body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_deploy_vm_password_enabled(self): 'Test Deploy Virtual Machine with startVM=false & enabledpassword in\n template\n ' self.debug(('Deploying instance in the account: %s' % self.account.name)) self.virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, templateid=self.template.id, startvm=False) self.debug(('Deployed instance in account: %s' % self.account.name)) list_vm_response = list_virtual_machines(self.apiclient, id=self.virtual_machine.id) self.debug(('Verify listVirtualMachines response for virtual machine: %s' % self.virtual_machine.id)) self.assertEqual(isinstance(list_vm_response, list), True, 'Check list response returns a valid list') vm_response = list_vm_response[0] self.assertEqual(vm_response.state, 'Stopped', 'VM should be in stopped state after deployment') self.debug(('Starting the instance: %s' % self.virtual_machine.name)) self.virtual_machine.start(self.apiclient) self.debug(('Started the instance: %s' % self.virtual_machine.name)) list_vm_response = list_virtual_machines(self.apiclient, id=self.virtual_machine.id) self.debug(('Verify listVirtualMachines response for virtual machine: %s' % self.virtual_machine.id)) self.assertEqual(isinstance(list_vm_response, list), True, 'Check list response returns a valid list') vm_response = list_vm_response[0] self.assertEqual(vm_response.state, 'Running', 'VM should be in running state after deployment') return
5,462,064,970,451,302,000
Test Deploy Virtual Machine with startVM=false & enabledpassword in template
test/integration/component/test_stopped_vm.py
test_deploy_vm_password_enabled
ksowmya/cloudstack-1
python
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_deploy_vm_password_enabled(self): 'Test Deploy Virtual Machine with startVM=false & enabledpassword in\n template\n ' self.debug(('Deploying instance in the account: %s' % self.account.name)) self.virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, templateid=self.template.id, startvm=False) self.debug(('Deployed instance in account: %s' % self.account.name)) list_vm_response = list_virtual_machines(self.apiclient, id=self.virtual_machine.id) self.debug(('Verify listVirtualMachines response for virtual machine: %s' % self.virtual_machine.id)) self.assertEqual(isinstance(list_vm_response, list), True, 'Check list response returns a valid list') vm_response = list_vm_response[0] self.assertEqual(vm_response.state, 'Stopped', 'VM should be in stopped state after deployment') self.debug(('Starting the instance: %s' % self.virtual_machine.name)) self.virtual_machine.start(self.apiclient) self.debug(('Started the instance: %s' % self.virtual_machine.name)) list_vm_response = list_virtual_machines(self.apiclient, id=self.virtual_machine.id) self.debug(('Verify listVirtualMachines response for virtual machine: %s' % self.virtual_machine.id)) self.assertEqual(isinstance(list_vm_response, list), True, 'Check list response returns a valid list') vm_response = list_vm_response[0] self.assertEqual(vm_response.state, 'Running', 'VM should be in running state after deployment') return
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_vm_per_account(self): 'Test VM limit per account\n ' self.debug(('Updating instance resource limit for account: %s' % self.account.name)) update_resource_limit(self.apiclient, 0, account=self.account.name, domainid=self.account.domainid, max=1) self.debug(('Deploying VM instance in account: %s' % self.account.name)) virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) self.assertEqual(virtual_machine.state, 'Stopped', 'Check VM state is Running or not') with self.assertRaises(Exception): VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) return
-7,472,055,634,946,024,000
Test VM limit per account
test/integration/component/test_stopped_vm.py
test_vm_per_account
ksowmya/cloudstack-1
python
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_vm_per_account(self): '\n ' self.debug(('Updating instance resource limit for account: %s' % self.account.name)) update_resource_limit(self.apiclient, 0, account=self.account.name, domainid=self.account.domainid, max=1) self.debug(('Deploying VM instance in account: %s' % self.account.name)) virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) self.assertEqual(virtual_machine.state, 'Stopped', 'Check VM state is Running or not') with self.assertRaises(Exception): VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) return
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_upload_attach_volume(self): 'Test Upload volume and attach to VM in stopped state\n ' self.debug(('Uploading the volume: %s' % self.services['volume']['diskname'])) try: volume = Volume.upload(self.apiclient, self.services['volume'], zoneid=self.zone.id, account=self.account.name, domainid=self.account.domainid) self.debug(('Uploading the volume: %s' % volume.name)) volume.wait_for_upload(self.apiclient) self.debug('Volume: %s uploaded successfully') except Exception as e: self.fail(('Failed to upload the volume: %s' % e)) self.debug(('Deploying VM instance in account: %s' % self.account.name)) virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) self.assertEqual(virtual_machine.state, 'Stopped', 'Check VM state is Running or not') virtual_machine.attach_volume(self.apiclient, volume) return
5,862,266,767,459,204,000
Test Upload volume and attach to VM in stopped state
test/integration/component/test_stopped_vm.py
test_upload_attach_volume
ksowmya/cloudstack-1
python
@attr(tags=['advanced', 'eip', 'advancedns', 'basic', 'sg']) def test_upload_attach_volume(self): '\n ' self.debug(('Uploading the volume: %s' % self.services['volume']['diskname'])) try: volume = Volume.upload(self.apiclient, self.services['volume'], zoneid=self.zone.id, account=self.account.name, domainid=self.account.domainid) self.debug(('Uploading the volume: %s' % volume.name)) volume.wait_for_upload(self.apiclient) self.debug('Volume: %s uploaded successfully') except Exception as e: self.fail(('Failed to upload the volume: %s' % e)) self.debug(('Deploying VM instance in account: %s' % self.account.name)) virtual_machine = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, startvm=False) self.assertEqual(virtual_machine.state, 'Stopped', 'Check VM state is Running or not') virtual_machine.attach_volume(self.apiclient, volume) return
@attr(tags=['advanced', 'advancedns', 'simulator', 'api', 'basic', 'eip', 'sg']) def test_deployVmOnGivenHost(self): 'Test deploy VM on specific host\n ' hosts = Host.list(self.apiclient, zoneid=self.zone.id, type='Routing', state='Up', listall=True) self.assertEqual(isinstance(hosts, list), True, 'CS should have atleast one host Up and Running') host = hosts[0] self.debug(('Deploting VM on host: %s' % host.name)) try: vm = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, hostid=host.id) self.debug('Deploy VM succeeded') except Exception as e: self.fail(('Deploy VM failed with exception: %s' % e)) self.debug('Cheking the state of deployed VM') vms = VirtualMachine.list(self.apiclient, id=vm.id, listall=True, account=self.account.name, domainid=self.account.domainid) self.assertEqual(isinstance(vms, list), True, 'List Vm should return a valid response') vm_response = vms[0] self.assertEqual(vm_response.state, 'Running', 'VM should be in running state after deployment') self.assertEqual(vm_response.hostid, host.id, 'Host id where VM is deployed should match') return
3,533,336,537,064,077,000
Test deploy VM on specific host
test/integration/component/test_stopped_vm.py
test_deployVmOnGivenHost
ksowmya/cloudstack-1
python
@attr(tags=['advanced', 'advancedns', 'simulator', 'api', 'basic', 'eip', 'sg']) def test_deployVmOnGivenHost(self): '\n ' hosts = Host.list(self.apiclient, zoneid=self.zone.id, type='Routing', state='Up', listall=True) self.assertEqual(isinstance(hosts, list), True, 'CS should have atleast one host Up and Running') host = hosts[0] self.debug(('Deploting VM on host: %s' % host.name)) try: vm = VirtualMachine.create(self.apiclient, self.services['virtual_machine'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, hostid=host.id) self.debug('Deploy VM succeeded') except Exception as e: self.fail(('Deploy VM failed with exception: %s' % e)) self.debug('Cheking the state of deployed VM') vms = VirtualMachine.list(self.apiclient, id=vm.id, listall=True, account=self.account.name, domainid=self.account.domainid) self.assertEqual(isinstance(vms, list), True, 'List Vm should return a valid response') vm_response = vms[0] self.assertEqual(vm_response.state, 'Running', 'VM should be in running state after deployment') self.assertEqual(vm_response.hostid, host.id, 'Host id where VM is deployed should match') return
@staticmethod def _get_workload_data(data: dict) -> dict: 'Return data for requested Workload.' optimization_id = RequestDataProcessor.get_string_value(data, 'id') optimization_data = OptimizationAPIInterface.get_optimization_details({'id': optimization_id}) return optimization_data
1,312,375,586,110,402,800
Return data for requested Workload.
neural_compressor/ux/web/service/optimization.py
_get_workload_data
intel/lp-opt-tool
python
@staticmethod def _get_workload_data(data: dict) -> dict: optimization_id = RequestDataProcessor.get_string_value(data, 'id') optimization_data = OptimizationAPIInterface.get_optimization_details({'id': optimization_id}) return optimization_data
def __init__(self, node) -> None: ' :param node: pyrlang.node.Node\n ' GenServer.__init__(self, node_name=node.node_name_, accepted_calls=['is_auth']) node.register_name(self, Atom('net_kernel'))
5,099,605,340,179,313,000
:param node: pyrlang.node.Node
pyrlang/net_kernel.py
__init__
AlexKovalevych/Pyrlang
python
def __init__(self, node) -> None: ' \n ' GenServer.__init__(self, node_name=node.node_name_, accepted_calls=['is_auth']) node.register_name(self, Atom('net_kernel'))
def sort_rings(index_rings: List[List[Tuple[(int, int)]]], vertices: npt.NDArray[np.float32]) -> SortedRingType: 'Sorts a list of index-rings.\n\n Takes a list of unsorted index rings and sorts them into\n "exterior" and "interior" components. Any doubly-nested rings\n are considered exterior rings.\n\n Parameters\n ----------\n index_rings : List[List[Tuple[int, int]]]\n Unosorted list of list of mesh edges as specified by end node\n indexs of each edge.\n vertices : npt.NDArray[np.float32]\n 2D ``n x 2`` array of node coordinate couples.\n\n Returns\n -------\n SortedRingType\n Dictionary of information aboout polygon boundaries extracted\n based on the input\n\n Notes\n -----\n The return value is a mapping of ring index to dictionary\n containing exterior and interior linear ring information as\n numpy array\n This function is not currently used, instead a different faster\n approach is used for boundary and polygon calculation from\n elements.\n ' areas = [] for index_ring in index_rings: (e0, e1) = [list(t) for t in zip(*index_ring)] areas.append(float(Polygon(vertices[e0, :]).area)) idx = areas.index(np.max(areas)) exterior = index_rings.pop(idx) areas.pop(idx) _id = 0 _index_rings = {} _index_rings[_id] = {'exterior': np.asarray(exterior), 'interiors': []} (e0, e1) = [list(t) for t in zip(*exterior)] path = Path(vertices[(e0 + [e0[0]]), :], closed=True) while (len(index_rings) > 0): potential_interiors = [] for (i, index_ring) in enumerate(index_rings): (e0, e1) = [list(t) for t in zip(*index_ring)] if path.contains_point(vertices[e0[0], :]): potential_interiors.append(i) real_interiors = [] for (i, p_interior) in reversed(list(enumerate(potential_interiors))): _p_interior = index_rings[p_interior] check = [index_rings[k] for (j, k) in reversed(list(enumerate(potential_interiors))) if (i != j)] has_parent = False for _path in check: (e0, e1) = [list(t) for t in zip(*_path)] _path = Path(vertices[(e0 + [e0[0]]), :], closed=True) if _path.contains_point(vertices[_p_interior[0][0], :]): has_parent = True if (not has_parent): real_interiors.append(p_interior) for i in reversed(sorted(real_interiors)): _index_rings[_id]['interiors'].append(np.asarray(index_rings.pop(i))) areas.pop(i) if (len(index_rings) > 0): idx = areas.index(np.max(areas)) exterior = index_rings.pop(idx) areas.pop(idx) _id += 1 _index_rings[_id] = {'exterior': np.asarray(exterior), 'interiors': []} (e0, e1) = [list(t) for t in zip(*exterior)] path = Path(vertices[(e0 + [e0[0]]), :], closed=True) return _index_rings
-7,161,474,044,817,911,000
Sorts a list of index-rings. Takes a list of unsorted index rings and sorts them into "exterior" and "interior" components. Any doubly-nested rings are considered exterior rings. Parameters ---------- index_rings : List[List[Tuple[int, int]]] Unosorted list of list of mesh edges as specified by end node indexs of each edge. vertices : npt.NDArray[np.float32] 2D ``n x 2`` array of node coordinate couples. Returns ------- SortedRingType Dictionary of information aboout polygon boundaries extracted based on the input Notes ----- The return value is a mapping of ring index to dictionary containing exterior and interior linear ring information as numpy array This function is not currently used, instead a different faster approach is used for boundary and polygon calculation from elements.
ocsmesh/mesh/mesh.py
sort_rings
noaa-ocs-modeling/OCSMesh
python
def sort_rings(index_rings: List[List[Tuple[(int, int)]]], vertices: npt.NDArray[np.float32]) -> SortedRingType: 'Sorts a list of index-rings.\n\n Takes a list of unsorted index rings and sorts them into\n "exterior" and "interior" components. Any doubly-nested rings\n are considered exterior rings.\n\n Parameters\n ----------\n index_rings : List[List[Tuple[int, int]]]\n Unosorted list of list of mesh edges as specified by end node\n indexs of each edge.\n vertices : npt.NDArray[np.float32]\n 2D ``n x 2`` array of node coordinate couples.\n\n Returns\n -------\n SortedRingType\n Dictionary of information aboout polygon boundaries extracted\n based on the input\n\n Notes\n -----\n The return value is a mapping of ring index to dictionary\n containing exterior and interior linear ring information as\n numpy array\n This function is not currently used, instead a different faster\n approach is used for boundary and polygon calculation from\n elements.\n ' areas = [] for index_ring in index_rings: (e0, e1) = [list(t) for t in zip(*index_ring)] areas.append(float(Polygon(vertices[e0, :]).area)) idx = areas.index(np.max(areas)) exterior = index_rings.pop(idx) areas.pop(idx) _id = 0 _index_rings = {} _index_rings[_id] = {'exterior': np.asarray(exterior), 'interiors': []} (e0, e1) = [list(t) for t in zip(*exterior)] path = Path(vertices[(e0 + [e0[0]]), :], closed=True) while (len(index_rings) > 0): potential_interiors = [] for (i, index_ring) in enumerate(index_rings): (e0, e1) = [list(t) for t in zip(*index_ring)] if path.contains_point(vertices[e0[0], :]): potential_interiors.append(i) real_interiors = [] for (i, p_interior) in reversed(list(enumerate(potential_interiors))): _p_interior = index_rings[p_interior] check = [index_rings[k] for (j, k) in reversed(list(enumerate(potential_interiors))) if (i != j)] has_parent = False for _path in check: (e0, e1) = [list(t) for t in zip(*_path)] _path = Path(vertices[(e0 + [e0[0]]), :], closed=True) if _path.contains_point(vertices[_p_interior[0][0], :]): has_parent = True if (not has_parent): real_interiors.append(p_interior) for i in reversed(sorted(real_interiors)): _index_rings[_id]['interiors'].append(np.asarray(index_rings.pop(i))) areas.pop(i) if (len(index_rings) > 0): idx = areas.index(np.max(areas)) exterior = index_rings.pop(idx) areas.pop(idx) _id += 1 _index_rings[_id] = {'exterior': np.asarray(exterior), 'interiors': []} (e0, e1) = [list(t) for t in zip(*exterior)] path = Path(vertices[(e0 + [e0[0]]), :], closed=True) return _index_rings
def _mesh_interpolate_worker(coords: npt.NDArray[np.float32], coords_crs: CRS, raster_path: Union[(str, Path)], chunk_size: Optional[int], method: Literal[('spline', 'linear', 'nearest')]='spline', filter_by_shape: bool=False): "Interpolator worker function to be used in parallel calls\n\n Parameters\n ----------\n coords : npt.NDArray[np.float32]\n Mesh node coordinates.\n coords_crs : CRS\n Coordinate reference system of the input mesh coordinates.\n raster_path : str or Path\n Path to the raster temporary working file.\n chunk_size : int or None\n Chunk size for windowing over the raster.\n method : {'spline', 'linear', 'nearest'}, default='spline'\n Method of interpolation.\n filter_by_shape : bool\n Flag for node filtering based on raster bbox or shape\n\n Returns\n -------\n idxs : npt.NDArray[bool]\n Mask of the nodes whose values are updated by current\n interpolation\n values : npt.NDArray[np.float32]\n Interpolated values.\n\n Raises\n ------\n ValueError\n If specified interpolation `method` is not supported.\n " coords = np.array(coords) raster = Raster(raster_path) idxs = [] values = [] for window in raster.iter_windows(chunk_size=chunk_size, overlap=2): if (not raster.crs.equals(coords_crs)): transformer = Transformer.from_crs(coords_crs, raster.crs, always_xy=True) (coords[:, 0], coords[:, 1]) = transformer.transform(coords[:, 0], coords[:, 1]) xi = raster.get_x(window) yi = raster.get_y(window) zi = raster.get_values(window=window, masked=True) if (not filter_by_shape): _idxs = np.logical_and(np.logical_and((np.min(xi) <= coords[:, 0]), (np.max(xi) >= coords[:, 0])), np.logical_and((np.min(yi) <= coords[:, 1]), (np.max(yi) >= coords[:, 1]))) else: shape = raster.get_multipolygon() gs_pt = gpd.points_from_xy(coords[:, 0], coords[:, 1]) _idxs = gs_pt.intersects(shape) interp_mask = None if (method == 'spline'): f = RectBivariateSpline(xi, np.flip(yi), np.flipud(zi).T, kx=3, ky=3, s=0) _values = f.ev(coords[(_idxs, 0)], coords[(_idxs, 1)]) elif (method in ['nearest', 'linear']): if np.any(zi.mask): m_interp = RegularGridInterpolator((xi, np.flip(yi)), np.flipud(zi.mask).T.astype(bool), method=method) interp_mask = (m_interp(coords[_idxs]) > 0) f = RegularGridInterpolator((xi, np.flip(yi)), np.flipud(zi).T, method=method) _values = f(coords[_idxs]) else: raise ValueError(f'Invalid value method specified <{method}>!') if (interp_mask is not None): helper = np.ones_like(_values).astype(bool) helper[interp_mask] = False _idxs[_idxs] = helper _values = _values[(~ interp_mask)] idxs.append(_idxs) values.append(_values) return (np.hstack(idxs), np.hstack(values))
-2,363,268,281,550,425,600
Interpolator worker function to be used in parallel calls Parameters ---------- coords : npt.NDArray[np.float32] Mesh node coordinates. coords_crs : CRS Coordinate reference system of the input mesh coordinates. raster_path : str or Path Path to the raster temporary working file. chunk_size : int or None Chunk size for windowing over the raster. method : {'spline', 'linear', 'nearest'}, default='spline' Method of interpolation. filter_by_shape : bool Flag for node filtering based on raster bbox or shape Returns ------- idxs : npt.NDArray[bool] Mask of the nodes whose values are updated by current interpolation values : npt.NDArray[np.float32] Interpolated values. Raises ------ ValueError If specified interpolation `method` is not supported.
