body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@classmethod def build_model(cls, args, task): 'Build a new model instance.' base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep)
2,152,914,506,224,695,600
Build a new model instance.
models/transformer.py
build_model
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@classmethod def build_model(cls, args, task): base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep)
def forward(self, src_tokens, src_lengths): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " x = (self.embed_scale * self.embed_tokens(src_tokens)) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask) if self.layer_norm: x = self.layer_norm(x) return {'encoder_out': x, 'encoder_padding_mask': encoder_padding_mask}
8,721,051,598,448,000,000
Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, src_tokens, src_lengths): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " x = (self.embed_scale * self.embed_tokens(src_tokens)) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask) if self.layer_norm: x = self.layer_norm(x) return {'encoder_out': x, 'encoder_padding_mask': encoder_padding_mask}
def reorder_encoder_out(self, encoder_out, bert_outs, new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' if (encoder_out['encoder_out'] is not None): encoder_out['encoder_out'] = encoder_out['encoder_out'].index_select(1, new_order) if (encoder_out['encoder_padding_mask'] is not None): encoder_out['encoder_padding_mask'] = encoder_out['encoder_padding_mask'].index_select(0, new_order) if (bert_outs['bert_encoder_out'] is not None): bert_outs['bert_encoder_out'] = bert_outs['bert_encoder_out'].index_select(1, new_order) if (bert_outs['bert_encoder_padding_mask'] is not None): bert_outs['bert_encoder_padding_mask'] = bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return (encoder_out, bert_outs)
-4,539,497,251,350,111,000
Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order*
models/transformer.py
reorder_encoder_out
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def reorder_encoder_out(self, encoder_out, bert_outs, new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' if (encoder_out['encoder_out'] is not None): encoder_out['encoder_out'] = encoder_out['encoder_out'].index_select(1, new_order) if (encoder_out['encoder_padding_mask'] is not None): encoder_out['encoder_padding_mask'] = encoder_out['encoder_padding_mask'].index_select(0, new_order) if (bert_outs['bert_encoder_out'] is not None): bert_outs['bert_encoder_out'] = bert_outs['bert_encoder_out'].index_select(1, new_order) if (bert_outs['bert_encoder_padding_mask'] is not None): bert_outs['bert_encoder_padding_mask'] = bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return (encoder_out, bert_outs)
def max_positions(self): 'Maximum input length supported by the encoder.' if (self.embed_positions is None): return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions())
-5,228,954,016,557,509,000
Maximum input length supported by the encoder.
models/transformer.py
max_positions
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def max_positions(self): if (self.embed_positions is None): return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions())
def upgrade_state_dict_named(self, state_dict, name): 'Upgrade a (possibly old) state dict for new versions of fairseq.' if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): self.layers[i].upgrade_state_dict_named(state_dict, '{}.layers.{}'.format(name, i)) version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
6,001,696,072,670,587,000
Upgrade a (possibly old) state dict for new versions of fairseq.
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): self.layers[i].upgrade_state_dict_named(state_dict, '{}.layers.{}'.format(name, i)) version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
def forward(self, src_tokens, src_lengths, bert_encoder_out): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " x = (self.embed_scale * self.embed_tokens(src_tokens)) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) '\n mask_output = self.mask(src_tokens , x)\n p = mask_output\n p = p.transpose(0, 1)\n t_p = torch.argsort(p,dim=1)\n ratio = 0.2\n self.ratio = ratio\n p_mask = torch.where(t_p<t_p.size(1)*ratio,torch.zeros_like(p),torch.ones_like(p))\n self.p_mask = p_mask\n p_mask = p_mask.unsqueeze(-1).transpose(0,1)\n\n self.mask_output = p\n \n \n if self.training:\n x = x * p_mask.detach()\n else:\n x = x\n ###########\n ###########\n ###########\n # t_p[t_p>t_p.size*ratio] = 1\n # t_p[t_p<=t_p.size*ratio] = 0\n # t_p.permute(1,0)\n \n \n # model.encoder.mask_output \n ' x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) '\n self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out)\n ' '\n ##########################\n if self.i%1==0:\n import scipy.io as scio\n self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out)\n scio.savemat("/home/iojhui/bert-nmt/data"+str(self.i)+".mat", {\'mask_output\':self.mask_output.detach().cpu().numpy(),"src_tokens":src_tokens.cpu().numpy()})\n \n\n\n self.i+=1\n ########################\n ' return {'encoder_out': x, 'encoder_padding_mask': encoder_padding_mask}
