imagenet.py
_set_group_flag
anorthman/mmdetection
python
def _set_group_flag(self): 'Set flag according to image aspect ratio.\n\n Images with aspect ratio greater than 1 will be set as group 1,\n otherwise group 0.\n ' self.flag = np.zeros(len(self), dtype=np.uint8)
def _compute_total_loss(self, labels, logits): 'Summation of the categorical hinge loss for labels and logits.' error = 0.0 for (label, logit) in zip(labels, logits): positive = (label * logit) negative = ((1 - label) * logit) error += np.maximum(0.0, ((negative - positive) + 1.0)) return error
-3,066,329,895,701,368,300
Summation of the categorical hinge loss for labels and logits.
utils/train_eval_test.py
_compute_total_loss
AakashOfficial/tensor2robot
python
def _compute_total_loss(self, labels, logits): error = 0.0 for (label, logit) in zip(labels, logits): positive = (label * logit) negative = ((1 - label) * logit) error += np.maximum(0.0, ((negative - positive) + 1.0)) return error
def test_train_eval_model(self): 'Tests that a simple model trains and exported models are valid.' gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) mock_input_generator_eval = mocks.MockInputGenerator(batch_size=1) fake_hook_builder = FakeHookBuilder() train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, input_generator_eval=mock_input_generator_eval, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, train_hook_builders=[fake_hook_builder], eval_hook_builders=[fake_hook_builder], eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertTrue(fake_hook_builder.hook_mock.begin.called) best_exporter_numpy_path = os.path.join(model_dir, 'export', 'best_exporter_numpy', '*') numpy_model_paths = sorted(tf.io.gfile.glob(best_exporter_numpy_path)) self.assertGreater(len(numpy_model_paths), 0) self.assertLessEqual(len(numpy_model_paths), 5) best_exporter_tf_example_path = os.path.join(model_dir, 'export', 'best_exporter_tf_example', '*') tf_example_model_paths = sorted(tf.io.gfile.glob(best_exporter_tf_example_path)) self.assertGreater(len(tf_example_model_paths), 0) self.assertLessEqual(len(tf_example_model_paths), 5) estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) prediction_ref = estimator_predict.predict(input_fn=mock_input_generator_eval.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)) numpy_predictor_fn = contrib_predictor.from_saved_model(numpy_model_paths[(- 1)]) (features, labels) = mock_input_generator_eval.create_numpy_data() ref_error = self._compute_total_loss(labels, [val['logit'].flatten() for val in prediction_ref]) numpy_predictions = [] for (feature, label) in zip(features, labels): predicted = numpy_predictor_fn({'x': feature.reshape(1, (- 1))})['logit'].flatten() numpy_predictions.append(predicted) if (label > 0): self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) numpy_error = self._compute_total_loss(labels, numpy_predictions) tf_example_predictor_fn = contrib_predictor.from_saved_model(tf_example_model_paths[(- 1)]) tf_example_predictions = [] for (feature, label) in zip(features, labels): example = tf.train.Example() example.features.feature['measured_position'].float_list.value.extend(feature) feed_dict = {'input_example_tensor': np.array(example.SerializeToString()).reshape(1)} predicted = tf_example_predictor_fn(feed_dict)['logit'].flatten() tf_example_predictions.append(predicted) if (label > 0): self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) tf_example_error = self._compute_total_loss(labels, tf_example_predictions) np.testing.assert_almost_equal(tf_example_error, numpy_error) np.testing.assert_almost_equal(ref_error, tf_example_error, decimal=3)
-5,027,032,026,927,736,000
Tests that a simple model trains and exported models are valid.