ocsmesh/mesh/mesh.py
_mesh_interpolate_worker
noaa-ocs-modeling/OCSMesh
python
def _mesh_interpolate_worker(coords: npt.NDArray[np.float32], coords_crs: CRS, raster_path: Union[(str, Path)], chunk_size: Optional[int], method: Literal[('spline', 'linear', 'nearest')]='spline', filter_by_shape: bool=False): "Interpolator worker function to be used in parallel calls\n\n Parameters\n ----------\n coords : npt.NDArray[np.float32]\n Mesh node coordinates.\n coords_crs : CRS\n Coordinate reference system of the input mesh coordinates.\n raster_path : str or Path\n Path to the raster temporary working file.\n chunk_size : int or None\n Chunk size for windowing over the raster.\n method : {'spline', 'linear', 'nearest'}, default='spline'\n Method of interpolation.\n filter_by_shape : bool\n Flag for node filtering based on raster bbox or shape\n\n Returns\n -------\n idxs : npt.NDArray[bool]\n Mask of the nodes whose values are updated by current\n interpolation\n values : npt.NDArray[np.float32]\n Interpolated values.\n\n Raises\n ------\n ValueError\n If specified interpolation `method` is not supported.\n " coords = np.array(coords) raster = Raster(raster_path) idxs = [] values = [] for window in raster.iter_windows(chunk_size=chunk_size, overlap=2): if (not raster.crs.equals(coords_crs)): transformer = Transformer.from_crs(coords_crs, raster.crs, always_xy=True) (coords[:, 0], coords[:, 1]) = transformer.transform(coords[:, 0], coords[:, 1]) xi = raster.get_x(window) yi = raster.get_y(window) zi = raster.get_values(window=window, masked=True) if (not filter_by_shape): _idxs = np.logical_and(np.logical_and((np.min(xi) <= coords[:, 0]), (np.max(xi) >= coords[:, 0])), np.logical_and((np.min(yi) <= coords[:, 1]), (np.max(yi) >= coords[:, 1]))) else: shape = raster.get_multipolygon() gs_pt = gpd.points_from_xy(coords[:, 0], coords[:, 1]) _idxs = gs_pt.intersects(shape) interp_mask = None if (method == 'spline'): f = RectBivariateSpline(xi, np.flip(yi), np.flipud(zi).T, kx=3, ky=3, s=0) _values = f.ev(coords[(_idxs, 0)], coords[(_idxs, 1)]) elif (method in ['nearest', 'linear']): if np.any(zi.mask): m_interp = RegularGridInterpolator((xi, np.flip(yi)), np.flipud(zi.mask).T.astype(bool), method=method) interp_mask = (m_interp(coords[_idxs]) > 0) f = RegularGridInterpolator((xi, np.flip(yi)), np.flipud(zi).T, method=method) _values = f(coords[_idxs]) else: raise ValueError(f'Invalid value method specified <{method}>!') if (interp_mask is not None): helper = np.ones_like(_values).astype(bool) helper[interp_mask] = False _idxs[_idxs] = helper _values = _values[(~ interp_mask)] idxs.append(_idxs) values.append(_values) return (np.hstack(idxs), np.hstack(values))
def __init__(self, mesh: jigsaw_msh_t) -> None: "Initialize Euclidean mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n The underlying jigsaw_msh_t object to hold onto mesh data.\n\n Raises\n ------\n TypeError\n If input mesh is not of `jigsaw_msh_t` type.\n ValueError\n If input mesh's `mshID` is not equal to ``euclidean-mesh``.\n If input mesh has `crs` property which is not of `CRS` type.\n " if (not isinstance(mesh, jigsaw_msh_t)): raise TypeError(f'Argument mesh must be of type {jigsaw_msh_t}, not type {type(mesh)}.') if (mesh.mshID != 'euclidean-mesh'): raise ValueError(f"Argument mesh has property mshID={mesh.mshID}, but expected 'euclidean-mesh'.") if (not hasattr(mesh, 'crs')): warnings.warn('Input mesh has no CRS information.') mesh.crs = None elif (not isinstance(mesh.crs, CRS)): raise ValueError(f'crs property must be of type {CRS}, not type {type(mesh.crs)}.') self._hull = None self._nodes = None self._elements = None self._msh_t = mesh
8,873,620,727,186,494,000
Initialize Euclidean mesh object. Parameters ---------- mesh : jigsaw_msh_t The underlying jigsaw_msh_t object to hold onto mesh data. Raises ------ TypeError If input mesh is not of `jigsaw_msh_t` type. ValueError If input mesh's `mshID` is not equal to ``euclidean-mesh``. If input mesh has `crs` property which is not of `CRS` type.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: jigsaw_msh_t) -> None: "Initialize Euclidean mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n The underlying jigsaw_msh_t object to hold onto mesh data.\n\n Raises\n ------\n TypeError\n If input mesh is not of `jigsaw_msh_t` type.\n ValueError\n If input mesh's `mshID` is not equal to ``euclidean-mesh``.\n If input mesh has `crs` property which is not of `CRS` type.\n " if (not isinstance(mesh, jigsaw_msh_t)): raise TypeError(f'Argument mesh must be of type {jigsaw_msh_t}, not type {type(mesh)}.') if (mesh.mshID != 'euclidean-mesh'): raise ValueError(f"Argument mesh has property mshID={mesh.mshID}, but expected 'euclidean-mesh'.") if (not hasattr(mesh, 'crs')): warnings.warn('Input mesh has no CRS information.') mesh.crs = None elif (not isinstance(mesh.crs, CRS)): raise ValueError(f'crs property must be of type {CRS}, not type {type(mesh.crs)}.') self._hull = None self._nodes = None self._elements = None self._msh_t = mesh
def write(self, path: Union[(str, os.PathLike)], overwrite: bool=False, format: Literal[('grd', '2dm', 'msh', 'vtk')]='grd') -> None: "Export the mesh object to the disk\n\n Parameters\n ----------\n path : path-like\n Path to which the mesh should be exported.\n overwrite : bool, default=False\n Whether to overwrite, if a file already exists in `path`\n format : { 'grd', '2dm', 'msh', 'vtk' }\n Format of the export, SMS-2DM or GRD.\n\n Returns\n -------\n None\n\n Raises\n ------\n ValueError\n If specified export format is **not** supported.\n " path = pathlib.Path(path) if (path.exists() and (overwrite is not True)): raise IOError(f'File {str(path)} exists and overwrite is not True.') if (format == 'grd'): grd_dict = utils.msh_t_to_grd(self.msh_t) if (self._boundaries and self._boundaries.data): grd_dict.update(boundaries=self._boundaries.data) grd.write(grd_dict, path, overwrite) elif (format == '2dm'): sms2dm.writer(utils.msh_t_to_2dm(self.msh_t), path, overwrite) elif (format == 'msh'): savemsh(str(path), self.msh_t) elif (format == 'vtk'): savevtk(str(path), self.msh_t) else: raise ValueError(f'Unhandled format {format}.')
-6,598,742,017,123,702,000
Export the mesh object to the disk Parameters ---------- path : path-like Path to which the mesh should be exported. overwrite : bool, default=False Whether to overwrite, if a file already exists in `path` format : { 'grd', '2dm', 'msh', 'vtk' } Format of the export, SMS-2DM or GRD. Returns ------- None Raises ------ ValueError If specified export format is **not** supported.
ocsmesh/mesh/mesh.py
write
noaa-ocs-modeling/OCSMesh
python
def write(self, path: Union[(str, os.PathLike)], overwrite: bool=False, format: Literal[('grd', '2dm', 'msh', 'vtk')]='grd') -> None: "Export the mesh object to the disk\n\n Parameters\n ----------\n path : path-like\n Path to which the mesh should be exported.\n overwrite : bool, default=False\n Whether to overwrite, if a file already exists in `path`\n format : { 'grd', '2dm', 'msh', 'vtk' }\n Format of the export, SMS-2DM or GRD.\n\n Returns\n -------\n None\n\n Raises\n ------\n ValueError\n If specified export format is **not** supported.\n " path = pathlib.Path(path) if (path.exists() and (overwrite is not True)): raise IOError(f'File {str(path)} exists and overwrite is not True.') if (format == 'grd'): grd_dict = utils.msh_t_to_grd(self.msh_t) if (self._boundaries and self._boundaries.data): grd_dict.update(boundaries=self._boundaries.data) grd.write(grd_dict, path, overwrite) elif (format == '2dm'): sms2dm.writer(utils.msh_t_to_2dm(self.msh_t), path, overwrite) elif (format == 'msh'): savemsh(str(path), self.msh_t) elif (format == 'vtk'): savevtk(str(path), self.msh_t) else: raise ValueError(f'Unhandled format {format}.')
@property def tria3(self): 'Reference to underlying mesh tirangle element structure' return self.msh_t.tria3
-3,376,814,324,331,499,500
Reference to underlying mesh tirangle element structure
ocsmesh/mesh/mesh.py
tria3
noaa-ocs-modeling/OCSMesh
python
@property def tria3(self): return self.msh_t.tria3
@property def triangles(self): 'Reference to underlying mesh triangle element index array' return self.msh_t.tria3['index']
2,047,632,625,657,273,300
Reference to underlying mesh triangle element index array
ocsmesh/mesh/mesh.py
triangles
noaa-ocs-modeling/OCSMesh
python
@property def triangles(self): return self.msh_t.tria3['index']
@property def quad4(self): 'Reference to underlying mesh quadrangle element structure' return self.msh_t.quad4
-9,157,907,240,058,236,000
Reference to underlying mesh quadrangle element structure
ocsmesh/mesh/mesh.py
quad4
noaa-ocs-modeling/OCSMesh
python
@property def quad4(self): return self.msh_t.quad4
@property def quads(self): 'Reference to underlying mesh quadrangle element index array' return self.msh_t.quad4['index']
-2,822,426,976,579,586,600
Reference to underlying mesh quadrangle element index array
ocsmesh/mesh/mesh.py
quads
noaa-ocs-modeling/OCSMesh
python
@property def quads(self): return self.msh_t.quad4['index']
@property def crs(self): 'Reference to underlying mesh crs' return self.msh_t.crs
-7,577,520,252,728,717,000
Reference to underlying mesh crs
ocsmesh/mesh/mesh.py
crs
noaa-ocs-modeling/OCSMesh
python
@property def crs(self): return self.msh_t.crs
@property def hull(self): 'Reference to hull calculator helper object' if (self._hull is None): self._hull = Hull(self) return self._hull
-1,355,562,474,230,493,700
Reference to hull calculator helper object
ocsmesh/mesh/mesh.py
hull
noaa-ocs-modeling/OCSMesh
python
@property def hull(self): if (self._hull is None): self._hull = Hull(self) return self._hull
@property def nodes(self): 'Reference to node handler helper object' if (self._nodes is None): self._nodes = Nodes(self) return self._nodes
-6,295,479,252,160,770,000
Reference to node handler helper object
ocsmesh/mesh/mesh.py
nodes
noaa-ocs-modeling/OCSMesh
python
@property def nodes(self): if (self._nodes is None): self._nodes = Nodes(self) return self._nodes
@property def elements(self): 'Reference to element handler helper object' if (self._elements is None): self._elements = Elements(self) return self._elements
409,851,697,075,555,000
Reference to element handler helper object
ocsmesh/mesh/mesh.py
elements
noaa-ocs-modeling/OCSMesh
python
@property def elements(self): if (self._elements is None): self._elements = Elements(self) return self._elements
def __init__(self, mesh: jigsaw_msh_t) -> None: 'Initialize Euclidean 2D mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n The underlying jigsaw_msh_t object to hold onto mesh data.\n\n Raises\n ------\n ValueError\n If number of mesh dimensions is not equal to ``2``.\n ' super().__init__(mesh) self._boundaries = None if (mesh.ndims != (+ 2)): raise ValueError(f'Argument mesh has property ndims={mesh.ndims}, but expected ndims=2.') if (len(self.msh_t.value) == 0): self.msh_t.value = np.array(np.full((self.vert2['coord'].shape[0], 1), np.nan))
5,854,192,369,247,189,000
Initialize Euclidean 2D mesh object. Parameters ---------- mesh : jigsaw_msh_t The underlying jigsaw_msh_t object to hold onto mesh data. Raises ------ ValueError If number of mesh dimensions is not equal to ``2``.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: jigsaw_msh_t) -> None: 'Initialize Euclidean 2D mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n The underlying jigsaw_msh_t object to hold onto mesh data.\n\n Raises\n ------\n ValueError\n If number of mesh dimensions is not equal to ``2``.\n ' super().__init__(mesh) self._boundaries = None if (mesh.ndims != (+ 2)): raise ValueError(f'Argument mesh has property ndims={mesh.ndims}, but expected ndims=2.') if (len(self.msh_t.value) == 0): self.msh_t.value = np.array(np.full((self.vert2['coord'].shape[0], 1), np.nan))
def get_bbox(self, crs: Union[(str, CRS, None)]=None, output_type: Literal[(None, 'polygon', 'bbox')]=None) -> Union[(Polygon, Bbox)]: "Get the bounding box of mesh elements.\n\n Parameters\n ----------\n crs : str or CRS or None, default=None\n CRS to transform the calculated bounding box into before\n returning\n output_type : { None, 'polygon', 'bbox'}, default=None\n Output type\n\n Returns\n -------\n Polygon or Bbox\n Bounding box of the mesh elements.\n " output_type = ('polygon' if (output_type is None) else output_type) (xmin, xmax) = (np.min(self.coord[:, 0]), np.max(self.coord[:, 0])) (ymin, ymax) = (np.min(self.coord[:, 1]), np.max(self.coord[:, 1])) crs = (self.crs if (crs is None) else crs) if (crs is not None): if (not self.crs.equals(crs)): transformer = Transformer.from_crs(self.crs, crs, always_xy=True) ((xmin, xmax), (ymin, ymax)) = transformer.transform((xmin, xmax), (ymin, ymax)) if (output_type == 'polygon'): return box(xmin, ymin, xmax, ymax) elif (output_type == 'bbox'): return Bbox([[xmin, ymin], [xmax, ymax]]) raise TypeError("Argument output_type must a string literal 'polygon' or 'bbox'")
-2,025,501,107,320,347,000
Get the bounding box of mesh elements. Parameters ---------- crs : str or CRS or None, default=None CRS to transform the calculated bounding box into before returning output_type : { None, 'polygon', 'bbox'}, default=None Output type Returns ------- Polygon or Bbox Bounding box of the mesh elements.
ocsmesh/mesh/mesh.py
get_bbox
noaa-ocs-modeling/OCSMesh
python
def get_bbox(self, crs: Union[(str, CRS, None)]=None, output_type: Literal[(None, 'polygon', 'bbox')]=None) -> Union[(Polygon, Bbox)]: "Get the bounding box of mesh elements.\n\n Parameters\n ----------\n crs : str or CRS or None, default=None\n CRS to transform the calculated bounding box into before\n returning\n output_type : { None, 'polygon', 'bbox'}, default=None\n Output type\n\n Returns\n -------\n Polygon or Bbox\n Bounding box of the mesh elements.\n " output_type = ('polygon' if (output_type is None) else output_type) (xmin, xmax) = (np.min(self.coord[:, 0]), np.max(self.coord[:, 0])) (ymin, ymax) = (np.min(self.coord[:, 1]), np.max(self.coord[:, 1])) crs = (self.crs if (crs is None) else crs) if (crs is not None): if (not self.crs.equals(crs)): transformer = Transformer.from_crs(self.crs, crs, always_xy=True) ((xmin, xmax), (ymin, ymax)) = transformer.transform((xmin, xmax), (ymin, ymax)) if (output_type == 'polygon'): return box(xmin, ymin, xmax, ymax) elif (output_type == 'bbox'): return Bbox([[xmin, ymin], [xmax, ymax]]) raise TypeError("Argument output_type must a string literal 'polygon' or 'bbox'")
@property def boundaries(self): 'Handle to boundaries calculator helper object' if (self._boundaries is None): self._boundaries = Boundaries(self) return self._boundaries
368,520,437,063,327,040
Handle to boundaries calculator helper object
ocsmesh/mesh/mesh.py
boundaries
noaa-ocs-modeling/OCSMesh
python
@property def boundaries(self): if (self._boundaries is None): self._boundaries = Boundaries(self) return self._boundaries
def tricontourf(self, **kwargs) -> Axes: 'Generate contour for the data of triangular elements of the mesh\n\n Parameters\n ----------\n **kwargs : dict, optional\n Passed to underlying `matplotlib` API.\n\n Returns\n -------\n Axes\n Axes on which the filled contour is drawn.\n ' return utils.tricontourf(self.msh_t, **kwargs)
-141,155,622,674,995,950
Generate contour for the data of triangular elements of the mesh Parameters ---------- **kwargs : dict, optional Passed to underlying `matplotlib` API. Returns ------- Axes Axes on which the filled contour is drawn.