546,859,358,158,450,940
Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, src_tokens, src_lengths, bert_encoder_out): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " x = (self.embed_scale * self.embed_tokens(src_tokens)) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) '\n mask_output = self.mask(src_tokens , x)\n p = mask_output\n p = p.transpose(0, 1)\n t_p = torch.argsort(p,dim=1)\n ratio = 0.2\n self.ratio = ratio\n p_mask = torch.where(t_p<t_p.size(1)*ratio,torch.zeros_like(p),torch.ones_like(p))\n self.p_mask = p_mask\n p_mask = p_mask.unsqueeze(-1).transpose(0,1)\n\n self.mask_output = p\n \n \n if self.training:\n x = x * p_mask.detach()\n else:\n x = x\n ###########\n ###########\n ###########\n # t_p[t_p>t_p.size*ratio] = 1\n # t_p[t_p<=t_p.size*ratio] = 0\n # t_p.permute(1,0)\n \n \n # model.encoder.mask_output \n ' x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) '\n self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out)\n ' '\n ##########################\n if self.i%1==0:\n import scipy.io as scio\n self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out)\n scio.savemat("/home/iojhui/bert-nmt/data"+str(self.i)+".mat", {\'mask_output\':self.mask_output.detach().cpu().numpy(),"src_tokens":src_tokens.cpu().numpy()})\n \n\n\n self.i+=1\n ########################\n ' return {'encoder_out': x, 'encoder_padding_mask': encoder_padding_mask}
def encodeMLM(self, src_tokens, src_lengths, bert_encoder_out): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " self.src_tokens = src_tokens x = (self.embed_scale * self.embed_tokens(src_tokens)) '\n ratio = 0.3\n mask = np.random.choice(src_tokens.size()[1], (int(src_tokens.size()[1] * ratio), ),replace = False)\n \n \n if mask is not None:\n ' '\n if x.size(1)<10:\n mask = [4]\n else:\n mask = [7,9]\n x[:, mask] = self.mask_embedding\n \n ' mask_output = self.mask(src_tokens, x) p = mask_output p = p t_p = torch.argsort(p, dim=1) ratio = 0.2 self.ratio = ratio p_mask = torch.where((t_p < (t_p.size(1) * ratio)), torch.zeros_like(p), torch.ones_like(p)) self.p_mask = p_mask p_mask = p_mask.unsqueeze((- 1)) self.mask_output = p x = (x * p_mask.detach()) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) encoder_vocab_output = self.output_vocab_linear(x) self.encoder_vocab_output2 = torch.nn.functional.softmax(encoder_vocab_output, dim=(- 1)) self.token = src_tokens return encoder_vocab_output
-6,241,553,142,829,516,000
Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)`
models/transformer.py
encodeMLM
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def encodeMLM(self, src_tokens, src_lengths, bert_encoder_out): "\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (torch.LongTensor): lengths of each source sentence of\n shape `(batch)`\n\n Returns:\n dict:\n - **encoder_out** (Tensor): the last encoder layer's output of\n shape `(src_len, batch, embed_dim)`\n - **encoder_padding_mask** (ByteTensor): the positions of\n padding elements of shape `(batch, src_len)`\n " self.src_tokens = src_tokens x = (self.embed_scale * self.embed_tokens(src_tokens)) '\n ratio = 0.3\n mask = np.random.choice(src_tokens.size()[1], (int(src_tokens.size()[1] * ratio), ),replace = False)\n \n \n if mask is not None:\n ' '\n if x.size(1)<10:\n mask = [4]\n else:\n mask = [7,9]\n x[:, mask] = self.mask_embedding\n \n ' mask_output = self.mask(src_tokens, x) p = mask_output p = p t_p = torch.argsort(p, dim=1) ratio = 0.2 self.ratio = ratio p_mask = torch.where((t_p < (t_p.size(1) * ratio)), torch.zeros_like(p), torch.ones_like(p)) self.p_mask = p_mask p_mask = p_mask.unsqueeze((- 1)) self.mask_output = p x = (x * p_mask.detach()) if (self.embed_positions is not None): x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) encoder_padding_mask = src_tokens.eq(self.padding_idx) if (not encoder_padding_mask.any()): encoder_padding_mask = None for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) encoder_vocab_output = self.output_vocab_linear(x) self.encoder_vocab_output2 = torch.nn.functional.softmax(encoder_vocab_output, dim=(- 1)) self.token = src_tokens return encoder_vocab_output
def reorder_encoder_out(self, encoder_out, bert_outs, new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' if (encoder_out['encoder_out'] is not None): encoder_out['encoder_out'] = encoder_out['encoder_out'].index_select(1, new_order) if (encoder_out['encoder_padding_mask'] is not None): encoder_out['encoder_padding_mask'] = encoder_out['encoder_padding_mask'].index_select(0, new_order) if (bert_outs['bert_encoder_out'] is not None): bert_outs['bert_encoder_out'] = bert_outs['bert_encoder_out'].index_select(1, new_order) if (bert_outs['bert_encoder_padding_mask'] is not None): bert_outs['bert_encoder_padding_mask'] = bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return (encoder_out, bert_outs)
-4,539,497,251,350,111,000
Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order*
models/transformer.py
reorder_encoder_out