utils/train_eval_test.py
test_train_eval_model
AakashOfficial/tensor2robot
python
def test_train_eval_model(self): gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) mock_input_generator_eval = mocks.MockInputGenerator(batch_size=1) fake_hook_builder = FakeHookBuilder() train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, input_generator_eval=mock_input_generator_eval, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, train_hook_builders=[fake_hook_builder], eval_hook_builders=[fake_hook_builder], eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertTrue(fake_hook_builder.hook_mock.begin.called) best_exporter_numpy_path = os.path.join(model_dir, 'export', 'best_exporter_numpy', '*') numpy_model_paths = sorted(tf.io.gfile.glob(best_exporter_numpy_path)) self.assertGreater(len(numpy_model_paths), 0) self.assertLessEqual(len(numpy_model_paths), 5) best_exporter_tf_example_path = os.path.join(model_dir, 'export', 'best_exporter_tf_example', '*') tf_example_model_paths = sorted(tf.io.gfile.glob(best_exporter_tf_example_path)) self.assertGreater(len(tf_example_model_paths), 0) self.assertLessEqual(len(tf_example_model_paths), 5) estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) prediction_ref = estimator_predict.predict(input_fn=mock_input_generator_eval.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)) numpy_predictor_fn = contrib_predictor.from_saved_model(numpy_model_paths[(- 1)]) (features, labels) = mock_input_generator_eval.create_numpy_data() ref_error = self._compute_total_loss(labels, [val['logit'].flatten() for val in prediction_ref]) numpy_predictions = [] for (feature, label) in zip(features, labels): predicted = numpy_predictor_fn({'x': feature.reshape(1, (- 1))})['logit'].flatten() numpy_predictions.append(predicted) if (label > 0): self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) numpy_error = self._compute_total_loss(labels, numpy_predictions) tf_example_predictor_fn = contrib_predictor.from_saved_model(tf_example_model_paths[(- 1)]) tf_example_predictions = [] for (feature, label) in zip(features, labels): example = tf.train.Example() example.features.feature['measured_position'].float_list.value.extend(feature) feed_dict = {'input_example_tensor': np.array(example.SerializeToString()).reshape(1)} predicted = tf_example_predictor_fn(feed_dict)['logit'].flatten() tf_example_predictions.append(predicted) if (label > 0): self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) tf_example_error = self._compute_total_loss(labels, tf_example_predictions) np.testing.assert_almost_equal(tf_example_error, numpy_error) np.testing.assert_almost_equal(ref_error, tf_example_error, decimal=3)
def test_init_from_checkpoint_global_step(self): 'Tests that a simple model trains and exported models are valid.' gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertLen(tf.io.gfile.glob(os.path.join(model_dir, 'model*.meta')), 3) continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial(abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=(_MAX_TRAIN_STEPS + 100), eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertLen(tf.io.gfile.glob(os.path.join(continue_model_dir, 'model*.meta')), 2)
-3,967,083,315,317,678,000
Tests that a simple model trains and exported models are valid.
utils/train_eval_test.py
test_init_from_checkpoint_global_step
AakashOfficial/tensor2robot
python
def test_init_from_checkpoint_global_step(self): gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertLen(tf.io.gfile.glob(os.path.join(model_dir, 'model*.meta')), 3) continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial(abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=(_MAX_TRAIN_STEPS + 100), eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertLen(tf.io.gfile.glob(os.path.join(continue_model_dir, 'model*.meta')), 2)
def test_init_from_checkpoint_use_avg_model_params_and_weights(self): 'Tests that a simple model trains and exported models are valid.' gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, use_avg_model_params=True) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) mock_input_generator = mocks.MockInputGenerator(batch_size=1) mock_input_generator.set_specification_from_model(mock_t2r_model, tf.estimator.ModeKeys.TRAIN) train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir) init_checkpoint = tf.train.NewCheckpointReader(tf.train.latest_checkpoint(model_dir)) initial_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) initial_predictions = [prediction['logit'] for prediction in list(initial_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial(abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=_MAX_TRAIN_STEPS) continue_checkpoint = tf.train.NewCheckpointReader(tf.train.latest_checkpoint(continue_model_dir)) for (tensor_name, _) in tf.train.list_variables(model_dir): if ('ExponentialMovingAverage' in tensor_name): continue if ('Adam' in tensor_name): continue if ('global_step' in tensor_name): continue self.assertAllClose(init_checkpoint.get_tensor(tensor_name), continue_checkpoint.get_tensor(tensor_name), atol=0.001) continue_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=continue_model_dir)) continue_predictions = [prediction['logit'] for prediction in list(continue_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] self.assertTrue(np.allclose(initial_predictions, continue_predictions, atol=0.1)) random_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn) random_predictions = [prediction['logit'] for prediction in list(random_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] self.assertFalse(np.allclose(initial_predictions, random_predictions, atol=0.01))
4,479,116,241,257,387,500
Tests that a simple model trains and exported models are valid.