ocsmesh/mesh/mesh.py
tricontourf
noaa-ocs-modeling/OCSMesh
python
def tricontourf(self, **kwargs) -> Axes: 'Generate contour for the data of triangular elements of the mesh\n\n Parameters\n ----------\n **kwargs : dict, optional\n Passed to underlying `matplotlib` API.\n\n Returns\n -------\n Axes\n Axes on which the filled contour is drawn.\n ' return utils.tricontourf(self.msh_t, **kwargs)
def interpolate(self, raster: Union[(Raster, List[Raster])], method: Literal[('spline', 'linear', 'nearest')]='spline', nprocs: Optional[int]=None, info_out_path: Union[(pathlib.Path, str, None)]=None, filter_by_shape: bool=False) -> None: "Interplate values from raster inputs to the mesh nodes.\n\n Parameters\n ----------\n raster : Raster or list of Raster\n A single or a list of rasters from which values are\n interpolated onto the mesh\n method : {'spline', 'linear', 'nearest'}, default='spline'\n Method of interpolation.\n nprocs : int or None, default=None\n Number of workers to use when interpolating data.\n info_out_path : pathlike or str or None\n Path for the output node interpolation information file\n filter_by_shape : bool\n Flag for node filtering based on raster bbox or shape\n\n Returns\n -------\n None\n " if isinstance(raster, Raster): raster = [raster] nprocs = ((- 1) if (nprocs is None) else nprocs) nprocs = (cpu_count() if (nprocs == (- 1)) else nprocs) if (nprocs > 1): with Pool(processes=nprocs) as pool: res = pool.starmap(_mesh_interpolate_worker, [(self.vert2['coord'], self.crs, _raster.tmpfile, _raster.chunk_size, method, filter_by_shape) for _raster in raster]) pool.join() else: res = [_mesh_interpolate_worker(self.vert2['coord'], self.crs, _raster.tmpfile, _raster.chunk_size, method, filter_by_shape) for _raster in raster] values = self.msh_t.value.flatten() interp_info_map = {} for ((mask, _values), rast) in zip(res, raster): values[mask] = _values if (info_out_path is not None): vert_cs = None rast_crs = rast.crs if rast_crs.is_vertical: if (rast_crs.sub_crs_list is not None): for sub_crs in rast_crs.sub_crs_list: if sub_crs.is_vertical: vert_cs = sub_crs elif (rast_crs.source_crs is not None): if rast_crs.source_crs.is_vertical: vert_cs = rast_crs.source_crs vert_cs_name = vert_cs.name idxs = np.argwhere(mask).ravel() interp_info_map.update({idx: (rast.path, vert_cs_name) for idx in idxs}) if (info_out_path is not None): coords = self.msh_t.vert2['coord'].copy() geo_coords = coords.copy() if (not self.crs.is_geographic): transformer = Transformer.from_crs(self.crs, CRS.from_epsg(4326), always_xy=True) (geo_coords[:, 0], geo_coords[:, 1]) = transformer.transform(coords[:, 0], coords[:, 1]) vd_idxs = np.array(list(interp_info_map.keys())) df_interp_info = pd.DataFrame(index=vd_idxs, data={'x': coords[(vd_idxs, 0)], 'y': coords[(vd_idxs, 1)], 'lat': geo_coords[(vd_idxs, 0)], 'lon': geo_coords[(vd_idxs, 1)], 'elev': values[vd_idxs], 'crs': [i[1] for i in interp_info_map.values()], 'source': [i[0] for i in interp_info_map.values()]}) df_interp_info.sort_index().to_csv(info_out_path, header=False, index=True) self.msh_t.value = np.array(values.reshape((values.shape[0], 1)), dtype=jigsaw_msh_t.REALS_t)
9,192,351,401,424,472,000
Interplate values from raster inputs to the mesh nodes. Parameters ---------- raster : Raster or list of Raster A single or a list of rasters from which values are interpolated onto the mesh method : {'spline', 'linear', 'nearest'}, default='spline' Method of interpolation. nprocs : int or None, default=None Number of workers to use when interpolating data. info_out_path : pathlike or str or None Path for the output node interpolation information file filter_by_shape : bool Flag for node filtering based on raster bbox or shape Returns ------- None
ocsmesh/mesh/mesh.py
interpolate
noaa-ocs-modeling/OCSMesh
python
def interpolate(self, raster: Union[(Raster, List[Raster])], method: Literal[('spline', 'linear', 'nearest')]='spline', nprocs: Optional[int]=None, info_out_path: Union[(pathlib.Path, str, None)]=None, filter_by_shape: bool=False) -> None: "Interplate values from raster inputs to the mesh nodes.\n\n Parameters\n ----------\n raster : Raster or list of Raster\n A single or a list of rasters from which values are\n interpolated onto the mesh\n method : {'spline', 'linear', 'nearest'}, default='spline'\n Method of interpolation.\n nprocs : int or None, default=None\n Number of workers to use when interpolating data.\n info_out_path : pathlike or str or None\n Path for the output node interpolation information file\n filter_by_shape : bool\n Flag for node filtering based on raster bbox or shape\n\n Returns\n -------\n None\n " if isinstance(raster, Raster): raster = [raster] nprocs = ((- 1) if (nprocs is None) else nprocs) nprocs = (cpu_count() if (nprocs == (- 1)) else nprocs) if (nprocs > 1): with Pool(processes=nprocs) as pool: res = pool.starmap(_mesh_interpolate_worker, [(self.vert2['coord'], self.crs, _raster.tmpfile, _raster.chunk_size, method, filter_by_shape) for _raster in raster]) pool.join() else: res = [_mesh_interpolate_worker(self.vert2['coord'], self.crs, _raster.tmpfile, _raster.chunk_size, method, filter_by_shape) for _raster in raster] values = self.msh_t.value.flatten() interp_info_map = {} for ((mask, _values), rast) in zip(res, raster): values[mask] = _values if (info_out_path is not None): vert_cs = None rast_crs = rast.crs if rast_crs.is_vertical: if (rast_crs.sub_crs_list is not None): for sub_crs in rast_crs.sub_crs_list: if sub_crs.is_vertical: vert_cs = sub_crs elif (rast_crs.source_crs is not None): if rast_crs.source_crs.is_vertical: vert_cs = rast_crs.source_crs vert_cs_name = vert_cs.name idxs = np.argwhere(mask).ravel() interp_info_map.update({idx: (rast.path, vert_cs_name) for idx in idxs}) if (info_out_path is not None): coords = self.msh_t.vert2['coord'].copy() geo_coords = coords.copy() if (not self.crs.is_geographic): transformer = Transformer.from_crs(self.crs, CRS.from_epsg(4326), always_xy=True) (geo_coords[:, 0], geo_coords[:, 1]) = transformer.transform(coords[:, 0], coords[:, 1]) vd_idxs = np.array(list(interp_info_map.keys())) df_interp_info = pd.DataFrame(index=vd_idxs, data={'x': coords[(vd_idxs, 0)], 'y': coords[(vd_idxs, 1)], 'lat': geo_coords[(vd_idxs, 0)], 'lon': geo_coords[(vd_idxs, 1)], 'elev': values[vd_idxs], 'crs': [i[1] for i in interp_info_map.values()], 'source': [i[0] for i in interp_info_map.values()]}) df_interp_info.sort_index().to_csv(info_out_path, header=False, index=True) self.msh_t.value = np.array(values.reshape((values.shape[0], 1)), dtype=jigsaw_msh_t.REALS_t)
def get_contour(self, level: float) -> LineString: 'Extract contour lines at the specified `level` from mesh values\n\n Parameters\n ----------\n level : float\n The level at which contour lines must be extracted.\n\n Returns\n -------\n LineString\n Extracted and merged contour lines.\n\n Raises\n ------\n ValueError\n If mesh has nodes that have null value `np.nan`.\n ' for attr in ['quad4', 'hexa8']: if (len(getattr(self.msh_t, attr)) > 0): warnings.warn('Mesh contour extraction only supports triangles') coords = self.msh_t.vert2['coord'] values = self.msh_t.value trias = self.msh_t.tria3['index'] if np.any(np.isnan(values)): raise ValueError('Mesh contains invalid values. Raster values mustbe interpolated to the mesh before generating boundaries.') (x, y) = (coords[:, 0], coords[:, 1]) features = [] with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) _logger.debug('Computing contours...') (fig, ax) = plt.subplots() ax.tricontour(x, y, trias, values.ravel(), levels=[level]) plt.close(fig) for path_collection in ax.collections: for path in path_collection.get_paths(): try: features.append(LineString(path.vertices)) except ValueError: pass return linemerge(features)
8,760,211,111,063,419,000
Extract contour lines at the specified `level` from mesh values Parameters ---------- level : float The level at which contour lines must be extracted. Returns ------- LineString Extracted and merged contour lines. Raises ------ ValueError If mesh has nodes that have null value `np.nan`.
ocsmesh/mesh/mesh.py
get_contour
noaa-ocs-modeling/OCSMesh
python
def get_contour(self, level: float) -> LineString: 'Extract contour lines at the specified `level` from mesh values\n\n Parameters\n ----------\n level : float\n The level at which contour lines must be extracted.\n\n Returns\n -------\n LineString\n Extracted and merged contour lines.\n\n Raises\n ------\n ValueError\n If mesh has nodes that have null value `np.nan`.\n ' for attr in ['quad4', 'hexa8']: if (len(getattr(self.msh_t, attr)) > 0): warnings.warn('Mesh contour extraction only supports triangles') coords = self.msh_t.vert2['coord'] values = self.msh_t.value trias = self.msh_t.tria3['index'] if np.any(np.isnan(values)): raise ValueError('Mesh contains invalid values. Raster values mustbe interpolated to the mesh before generating boundaries.') (x, y) = (coords[:, 0], coords[:, 1]) features = [] with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) _logger.debug('Computing contours...') (fig, ax) = plt.subplots() ax.tricontour(x, y, trias, values.ravel(), levels=[level]) plt.close(fig) for path_collection in ax.collections: for path in path_collection.get_paths(): try: features.append(LineString(path.vertices)) except ValueError: pass return linemerge(features)
def get_multipolygon(self, zmin: Optional[float]=None, zmax: Optional[float]=None) -> MultiPolygon: 'Calculate multipolygon covering mesh elements (hull)\n\n Parameters\n ----------\n zmin : float or None\n Minimum elevation to consider for multipolygon extraction\n zmax : float or None\n Maximum elevation to consider for multipolygon extraction\n\n Returns\n -------\n MultiPolygon\n Calculated multipolygon shape\n ' values = self.msh_t.value mask = np.ones(values.shape) if (zmin is not None): mask = np.logical_and(mask, (values > zmin)) if (zmax is not None): mask = np.logical_and(mask, (values < zmax)) verts_in = np.argwhere(mask).ravel() clipped_mesh = utils.clip_mesh_by_vertex(self.msh_t, verts_in, can_use_other_verts=True) boundary_edges = utils.get_boundary_edges(clipped_mesh) coords = clipped_mesh.vert2['coord'] coo_to_idx = {tuple(coo): idx for (idx, coo) in enumerate(coords)} poly_gen = polygonize(coords[boundary_edges]) polys = list(poly_gen) polys = sorted(polys, key=(lambda p: p.area), reverse=True) rings = [p.exterior for p in polys] n_parents = np.zeros((len(rings),)) represent = np.array([r.coords[0] for r in rings]) for (e, ring) in enumerate(rings[:(- 1)]): path = Path(ring.coords, closed=True) n_parents = (n_parents + np.pad(np.array([path.contains_point(pt) for pt in represent[(e + 1):]]), ((e + 1), 0), 'constant', constant_values=0)) polys = [p for (e, p) in enumerate(polys) if (not (n_parents[e] % 2))] return MultiPolygon(polys)
-5,949,840,052,573,475,000
Calculate multipolygon covering mesh elements (hull) Parameters ---------- zmin : float or None Minimum elevation to consider for multipolygon extraction zmax : float or None Maximum elevation to consider for multipolygon extraction Returns ------- MultiPolygon Calculated multipolygon shape
ocsmesh/mesh/mesh.py
get_multipolygon
noaa-ocs-modeling/OCSMesh
python
def get_multipolygon(self, zmin: Optional[float]=None, zmax: Optional[float]=None) -> MultiPolygon: 'Calculate multipolygon covering mesh elements (hull)\n\n Parameters\n ----------\n zmin : float or None\n Minimum elevation to consider for multipolygon extraction\n zmax : float or None\n Maximum elevation to consider for multipolygon extraction\n\n Returns\n -------\n MultiPolygon\n Calculated multipolygon shape\n ' values = self.msh_t.value mask = np.ones(values.shape) if (zmin is not None): mask = np.logical_and(mask, (values > zmin)) if (zmax is not None): mask = np.logical_and(mask, (values < zmax)) verts_in = np.argwhere(mask).ravel() clipped_mesh = utils.clip_mesh_by_vertex(self.msh_t, verts_in, can_use_other_verts=True) boundary_edges = utils.get_boundary_edges(clipped_mesh) coords = clipped_mesh.vert2['coord'] coo_to_idx = {tuple(coo): idx for (idx, coo) in enumerate(coords)} poly_gen = polygonize(coords[boundary_edges]) polys = list(poly_gen) polys = sorted(polys, key=(lambda p: p.area), reverse=True) rings = [p.exterior for p in polys] n_parents = np.zeros((len(rings),)) represent = np.array([r.coords[0] for r in rings]) for (e, ring) in enumerate(rings[:(- 1)]): path = Path(ring.coords, closed=True) n_parents = (n_parents + np.pad(np.array([path.contains_point(pt) for pt in represent[(e + 1):]]), ((e + 1), 0), 'constant', constant_values=0)) polys = [p for (e, p) in enumerate(polys) if (not (n_parents[e] % 2))] return MultiPolygon(polys)
@property def vert2(self): 'Reference to underlying mesh 2D vertices structure' return self.msh_t.vert2
315,863,749,805,218,560
Reference to underlying mesh 2D vertices structure
ocsmesh/mesh/mesh.py
vert2
noaa-ocs-modeling/OCSMesh
python
@property def vert2(self): return self.msh_t.vert2
@property def value(self): 'Reference to underlying mesh values' return self.msh_t.value
541,604,266,528,932,800
Reference to underlying mesh values
ocsmesh/mesh/mesh.py
value
noaa-ocs-modeling/OCSMesh
python
@property def value(self): return self.msh_t.value
@property def bbox(self): 'Calculates and returns bounding box of the mesh hull.\n\n See Also\n --------\n get_bbox\n ' return self.get_bbox()
-1,139,814,721,322,906,000
Calculates and returns bounding box of the mesh hull. See Also -------- get_bbox
ocsmesh/mesh/mesh.py
bbox
noaa-ocs-modeling/OCSMesh
python
@property def bbox(self): 'Calculates and returns bounding box of the mesh hull.\n\n See Also\n --------\n get_bbox\n ' return self.get_bbox()
def __new__(cls, mesh: jigsaw_msh_t) -> MeshType: 'Construct a concrete mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n Input jigsaw mesh object\n\n Returns\n -------\n MeshType\n Mesh object created from the input\n\n Raises\n ------\n TypeError\n Input `mesh` is not a `jigsaw_msh_t` object.\n NotImplementedError\n Input `mesh` object cannot be used to create a EuclideanMesh2D\n ' if (not isinstance(mesh, jigsaw_msh_t)): raise TypeError(f'Argument mesh must be of type {jigsaw_msh_t}, not type {type(mesh)}.') if (mesh.mshID == 'euclidean-mesh'): if (mesh.ndims == 2): return EuclideanMesh2D(mesh) raise NotImplementedError(f'mshID={mesh.mshID} + mesh.ndims={mesh.ndims} not handled.') raise NotImplementedError(f'mshID={mesh.mshID} not handled.')
5,430,746,854,186,812,000
Construct a concrete mesh object. Parameters ---------- mesh : jigsaw_msh_t Input jigsaw mesh object Returns ------- MeshType Mesh object created from the input Raises ------ TypeError Input `mesh` is not a `jigsaw_msh_t` object. NotImplementedError Input `mesh` object cannot be used to create a EuclideanMesh2D
ocsmesh/mesh/mesh.py
__new__
noaa-ocs-modeling/OCSMesh
python
def __new__(cls, mesh: jigsaw_msh_t) -> MeshType: 'Construct a concrete mesh object.\n\n Parameters\n ----------\n mesh : jigsaw_msh_t\n Input jigsaw mesh object\n\n Returns\n -------\n MeshType\n Mesh object created from the input\n\n Raises\n ------\n TypeError\n Input `mesh` is not a `jigsaw_msh_t` object.\n NotImplementedError\n Input `mesh` object cannot be used to create a EuclideanMesh2D\n ' if (not isinstance(mesh, jigsaw_msh_t)): raise TypeError(f'Argument mesh must be of type {jigsaw_msh_t}, not type {type(mesh)}.') if (mesh.mshID == 'euclidean-mesh'): if (mesh.ndims == 2): return EuclideanMesh2D(mesh) raise NotImplementedError(f'mshID={mesh.mshID} + mesh.ndims={mesh.ndims} not handled.') raise NotImplementedError(f'mshID={mesh.mshID} not handled.')
@staticmethod def open(path: Union[(str, Path)], crs: Optional[CRS]=None) -> MeshType: 'Read mesh from a file on disk\n\n Parameters\n ----------\n path : path-like\n Path to the file containig mesh.\n crs : CRS or None, default=None\n CRS of the mesh in the path. Overwrites any info read\n from file, no transformation is done.\n\n Returns\n -------\n MeshType\n Mesh object created by reading the file.\n\n Raises\n ------\n TypeError\n If cannot determine the input mesh type.\n\n Notes\n -----\n Currently only SMS-2DM and GRD formats are supported for\n reading.\n ' try: msh_t = utils.grd_to_msh_t(grd.read(path, crs=crs)) msh_t.value = np.negative(msh_t.value) return Mesh(msh_t) except Exception as e: if ('not a valid grd file' in str(e)): pass else: raise e try: return Mesh(utils.sms2dm_to_msh_t(sms2dm.read(path, crs=crs))) except ValueError: pass try: msh_t = jigsaw_msh_t() loadmsh(msh_t, path) msh_t.crs = crs return Mesh(msh_t) except Exception as e: pass raise TypeError(f'Unable to automatically determine file type for {str(path)}.')
-5,015,466,048,379,708,000
Read mesh from a file on disk Parameters ---------- path : path-like Path to the file containig mesh. crs : CRS or None, default=None CRS of the mesh in the path. Overwrites any info read from file, no transformation is done. Returns ------- MeshType Mesh object created by reading the file. Raises ------ TypeError If cannot determine the input mesh type. Notes ----- Currently only SMS-2DM and GRD formats are supported for reading.
ocsmesh/mesh/mesh.py
open
noaa-ocs-modeling/OCSMesh
python
@staticmethod def open(path: Union[(str, Path)], crs: Optional[CRS]=None) -> MeshType: 'Read mesh from a file on disk\n\n Parameters\n ----------\n path : path-like\n Path to the file containig mesh.\n crs : CRS or None, default=None\n CRS of the mesh in the path. Overwrites any info read\n from file, no transformation is done.\n\n Returns\n -------\n MeshType\n Mesh object created by reading the file.\n\n Raises\n ------\n TypeError\n If cannot determine the input mesh type.\n\n Notes\n -----\n Currently only SMS-2DM and GRD formats are supported for\n reading.\n ' try: msh_t = utils.grd_to_msh_t(grd.read(path, crs=crs)) msh_t.value = np.negative(msh_t.value) return Mesh(msh_t) except Exception as e: if ('not a valid grd file' in str(e)): pass else: raise e try: return Mesh(utils.sms2dm_to_msh_t(sms2dm.read(path, crs=crs))) except ValueError: pass try: msh_t = jigsaw_msh_t() loadmsh(msh_t, path) msh_t.crs = crs return Mesh(msh_t) except Exception as e: pass raise TypeError(f'Unable to automatically determine file type for {str(path)}.')