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def reorder_encoder_out(self, encoder_out, bert_outs, new_order): '\n Reorder encoder output according to *new_order*.\n\n Args:\n encoder_out: output from the ``forward()`` method\n new_order (LongTensor): desired order\n\n Returns:\n *encoder_out* rearranged according to *new_order*\n ' if (encoder_out['encoder_out'] is not None): encoder_out['encoder_out'] = encoder_out['encoder_out'].index_select(1, new_order) if (encoder_out['encoder_padding_mask'] is not None): encoder_out['encoder_padding_mask'] = encoder_out['encoder_padding_mask'].index_select(0, new_order) if (bert_outs['bert_encoder_out'] is not None): bert_outs['bert_encoder_out'] = bert_outs['bert_encoder_out'].index_select(1, new_order) if (bert_outs['bert_encoder_padding_mask'] is not None): bert_outs['bert_encoder_padding_mask'] = bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return (encoder_out, bert_outs)
def max_positions(self): 'Maximum input length supported by the encoder.' if (self.embed_positions is None): return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions())
-5,228,954,016,557,509,000
Maximum input length supported by the encoder.
models/transformer.py
max_positions
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def max_positions(self): if (self.embed_positions is None): return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions())
def upgrade_state_dict_named(self, state_dict, name): 'Upgrade a (possibly old) state dict for new versions of fairseq.' if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): self.layers[i].upgrade_state_dict_named(state_dict, '{}.layers.{}'.format(name, i)) version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
6,001,696,072,670,587,000
Upgrade a (possibly old) state dict for new versions of fairseq.
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): self.layers[i].upgrade_state_dict_named(state_dict, '{}.layers.{}'.format(name, i)) version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Args:\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n encoder_out (Tensor, optional): output from the encoder, used for\n encoder-side attention\n incremental_state (dict): dictionary used for storing state during\n :ref:`Incremental decoding`\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " (x, extra) = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return (x, extra)
8,584,525,393,747,568,000
Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Args:\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n encoder_out (Tensor, optional): output from the encoder, used for\n encoder-side attention\n incremental_state (dict): dictionary used for storing state during\n :ref:`Incremental decoding`\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " (x, extra) = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return (x, extra)
def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Similar to *forward* but only return features.\n\n Returns:\n tuple:\n - the decoder's features of shape `(batch, tgt_len, embed_dim)`\n - a dictionary with any model-specific outputs\n " positions = (self.embed_positions(prev_output_tokens, incremental_state=incremental_state) if (self.embed_positions is not None) else None) if (incremental_state is not None): prev_output_tokens = prev_output_tokens[:, (- 1):] if (positions is not None): positions = positions[:, (- 1):] x = (self.embed_scale * self.embed_tokens(prev_output_tokens)) if (self.project_in_dim is not None): x = self.project_in_dim(x) if (positions is not None): x += positions x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) attn = None inner_states = [x] for layer in self.layers: (x, attn) = layer(x, (encoder_out['encoder_out'] if (encoder_out is not None) else None), (encoder_out['encoder_padding_mask'] if (encoder_out is not None) else None), bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=(self.buffered_future_mask(x) if (incremental_state is None) else None)) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) x = x.transpose(0, 1) if (self.project_out_dim is not None): x = self.project_out_dim(x) return (x, {'attn': attn, 'inner_states': inner_states})
-1,850,262,369,369,789,400
Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs
models/transformer.py
extract_features
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Similar to *forward* but only return features.\n\n Returns:\n tuple:\n - the decoder's features of shape `(batch, tgt_len, embed_dim)`\n - a dictionary with any model-specific outputs\n " positions = (self.embed_positions(prev_output_tokens, incremental_state=incremental_state) if (self.embed_positions is not None) else None) if (incremental_state is not None): prev_output_tokens = prev_output_tokens[:, (- 1):] if (positions is not None): positions = positions[:, (- 1):] x = (self.embed_scale * self.embed_tokens(prev_output_tokens)) if (self.project_in_dim is not None): x = self.project_in_dim(x) if (positions is not None): x += positions x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) attn = None inner_states = [x] for layer in self.layers: (x, attn) = layer(x, (encoder_out['encoder_out'] if (encoder_out is not None) else None), (encoder_out['encoder_padding_mask'] if (encoder_out is not None) else None), bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=(self.buffered_future_mask(x) if (incremental_state is None) else None)) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) x = x.transpose(0, 1) if (self.project_out_dim is not None): x = self.project_out_dim(x) return (x, {'attn': attn, 'inner_states': inner_states})