utils/train_eval_test.py
test_init_from_checkpoint_use_avg_model_params_and_weights
AakashOfficial/tensor2robot
python
def test_init_from_checkpoint_use_avg_model_params_and_weights(self): gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, use_avg_model_params=True) mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) mock_input_generator = mocks.MockInputGenerator(batch_size=1) mock_input_generator.set_specification_from_model(mock_t2r_model, tf.estimator.ModeKeys.TRAIN) train_eval.train_eval_model(t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir) init_checkpoint = tf.train.NewCheckpointReader(tf.train.latest_checkpoint(model_dir)) initial_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) initial_predictions = [prediction['logit'] for prediction in list(initial_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial(abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel(preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator(batch_size=_BATCH_SIZE) train_eval.train_eval_model(t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=_MAX_TRAIN_STEPS) continue_checkpoint = tf.train.NewCheckpointReader(tf.train.latest_checkpoint(continue_model_dir)) for (tensor_name, _) in tf.train.list_variables(model_dir): if ('ExponentialMovingAverage' in tensor_name): continue if ('Adam' in tensor_name): continue if ('global_step' in tensor_name): continue self.assertAllClose(init_checkpoint.get_tensor(tensor_name), continue_checkpoint.get_tensor(tensor_name), atol=0.001) continue_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=continue_model_dir)) continue_predictions = [prediction['logit'] for prediction in list(continue_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] self.assertTrue(np.allclose(initial_predictions, continue_predictions, atol=0.1)) random_estimator_predict = tf.estimator.Estimator(model_fn=mock_t2r_model.model_fn) random_predictions = [prediction['logit'] for prediction in list(random_estimator_predict.predict(input_fn=mock_input_generator.create_dataset_input_fn(mode=tf.estimator.ModeKeys.EVAL)))] self.assertFalse(np.allclose(initial_predictions, random_predictions, atol=0.01))
async def async_setup_entry(hass, config_entry, async_add_entities, discovery_info=None): 'Set up the Agent cameras.' filter_urllib3_logging() cameras = [] server = hass.data[AGENT_DOMAIN][config_entry.entry_id][CONNECTION] if (not server.devices): _LOGGER.warning('Could not fetch cameras from Agent server') return for device in server.devices: if (device.typeID == 2): camera = AgentCamera(device) cameras.append(camera) async_add_entities(cameras) platform = entity_platform.current_platform.get() for (service, method) in CAMERA_SERVICES.items(): platform.async_register_entity_service(service, {}, method)
-561,701,980,941,086,000
Set up the Agent cameras.
homeassistant/components/agent_dvr/camera.py
async_setup_entry
CantankerousBullMoose/core
python
async def async_setup_entry(hass, config_entry, async_add_entities, discovery_info=None): filter_urllib3_logging() cameras = [] server = hass.data[AGENT_DOMAIN][config_entry.entry_id][CONNECTION] if (not server.devices): _LOGGER.warning('Could not fetch cameras from Agent server') return for device in server.devices: if (device.typeID == 2): camera = AgentCamera(device) cameras.append(camera) async_add_entities(cameras) platform = entity_platform.current_platform.get() for (service, method) in CAMERA_SERVICES.items(): platform.async_register_entity_service(service, {}, method)
def __init__(self, device): 'Initialize as a subclass of MjpegCamera.' self._servername = device.client.name self.server_url = device.client._server_url device_info = {CONF_NAME: device.name, CONF_MJPEG_URL: f'{self.server_url}{device.mjpeg_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}', CONF_STILL_IMAGE_URL: f'{self.server_url}{device.still_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}'} self.device = device self._removed = False self._name = f'{self._servername} {device.name}' self._unique_id = f'{device._client.unique}_{device.typeID}_{device.id}' super().__init__(device_info)
4,172,856,412,794,285,000
Initialize as a subclass of MjpegCamera.
homeassistant/components/agent_dvr/camera.py
__init__
CantankerousBullMoose/core
python
def __init__(self, device): self._servername = device.client.name self.server_url = device.client._server_url device_info = {CONF_NAME: device.name, CONF_MJPEG_URL: f'{self.server_url}{device.mjpeg_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}', CONF_STILL_IMAGE_URL: f'{self.server_url}{device.still_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}'} self.device = device self._removed = False self._name = f'{self._servername} {device.name}' self._unique_id = f'{device._client.unique}_{device.typeID}_{device.id}' super().__init__(device_info)
@property def device_info(self): 'Return the device info for adding the entity to the agent object.' return {'identifiers': {(AGENT_DOMAIN, self._unique_id)}, 'name': self._name, 'manufacturer': 'Agent', 'model': 'Camera', 'sw_version': self.device.client.version}
7,824,553,129,315,086,000
Return the device info for adding the entity to the agent object.