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes the ring calculator object for the input `mesh`\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object calculates rings.\n ' self.mesh = mesh
918,915,827,880,436,700
Initializes the ring calculator object for the input `mesh` Parameters ---------- mesh : EuclideanMesh Input mesh for which this object calculates rings.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes the ring calculator object for the input `mesh`\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object calculates rings.\n ' self.mesh = mesh
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calcluates all the polygons of the mesh and extracts its rings.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all rings of the mesh hull polygon.\n The rings are in the form of `shapely.geometry.LinearRing`.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " polys = utils.get_mesh_polygons(self.mesh.msh_t) data = [] bnd_id = 0 for poly in polys: data.append({'geometry': poly.exterior, 'bnd_id': bnd_id, 'type': 'exterior'}) for interior in poly.interiors: data.append({'geometry': interior, 'bnd_id': bnd_id, 'type': 'interior'}) bnd_id = (bnd_id + 1) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
273,310,606,786,646,370
Calcluates all the polygons of the mesh and extracts its rings. Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing all rings of the mesh hull polygon. The rings are in the form of `shapely.geometry.LinearRing`. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calcluates all the polygons of the mesh and extracts its rings.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all rings of the mesh hull polygon.\n The rings are in the form of `shapely.geometry.LinearRing`.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " polys = utils.get_mesh_polygons(self.mesh.msh_t) data = [] bnd_id = 0 for poly in polys: data.append({'geometry': poly.exterior, 'bnd_id': bnd_id, 'type': 'exterior'}) for interior in poly.interiors: data.append({'geometry': interior, 'bnd_id': bnd_id, 'type': 'interior'}) bnd_id = (bnd_id + 1) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def exterior(self) -> gpd.GeoDataFrame: 'Extracts the exterior ring from the results of `__call__`.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing exterior ring of the mesh hull polygon.\n ' return self().loc[(self()['type'] == 'exterior')]
8,858,591,886,772,095,000
Extracts the exterior ring from the results of `__call__`. Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing exterior ring of the mesh hull polygon.
ocsmesh/mesh/mesh.py
exterior
noaa-ocs-modeling/OCSMesh
python
def exterior(self) -> gpd.GeoDataFrame: 'Extracts the exterior ring from the results of `__call__`.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing exterior ring of the mesh hull polygon.\n ' return self().loc[(self()['type'] == 'exterior')]
def interior(self) -> gpd.GeoDataFrame: 'Extracts the interior rings from the results of `__call__`.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing interior rings of the mesh hull polygon.\n ' return self().loc[(self()['type'] == 'interior')]
8,726,658,138,874,750,000
Extracts the interior rings from the results of `__call__`. Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing interior rings of the mesh hull polygon.
ocsmesh/mesh/mesh.py
interior
noaa-ocs-modeling/OCSMesh
python
def interior(self) -> gpd.GeoDataFrame: 'Extracts the interior rings from the results of `__call__`.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing interior rings of the mesh hull polygon.\n ' return self().loc[(self()['type'] == 'interior')]
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes the edge calculator object for the input `mesh`\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which boundary edges are calculated.\n ' self.mesh = mesh
1,966,865,381,158,875,600
Initializes the edge calculator object for the input `mesh` Parameters ---------- mesh : EuclideanMesh Input mesh for which boundary edges are calculated.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes the edge calculator object for the input `mesh`\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which boundary edges are calculated.\n ' self.mesh = mesh
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calculates all boundary edges for the mesh.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all boundary edges of the mesh in\n the form of `shapely.geometry.LineString` for each\n coordinate couple.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " data = [] for ring in self.mesh.hull.rings().itertuples(): coords = ring.geometry.coords for i in range(1, len(coords)): data.append({'geometry': LineString([coords[(i - 1)], coords[i]]), 'bnd_id': ring.bnd_id, 'type': ring.type}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
-2,760,478,559,937,339,000
Calculates all boundary edges for the mesh. Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing all boundary edges of the mesh in the form of `shapely.geometry.LineString` for each coordinate couple. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calculates all boundary edges for the mesh.\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all boundary edges of the mesh in\n the form of `shapely.geometry.LineString` for each\n coordinate couple.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " data = [] for ring in self.mesh.hull.rings().itertuples(): coords = ring.geometry.coords for i in range(1, len(coords)): data.append({'geometry': LineString([coords[(i - 1)], coords[i]]), 'bnd_id': ring.bnd_id, 'type': ring.type}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def exterior(self) -> gpd.GeoDataFrame: 'Retruns exterior boundary edges from the results of `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing exterior boundary edges of the mesh in\n the form of line string couples.\n ' return self().loc[(self()['type'] == 'exterior')]
8,433,150,425,821,374,000
Retruns exterior boundary edges from the results of `__call__` Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing exterior boundary edges of the mesh in the form of line string couples.
ocsmesh/mesh/mesh.py
exterior
noaa-ocs-modeling/OCSMesh
python
def exterior(self) -> gpd.GeoDataFrame: 'Retruns exterior boundary edges from the results of `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing exterior boundary edges of the mesh in\n the form of line string couples.\n ' return self().loc[(self()['type'] == 'exterior')]
def interior(self) -> gpd.GeoDataFrame: 'Retruns interior boundary edges from the results of `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing interior boundary edges of the mesh in\n the form of line string couples.\n ' return self().loc[(self()['type'] == 'interior')]
4,926,577,126,765,426,000
Retruns interior boundary edges from the results of `__call__` Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing interior boundary edges of the mesh in the form of line string couples.
ocsmesh/mesh/mesh.py
interior
noaa-ocs-modeling/OCSMesh
python
def interior(self) -> gpd.GeoDataFrame: 'Retruns interior boundary edges from the results of `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing interior boundary edges of the mesh in\n the form of line string couples.\n ' return self().loc[(self()['type'] == 'interior')]
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize helper class for handling mesh hull calculations\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which hull calculations are done.\n\n Notes\n -----\n This object holds onto the ring and edge calculator objects\n as well as a reference to the input mesh.\n ' self.mesh = mesh self.rings = Rings(mesh) self.edges = Edges(mesh)
-3,874,946,093,954,868,700
Initialize helper class for handling mesh hull calculations Parameters ---------- mesh : EuclideanMesh Input mesh for which hull calculations are done. Notes ----- This object holds onto the ring and edge calculator objects as well as a reference to the input mesh.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize helper class for handling mesh hull calculations\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which hull calculations are done.\n\n Notes\n -----\n This object holds onto the ring and edge calculator objects\n as well as a reference to the input mesh.\n ' self.mesh = mesh self.rings = Rings(mesh) self.edges = Edges(mesh)
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calculates all polygons of the mesh including domain islands\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all polygons of the mesh.\n\n See Also\n --------\n implode()\n Dataframe with a single combined multipolygon.\n multipolygon()\n `shapely` multipolygon shape of combined mesh polygons.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " data = [] for bnd_id in np.unique(self.rings()['bnd_id'].tolist()): exterior = self.rings().loc[((self.rings()['bnd_id'] == bnd_id) & (self.rings()['type'] == 'exterior'))] interiors = self.rings().loc[((self.rings()['bnd_id'] == bnd_id) & (self.rings()['type'] == 'interior'))] data.append({'geometry': Polygon(exterior.iloc[0].geometry.coords, [row.geometry.coords for (_, row) in interiors.iterrows()]), 'bnd_id': bnd_id}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
-3,732,285,811,006,009,300
Calculates all polygons of the mesh including domain islands Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing all polygons of the mesh. See Also -------- implode() Dataframe with a single combined multipolygon. multipolygon() `shapely` multipolygon shape of combined mesh polygons. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Calculates all polygons of the mesh including domain islands\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing all polygons of the mesh.\n\n See Also\n --------\n implode()\n Dataframe with a single combined multipolygon.\n multipolygon()\n `shapely` multipolygon shape of combined mesh polygons.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " data = [] for bnd_id in np.unique(self.rings()['bnd_id'].tolist()): exterior = self.rings().loc[((self.rings()['bnd_id'] == bnd_id) & (self.rings()['type'] == 'exterior'))] interiors = self.rings().loc[((self.rings()['bnd_id'] == bnd_id) & (self.rings()['type'] == 'interior'))] data.append({'geometry': Polygon(exterior.iloc[0].geometry.coords, [row.geometry.coords for (_, row) in interiors.iterrows()]), 'bnd_id': bnd_id}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def exterior(self) -> gpd.GeoDataFrame: 'Creates polygons from exterior rings of the mesh hull\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Polygons created from exterior rings of the mesh hull\n ' data = [] for exterior in self.rings().loc[(self.rings()['type'] == 'exterior')].itertuples(): data.append({'geometry': Polygon(exterior.geometry.coords)}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
-2,137,415,256,579,247,900
Creates polygons from exterior rings of the mesh hull Parameters ---------- Returns ------- gpd.GeoDataFrame Polygons created from exterior rings of the mesh hull
ocsmesh/mesh/mesh.py
exterior
noaa-ocs-modeling/OCSMesh
python
def exterior(self) -> gpd.GeoDataFrame: 'Creates polygons from exterior rings of the mesh hull\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Polygons created from exterior rings of the mesh hull\n ' data = [] for exterior in self.rings().loc[(self.rings()['type'] == 'exterior')].itertuples(): data.append({'geometry': Polygon(exterior.geometry.coords)}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def interior(self) -> gpd.GeoDataFrame: 'Creates polygons from interior rings of the mesh hull\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Polygons created from interior rings of the mesh hull\n ' data = [] for interior in self.rings().loc[(self.rings()['type'] == 'interior')].itertuples(): data.append({'geometry': Polygon(interior.geometry.coords)}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
4,092,416,981,451,248,600
Creates polygons from interior rings of the mesh hull Parameters ---------- Returns ------- gpd.GeoDataFrame Polygons created from interior rings of the mesh hull
ocsmesh/mesh/mesh.py
interior
noaa-ocs-modeling/OCSMesh
python
def interior(self) -> gpd.GeoDataFrame: 'Creates polygons from interior rings of the mesh hull\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Polygons created from interior rings of the mesh hull\n ' data = [] for interior in self.rings().loc[(self.rings()['type'] == 'interior')].itertuples(): data.append({'geometry': Polygon(interior.geometry.coords)}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def implode(self) -> gpd.GeoDataFrame: 'Creates a dataframe from mesh polygons.\n\n Parameters\n ----------\n\n Returns\n ------\n gpd.GeoDataFrame\n Dataframe containing polygons of the mesh.\n\n See Also\n --------\n __call__()\n Dataframe with multiple polygon and boundary ID entries\n of the mesh polygons.\n multipolygon()\n `shapely` multipolygon shape of combined mesh polygons.\n\n Notes\n -----\n The difference of the return value of this method and\n `__call__` is that the `implode` returns a dataframe with\n a single `MultiPolygon` where as `__call__` returns a\n dataframe with multiple `Polygon` entries with associated\n `bnd_id`.\n ' return gpd.GeoDataFrame({'geometry': MultiPolygon([polygon.geometry for polygon in self().itertuples()])}, crs=self.mesh.crs)
-1,110,060,583,713,869,800
Creates a dataframe from mesh polygons. Parameters ---------- Returns ------ gpd.GeoDataFrame Dataframe containing polygons of the mesh. See Also -------- __call__() Dataframe with multiple polygon and boundary ID entries of the mesh polygons. multipolygon() `shapely` multipolygon shape of combined mesh polygons. Notes ----- The difference of the return value of this method and `__call__` is that the `implode` returns a dataframe with a single `MultiPolygon` where as `__call__` returns a dataframe with multiple `Polygon` entries with associated `bnd_id`.
ocsmesh/mesh/mesh.py
implode
noaa-ocs-modeling/OCSMesh
python
def implode(self) -> gpd.GeoDataFrame: 'Creates a dataframe from mesh polygons.\n\n Parameters\n ----------\n\n Returns\n ------\n gpd.GeoDataFrame\n Dataframe containing polygons of the mesh.\n\n See Also\n --------\n __call__()\n Dataframe with multiple polygon and boundary ID entries\n of the mesh polygons.\n multipolygon()\n `shapely` multipolygon shape of combined mesh polygons.\n\n Notes\n -----\n The difference of the return value of this method and\n `__call__` is that the `implode` returns a dataframe with\n a single `MultiPolygon` where as `__call__` returns a\n dataframe with multiple `Polygon` entries with associated\n `bnd_id`.\n ' return gpd.GeoDataFrame({'geometry': MultiPolygon([polygon.geometry for polygon in self().itertuples()])}, crs=self.mesh.crs)
def multipolygon(self) -> MultiPolygon: 'Returns mesh multi-polygons.\n\n Parameters\n ----------\n\n Returns\n ------\n MultiPolygon\n Combined shape of polygons of the mesh.\n\n See Also\n --------\n __call__()\n Dataframe with multiple polygon and boundary ID entries\n of the mesh polygons.\n implode()\n Dataframe with a single combined multipolygon of the mesh\n polygons.\n\n Notes\n -----\n The difference of the return value of this method and `implode`\n is that `multipolygon` returns a `MultiPolygon` object where\n as `implode` returns a dataframe warpping the multipolygon\n object.\n ' mp = self.implode().iloc[0].geometry if isinstance(mp, Polygon): mp = MultiPolygon([mp]) return mp
-4,280,634,786,239,775,000
Returns mesh multi-polygons. Parameters ---------- Returns ------ MultiPolygon Combined shape of polygons of the mesh. See Also -------- __call__() Dataframe with multiple polygon and boundary ID entries of the mesh polygons. implode() Dataframe with a single combined multipolygon of the mesh polygons. Notes ----- The difference of the return value of this method and `implode` is that `multipolygon` returns a `MultiPolygon` object where as `implode` returns a dataframe warpping the multipolygon object.
ocsmesh/mesh/mesh.py
multipolygon
noaa-ocs-modeling/OCSMesh
python
def multipolygon(self) -> MultiPolygon: 'Returns mesh multi-polygons.\n\n Parameters\n ----------\n\n Returns\n ------\n MultiPolygon\n Combined shape of polygons of the mesh.\n\n See Also\n --------\n __call__()\n Dataframe with multiple polygon and boundary ID entries\n of the mesh polygons.\n implode()\n Dataframe with a single combined multipolygon of the mesh\n polygons.\n\n Notes\n -----\n The difference of the return value of this method and `implode`\n is that `multipolygon` returns a `MultiPolygon` object where\n as `implode` returns a dataframe warpping the multipolygon\n object.\n ' mp = self.implode().iloc[0].geometry if isinstance(mp, Polygon): mp = MultiPolygon([mp]) return mp
def triangulation(self) -> Triangulation: 'Create triangulation object from all the mesh elements.\n\n Parameters\n ----------\n\n Returns\n -------\n Triangulation\n The `matplotlib` triangulation object create from all\n the elements of the parent mesh.\n\n Notes\n -----\n Currently only tria3 and quad4 elements are considered.\n ' triangles = self.mesh.msh_t.tria3['index'].tolist() for quad in self.mesh.msh_t.quad4['index']: triangles.extend([[quad[0], quad[1], quad[3]], [quad[1], quad[2], quad[3]]]) return Triangulation(self.mesh.coord[:, 0], self.mesh.coord[:, 1], triangles)
-3,367,212,795,462,451,700
Create triangulation object from all the mesh elements. Parameters ---------- Returns ------- Triangulation The `matplotlib` triangulation object create from all the elements of the parent mesh. Notes ----- Currently only tria3 and quad4 elements are considered.
ocsmesh/mesh/mesh.py
triangulation
noaa-ocs-modeling/OCSMesh
python
def triangulation(self) -> Triangulation: 'Create triangulation object from all the mesh elements.\n\n Parameters\n ----------\n\n Returns\n -------\n Triangulation\n The `matplotlib` triangulation object create from all\n the elements of the parent mesh.\n\n Notes\n -----\n Currently only tria3 and quad4 elements are considered.\n ' triangles = self.mesh.msh_t.tria3['index'].tolist() for quad in self.mesh.msh_t.quad4['index']: triangles.extend([[quad[0], quad[1], quad[3]], [quad[1], quad[2], quad[3]]]) return Triangulation(self.mesh.coord[:, 0], self.mesh.coord[:, 1], triangles)
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes node handler helper object.\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object handles nodes info.\n ' self.mesh = mesh self._id_to_index = None self._index_to_id = None
7,583,967,430,143,226,000
Initializes node handler helper object. Parameters ---------- mesh : EuclideanMesh Input mesh for which this object handles nodes info.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initializes node handler helper object.\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object handles nodes info.\n ' self.mesh = mesh self._id_to_index = None self._index_to_id = None
@lru_cache(maxsize=1) def __call__(self) -> Dict[(int, int)]: "Creates a mapping between node IDs and indexes.\n\n Parameters\n ----------\n\n Returns\n -------\n dict\n Mapping between node IDs and indexes.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return {(i + 1): coord for (i, coord) in enumerate(self.coords())}
971,225,677,000,335,900
Creates a mapping between node IDs and indexes. Parameters ---------- Returns ------- dict Mapping between node IDs and indexes. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> Dict[(int, int)]: "Creates a mapping between node IDs and indexes.\n\n Parameters\n ----------\n\n Returns\n -------\n dict\n Mapping between node IDs and indexes.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return {(i + 1): coord for (i, coord) in enumerate(self.coords())}
def id(self) -> List[int]: 'Retrives a list of element IDs.\n\n Parameters\n ----------\n\n Returns\n -------\n list of int\n List of node IDs as created by `__call__`\n ' return list(self().keys())
-5,521,052,617,407,928,000
Retrives a list of element IDs. Parameters ---------- Returns ------- list of int List of node IDs as created by `__call__`
ocsmesh/mesh/mesh.py
id
noaa-ocs-modeling/OCSMesh
python
def id(self) -> List[int]: 'Retrives a list of element IDs.\n\n Parameters\n ----------\n\n Returns\n -------\n list of int\n List of node IDs as created by `__call__`\n ' return list(self().keys())
def index(self) -> npt.NDArray[int]: 'Retrives an array of element indexes.\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Array of node indexes.\n ' return np.arange(len(self()))
6,618,088,399,711,052,000
Retrives an array of element indexes. Parameters ---------- Returns ------- array-like Array of node indexes.