def output_layer(self, features, **kwargs): 'Project features to the vocabulary size.' if (self.adaptive_softmax is None): if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features
-3,345,116,721,218,766,300
Project features to the vocabulary size.
models/transformer.py
output_layer
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def output_layer(self, features, **kwargs): if (self.adaptive_softmax is None): if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features
def max_positions(self): 'Maximum output length supported by the decoder.' if (self.embed_positions is None): return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions())
-778,445,331,605,681,300
Maximum output length supported by the decoder.
models/transformer.py
max_positions
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def max_positions(self): if (self.embed_positions is None): return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions())
def upgrade_state_dict_named(self, state_dict, name): 'Upgrade a (possibly old) state dict for new versions of fairseq.' if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if (k in state_dict): state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
-8,691,086,455,940,025,000
Upgrade a (possibly old) state dict for new versions of fairseq.
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if (k in state_dict): state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Args:\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n encoder_out (Tensor, optional): output from the encoder, used for\n encoder-side attention\n incremental_state (dict): dictionary used for storing state during\n :ref:`Incremental decoding`\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " (x, extra) = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return (x, extra)
8,584,525,393,747,568,000
Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Args:\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n encoder_out (Tensor, optional): output from the encoder, used for\n encoder-side attention\n incremental_state (dict): dictionary used for storing state during\n :ref:`Incremental decoding`\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " (x, extra) = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return (x, extra)
def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Similar to *forward* but only return features.\n\n Returns:\n tuple:\n - the decoder's features of shape `(batch, tgt_len, embed_dim)`\n - a dictionary with any model-specific outputs\n " positions = (self.embed_positions(prev_output_tokens, incremental_state=incremental_state) if (self.embed_positions is not None) else None) if (incremental_state is not None): prev_output_tokens = prev_output_tokens[:, (- 1):] if (positions is not None): positions = positions[:, (- 1):] x = (self.embed_scale * self.embed_tokens(prev_output_tokens)) if (self.project_in_dim is not None): x = self.project_in_dim(x) if (positions is not None): x += positions x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) attn = None inner_states = [x] for layer in self.layers: (x, attn) = layer(x, (encoder_out['encoder_out'] if (encoder_out is not None) else None), (encoder_out['encoder_padding_mask'] if (encoder_out is not None) else None), bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=(self.buffered_future_mask(x) if (incremental_state is None) else None)) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) x = x.transpose(0, 1) if (self.project_out_dim is not None): x = self.project_out_dim(x) return (x, {'attn': attn, 'inner_states': inner_states})
-1,850,262,369,369,789,400
Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs
models/transformer.py
extract_features
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): "\n Similar to *forward* but only return features.\n\n Returns:\n tuple:\n - the decoder's features of shape `(batch, tgt_len, embed_dim)`\n - a dictionary with any model-specific outputs\n " positions = (self.embed_positions(prev_output_tokens, incremental_state=incremental_state) if (self.embed_positions is not None) else None) if (incremental_state is not None): prev_output_tokens = prev_output_tokens[:, (- 1):] if (positions is not None): positions = positions[:, (- 1):] x = (self.embed_scale * self.embed_tokens(prev_output_tokens)) if (self.project_in_dim is not None): x = self.project_in_dim(x) if (positions is not None): x += positions x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(0, 1) attn = None inner_states = [x] for layer in self.layers: (x, attn) = layer(x, (encoder_out['encoder_out'] if (encoder_out is not None) else None), (encoder_out['encoder_padding_mask'] if (encoder_out is not None) else None), bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=(self.buffered_future_mask(x) if (incremental_state is None) else None)) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) x = x.transpose(0, 1) if (self.project_out_dim is not None): x = self.project_out_dim(x) return (x, {'attn': attn, 'inner_states': inner_states})