homeassistant/components/agent_dvr/camera.py
device_info
CantankerousBullMoose/core
python
@property def device_info(self): return {'identifiers': {(AGENT_DOMAIN, self._unique_id)}, 'name': self._name, 'manufacturer': 'Agent', 'model': 'Camera', 'sw_version': self.device.client.version}
async def async_update(self): 'Update our state from the Agent API.' try: (await self.device.update()) if self._removed: _LOGGER.debug('%s reacquired', self._name) self._removed = False except AgentError: if self.device.client.is_available: if (not self._removed): _LOGGER.error('%s lost', self._name) self._removed = True
1,274,266,635,563,659,800
Update our state from the Agent API.
homeassistant/components/agent_dvr/camera.py
async_update
CantankerousBullMoose/core
python
async def async_update(self): try: (await self.device.update()) if self._removed: _LOGGER.debug('%s reacquired', self._name) self._removed = False except AgentError: if self.device.client.is_available: if (not self._removed): _LOGGER.error('%s lost', self._name) self._removed = True
@property def extra_state_attributes(self): 'Return the Agent DVR camera state attributes.' return {ATTR_ATTRIBUTION: ATTRIBUTION, 'editable': False, 'enabled': self.is_on, 'connected': self.connected, 'detected': self.is_detected, 'alerted': self.is_alerted, 'has_ptz': self.device.has_ptz, 'alerts_enabled': self.device.alerts_active}
-736,943,086,208,970,400
Return the Agent DVR camera state attributes.
homeassistant/components/agent_dvr/camera.py
extra_state_attributes
CantankerousBullMoose/core
python
@property def extra_state_attributes(self): return {ATTR_ATTRIBUTION: ATTRIBUTION, 'editable': False, 'enabled': self.is_on, 'connected': self.connected, 'detected': self.is_detected, 'alerted': self.is_alerted, 'has_ptz': self.device.has_ptz, 'alerts_enabled': self.device.alerts_active}
@property def should_poll(self) -> bool: 'Update the state periodically.' return True
-1,688,106,608,858,049,800
Update the state periodically.
homeassistant/components/agent_dvr/camera.py
should_poll
CantankerousBullMoose/core
python
@property def should_poll(self) -> bool: return True
@property def is_recording(self) -> bool: 'Return whether the monitor is recording.' return self.device.recording
-9,086,336,331,135,627,000
Return whether the monitor is recording.
homeassistant/components/agent_dvr/camera.py
is_recording
CantankerousBullMoose/core
python
@property def is_recording(self) -> bool: return self.device.recording
@property def is_alerted(self) -> bool: 'Return whether the monitor has alerted.' return self.device.alerted
2,899,730,911,809,477,600
Return whether the monitor has alerted.
homeassistant/components/agent_dvr/camera.py
is_alerted
CantankerousBullMoose/core
python
@property def is_alerted(self) -> bool: return self.device.alerted
@property def is_detected(self) -> bool: 'Return whether the monitor has alerted.' return self.device.detected
-3,371,326,521,136,155,600
Return whether the monitor has alerted.
homeassistant/components/agent_dvr/camera.py
is_detected
CantankerousBullMoose/core
python
@property def is_detected(self) -> bool: return self.device.detected
@property def available(self) -> bool: 'Return True if entity is available.' return self.device.client.is_available
-6,033,986,792,712,892,000
Return True if entity is available.
homeassistant/components/agent_dvr/camera.py
available
CantankerousBullMoose/core
python
@property def available(self) -> bool: return self.device.client.is_available
@property def connected(self) -> bool: 'Return True if entity is connected.' return self.device.connected
-5,834,607,589,438,554,000
Return True if entity is connected.
homeassistant/components/agent_dvr/camera.py
connected
CantankerousBullMoose/core
python
@property def connected(self) -> bool: return self.device.connected
@property def supported_features(self) -> int: 'Return supported features.' return SUPPORT_ON_OFF
-1,076,124,439,051,380,700
Return supported features.
homeassistant/components/agent_dvr/camera.py
supported_features
CantankerousBullMoose/core
python
@property def supported_features(self) -> int: return SUPPORT_ON_OFF
@property def is_on(self) -> bool: 'Return true if on.' return self.device.online
-5,295,751,153,541,704,000
Return true if on.