ocsmesh/mesh/mesh.py
index
noaa-ocs-modeling/OCSMesh
python
def index(self) -> npt.NDArray[int]: 'Retrives an array of element indexes.\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Array of node indexes.\n ' return np.arange(len(self()))
def coords(self) -> npt.NDArray[np.float32]: 'Retrieve the coordinates of mesh nodes\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Coordinates of the mesh nodes as returned by `BaseMesh.coord`\n ' return self.mesh.coord
-5,574,595,264,128,667,000
Retrieve the coordinates of mesh nodes Parameters ---------- Returns ------- array-like Coordinates of the mesh nodes as returned by `BaseMesh.coord`
ocsmesh/mesh/mesh.py
coords
noaa-ocs-modeling/OCSMesh
python
def coords(self) -> npt.NDArray[np.float32]: 'Retrieve the coordinates of mesh nodes\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Coordinates of the mesh nodes as returned by `BaseMesh.coord`\n ' return self.mesh.coord
def values(self): 'Retrieve the values stored for mesh nodes\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Values on the mesh nodes as returned by `BaseMesh.values`\n ' return self.mesh.values
4,970,250,622,496,955,000
Retrieve the values stored for mesh nodes Parameters ---------- Returns ------- array-like Values on the mesh nodes as returned by `BaseMesh.values`
ocsmesh/mesh/mesh.py
values
noaa-ocs-modeling/OCSMesh
python
def values(self): 'Retrieve the values stored for mesh nodes\n\n Parameters\n ----------\n\n Returns\n -------\n array-like\n Values on the mesh nodes as returned by `BaseMesh.values`\n ' return self.mesh.values
def get_index_by_id(self, node_id): 'Converts mesh ID to mesh index.\n\n Parameters\n ----------\n node_id : int\n ID of the node of interest\n\n Returns\n -------\n int\n Index of the node of interest\n ' return self.id_to_index[node_id]
-1,355,441,475,551,445,200
Converts mesh ID to mesh index. Parameters ---------- node_id : int ID of the node of interest Returns ------- int Index of the node of interest
ocsmesh/mesh/mesh.py
get_index_by_id
noaa-ocs-modeling/OCSMesh
python
def get_index_by_id(self, node_id): 'Converts mesh ID to mesh index.\n\n Parameters\n ----------\n node_id : int\n ID of the node of interest\n\n Returns\n -------\n int\n Index of the node of interest\n ' return self.id_to_index[node_id]
def get_id_by_index(self, index: int): 'Converts mesh index to mesh ID.\n\n Parameters\n ----------\n index : int\n Index of the node of interest.\n\n Returns\n -------\n int\n ID of the node of interest\n ' return self.index_to_id[index]
8,713,344,903,840,962,000
Converts mesh index to mesh ID. Parameters ---------- index : int Index of the node of interest. Returns ------- int ID of the node of interest
ocsmesh/mesh/mesh.py
get_id_by_index
noaa-ocs-modeling/OCSMesh
python
def get_id_by_index(self, index: int): 'Converts mesh index to mesh ID.\n\n Parameters\n ----------\n index : int\n Index of the node of interest.\n\n Returns\n -------\n int\n ID of the node of interest\n ' return self.index_to_id[index]
@property def id_to_index(self) -> Dict[(int, int)]: 'Read-only property returning the mapping of ID to index\n\n Notes\n -----\n Although the property is read-only, the return value object\n is a cached mutable dictionary object. Modifying the mesh\n without clearing the cache properly or mutating the\n returned object could result in undefined behavior\n ' if (self._id_to_index is None): self._id_to_index = {node_id: index for (index, node_id) in enumerate(self().keys())} return self._id_to_index
-5,844,648,040,583,783,000
Read-only property returning the mapping of ID to index Notes ----- Although the property is read-only, the return value object is a cached mutable dictionary object. Modifying the mesh without clearing the cache properly or mutating the returned object could result in undefined behavior
ocsmesh/mesh/mesh.py
id_to_index
noaa-ocs-modeling/OCSMesh
python
@property def id_to_index(self) -> Dict[(int, int)]: 'Read-only property returning the mapping of ID to index\n\n Notes\n -----\n Although the property is read-only, the return value object\n is a cached mutable dictionary object. Modifying the mesh\n without clearing the cache properly or mutating the\n returned object could result in undefined behavior\n ' if (self._id_to_index is None): self._id_to_index = {node_id: index for (index, node_id) in enumerate(self().keys())} return self._id_to_index
@property def index_to_id(self) -> Dict[(int, int)]: 'Read-only property returning the mapping of index to ID\n\n Notes\n -----\n Although the property is read-only, the return value object\n is a cached mutable dictionary object. Modifying the mesh\n without clearing the cache properly or mutating the\n returned object could result in undefined behavior\n ' if (self._index_to_id is None): self._index_to_id = dict(enumerate(self().keys())) return self._index_to_id
8,368,307,017,401,396,000
Read-only property returning the mapping of index to ID Notes ----- Although the property is read-only, the return value object is a cached mutable dictionary object. Modifying the mesh without clearing the cache properly or mutating the returned object could result in undefined behavior
ocsmesh/mesh/mesh.py
index_to_id
noaa-ocs-modeling/OCSMesh
python
@property def index_to_id(self) -> Dict[(int, int)]: 'Read-only property returning the mapping of index to ID\n\n Notes\n -----\n Although the property is read-only, the return value object\n is a cached mutable dictionary object. Modifying the mesh\n without clearing the cache properly or mutating the\n returned object could result in undefined behavior\n ' if (self._index_to_id is None): self._index_to_id = dict(enumerate(self().keys())) return self._index_to_id
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize the element handler helper object.\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object handles elements info.\n ' self.mesh = mesh
3,369,410,356,158,437,400
Initialize the element handler helper object. Parameters ---------- mesh : EuclideanMesh Input mesh for which this object handles elements info.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize the element handler helper object.\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object handles elements info.\n ' self.mesh = mesh
@lru_cache(maxsize=1) def __call__(self) -> Dict[(int, npt.NDArray[int])]: "Creates a mapping between element IDs and associated node IDs.\n\n Parameters\n ----------\n\n Returns\n -------\n dict\n Mapping between element IDs and associated node Ids\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " elements = {(i + 1): (index + 1) for (i, index) in enumerate(self.mesh.msh_t.tria3['index'])} elements.update({((i + len(elements)) + 1): (index + 1) for (i, index) in enumerate(self.mesh.msh_t.quad4['index'])}) return elements
5,356,765,634,915,342,000
Creates a mapping between element IDs and associated node IDs. Parameters ---------- Returns ------- dict Mapping between element IDs and associated node Ids Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> Dict[(int, npt.NDArray[int])]: "Creates a mapping between element IDs and associated node IDs.\n\n Parameters\n ----------\n\n Returns\n -------\n dict\n Mapping between element IDs and associated node Ids\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " elements = {(i + 1): (index + 1) for (i, index) in enumerate(self.mesh.msh_t.tria3['index'])} elements.update({((i + len(elements)) + 1): (index + 1) for (i, index) in enumerate(self.mesh.msh_t.quad4['index'])}) return elements
@lru_cache(maxsize=1) def id(self) -> List[int]: "Retrieves the list of element IDs as returned by `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n list of int\n List of element IDs.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return list(self().keys())
1,294,986,368,255,677,400
Retrieves the list of element IDs as returned by `__call__` Parameters ---------- Returns ------- list of int List of element IDs. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
id
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def id(self) -> List[int]: "Retrieves the list of element IDs as returned by `__call__`\n\n Parameters\n ----------\n\n Returns\n -------\n list of int\n List of element IDs.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return list(self().keys())
@lru_cache(maxsize=1) def index(self) -> npt.NDArray[int]: "Retrieves an array of element indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 1D array of element indices.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.arange(len(self()))
6,401,692,417,557,761,000
Retrieves an array of element indices Parameters ---------- Returns ------- npt.NDArray 1D array of element indices. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
index
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def index(self) -> npt.NDArray[int]: "Retrieves an array of element indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 1D array of element indices.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.arange(len(self()))
def array(self) -> npt.NDArray[int]: "Retrieves a masked array of element node IDs.\n\n The return value is ``n x m`` where ``n`` is the number of\n elements and ``m`` is the maximum number of element nodes, e.g.\n if there are only trias, then it's 3, for trias and quads it\n is 4.\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n Masked array where elements with fewer associated nodes\n have trailing masked node columns in the array.\n " rank = int(max(map(len, self().values()))) array = np.full((len(self()), rank), (- 1)) for (i, elem_nd_ids) in enumerate(self().values()): row = np.array(list(map(self.mesh.nodes.get_index_by_id, elem_nd_ids))) array[i, :len(row)] = row return np.ma.masked_equal(array, (- 1))
7,271,535,590,505,444,000
Retrieves a masked array of element node IDs. The return value is ``n x m`` where ``n`` is the number of elements and ``m`` is the maximum number of element nodes, e.g. if there are only trias, then it's 3, for trias and quads it is 4. Parameters ---------- Returns ------- npt.NDArray Masked array where elements with fewer associated nodes have trailing masked node columns in the array.
ocsmesh/mesh/mesh.py
array
noaa-ocs-modeling/OCSMesh
python
def array(self) -> npt.NDArray[int]: "Retrieves a masked array of element node IDs.\n\n The return value is ``n x m`` where ``n`` is the number of\n elements and ``m`` is the maximum number of element nodes, e.g.\n if there are only trias, then it's 3, for trias and quads it\n is 4.\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n Masked array where elements with fewer associated nodes\n have trailing masked node columns in the array.\n " rank = int(max(map(len, self().values()))) array = np.full((len(self()), rank), (- 1)) for (i, elem_nd_ids) in enumerate(self().values()): row = np.array(list(map(self.mesh.nodes.get_index_by_id, elem_nd_ids))) array[i, :len(row)] = row return np.ma.masked_equal(array, (- 1))
@lru_cache(maxsize=1) def triangles(self) -> npt.NDArray[int]: "Retrieves an array of tria element node indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 2D array of element nodes for triangle nodes\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.array([list(map(self.mesh.nodes.get_index_by_id, element)) for element in self().values() if (len(element) == 3)])
-5,246,321,069,616,125,000
Retrieves an array of tria element node indices Parameters ---------- Returns ------- npt.NDArray 2D array of element nodes for triangle nodes Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
triangles
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def triangles(self) -> npt.NDArray[int]: "Retrieves an array of tria element node indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 2D array of element nodes for triangle nodes\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.array([list(map(self.mesh.nodes.get_index_by_id, element)) for element in self().values() if (len(element) == 3)])
@lru_cache(maxsize=1) def quads(self): "Retrieves an array of quad element node indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 2D array of element nodes for quadrangle nodes\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.array([list(map(self.mesh.nodes.get_index_by_id, element)) for element in self().values() if (len(element) == 4)])
-7,106,942,006,327,528,000
Retrieves an array of quad element node indices Parameters ---------- Returns ------- npt.NDArray 2D array of element nodes for quadrangle nodes Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
quads
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def quads(self): "Retrieves an array of quad element node indices\n\n Parameters\n ----------\n\n Returns\n -------\n npt.NDArray\n 2D array of element nodes for quadrangle nodes\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " return np.array([list(map(self.mesh.nodes.get_index_by_id, element)) for element in self().values() if (len(element) == 4)])
def triangulation(self) -> Triangulation: 'Create triangulation object from all the mesh elements.\n\n Parameters\n ----------\n\n Returns\n -------\n Triangulation\n The `matplotlib` triangulation object create from all\n the elements of the parent mesh.\n\n Notes\n -----\n Currently only tria3 and quad4 elements are considered.\n ' triangles = self.triangles().tolist() for quad in self.quads(): triangles.append([quad[0], quad[1], quad[3]]) triangles.append([quad[1], quad[2], quad[3]]) return Triangulation(self.mesh.coord[:, 0], self.mesh.coord[:, 1], triangles)
-1,068,129,071,886,108,900
Create triangulation object from all the mesh elements. Parameters ---------- Returns ------- Triangulation The `matplotlib` triangulation object create from all the elements of the parent mesh. Notes ----- Currently only tria3 and quad4 elements are considered.
ocsmesh/mesh/mesh.py
triangulation
noaa-ocs-modeling/OCSMesh
python
def triangulation(self) -> Triangulation: 'Create triangulation object from all the mesh elements.\n\n Parameters\n ----------\n\n Returns\n -------\n Triangulation\n The `matplotlib` triangulation object create from all\n the elements of the parent mesh.\n\n Notes\n -----\n Currently only tria3 and quad4 elements are considered.\n ' triangles = self.triangles().tolist() for quad in self.quads(): triangles.append([quad[0], quad[1], quad[3]]) triangles.append([quad[1], quad[2], quad[3]]) return Triangulation(self.mesh.coord[:, 0], self.mesh.coord[:, 1], triangles)
def geodataframe(self) -> gpd.GeoDataFrame: 'Create polygons for each element and return in dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe created from entries of `Polygon` type for\n each element.\n ' data = [] for (elem_id, elem_nd_ids) in self().items(): data.append({'geometry': Polygon(self.mesh.coord[list(map(self.mesh.nodes.get_index_by_id, elem_nd_ids))]), 'id': elem_id}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
-1,141,472,162,654,111,200
Create polygons for each element and return in dataframe Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe created from entries of `Polygon` type for each element.
ocsmesh/mesh/mesh.py
geodataframe
noaa-ocs-modeling/OCSMesh
python
def geodataframe(self) -> gpd.GeoDataFrame: 'Create polygons for each element and return in dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe created from entries of `Polygon` type for\n each element.\n ' data = [] for (elem_id, elem_nd_ids) in self().items(): data.append({'geometry': Polygon(self.mesh.coord[list(map(self.mesh.nodes.get_index_by_id, elem_nd_ids))]), 'id': elem_id}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize boundary helper object\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object calculates boundaries.\n ' self.mesh = mesh self._ocean = gpd.GeoDataFrame() self._land = gpd.GeoDataFrame() self._interior = gpd.GeoDataFrame() self._data = defaultdict(defaultdict)
6,331,604,948,413,647,000
Initialize boundary helper object Parameters ---------- mesh : EuclideanMesh Input mesh for which this object calculates boundaries.
ocsmesh/mesh/mesh.py
__init__
noaa-ocs-modeling/OCSMesh
python
def __init__(self, mesh: EuclideanMesh) -> None: 'Initialize boundary helper object\n\n Parameters\n ----------\n mesh : EuclideanMesh\n Input mesh for which this object calculates boundaries.\n ' self.mesh = mesh self._ocean = gpd.GeoDataFrame() self._land = gpd.GeoDataFrame() self._interior = gpd.GeoDataFrame() self._data = defaultdict(defaultdict)
@lru_cache(maxsize=1) def _init_dataframes(self) -> None: "Internal: Creates boundary dataframes based on boundary data\n\n Parameters\n ----------\n\n Returns\n -------\n None\n\n Notes\n -----\n This method doesn't have any return value, but it is cached\n so that on re-execution it doesn't recalculate.\n " boundaries = self._data ocean_boundaries = [] land_boundaries = [] interior_boundaries = [] if (boundaries is not None): for (ibtype, bnds) in boundaries.items(): if (ibtype is None): for (bnd_id, data) in bnds.items(): indexes = list(map(self.mesh.nodes.get_index_by_id, data['indexes'])) ocean_boundaries.append({'id': bnd_id, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) elif str(ibtype).endswith('1'): for (bnd_id, data) in bnds.items(): indexes = list(map(self.mesh.nodes.get_index_by_id, data['indexes'])) interior_boundaries.append({'id': bnd_id, 'ibtype': ibtype, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) else: for (bnd_id, data) in bnds.items(): _indexes = np.array(data['indexes']) if (_indexes.ndim > 1): new_indexes = [] for (i, line) in enumerate(_indexes.T): if ((i % 2) != 0): new_indexes.extend(np.flip(line)) else: new_indexes.extend(line) _indexes = np.array(new_indexes).flatten() else: _indexes = _indexes.flatten() indexes = list(map(self.mesh.nodes.get_index_by_id, _indexes)) land_boundaries.append({'id': bnd_id, 'ibtype': ibtype, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) self._ocean = gpd.GeoDataFrame(ocean_boundaries) self._land = gpd.GeoDataFrame(land_boundaries) self._interior = gpd.GeoDataFrame(interior_boundaries)
-1,658,431,923,495,654,700
Internal: Creates boundary dataframes based on boundary data Parameters ---------- Returns ------- None Notes ----- This method doesn't have any return value, but it is cached so that on re-execution it doesn't recalculate.
ocsmesh/mesh/mesh.py
_init_dataframes
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def _init_dataframes(self) -> None: "Internal: Creates boundary dataframes based on boundary data\n\n Parameters\n ----------\n\n Returns\n -------\n None\n\n Notes\n -----\n This method doesn't have any return value, but it is cached\n so that on re-execution it doesn't recalculate.\n " boundaries = self._data ocean_boundaries = [] land_boundaries = [] interior_boundaries = [] if (boundaries is not None): for (ibtype, bnds) in boundaries.items(): if (ibtype is None): for (bnd_id, data) in bnds.items(): indexes = list(map(self.mesh.nodes.get_index_by_id, data['indexes'])) ocean_boundaries.append({'id': bnd_id, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) elif str(ibtype).endswith('1'): for (bnd_id, data) in bnds.items(): indexes = list(map(self.mesh.nodes.get_index_by_id, data['indexes'])) interior_boundaries.append({'id': bnd_id, 'ibtype': ibtype, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) else: for (bnd_id, data) in bnds.items(): _indexes = np.array(data['indexes']) if (_indexes.ndim > 1): new_indexes = [] for (i, line) in enumerate(_indexes.T): if ((i % 2) != 0): new_indexes.extend(np.flip(line)) else: new_indexes.extend(line) _indexes = np.array(new_indexes).flatten() else: _indexes = _indexes.flatten() indexes = list(map(self.mesh.nodes.get_index_by_id, _indexes)) land_boundaries.append({'id': bnd_id, 'ibtype': ibtype, 'index_id': data['indexes'], 'indexes': indexes, 'geometry': LineString(self.mesh.coord[indexes])}) self._ocean = gpd.GeoDataFrame(ocean_boundaries) self._land = gpd.GeoDataFrame(land_boundaries) self._interior = gpd.GeoDataFrame(interior_boundaries)
def ocean(self) -> gpd.GeoDataFrame: 'Retrieve the ocean boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n ocean open boundary.\n ' self._init_dataframes() return self._ocean
-2,385,565,405,689,421,000
Retrieve the ocean boundary information dataframe Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing the geometry and information of ocean open boundary.
ocsmesh/mesh/mesh.py
ocean
noaa-ocs-modeling/OCSMesh
python
def ocean(self) -> gpd.GeoDataFrame: 'Retrieve the ocean boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n ocean open boundary.\n ' self._init_dataframes() return self._ocean
def land(self): 'Retrieve the land boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n land boundary.\n ' self._init_dataframes() return self._land
3,081,945,119,974,210,600
Retrieve the land boundary information dataframe Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing the geometry and information of land boundary.
ocsmesh/mesh/mesh.py
land
noaa-ocs-modeling/OCSMesh
python
def land(self): 'Retrieve the land boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n land boundary.\n ' self._init_dataframes() return self._land
def interior(self): 'Retrieve the island boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n island boundary.\n ' self._init_dataframes() return self._interior
2,270,183,772,908,834,600
Retrieve the island boundary information dataframe Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing the geometry and information of island boundary.
ocsmesh/mesh/mesh.py
interior
noaa-ocs-modeling/OCSMesh
python
def interior(self): 'Retrieve the island boundary information dataframe\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing the geometry and information of\n island boundary.\n ' self._init_dataframes() return self._interior
@property def data(self) -> Dict[(Optional[int], Any)]: 'Read-only property referencing the boundary data dictionary' return self._data
-235,149,111,437,052,400
Read-only property referencing the boundary data dictionary
ocsmesh/mesh/mesh.py
data
noaa-ocs-modeling/OCSMesh
python
@property def data(self) -> Dict[(Optional[int], Any)]: return self._data
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Retrieve the dataframe for all boundaries information\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing information for all boundaries shape\n and type.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " self._init_dataframes() data = [] for bnd in self.ocean().itertuples(): data.append({'id': bnd.id, 'ibtype': None, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) for bnd in self.land().itertuples(): data.append({'id': bnd.id, 'ibtype': bnd.ibtype, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) for bnd in self.interior().itertuples(): data.append({'id': bnd.id, 'ibtype': bnd.ibtype, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
6,958,329,802,786,839,000
Retrieve the dataframe for all boundaries information Parameters ---------- Returns ------- gpd.GeoDataFrame Dataframe containing information for all boundaries shape and type. Notes ----- The result of this method is cached, so that multiple calls to it won't result in multiple calculations. If the mesh is modified and the cache is not properly clear the calls to this method can result in invalid return values.