def output_layer(self, features, **kwargs): 'Project features to the vocabulary size.' if (self.adaptive_softmax is None): if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features
-3,345,116,721,218,766,300
Project features to the vocabulary size.
models/transformer.py
output_layer
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def output_layer(self, features, **kwargs): if (self.adaptive_softmax is None): if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features
def max_positions(self): 'Maximum output length supported by the decoder.' if (self.embed_positions is None): return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions())
-778,445,331,605,681,300
Maximum output length supported by the decoder.
models/transformer.py
max_positions
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def max_positions(self): if (self.embed_positions is None): return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions())
def upgrade_state_dict_named(self, state_dict, name): 'Upgrade a (possibly old) state dict for new versions of fairseq.' if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if (k in state_dict): state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
-8,691,086,455,940,025,000
Upgrade a (possibly old) state dict for new versions of fairseq.
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if (weights_key in state_dict): del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if (k in state_dict): state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if (utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2): self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict
def upgrade_state_dict_named(self, state_dict, name): '\n Rename layer norm states from `...layer_norms.0.weight` to\n `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to\n `...final_layer_norm.weight`\n ' layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if (k in state_dict): state_dict['{}.{}.{}'.format(name, new, m)] = state_dict[k] del state_dict[k]
-3,313,760,067,142,762,500
Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight`
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): '\n Rename layer norm states from `...layer_norms.0.weight` to\n `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to\n `...final_layer_norm.weight`\n ' layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if (k in state_dict): state_dict['{}.{}.{}'.format(name, new, m)] = state_dict[k] del state_dict[k]
def forward(self, x, encoder_padding_mask): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) (x, attn_weight) = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) self.attn_weight = attn_weight residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x
-4,786,362,497,684,975,000
Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, x, encoder_padding_mask): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) (x, attn_weight) = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) self.attn_weight = attn_weight residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x
def upgrade_state_dict_named(self, state_dict, name): '\n Rename layer norm states from `...layer_norms.0.weight` to\n `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to\n `...final_layer_norm.weight`\n ' layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if (k in state_dict): state_dict['{}.{}.{}'.format(name, new, m)] = state_dict[k] del state_dict[k]
-3,313,760,067,142,762,500
Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight`
models/transformer.py
upgrade_state_dict_named
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def upgrade_state_dict_named(self, state_dict, name): '\n Rename layer norm states from `...layer_norms.0.weight` to\n `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to\n `...final_layer_norm.weight`\n ' layer_norm_map = {'0': 'self_attn_layer_norm', '1': 'final_layer_norm'} for (old, new) in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if (k in state_dict): state_dict['{}.{}.{}'.format(name, new, m)] = state_dict[k] del state_dict[k]
def forward(self, x, encoder_padding_mask, bert_encoder_out, bert_encoder_padding_mask): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) (x1, _) = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) (x2, _) = self.bert_attn(query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = ((residual + (ratios[0] * x1)) + (ratios[1] * x2)) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x
-6,319,351,232,305,081,000
Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, x, encoder_padding_mask, bert_encoder_out, bert_encoder_padding_mask): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) (x1, _) = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) (x2, _) = self.bert_attn(query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = ((residual + (ratios[0] * x1)) + (ratios[1] * x2)) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) (x1, attn) = self.encoder_attn(query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) (x2, _) = self.bert_attn(query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = ((residual + (ratios[0] * x1)) + (ratios[1] * x2)) x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
4,665,933,914,785,590,000
Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) (x1, attn) = self.encoder_attn(query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) (x2, _) = self.bert_attn(query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = ((residual + (ratios[0] * x1)) + (ratios[1] * x2)) x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) (x1, attn) = self.encoder_attn(query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x1 = F.dropout(x1, p=self.dropout, training=self.training) x = (residual + x1) x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
-4,948,189,932,445,657,000
Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) (x1, attn) = self.encoder_attn(query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x1 = F.dropout(x1, p=self.dropout, training=self.training) x = (residual + x1) x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) def sinattn(attnlayer, x, layer_norm, keyorvalue, key_padding, incremental_state): residual = x x = self.maybe_layer_norm(layer_norm, x, before=True) (x, attn) = attnlayer(query=x, key=keyorvalue, value=keyorvalue, key_padding_mask=key_padding, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(layer_norm, x, after=True) return (x, attn) if self.bert_first: (x, attn) = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) (x, attn) = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) else: (x, attn) = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) (x, attn) = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
4,853,743,620,221,757,000
Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)`
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None): '\n Args:\n x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`\n encoder_padding_mask (ByteTensor): binary ByteTensor of shape\n `(batch, src_len)` where padding elements are indicated by ``1``.\n Returns:\n encoded output of shape `(batch, src_len, embed_dim)`\n ' residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if (prev_self_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_self_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) (x, attn) = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if (self.encoder_attn is not None): if (prev_attn_state is not None): if (incremental_state is None): incremental_state = {} (prev_key, prev_value) = prev_attn_state saved_state = {'prev_key': prev_key, 'prev_value': prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) def sinattn(attnlayer, x, layer_norm, keyorvalue, key_padding, incremental_state): residual = x x = self.maybe_layer_norm(layer_norm, x, before=True) (x, attn) = attnlayer(query=x, key=keyorvalue, value=keyorvalue, key_padding_mask=key_padding, incremental_state=incremental_state, static_kv=True, need_weights=((not self.training) and self.need_attn)) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(layer_norm, x, after=True) return (x, attn) if self.bert_first: (x, attn) = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) (x, attn) = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) else: (x, attn) = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) (x, attn) = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = (residual + x) x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if (self.onnx_trace and (incremental_state is not None)): saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = (saved_state['prev_key'], saved_state['prev_value']) return (x, attn, self_attn_state) return (x, attn)
def __init__(self, graph, session, y, x, tmp_ckpt_path='/tmp/guided_backprop_ckpt'): 'Constructs a GuidedBackprop SaliencyMask.' super(GuidedBackprop, self).__init__(graph, session, y, x) self.x = x if (GuidedBackprop.GuidedReluRegistered is False): @tf.RegisterGradient('GuidedRelu') def _GuidedReluGrad(op, grad): gate_g = tf.cast((grad > 0), 'float32') gate_y = tf.cast((op.outputs[0] > 0), 'float32') return ((gate_y * gate_g) * grad) GuidedBackprop.GuidedReluRegistered = True with graph.as_default(): saver = tf.train.Saver() saver.save(session, tmp_ckpt_path) graph_def = graph.as_graph_def() self.guided_graph = tf.Graph() with self.guided_graph.as_default(): self.guided_sess = tf.Session(graph=self.guided_graph) with self.guided_graph.gradient_override_map({'Relu': 'GuidedRelu'}): tf.import_graph_def(graph_def, name='') saver.restore(self.guided_sess, tmp_ckpt_path) imported_y = self.guided_graph.get_tensor_by_name(y.name) imported_x = self.guided_graph.get_tensor_by_name(x.name) self.guided_grads_node = tf.gradients(imported_y, imported_x)[0]
7,949,305,015,942,975,000
Constructs a GuidedBackprop SaliencyMask.