homeassistant/components/agent_dvr/camera.py
is_on
CantankerousBullMoose/core
python
@property def is_on(self) -> bool: return self.device.online
@property def icon(self): 'Return the icon to use in the frontend, if any.' if self.is_on: return 'mdi:camcorder' return 'mdi:camcorder-off'
6,399,328,152,966,332,000
Return the icon to use in the frontend, if any.
homeassistant/components/agent_dvr/camera.py
icon
CantankerousBullMoose/core
python
@property def icon(self): if self.is_on: return 'mdi:camcorder' return 'mdi:camcorder-off'
@property def motion_detection_enabled(self): 'Return the camera motion detection status.' return self.device.detector_active
6,028,155,109,194,979,000
Return the camera motion detection status.
homeassistant/components/agent_dvr/camera.py
motion_detection_enabled
CantankerousBullMoose/core
python
@property def motion_detection_enabled(self): return self.device.detector_active
@property def unique_id(self) -> str: 'Return a unique identifier for this agent object.' return self._unique_id
1,440,107,947,840,357,000
Return a unique identifier for this agent object.
homeassistant/components/agent_dvr/camera.py
unique_id
CantankerousBullMoose/core
python
@property def unique_id(self) -> str: return self._unique_id
async def async_enable_alerts(self): 'Enable alerts.' (await self.device.alerts_on())
2,796,611,269,641,991,000
Enable alerts.
homeassistant/components/agent_dvr/camera.py
async_enable_alerts
CantankerousBullMoose/core
python
async def async_enable_alerts(self): (await self.device.alerts_on())
async def async_disable_alerts(self): 'Disable alerts.' (await self.device.alerts_off())
-6,570,747,929,846,081,000
Disable alerts.
homeassistant/components/agent_dvr/camera.py
async_disable_alerts
CantankerousBullMoose/core
python
async def async_disable_alerts(self): (await self.device.alerts_off())
async def async_enable_motion_detection(self): 'Enable motion detection.' (await self.device.detector_on())
-8,601,139,264,879,610,000
Enable motion detection.
homeassistant/components/agent_dvr/camera.py
async_enable_motion_detection
CantankerousBullMoose/core
python
async def async_enable_motion_detection(self): (await self.device.detector_on())
async def async_disable_motion_detection(self): 'Disable motion detection.' (await self.device.detector_off())
-7,355,442,744,444,951,000
Disable motion detection.
homeassistant/components/agent_dvr/camera.py
async_disable_motion_detection
CantankerousBullMoose/core
python
async def async_disable_motion_detection(self): (await self.device.detector_off())
async def async_start_recording(self): 'Start recording.' (await self.device.record())
-1,824,808,121,995,718,100
Start recording.
homeassistant/components/agent_dvr/camera.py
async_start_recording
CantankerousBullMoose/core
python
async def async_start_recording(self): (await self.device.record())
async def async_stop_recording(self): 'Stop recording.' (await self.device.record_stop())
5,086,747,341,827,256,000
Stop recording.
homeassistant/components/agent_dvr/camera.py
async_stop_recording
CantankerousBullMoose/core
python
async def async_stop_recording(self): (await self.device.record_stop())
async def async_turn_on(self): 'Enable the camera.' (await self.device.enable())
-2,295,833,452,988,536,300
Enable the camera.
homeassistant/components/agent_dvr/camera.py
async_turn_on
CantankerousBullMoose/core
python
async def async_turn_on(self): (await self.device.enable())
async def async_snapshot(self): 'Take a snapshot.' (await self.device.snapshot())
857,259,597,287,051,100
Take a snapshot.
homeassistant/components/agent_dvr/camera.py
async_snapshot
CantankerousBullMoose/core
python
async def async_snapshot(self): (await self.device.snapshot())
async def async_turn_off(self): 'Disable the camera.' (await self.device.disable())
7,337,812,568,937,745,000
Disable the camera.