ocsmesh/mesh/mesh.py
__call__
noaa-ocs-modeling/OCSMesh
python
@lru_cache(maxsize=1) def __call__(self) -> gpd.GeoDataFrame: "Retrieve the dataframe for all boundaries information\n\n Parameters\n ----------\n\n Returns\n -------\n gpd.GeoDataFrame\n Dataframe containing information for all boundaries shape\n and type.\n\n Notes\n -----\n The result of this method is cached, so that multiple calls\n to it won't result in multiple calculations. If the mesh\n is modified and the cache is not properly clear the calls\n to this method can result in invalid return values.\n " self._init_dataframes() data = [] for bnd in self.ocean().itertuples(): data.append({'id': bnd.id, 'ibtype': None, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) for bnd in self.land().itertuples(): data.append({'id': bnd.id, 'ibtype': bnd.ibtype, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) for bnd in self.interior().itertuples(): data.append({'id': bnd.id, 'ibtype': bnd.ibtype, 'index_id': bnd.index_id, 'indexes': bnd.indexes, 'geometry': bnd.geometry}) return gpd.GeoDataFrame(data, crs=self.mesh.crs)
def __len__(self) -> int: 'Returns the number of boundary segments' return len(self())
-2,137,916,475,226,730,500
Returns the number of boundary segments
ocsmesh/mesh/mesh.py
__len__
noaa-ocs-modeling/OCSMesh
python
def __len__(self) -> int: return len(self())
def auto_generate(self, threshold: float=0.0, land_ibtype: int=0, interior_ibtype: int=1): 'Automatically detect boundaries based on elevation data.\n\n Parameters\n ----------\n threshold : float, default=0\n Threshold above which nodes are considered dry nodes\n for ocean vs land boundary detection\n land_ibtype : int, default=0\n Value to assign to land boundary type\n interior_ibtype : int, default=1\n Value to assign to island boundary type\n\n Returns\n -------\n None\n\n Raises\n ------\n ValueError\n If any of the values assigned to a mesh node is `np.nan`.\n\n Notes\n -----\n An edge is considered dry if any of the attached nodes are\n dry (its elevation is larger than or equal to the `threshold`).\n ' values = self.mesh.value if np.any(np.isnan(values)): raise ValueError('Mesh contains invalid values. Raster values mustbe interpolated to the mesh before generating boundaries.') coords = self.mesh.msh_t.vert2['coord'] coo_to_idx = {tuple(coo): idx for (idx, coo) in enumerate(coords)} polys = utils.get_mesh_polygons(self.mesh.msh_t) boundaries = defaultdict(defaultdict) bdry_type = dict get_id = self.mesh.nodes.get_id_by_index for poly in polys: ext_ring_coo = poly.exterior.coords ext_ring = np.array([(coo_to_idx[ext_ring_coo[e]], coo_to_idx[ext_ring_coo[(e + 1)]]) for (e, coo) in enumerate(ext_ring_coo[:(- 1)])]) edge_tag = np.full(ext_ring.shape, 0) edge_tag[(np.where((values[ext_ring[:, 0]] < threshold))[0], 0)] = (- 1) edge_tag[(np.where((values[ext_ring[:, 1]] < threshold))[0], 1)] = (- 1) edge_tag[(np.where((values[ext_ring[:, 0]] >= threshold))[0], 0)] = 1 edge_tag[(np.where((values[ext_ring[:, 1]] >= threshold))[0], 1)] = 1 ocean_boundary = [] land_boundary = [] for (i, (e0, e1)) in enumerate(edge_tag): if np.any((np.asarray((e0, e1)) == 1)): land_boundary.append(tuple(ext_ring[i, :])) elif np.any((np.asarray((e0, e1)) == (- 1))): ocean_boundary.append(tuple(ext_ring[i, :])) ocean_boundaries = [] if (len(ocean_boundary) != 0): ocean_segs = linemerge(coords[np.array(ocean_boundary)].tolist()) ocean_segs = ([ocean_segs] if isinstance(ocean_segs, LineString) else ocean_segs) ocean_boundaries = [[(coo_to_idx[seg.coords[e]], coo_to_idx[seg.coords[(e + 1)]]) for (e, coo) in enumerate(seg.coords[:(- 1)])] for seg in ocean_segs] land_boundaries = [] if (len(land_boundary) != 0): land_segs = linemerge(coords[np.array(land_boundary)].tolist()) land_segs = ([land_segs] if isinstance(land_segs, LineString) else land_segs) land_boundaries = [[(coo_to_idx[seg.coords[e]], coo_to_idx[seg.coords[(e + 1)]]) for (e, coo) in enumerate(seg.coords[:(- 1)])] for seg in land_segs] _bnd_id = len(boundaries[None]) for bnd in ocean_boundaries: (e0, e1) = [list(t) for t in zip(*bnd)] e0 = [get_id(vert) for vert in e0] data = (e0 + [get_id(e1[(- 1)])]) boundaries[None][_bnd_id] = bdry_type(indexes=data, properties={}) _bnd_id += 1 _bnd_id = len(boundaries[land_ibtype]) for bnd in land_boundaries: (e0, e1) = [list(t) for t in zip(*bnd)] e0 = [get_id(vert) for vert in e0] data = (e0 + [get_id(e1[(- 1)])]) boundaries[land_ibtype][_bnd_id] = bdry_type(indexes=data, properties={}) _bnd_id += 1 _bnd_id = 0 interior_boundaries = defaultdict() for poly in polys: interiors = poly.interiors for interior in interiors: int_ring_coo = interior.coords int_ring = [(coo_to_idx[int_ring_coo[e]], coo_to_idx[int_ring_coo[(e + 1)]]) for (e, coo) in enumerate(int_ring_coo[:(- 1)])] (e0, e1) = [list(t) for t in zip(*int_ring)] if (utils.signed_polygon_area(self.mesh.coord[e0, :]) < 0): e0 = e0[::(- 1)] e1 = e1[::(- 1)] e0 = [get_id(vert) for vert in e0] e0.append(e0[0]) interior_boundaries[_bnd_id] = e0 _bnd_id += 1 for (bnd_id, data) in interior_boundaries.items(): boundaries[interior_ibtype][bnd_id] = bdry_type(indexes=data, properties={}) self._data = boundaries self._init_dataframes.cache_clear() self.__call__.cache_clear() self._init_dataframes()
3,523,008,198,753,785,300
Automatically detect boundaries based on elevation data. Parameters ---------- threshold : float, default=0 Threshold above which nodes are considered dry nodes for ocean vs land boundary detection land_ibtype : int, default=0 Value to assign to land boundary type interior_ibtype : int, default=1 Value to assign to island boundary type Returns ------- None Raises ------ ValueError If any of the values assigned to a mesh node is `np.nan`. Notes ----- An edge is considered dry if any of the attached nodes are dry (its elevation is larger than or equal to the `threshold`).
ocsmesh/mesh/mesh.py
auto_generate
noaa-ocs-modeling/OCSMesh
python
def auto_generate(self, threshold: float=0.0, land_ibtype: int=0, interior_ibtype: int=1): 'Automatically detect boundaries based on elevation data.\n\n Parameters\n ----------\n threshold : float, default=0\n Threshold above which nodes are considered dry nodes\n for ocean vs land boundary detection\n land_ibtype : int, default=0\n Value to assign to land boundary type\n interior_ibtype : int, default=1\n Value to assign to island boundary type\n\n Returns\n -------\n None\n\n Raises\n ------\n ValueError\n If any of the values assigned to a mesh node is `np.nan`.\n\n Notes\n -----\n An edge is considered dry if any of the attached nodes are\n dry (its elevation is larger than or equal to the `threshold`).\n ' values = self.mesh.value if np.any(np.isnan(values)): raise ValueError('Mesh contains invalid values. Raster values mustbe interpolated to the mesh before generating boundaries.') coords = self.mesh.msh_t.vert2['coord'] coo_to_idx = {tuple(coo): idx for (idx, coo) in enumerate(coords)} polys = utils.get_mesh_polygons(self.mesh.msh_t) boundaries = defaultdict(defaultdict) bdry_type = dict get_id = self.mesh.nodes.get_id_by_index for poly in polys: ext_ring_coo = poly.exterior.coords ext_ring = np.array([(coo_to_idx[ext_ring_coo[e]], coo_to_idx[ext_ring_coo[(e + 1)]]) for (e, coo) in enumerate(ext_ring_coo[:(- 1)])]) edge_tag = np.full(ext_ring.shape, 0) edge_tag[(np.where((values[ext_ring[:, 0]] < threshold))[0], 0)] = (- 1) edge_tag[(np.where((values[ext_ring[:, 1]] < threshold))[0], 1)] = (- 1) edge_tag[(np.where((values[ext_ring[:, 0]] >= threshold))[0], 0)] = 1 edge_tag[(np.where((values[ext_ring[:, 1]] >= threshold))[0], 1)] = 1 ocean_boundary = [] land_boundary = [] for (i, (e0, e1)) in enumerate(edge_tag): if np.any((np.asarray((e0, e1)) == 1)): land_boundary.append(tuple(ext_ring[i, :])) elif np.any((np.asarray((e0, e1)) == (- 1))): ocean_boundary.append(tuple(ext_ring[i, :])) ocean_boundaries = [] if (len(ocean_boundary) != 0): ocean_segs = linemerge(coords[np.array(ocean_boundary)].tolist()) ocean_segs = ([ocean_segs] if isinstance(ocean_segs, LineString) else ocean_segs) ocean_boundaries = [[(coo_to_idx[seg.coords[e]], coo_to_idx[seg.coords[(e + 1)]]) for (e, coo) in enumerate(seg.coords[:(- 1)])] for seg in ocean_segs] land_boundaries = [] if (len(land_boundary) != 0): land_segs = linemerge(coords[np.array(land_boundary)].tolist()) land_segs = ([land_segs] if isinstance(land_segs, LineString) else land_segs) land_boundaries = [[(coo_to_idx[seg.coords[e]], coo_to_idx[seg.coords[(e + 1)]]) for (e, coo) in enumerate(seg.coords[:(- 1)])] for seg in land_segs] _bnd_id = len(boundaries[None]) for bnd in ocean_boundaries: (e0, e1) = [list(t) for t in zip(*bnd)] e0 = [get_id(vert) for vert in e0] data = (e0 + [get_id(e1[(- 1)])]) boundaries[None][_bnd_id] = bdry_type(indexes=data, properties={}) _bnd_id += 1 _bnd_id = len(boundaries[land_ibtype]) for bnd in land_boundaries: (e0, e1) = [list(t) for t in zip(*bnd)] e0 = [get_id(vert) for vert in e0] data = (e0 + [get_id(e1[(- 1)])]) boundaries[land_ibtype][_bnd_id] = bdry_type(indexes=data, properties={}) _bnd_id += 1 _bnd_id = 0 interior_boundaries = defaultdict() for poly in polys: interiors = poly.interiors for interior in interiors: int_ring_coo = interior.coords int_ring = [(coo_to_idx[int_ring_coo[e]], coo_to_idx[int_ring_coo[(e + 1)]]) for (e, coo) in enumerate(int_ring_coo[:(- 1)])] (e0, e1) = [list(t) for t in zip(*int_ring)] if (utils.signed_polygon_area(self.mesh.coord[e0, :]) < 0): e0 = e0[::(- 1)] e1 = e1[::(- 1)] e0 = [get_id(vert) for vert in e0] e0.append(e0[0]) interior_boundaries[_bnd_id] = e0 _bnd_id += 1 for (bnd_id, data) in interior_boundaries.items(): boundaries[interior_ibtype][bnd_id] = bdry_type(indexes=data, properties={}) self._data = boundaries self._init_dataframes.cache_clear() self.__call__.cache_clear() self._init_dataframes()
def test_BasicDatasetProfiler_null_column(): '\n The profiler should determine that null columns are of null cardinality and of null type and\n not to generate expectations specific to types and cardinality categories.\n\n We verify this by running the basic profiler on a Pandas dataset with an empty column\n and asserting the number of successful results for the empty columns.\n ' toy_dataset = PandasDataset({'x': [1, 2, 3], 'y': [None, None, None]}, data_asset_name='toy_dataset') assert (len(toy_dataset.get_expectation_suite(suppress_warnings=True)['expectations']) == 0) (expectations_config, evr_config) = BasicDatasetProfiler.profile(toy_dataset) assert (len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'y') and result['success'])]) == 4) assert (len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'y') and result['success'])]) < len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'x') and result['success'])]))
-1,926,499,559,757,927,400
The profiler should determine that null columns are of null cardinality and of null type and not to generate expectations specific to types and cardinality categories. We verify this by running the basic profiler on a Pandas dataset with an empty column and asserting the number of successful results for the empty columns.
tests/profile/test_profile.py
test_BasicDatasetProfiler_null_column
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_null_column(): '\n The profiler should determine that null columns are of null cardinality and of null type and\n not to generate expectations specific to types and cardinality categories.\n\n We verify this by running the basic profiler on a Pandas dataset with an empty column\n and asserting the number of successful results for the empty columns.\n ' toy_dataset = PandasDataset({'x': [1, 2, 3], 'y': [None, None, None]}, data_asset_name='toy_dataset') assert (len(toy_dataset.get_expectation_suite(suppress_warnings=True)['expectations']) == 0) (expectations_config, evr_config) = BasicDatasetProfiler.profile(toy_dataset) assert (len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'y') and result['success'])]) == 4) assert (len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'y') and result['success'])]) < len([result for result in evr_config['results'] if ((result['expectation_config']['kwargs'].get('column') == 'x') and result['success'])]))
def test_BasicDatasetProfiler_partially_null_column(dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a partially null column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n\n "nulls" is the partially null column in the fixture dataset\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_be_unique']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'nulls')]))
1,171,748,317,385,277,400
Unit test to check the expectations that BasicDatasetProfiler creates for a partially null column. The test is executed against all the backends (Pandas, Spark, etc.), because it uses the fixture. "nulls" is the partially null column in the fixture dataset
tests/profile/test_profile.py
test_BasicDatasetProfiler_partially_null_column
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_partially_null_column(dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a partially null column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n\n "nulls" is the partially null column in the fixture dataset\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_be_unique']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'nulls')]))
def test_BasicDatasetProfiler_non_numeric_low_cardinality(non_numeric_low_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a low cardinality\n non numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(non_numeric_low_card_dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_not_match_regex']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'lowcardnonnum')]))
8,949,136,718,048,000,000
Unit test to check the expectations that BasicDatasetProfiler creates for a low cardinality non numeric column. The test is executed against all the backends (Pandas, Spark, etc.), because it uses the fixture.
tests/profile/test_profile.py
test_BasicDatasetProfiler_non_numeric_low_cardinality
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_non_numeric_low_cardinality(non_numeric_low_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a low cardinality\n non numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(non_numeric_low_card_dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_not_match_regex']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'lowcardnonnum')]))
def test_BasicDatasetProfiler_non_numeric_high_cardinality(non_numeric_high_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality\n non numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(non_numeric_high_card_dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_not_match_regex']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'highcardnonnum')]))
-8,345,396,114,734,184,000
Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality non numeric column. The test is executed against all the backends (Pandas, Spark, etc.), because it uses the fixture.
tests/profile/test_profile.py
test_BasicDatasetProfiler_non_numeric_high_cardinality
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_non_numeric_high_cardinality(non_numeric_high_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality\n non numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(non_numeric_high_card_dataset) assert (set(['expect_column_to_exist', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_not_match_regex']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations'] if (expectation['kwargs'].get('column') == 'highcardnonnum')]))
def test_BasicDatasetProfiler_numeric_high_cardinality(numeric_high_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality\n numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(numeric_high_card_dataset) assert (set(['expect_column_to_exist', 'expect_table_row_count_to_be_between', 'expect_table_columns_to_match_ordered_list', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_be_unique']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations']]))
4,874,539,107,115,850,000
Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality numeric column. The test is executed against all the backends (Pandas, Spark, etc.), because it uses the fixture.
tests/profile/test_profile.py
test_BasicDatasetProfiler_numeric_high_cardinality
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_numeric_high_cardinality(numeric_high_card_dataset): '\n Unit test to check the expectations that BasicDatasetProfiler creates for a high cardinality\n numeric column.\n The test is executed against all the backends (Pandas, Spark, etc.), because it uses\n the fixture.\n ' (expectations_config, evr_config) = BasicDatasetProfiler.profile(numeric_high_card_dataset) assert (set(['expect_column_to_exist', 'expect_table_row_count_to_be_between', 'expect_table_columns_to_match_ordered_list', 'expect_column_values_to_be_in_type_list', 'expect_column_unique_value_count_to_be_between', 'expect_column_proportion_of_unique_values_to_be_between', 'expect_column_values_to_not_be_null', 'expect_column_values_to_be_in_set', 'expect_column_values_to_be_unique']) == set([expectation['expectation_type'] for expectation in expectations_config['expectations']]))
def test_context_profiler(empty_data_context, filesystem_csv_2): "This just validates that it's possible to profile using the datasource hook, and have\n validation results available in the DataContext" empty_data_context.add_datasource('my_datasource', module_name='great_expectations.datasource', class_name='PandasDatasource', base_directory=str(filesystem_csv_2)) not_so_empty_data_context = empty_data_context assert (not_so_empty_data_context.list_expectation_suite_keys() == []) not_so_empty_data_context.profile_datasource('my_datasource', profiler=BasicDatasetProfiler) assert (len(not_so_empty_data_context.list_expectation_suite_keys()) == 1) profiled_expectations = not_so_empty_data_context.get_expectation_suite('f1', 'BasicDatasetProfiler') print(json.dumps(profiled_expectations, indent=2)) for exp in profiled_expectations['expectations']: assert ('BasicDatasetProfiler' in exp['meta']) assert ('confidence' in exp['meta']['BasicDatasetProfiler']) assert (profiled_expectations['data_asset_name'] == 'my_datasource/default/f1') assert (profiled_expectations['expectation_suite_name'] == 'BasicDatasetProfiler') assert ('batch_kwargs' in profiled_expectations['meta']['BasicDatasetProfiler']) assert (len(profiled_expectations['expectations']) > 0)
-18,379,510,840,733,516
This just validates that it's possible to profile using the datasource hook, and have validation results available in the DataContext
tests/profile/test_profile.py
test_context_profiler
AdamHepner/great_expectations
python
def test_context_profiler(empty_data_context, filesystem_csv_2): "This just validates that it's possible to profile using the datasource hook, and have\n validation results available in the DataContext" empty_data_context.add_datasource('my_datasource', module_name='great_expectations.datasource', class_name='PandasDatasource', base_directory=str(filesystem_csv_2)) not_so_empty_data_context = empty_data_context assert (not_so_empty_data_context.list_expectation_suite_keys() == []) not_so_empty_data_context.profile_datasource('my_datasource', profiler=BasicDatasetProfiler) assert (len(not_so_empty_data_context.list_expectation_suite_keys()) == 1) profiled_expectations = not_so_empty_data_context.get_expectation_suite('f1', 'BasicDatasetProfiler') print(json.dumps(profiled_expectations, indent=2)) for exp in profiled_expectations['expectations']: assert ('BasicDatasetProfiler' in exp['meta']) assert ('confidence' in exp['meta']['BasicDatasetProfiler']) assert (profiled_expectations['data_asset_name'] == 'my_datasource/default/f1') assert (profiled_expectations['expectation_suite_name'] == 'BasicDatasetProfiler') assert ('batch_kwargs' in profiled_expectations['meta']['BasicDatasetProfiler']) assert (len(profiled_expectations['expectations']) > 0)
def test_BasicDatasetProfiler_on_titanic(): '\n A snapshot test for BasicDatasetProfiler.\n We are running the profiler on the Titanic dataset\n and comparing the EVRs to ones retrieved from a\n previously stored file.\n ' df = ge.read_csv('./tests/test_sets/Titanic.csv') (suite, evrs) = df.profile(BasicDatasetProfiler) print(json.dumps(suite['meta'], indent=2)) assert ('columns' in suite['meta']) for (k, v) in suite['meta']['columns'].items(): assert (v == {'description': ''}) evrs = df.validate(result_format='SUMMARY') with open('tests/test_sets/expected_evrs_BasicDatasetProfiler_on_titanic.json', 'r') as file: expected_evrs = json.load(file, object_pairs_hook=OrderedDict) expected_evrs.pop('meta') evrs.pop('meta') for result in evrs['results']: if ('partial_unexpected_counts' in result['result']): result['result'].pop('partial_unexpected_counts') for result in expected_evrs['results']: if ('partial_unexpected_counts' in result['result']): result['result'].pop('partial_unexpected_counts') if (not PY2): assertDeepAlmostEqual(expected_evrs, evrs)
8,954,095,020,677,000,000
A snapshot test for BasicDatasetProfiler. We are running the profiler on the Titanic dataset and comparing the EVRs to ones retrieved from a previously stored file.