homeassistant/components/agent_dvr/camera.py
async_turn_off
CantankerousBullMoose/core
python
async def async_turn_off(self): (await self.device.disable())
def __init__(__self__, *, resource_group_name: pulumi.Input[str], workspace_name: pulumi.Input[str], location: Optional[pulumi.Input[str]]=None, sku: Optional[pulumi.Input['SkuArgs']]=None, sql_pool_name: Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None): "\n The set of arguments for constructing a SqlPoolsV3 resource.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[str] workspace_name: The name of the workspace.\n :param pulumi.Input[str] location: The geo-location where the resource lives\n :param pulumi.Input['SkuArgs'] sku: The sql pool SKU. The list of SKUs may vary by region and support offer.\n :param pulumi.Input[str] sql_pool_name: The name of the sql pool.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.\n " pulumi.set(__self__, 'resource_group_name', resource_group_name) pulumi.set(__self__, 'workspace_name', workspace_name) if (location is not None): pulumi.set(__self__, 'location', location) if (sku is not None): pulumi.set(__self__, 'sku', sku) if (sql_pool_name is not None): pulumi.set(__self__, 'sql_pool_name', sql_pool_name) if (tags is not None): pulumi.set(__self__, 'tags', tags)
-5,499,257,893,488,918,000
The set of arguments for constructing a SqlPoolsV3 resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] workspace_name: The name of the workspace. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input['SkuArgs'] sku: The sql pool SKU. The list of SKUs may vary by region and support offer. :param pulumi.Input[str] sql_pool_name: The name of the sql pool. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
__init__
sebtelko/pulumi-azure-native
python
def __init__(__self__, *, resource_group_name: pulumi.Input[str], workspace_name: pulumi.Input[str], location: Optional[pulumi.Input[str]]=None, sku: Optional[pulumi.Input['SkuArgs']]=None, sql_pool_name: Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None): "\n The set of arguments for constructing a SqlPoolsV3 resource.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[str] workspace_name: The name of the workspace.\n :param pulumi.Input[str] location: The geo-location where the resource lives\n :param pulumi.Input['SkuArgs'] sku: The sql pool SKU. The list of SKUs may vary by region and support offer.\n :param pulumi.Input[str] sql_pool_name: The name of the sql pool.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.\n " pulumi.set(__self__, 'resource_group_name', resource_group_name) pulumi.set(__self__, 'workspace_name', workspace_name) if (location is not None): pulumi.set(__self__, 'location', location) if (sku is not None): pulumi.set(__self__, 'sku', sku) if (sql_pool_name is not None): pulumi.set(__self__, 'sql_pool_name', sql_pool_name) if (tags is not None): pulumi.set(__self__, 'tags', tags)
@property @pulumi.getter(name='resourceGroupName') def resource_group_name(self) -> pulumi.Input[str]: '\n The name of the resource group. The name is case insensitive.\n ' return pulumi.get(self, 'resource_group_name')
9,099,428,823,929,783,000
The name of the resource group. The name is case insensitive.
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
resource_group_name
sebtelko/pulumi-azure-native
python
@property @pulumi.getter(name='resourceGroupName') def resource_group_name(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'resource_group_name')
@property @pulumi.getter(name='workspaceName') def workspace_name(self) -> pulumi.Input[str]: '\n The name of the workspace.\n ' return pulumi.get(self, 'workspace_name')
-6,043,356,629,165,876,000
The name of the workspace.
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
workspace_name
sebtelko/pulumi-azure-native
python
@property @pulumi.getter(name='workspaceName') def workspace_name(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'workspace_name')
@property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: '\n The geo-location where the resource lives\n ' return pulumi.get(self, 'location')
-3,407,978,898,650,888,000
The geo-location where the resource lives
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
location
sebtelko/pulumi-azure-native
python
@property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: '\n \n ' return pulumi.get(self, 'location')
@property @pulumi.getter def sku(self) -> Optional[pulumi.Input['SkuArgs']]: '\n The sql pool SKU. The list of SKUs may vary by region and support offer.\n ' return pulumi.get(self, 'sku')
-9,123,214,329,469,217,000
The sql pool SKU. The list of SKUs may vary by region and support offer.
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
sku
sebtelko/pulumi-azure-native
python
@property @pulumi.getter def sku(self) -> Optional[pulumi.Input['SkuArgs']]: '\n \n ' return pulumi.get(self, 'sku')
@property @pulumi.getter(name='sqlPoolName') def sql_pool_name(self) -> Optional[pulumi.Input[str]]: '\n The name of the sql pool.\n ' return pulumi.get(self, 'sql_pool_name')
2,546,227,187,852,153,000
The name of the sql pool.
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
sql_pool_name
sebtelko/pulumi-azure-native
python
@property @pulumi.getter(name='sqlPoolName') def sql_pool_name(self) -> Optional[pulumi.Input[str]]: '\n \n ' return pulumi.get(self, 'sql_pool_name')