tests/profile/test_profile.py
test_BasicDatasetProfiler_on_titanic
AdamHepner/great_expectations
python
def test_BasicDatasetProfiler_on_titanic(): '\n A snapshot test for BasicDatasetProfiler.\n We are running the profiler on the Titanic dataset\n and comparing the EVRs to ones retrieved from a\n previously stored file.\n ' df = ge.read_csv('./tests/test_sets/Titanic.csv') (suite, evrs) = df.profile(BasicDatasetProfiler) print(json.dumps(suite['meta'], indent=2)) assert ('columns' in suite['meta']) for (k, v) in suite['meta']['columns'].items(): assert (v == {'description': }) evrs = df.validate(result_format='SUMMARY') with open('tests/test_sets/expected_evrs_BasicDatasetProfiler_on_titanic.json', 'r') as file: expected_evrs = json.load(file, object_pairs_hook=OrderedDict) expected_evrs.pop('meta') evrs.pop('meta') for result in evrs['results']: if ('partial_unexpected_counts' in result['result']): result['result'].pop('partial_unexpected_counts') for result in expected_evrs['results']: if ('partial_unexpected_counts' in result['result']): result['result'].pop('partial_unexpected_counts') if (not PY2): assertDeepAlmostEqual(expected_evrs, evrs)
def concat_data(labelsfile, notes_file): '\n INPUTS:\n labelsfile: sorted by hadm id, contains one label per line\n notes_file: sorted by hadm id, contains one note per line\n ' with open(labelsfile, 'r') as lf: print('CONCATENATING') with open(notes_file, 'r') as notesfile: outfilename = ('%s/notes_labeled.csv' % MIMIC_3_DIR) with open(outfilename, 'w') as outfile: w = csv.writer(outfile) w.writerow(['SUBJECT_ID', 'HADM_ID', 'TEXT', 'LABELS']) labels_gen = next_labels(lf) notes_gen = next_notes(notesfile) for (i, (subj_id, text, hadm_id)) in enumerate(notes_gen): if ((i % 10000) == 0): print((str(i) + ' done')) (cur_subj, cur_labels, cur_hadm) = next(labels_gen) if (cur_hadm == hadm_id): w.writerow([subj_id, str(hadm_id), text, ';'.join(cur_labels)]) else: print("couldn't find matching hadm_id. data is probably not sorted correctly") break return outfilename
-3,154,365,080,102,165,500
INPUTS: labelsfile: sorted by hadm id, contains one label per line notes_file: sorted by hadm id, contains one note per line
dataproc/concat_and_split.py
concat_data
franzbischoff/caml-mimic
python
def concat_data(labelsfile, notes_file): '\n INPUTS:\n labelsfile: sorted by hadm id, contains one label per line\n notes_file: sorted by hadm id, contains one note per line\n ' with open(labelsfile, 'r') as lf: print('CONCATENATING') with open(notes_file, 'r') as notesfile: outfilename = ('%s/notes_labeled.csv' % MIMIC_3_DIR) with open(outfilename, 'w') as outfile: w = csv.writer(outfile) w.writerow(['SUBJECT_ID', 'HADM_ID', 'TEXT', 'LABELS']) labels_gen = next_labels(lf) notes_gen = next_notes(notesfile) for (i, (subj_id, text, hadm_id)) in enumerate(notes_gen): if ((i % 10000) == 0): print((str(i) + ' done')) (cur_subj, cur_labels, cur_hadm) = next(labels_gen) if (cur_hadm == hadm_id): w.writerow([subj_id, str(hadm_id), text, ';'.join(cur_labels)]) else: print("couldn't find matching hadm_id. data is probably not sorted correctly") break return outfilename
def next_labels(labelsfile): '\n Generator for label sets from the label file\n ' labels_reader = csv.reader(labelsfile) next(labels_reader) first_label_line = next(labels_reader) cur_subj = int(first_label_line[0]) cur_hadm = int(first_label_line[1]) cur_labels = [first_label_line[2]] for row in labels_reader: subj_id = int(row[0]) hadm_id = int(row[1]) code = row[2] if ((hadm_id != cur_hadm) or (subj_id != cur_subj)): (yield (cur_subj, cur_labels, cur_hadm)) cur_labels = [code] cur_subj = subj_id cur_hadm = hadm_id else: cur_labels.append(code) (yield (cur_subj, cur_labels, cur_hadm))
7,989,241,263,583,836,000
Generator for label sets from the label file
dataproc/concat_and_split.py
next_labels
franzbischoff/caml-mimic
python
def next_labels(labelsfile): '\n \n ' labels_reader = csv.reader(labelsfile) next(labels_reader) first_label_line = next(labels_reader) cur_subj = int(first_label_line[0]) cur_hadm = int(first_label_line[1]) cur_labels = [first_label_line[2]] for row in labels_reader: subj_id = int(row[0]) hadm_id = int(row[1]) code = row[2] if ((hadm_id != cur_hadm) or (subj_id != cur_subj)): (yield (cur_subj, cur_labels, cur_hadm)) cur_labels = [code] cur_subj = subj_id cur_hadm = hadm_id else: cur_labels.append(code) (yield (cur_subj, cur_labels, cur_hadm))
def next_notes(notesfile): '\n Generator for notes from the notes file\n This will also concatenate discharge summaries and their addenda, which have the same subject and hadm id\n ' nr = csv.reader(notesfile) next(nr) first_note = next(nr) cur_subj = int(first_note[0]) cur_hadm = int(first_note[1]) cur_text = first_note[3] for row in nr: subj_id = int(row[0]) hadm_id = int(row[1]) text = row[3] if ((hadm_id != cur_hadm) or (subj_id != cur_subj)): (yield (cur_subj, cur_text, cur_hadm)) cur_text = text cur_subj = subj_id cur_hadm = hadm_id else: cur_text += (' ' + text) (yield (cur_subj, cur_text, cur_hadm))
8,890,814,948,314,462,000
Generator for notes from the notes file This will also concatenate discharge summaries and their addenda, which have the same subject and hadm id
dataproc/concat_and_split.py
next_notes
franzbischoff/caml-mimic
python
def next_notes(notesfile): '\n Generator for notes from the notes file\n This will also concatenate discharge summaries and their addenda, which have the same subject and hadm id\n ' nr = csv.reader(notesfile) next(nr) first_note = next(nr) cur_subj = int(first_note[0]) cur_hadm = int(first_note[1]) cur_text = first_note[3] for row in nr: subj_id = int(row[0]) hadm_id = int(row[1]) text = row[3] if ((hadm_id != cur_hadm) or (subj_id != cur_subj)): (yield (cur_subj, cur_text, cur_hadm)) cur_text = text cur_subj = subj_id cur_hadm = hadm_id else: cur_text += (' ' + text) (yield (cur_subj, cur_text, cur_hadm))
def _prediction_loop(self, dataloader: DataLoader, description: str, task_name: str, mode: str, prediction_loss_only: Optional[bool]=None) -> PredictionOutput: '\n Prediction/evaluation loop, shared by `evaluate()` and `predict()`.\n Works both with or without labels.\n ' prediction_loss_only = (prediction_loss_only if (prediction_loss_only is not None) else self.prediction_loss_only) model = self.model if (self.args.n_gpu > 1): model = torch.nn.DataParallel(model) else: model = self.model batch_size = dataloader.batch_size logger.info('***** Running %s *****', description) logger.info(' Num examples = %d', self.num_examples(dataloader)) logger.info(' Batch size = %d', batch_size) eval_losses: List[float] = [] preds: torch.Tensor = None label_ids: torch.Tensor = None model.eval() if is_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) for inputs in tqdm(dataloader, desc=description): has_labels = any(((inputs.get(k) is not None) for k in ['labels', 'lm_labels', 'masked_lm_labels'])) for (k, v) in inputs.items(): inputs[k] = v.to(self.args.device) with torch.no_grad(): outputs = model(**inputs) if has_labels: (step_eval_loss, logits) = outputs[:2] eval_losses += [step_eval_loss.mean().item()] else: logits = outputs[0] if (not prediction_loss_only): if (preds is None): preds = logits.detach() else: preds = torch.cat((preds, logits.detach()), dim=0) if (inputs.get('labels') is not None): if (label_ids is None): label_ids = inputs['labels'].detach() else: label_ids = torch.cat((label_ids, inputs['labels'].detach()), dim=0) if (self.args.local_rank != (- 1)): if (preds is not None): preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader)) if (label_ids is not None): label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader)) elif is_tpu_available(): if (preds is not None): preds = xm.mesh_reduce('eval_preds', preds, torch.cat) if (label_ids is not None): label_ids = xm.mesh_reduce('eval_label_ids', label_ids, torch.cat) if (preds is not None): preds = preds.cpu().numpy() if (label_ids is not None): label_ids = label_ids.cpu().numpy() if ((self.compute_metrics is not None) and (preds is not None) and (label_ids is not None)): metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if (len(eval_losses) > 0): metrics[f'{task_name}_{mode}_loss'] = np.mean(eval_losses) for key in list(metrics.keys()): if (not key.startswith(f'{task_name}_{mode}_')): metrics[f'{task_name}_{mode}_{key}'] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
4,250,822,879,790,479,400
Prediction/evaluation loop, shared by `evaluate()` and `predict()`. Works both with or without labels.
src/mtl_trainer.py
_prediction_loop
Daupler/CA-MTL
python
def _prediction_loop(self, dataloader: DataLoader, description: str, task_name: str, mode: str, prediction_loss_only: Optional[bool]=None) -> PredictionOutput: '\n Prediction/evaluation loop, shared by `evaluate()` and `predict()`.\n Works both with or without labels.\n ' prediction_loss_only = (prediction_loss_only if (prediction_loss_only is not None) else self.prediction_loss_only) model = self.model if (self.args.n_gpu > 1): model = torch.nn.DataParallel(model) else: model = self.model batch_size = dataloader.batch_size logger.info('***** Running %s *****', description) logger.info(' Num examples = %d', self.num_examples(dataloader)) logger.info(' Batch size = %d', batch_size) eval_losses: List[float] = [] preds: torch.Tensor = None label_ids: torch.Tensor = None model.eval() if is_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) for inputs in tqdm(dataloader, desc=description): has_labels = any(((inputs.get(k) is not None) for k in ['labels', 'lm_labels', 'masked_lm_labels'])) for (k, v) in inputs.items(): inputs[k] = v.to(self.args.device) with torch.no_grad(): outputs = model(**inputs) if has_labels: (step_eval_loss, logits) = outputs[:2] eval_losses += [step_eval_loss.mean().item()] else: logits = outputs[0] if (not prediction_loss_only): if (preds is None): preds = logits.detach() else: preds = torch.cat((preds, logits.detach()), dim=0) if (inputs.get('labels') is not None): if (label_ids is None): label_ids = inputs['labels'].detach() else: label_ids = torch.cat((label_ids, inputs['labels'].detach()), dim=0) if (self.args.local_rank != (- 1)): if (preds is not None): preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader)) if (label_ids is not None): label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader)) elif is_tpu_available(): if (preds is not None): preds = xm.mesh_reduce('eval_preds', preds, torch.cat) if (label_ids is not None): label_ids = xm.mesh_reduce('eval_label_ids', label_ids, torch.cat) if (preds is not None): preds = preds.cpu().numpy() if (label_ids is not None): label_ids = label_ids.cpu().numpy() if ((self.compute_metrics is not None) and (preds is not None) and (label_ids is not None)): metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if (len(eval_losses) > 0): metrics[f'{task_name}_{mode}_loss'] = np.mean(eval_losses) for key in list(metrics.keys()): if (not key.startswith(f'{task_name}_{mode}_')): metrics[f'{task_name}_{mode}_{key}'] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
def get_health(self, **kwargs): 'Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501\n\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.get_health(async_req=True)\n >>> result = thread.get()\n\n :param async_req bool\n :param str zap_trace_span: OpenTracing span context\n :return: HealthCheck\n If the method is called asynchronously,\n returns the request thread.\n ' kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_health_with_http_info(**kwargs) else: data = self.get_health_with_http_info(**kwargs) return data
4,016,601,636,423,578,000
Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_health(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: HealthCheck If the method is called asynchronously, returns the request thread.
influxdb_client/service/health_service.py
get_health
rhajek/influxdb-client-python
python
def get_health(self, **kwargs): 'Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501\n\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.get_health(async_req=True)\n >>> result = thread.get()\n\n :param async_req bool\n :param str zap_trace_span: OpenTracing span context\n :return: HealthCheck\n If the method is called asynchronously,\n returns the request thread.\n ' kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_health_with_http_info(**kwargs) else: data = self.get_health_with_http_info(**kwargs) return data
def get_health_with_http_info(self, **kwargs): 'Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501\n\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.get_health_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param async_req bool\n :param str zap_trace_span: OpenTracing span context\n :return: HealthCheck\n If the method is called asynchronously,\n returns the request thread.\n ' local_var_params = locals() all_params = ['zap_trace_span'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') for (key, val) in six.iteritems(local_var_params['kwargs']): if (key not in all_params): raise TypeError(("Got an unexpected keyword argument '%s' to method get_health" % key)) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} if ('zap_trace_span' in local_var_params): header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept(['application/json']) auth_settings = [] return self.api_client.call_api('/health', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HealthCheck', auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
4,269,785,489,427,170,000
Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_health_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: HealthCheck If the method is called asynchronously, returns the request thread.
influxdb_client/service/health_service.py
get_health_with_http_info
rhajek/influxdb-client-python
python
def get_health_with_http_info(self, **kwargs): 'Get the health of an instance anytime during execution. Allow us to check if the instance is still healthy. # noqa: E501\n\n This method makes a synchronous HTTP request by default. To make an\n asynchronous HTTP request, please pass async_req=True\n >>> thread = api.get_health_with_http_info(async_req=True)\n >>> result = thread.get()\n\n :param async_req bool\n :param str zap_trace_span: OpenTracing span context\n :return: HealthCheck\n If the method is called asynchronously,\n returns the request thread.\n ' local_var_params = locals() all_params = ['zap_trace_span'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') for (key, val) in six.iteritems(local_var_params['kwargs']): if (key not in all_params): raise TypeError(("Got an unexpected keyword argument '%s' to method get_health" % key)) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} if ('zap_trace_span' in local_var_params): header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept(['application/json']) auth_settings = [] return self.api_client.call_api('/health', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HealthCheck', auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
def group_policies_gen(flat_policies, config): 'Filter policies using the following steps:\n 1. Apply prioritization among the policies that are sharing the same policy type and resource type\n 2. Remove redundant policies that may applicable across different types of resource\n 3. Filter policies based on type and return\n :param flat_policies: list of flat policies\n :return: Filtered policies\n ' filtered_policies = defaultdict(list) policy_name = [] policies = [x for x in flat_policies if x[list(x.keys())[0]]['type']] priority = config.get('policy_info', {}).get('prioritization_attributes', {}) aggregated_policies = dict() for plc in policies: attrs = [dot_notation(plc[list(plc.keys())[0]], dot_path) for key in priority.keys() for dot_path in priority[key]] attrs_list = [(x if isinstance(x, list) else [x]) for x in attrs] attributes = [(list_flatten(x) if isinstance(x, list) else x) for x in attrs_list] for y in itertools.product(*attributes): aggregated_policies.setdefault(y, []) aggregated_policies[y].append(plc) for key in aggregated_policies.keys(): prioritized_policy = aggregated_policies[key][0] if (list(prioritized_policy.keys())[0] not in policy_name): filtered_policies[prioritized_policy[list(prioritized_policy.keys())[0]]['type']].append(prioritized_policy) policy_name.append(list(prioritized_policy.keys())[0]) return filtered_policies
5,871,645,693,051,403,000
Filter policies using the following steps: 1. Apply prioritization among the policies that are sharing the same policy type and resource type 2. Remove redundant policies that may applicable across different types of resource 3. Filter policies based on type and return :param flat_policies: list of flat policies :return: Filtered policies
osdf/adapters/policy/utils.py
group_policies_gen
onap/optf-osdf
python
def group_policies_gen(flat_policies, config): 'Filter policies using the following steps:\n 1. Apply prioritization among the policies that are sharing the same policy type and resource type\n 2. Remove redundant policies that may applicable across different types of resource\n 3. Filter policies based on type and return\n :param flat_policies: list of flat policies\n :return: Filtered policies\n ' filtered_policies = defaultdict(list) policy_name = [] policies = [x for x in flat_policies if x[list(x.keys())[0]]['type']] priority = config.get('policy_info', {}).get('prioritization_attributes', {}) aggregated_policies = dict() for plc in policies: attrs = [dot_notation(plc[list(plc.keys())[0]], dot_path) for key in priority.keys() for dot_path in priority[key]] attrs_list = [(x if isinstance(x, list) else [x]) for x in attrs] attributes = [(list_flatten(x) if isinstance(x, list) else x) for x in attrs_list] for y in itertools.product(*attributes): aggregated_policies.setdefault(y, []) aggregated_policies[y].append(plc) for key in aggregated_policies.keys(): prioritized_policy = aggregated_policies[key][0] if (list(prioritized_policy.keys())[0] not in policy_name): filtered_policies[prioritized_policy[list(prioritized_policy.keys())[0]]['type']].append(prioritized_policy) policy_name.append(list(prioritized_policy.keys())[0]) return filtered_policies
def policy_name_as_regex(policy_name): 'Get the correct policy name as a regex\n (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml\n So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)\n :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy\n :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*\n ' p = policy_name.partition('.') return ((((p[0] + p[1]) + '.*') + p[2]) + '.*')
3,389,865,022,879,833,600
Get the correct policy name as a regex (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*) :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*
osdf/adapters/policy/utils.py
policy_name_as_regex
onap/optf-osdf
python
def policy_name_as_regex(policy_name): 'Get the correct policy name as a regex\n (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml\n So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)\n :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy\n :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*\n ' p = policy_name.partition('.') return ((((p[0] + p[1]) + '.*') + p[2]) + '.*')
def retrieve_node(req_json, reference): '\n Get the child node(s) from the dot-notation [reference] and parent [req_json].\n For placement and other requests, there are encoded JSONs inside the request or policy,\n so we need to expand it and then do a search over the parent plus expanded JSON.\n ' req_json_copy = copy.deepcopy(req_json) info = dot_notation(req_json_copy, reference) return (list_flatten(info) if isinstance(info, list) else info)
8,100,758,929,228,773,000
Get the child node(s) from the dot-notation [reference] and parent [req_json]. For placement and other requests, there are encoded JSONs inside the request or policy, so we need to expand it and then do a search over the parent plus expanded JSON.
osdf/adapters/policy/utils.py
retrieve_node
onap/optf-osdf
python
def retrieve_node(req_json, reference): '\n Get the child node(s) from the dot-notation [reference] and parent [req_json].\n For placement and other requests, there are encoded JSONs inside the request or policy,\n so we need to expand it and then do a search over the parent plus expanded JSON.\n ' req_json_copy = copy.deepcopy(req_json) info = dot_notation(req_json_copy, reference) return (list_flatten(info) if isinstance(info, list) else info)
def read_pkl(path_pkl): '\n Get a WaterFrame from a pickle file.\n\n Parameters\n ----------\n path_pkl: str\n Location of the pickle file.\n\n Returns\n -------\n wf_pkl: WaterFrame\n ' wf_pkl = WaterFrame() pickle_dataset = pickle.load(open(path_pkl, 'rb')) wf_pkl.data = pickle_dataset.get('data') wf_pkl.vocabulary = pickle_dataset.get('vocabulary') wf_pkl.metadata = pickle_dataset.get('metadata') return wf_pkl
-1,526,109,206,076,102,700
Get a WaterFrame from a pickle file. Parameters ---------- path_pkl: str Location of the pickle file. Returns ------- wf_pkl: WaterFrame
mooda/input/read_pkl.py
read_pkl
rbardaji/mooda
python
def read_pkl(path_pkl): '\n Get a WaterFrame from a pickle file.\n\n Parameters\n ----------\n path_pkl: str\n Location of the pickle file.\n\n Returns\n -------\n wf_pkl: WaterFrame\n ' wf_pkl = WaterFrame() pickle_dataset = pickle.load(open(path_pkl, 'rb')) wf_pkl.data = pickle_dataset.get('data') wf_pkl.vocabulary = pickle_dataset.get('vocabulary') wf_pkl.metadata = pickle_dataset.get('metadata') return wf_pkl
@property def color(self): "\n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, rebeccapurple, saddlebrown, salmon,\n sandybrown, seagreen, seashell, sienna, silver,\n skyblue, slateblue, slategray, slategrey, snow,\n springgreen, steelblue, tan, teal, thistle, tomato,\n turquoise, violet, wheat, white, whitesmoke,\n yellow, yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
-9,075,663,790,309,021,000
The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
color
1abner1/plotly.py
python
@property def color(self): "\n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, rebeccapurple, saddlebrown, salmon,\n sandybrown, seagreen, seashell, sienna, silver,\n skyblue, slateblue, slategray, slategrey, snow,\n springgreen, steelblue, tan, teal, thistle, tomato,\n turquoise, violet, wheat, white, whitesmoke,\n yellow, yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
@property def colorsrc(self): "\n Sets the source reference on Chart Studio Cloud for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
4,662,598,374,469,181,000
Sets the source reference on Chart Studio Cloud for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
colorsrc
1abner1/plotly.py
python
@property def colorsrc(self): "\n Sets the source reference on Chart Studio Cloud for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
@property def family(self): '\n HTML font family - the typeface that will be applied by the web\n browser. The web browser will only be able to apply a font if\n it is available on the system which it operates. Provide\n multiple font families, separated by commas, to indicate the\n preference in which to apply fonts if they aren\'t available on\n the system. The Chart Studio Cloud (at https://chart-\n studio.plotly.com or on-premise) generates images on a server,\n where only a select number of fonts are installed and\n supported. These include "Arial", "Balto", "Courier New",\n "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas\n One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n \n The \'family\' property is a string and must be specified as:\n - A non-empty string\n\n Returns\n -------\n str\n ' return self['family']
3,791,649,582,837,001,000
HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
family
1abner1/plotly.py
python
@property def family(self): '\n HTML font family - the typeface that will be applied by the web\n browser. The web browser will only be able to apply a font if\n it is available on the system which it operates. Provide\n multiple font families, separated by commas, to indicate the\n preference in which to apply fonts if they aren\'t available on\n the system. The Chart Studio Cloud (at https://chart-\n studio.plotly.com or on-premise) generates images on a server,\n where only a select number of fonts are installed and\n supported. These include "Arial", "Balto", "Courier New",\n "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas\n One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n \n The \'family\' property is a string and must be specified as:\n - A non-empty string\n\n Returns\n -------\n str\n ' return self['family']
@property def size(self): "\n The 'size' property is a number and may be specified as:\n - An int or float in the interval [1, inf]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['size']
6,887,128,696,685,480,000
The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
size
1abner1/plotly.py
python
@property def size(self): "\n The 'size' property is a number and may be specified as:\n - An int or float in the interval [1, inf]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['size']
@property def sizesrc(self): "\n Sets the source reference on Chart Studio Cloud for size .\n \n The 'sizesrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['sizesrc']
4,336,256,729,131,089,000
Sets the source reference on Chart Studio Cloud for size . The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
sizesrc
1abner1/plotly.py
python
@property def sizesrc(self): "\n Sets the source reference on Chart Studio Cloud for size .\n \n The 'sizesrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['sizesrc']
def __init__(self, arg=None, color=None, colorsrc=None, family=None, size=None, sizesrc=None, **kwargs): '\n Construct a new Textfont object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of\n :class:`plotly.graph_objs.scatter3d.Textfont`\n color\n\n colorsrc\n Sets the source reference on Chart Studio Cloud for\n color .\n family\n HTML font family - the typeface that will be applied by\n the web browser. The web browser will only be able to\n apply a font if it is available on the system which it\n operates. Provide multiple font families, separated by\n commas, to indicate the preference in which to apply\n fonts if they aren\'t available on the system. The Chart\n Studio Cloud (at https://chart-studio.plotly.com or on-\n premise) generates images on a server, where only a\n select number of fonts are installed and supported.\n These include "Arial", "Balto", "Courier New", "Droid\n Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas\n One", "Old Standard TT", "Open Sans", "Overpass", "PT\n Sans Narrow", "Raleway", "Times New Roman".\n size\n\n sizesrc\n Sets the source reference on Chart Studio Cloud for\n size .\n\n Returns\n -------\n Textfont\n ' super(Textfont, self).__init__('textfont') if ('_parent' in kwargs): self._parent = kwargs['_parent'] return if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.scatter3d.Textfont \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.scatter3d.Textfont`') self._skip_invalid = kwargs.pop('skip_invalid', False) self._validate = kwargs.pop('_validate', True) _v = arg.pop('color', None) _v = (color if (color is not None) else _v) if (_v is not None): self['color'] = _v _v = arg.pop('colorsrc', None) _v = (colorsrc if (colorsrc is not None) else _v) if (_v is not None): self['colorsrc'] = _v _v = arg.pop('family', None) _v = (family if (family is not None) else _v) if (_v is not None): self['family'] = _v _v = arg.pop('size', None) _v = (size if (size is not None) else _v) if (_v is not None): self['size'] = _v _v = arg.pop('sizesrc', None) _v = (sizesrc if (sizesrc is not None) else _v) if (_v is not None): self['sizesrc'] = _v self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
5,340,964,613,872,540,000
Construct a new Textfont object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scatter3d.Textfont` color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size sizesrc Sets the source reference on Chart Studio Cloud for size . Returns ------- Textfont
packages/python/plotly/plotly/graph_objs/scatter3d/_textfont.py
__init__
1abner1/plotly.py
python
def __init__(self, arg=None, color=None, colorsrc=None, family=None, size=None, sizesrc=None, **kwargs): '\n Construct a new Textfont object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of\n :class:`plotly.graph_objs.scatter3d.Textfont`\n color\n\n colorsrc\n Sets the source reference on Chart Studio Cloud for\n color .\n family\n HTML font family - the typeface that will be applied by\n the web browser. The web browser will only be able to\n apply a font if it is available on the system which it\n operates. Provide multiple font families, separated by\n commas, to indicate the preference in which to apply\n fonts if they aren\'t available on the system. The Chart\n Studio Cloud (at https://chart-studio.plotly.com or on-\n premise) generates images on a server, where only a\n select number of fonts are installed and supported.\n These include "Arial", "Balto", "Courier New", "Droid\n Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas\n One", "Old Standard TT", "Open Sans", "Overpass", "PT\n Sans Narrow", "Raleway", "Times New Roman".\n size\n\n sizesrc\n Sets the source reference on Chart Studio Cloud for\n size .\n\n Returns\n -------\n Textfont\n ' super(Textfont, self).__init__('textfont') if ('_parent' in kwargs): self._parent = kwargs['_parent'] return if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.scatter3d.Textfont \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.scatter3d.Textfont`') self._skip_invalid = kwargs.pop('skip_invalid', False) self._validate = kwargs.pop('_validate', True) _v = arg.pop('color', None) _v = (color if (color is not None) else _v) if (_v is not None): self['color'] = _v _v = arg.pop('colorsrc', None) _v = (colorsrc if (colorsrc is not None) else _v) if (_v is not None): self['colorsrc'] = _v _v = arg.pop('family', None) _v = (family if (family is not None) else _v) if (_v is not None): self['family'] = _v _v = arg.pop('size', None) _v = (size if (size is not None) else _v) if (_v is not None): self['size'] = _v _v = arg.pop('sizesrc', None) _v = (sizesrc if (sizesrc is not None) else _v) if (_v is not None): self['sizesrc'] = _v self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def testConvertHeadersValues(self): 'Tests the _ConvertHeadersValues function.' plugin = msie_webcache.MsieWebCacheESEDBPlugin() binary_value = b'HTTP/1.1 200 OK\r\nContent-Type: image/png\r\nX-Content-Type-Options: nosniff\r\nContent-Length: 2759\r\nX-XSS-Protection: 1; mode=block\r\nAlternate-Protocol: 80:quic\r\n\r\n' expected_headers_value = '[HTTP/1.1 200 OK; Content-Type: image/png; X-Content-Type-Options: nosniff; Content-Length: 2759; X-XSS-Protection: 1; mode=block; Alternate-Protocol: 80:quic]' headers_value = plugin._ConvertHeadersValues(binary_value) self.assertEqual(headers_value, expected_headers_value)
3,312,209,579,307,669,500
Tests the _ConvertHeadersValues function.
tests/parsers/esedb_plugins/msie_webcache.py
testConvertHeadersValues
ColdSmoke627/plaso
python
def testConvertHeadersValues(self): plugin = msie_webcache.MsieWebCacheESEDBPlugin() binary_value = b'HTTP/1.1 200 OK\r\nContent-Type: image/png\r\nX-Content-Type-Options: nosniff\r\nContent-Length: 2759\r\nX-XSS-Protection: 1; mode=block\r\nAlternate-Protocol: 80:quic\r\n\r\n' expected_headers_value = '[HTTP/1.1 200 OK; Content-Type: image/png; X-Content-Type-Options: nosniff; Content-Length: 2759; X-XSS-Protection: 1; mode=block; Alternate-Protocol: 80:quic]' headers_value = plugin._ConvertHeadersValues(binary_value) self.assertEqual(headers_value, expected_headers_value)
def testProcessOnDatabaseWithPartitionsTable(self): 'Tests the Process function on database with a Partitions table.' plugin = msie_webcache.MsieWebCacheESEDBPlugin() storage_writer = self._ParseESEDBFileWithPlugin(['WebCacheV01.dat'], plugin) self.assertEqual(storage_writer.number_of_events, 1372) self.assertEqual(storage_writer.number_of_extraction_warnings, 0) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetSortedEvents()) expected_event_values = {'container_identifier': 1, 'data_type': 'msie:webcache:containers', 'date_time': '2014-05-12 07:30:25.4861987', 'directory': 'C:\\Users\\test\\AppData\\Local\\Microsoft\\Windows\\INetCache\\IE\\', 'name': 'Content', 'set_identifier': 0, 'timestamp_desc': definitions.TIME_DESCRIPTION_LAST_ACCESS} self.CheckEventValues(storage_writer, events[573], expected_event_values)
-4,337,249,863,847,990,300
Tests the Process function on database with a Partitions table.
tests/parsers/esedb_plugins/msie_webcache.py
testProcessOnDatabaseWithPartitionsTable
ColdSmoke627/plaso
python
def testProcessOnDatabaseWithPartitionsTable(self): plugin = msie_webcache.MsieWebCacheESEDBPlugin() storage_writer = self._ParseESEDBFileWithPlugin(['WebCacheV01.dat'], plugin) self.assertEqual(storage_writer.number_of_events, 1372) self.assertEqual(storage_writer.number_of_extraction_warnings, 0) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetSortedEvents()) expected_event_values = {'container_identifier': 1, 'data_type': 'msie:webcache:containers', 'date_time': '2014-05-12 07:30:25.4861987', 'directory': 'C:\\Users\\test\\AppData\\Local\\Microsoft\\Windows\\INetCache\\IE\\', 'name': 'Content', 'set_identifier': 0, 'timestamp_desc': definitions.TIME_DESCRIPTION_LAST_ACCESS} self.CheckEventValues(storage_writer, events[573], expected_event_values)
def testProcessOnDatabaseWithPartitionsExTable(self): 'Tests the Process function on database with a PartitionsEx table.' plugin = msie_webcache.MsieWebCacheESEDBPlugin() storage_writer = self._ParseESEDBFileWithPlugin(['PartitionsEx-WebCacheV01.dat'], plugin) self.assertEqual(storage_writer.number_of_events, 4200) self.assertEqual(storage_writer.number_of_extraction_warnings, 3) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetSortedEvents()) expected_event_values = {'access_count': 5, 'cache_identifier': 0, 'cached_file_size': 726, 'cached_filename': 'b83d57c0[1].svg', 'container_identifier': 14, 'data_type': 'msie:webcache:container', 'date_time': '2019-03-20 17:22:14.0000000', 'entry_identifier': 63, 'sync_count': 0, 'response_headers': '[HTTP/1.1 200; content-length: 726; content-type: image/svg+xml; x-cache: TCP_HIT; x-msedge-ref: Ref A: 3CD5FCBC8EAD4E0A80FA41A62FBC8CCC Ref B: PRAEDGE0910 Ref C: 2019-12-16T20:55:28Z; date: Mon, 16 Dec 2019 20:55:28 GMT]', 'timestamp_desc': definitions.TIME_DESCRIPTION_MODIFICATION, 'url': 'https://www.bing.com/rs/3R/kD/ic/878ca0cd/b83d57c0.svg'} self.CheckEventValues(storage_writer, events[100], expected_event_values)
6,452,848,726,871,535,000
Tests the Process function on database with a PartitionsEx table.
tests/parsers/esedb_plugins/msie_webcache.py
testProcessOnDatabaseWithPartitionsExTable
ColdSmoke627/plaso
python
def testProcessOnDatabaseWithPartitionsExTable(self): plugin = msie_webcache.MsieWebCacheESEDBPlugin() storage_writer = self._ParseESEDBFileWithPlugin(['PartitionsEx-WebCacheV01.dat'], plugin) self.assertEqual(storage_writer.number_of_events, 4200) self.assertEqual(storage_writer.number_of_extraction_warnings, 3) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetSortedEvents()) expected_event_values = {'access_count': 5, 'cache_identifier': 0, 'cached_file_size': 726, 'cached_filename': 'b83d57c0[1].svg', 'container_identifier': 14, 'data_type': 'msie:webcache:container', 'date_time': '2019-03-20 17:22:14.0000000', 'entry_identifier': 63, 'sync_count': 0, 'response_headers': '[HTTP/1.1 200; content-length: 726; content-type: image/svg+xml; x-cache: TCP_HIT; x-msedge-ref: Ref A: 3CD5FCBC8EAD4E0A80FA41A62FBC8CCC Ref B: PRAEDGE0910 Ref C: 2019-12-16T20:55:28Z; date: Mon, 16 Dec 2019 20:55:28 GMT]', 'timestamp_desc': definitions.TIME_DESCRIPTION_MODIFICATION, 'url': 'https://www.bing.com/rs/3R/kD/ic/878ca0cd/b83d57c0.svg'} self.CheckEventValues(storage_writer, events[100], expected_event_values)
def m_step_gaussian_mixture(data, gamma): '% Performs the M-step of the EM algorithm for gaussain mixture model.\n %\n % @param data : n x d matrix with rows as d dimensional data points\n % @param gamma : n x k matrix of resposibilities\n %\n % @return pi : k x 1 array\n % @return mu : k x d matrix of maximized cluster centers\n % @return sigma : cell array of maximized \n %\n ' n = np.shape(data)[0] d = np.shape(data)[1] k = np.shape(gamma)[1] pi = np.zeros(k) mu = np.zeros((k, d)) sigma = np.zeros((k, d, d)) for kk in range(k): Nkk = np.sum(gamma[:, kk]) pi[kk] = (Nkk / n) for dd in range(d): mu[(kk, dd)] = (np.sum((gamma[:, kk] * data[:, dd]), axis=0) / Nkk) for kk in range(k): Nkk = np.sum(gamma[:, kk]) centered_data = (data - mu[kk, :]) for nn in range(n): sigma[kk] += (gamma[(nn, kk)] * np.dot(centered_data[(nn, None)].T, centered_data[(nn, None)])) sigma[kk] /= Nkk return [mu, sigma, pi]
333,318,272,719,222,850
% Performs the M-step of the EM algorithm for gaussain mixture model. % % @param data : n x d matrix with rows as d dimensional data points % @param gamma : n x k matrix of resposibilities % % @return pi : k x 1 array % @return mu : k x d matrix of maximized cluster centers % @return sigma : cell array of maximized %
src/ML_Algorithms/ExpectationMaximization/m_step_gaussian_mixture.py
m_step_gaussian_mixture
leonardbj/AIMS
python
def m_step_gaussian_mixture(data, gamma): '% Performs the M-step of the EM algorithm for gaussain mixture model.\n %\n % @param data : n x d matrix with rows as d dimensional data points\n % @param gamma : n x k matrix of resposibilities\n %\n % @return pi : k x 1 array\n % @return mu : k x d matrix of maximized cluster centers\n % @return sigma : cell array of maximized \n %\n ' n = np.shape(data)[0] d = np.shape(data)[1] k = np.shape(gamma)[1] pi = np.zeros(k) mu = np.zeros((k, d)) sigma = np.zeros((k, d, d)) for kk in range(k): Nkk = np.sum(gamma[:, kk]) pi[kk] = (Nkk / n) for dd in range(d): mu[(kk, dd)] = (np.sum((gamma[:, kk] * data[:, dd]), axis=0) / Nkk) for kk in range(k): Nkk = np.sum(gamma[:, kk]) centered_data = (data - mu[kk, :]) for nn in range(n): sigma[kk] += (gamma[(nn, kk)] * np.dot(centered_data[(nn, None)].T, centered_data[(nn, None)])) sigma[kk] /= Nkk return [mu, sigma, pi]