saliency/guided_backprop.py
__init__
aliabd/history-of-interpretation
python
def __init__(self, graph, session, y, x, tmp_ckpt_path='/tmp/guided_backprop_ckpt'): super(GuidedBackprop, self).__init__(graph, session, y, x) self.x = x if (GuidedBackprop.GuidedReluRegistered is False): @tf.RegisterGradient('GuidedRelu') def _GuidedReluGrad(op, grad): gate_g = tf.cast((grad > 0), 'float32') gate_y = tf.cast((op.outputs[0] > 0), 'float32') return ((gate_y * gate_g) * grad) GuidedBackprop.GuidedReluRegistered = True with graph.as_default(): saver = tf.train.Saver() saver.save(session, tmp_ckpt_path) graph_def = graph.as_graph_def() self.guided_graph = tf.Graph() with self.guided_graph.as_default(): self.guided_sess = tf.Session(graph=self.guided_graph) with self.guided_graph.gradient_override_map({'Relu': 'GuidedRelu'}): tf.import_graph_def(graph_def, name=) saver.restore(self.guided_sess, tmp_ckpt_path) imported_y = self.guided_graph.get_tensor_by_name(y.name) imported_x = self.guided_graph.get_tensor_by_name(x.name) self.guided_grads_node = tf.gradients(imported_y, imported_x)[0]
def GetMask(self, x_value, feed_dict={}): 'Returns a GuidedBackprop mask.' with self.guided_graph.as_default(): guided_feed_dict = {} for tensor in feed_dict: guided_feed_dict[tensor.name] = feed_dict[tensor] guided_feed_dict[self.x.name] = [x_value] return self.guided_sess.run(self.guided_grads_node, feed_dict=guided_feed_dict)[0]
1,790,101,936,076,309,000
Returns a GuidedBackprop mask.
saliency/guided_backprop.py
GetMask
aliabd/history-of-interpretation
python
def GetMask(self, x_value, feed_dict={}): with self.guided_graph.as_default(): guided_feed_dict = {} for tensor in feed_dict: guided_feed_dict[tensor.name] = feed_dict[tensor] guided_feed_dict[self.x.name] = [x_value] return self.guided_sess.run(self.guided_grads_node, feed_dict=guided_feed_dict)[0]
def validate_url(url): '\n Auxiliary method to validate an urllib\n :param url: An url to be validated\n :type url: string\n :returns: True if the url is valid\n :rtype: bool\n ' scheme = url.split('://')[0].lower() if (scheme not in url_schemes): return False if (not bool(url_regex.search(url))): return False return True
2,019,927,503,990,452,000
Auxiliary method to validate an urllib :param url: An url to be validated :type url: string :returns: True if the url is valid :rtype: bool
app/utils/onelogin/saml2/settings.py
validate_url
nycrecords/intranet
python
def validate_url(url): '\n Auxiliary method to validate an urllib\n :param url: An url to be validated\n :type url: string\n :returns: True if the url is valid\n :rtype: bool\n ' scheme = url.split('://')[0].lower() if (scheme not in url_schemes): return False if (not bool(url_regex.search(url))): return False return True
def __init__(self, settings=None, custom_base_path=None, sp_validation_only=False): '\n Initializes the settings:\n - Sets the paths of the different folders\n - Loads settings info from settings file or array/object provided\n\n :param settings: SAML Toolkit Settings\n :type settings: dict\n\n :param custom_base_path: Path where are stored the settings file and the cert folder\n :type custom_base_path: string\n\n :param sp_validation_only: Avoid the IdP validation\n :type sp_validation_only: boolean\n ' self.__sp_validation_only = sp_validation_only self.__paths = {} self.__strict = False self.__debug = False self.__sp = {} self.__idp = {} self.__security = {} self.__contacts = {} self.__organization = {} self.__errors = [] self.__load_paths(base_path=custom_base_path) self.__update_paths(settings) if (settings is None): try: valid = self.__load_settings_from_file() except Exception as e: raise e if (not valid): raise OneLogin_Saml2_Error('Invalid dict settings at the file: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors)) elif isinstance(settings, dict): if (not self.__load_settings_from_dict(settings)): raise OneLogin_Saml2_Error('Invalid dict settings: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors)) else: raise OneLogin_Saml2_Error('Unsupported settings object', OneLogin_Saml2_Error.UNSUPPORTED_SETTINGS_OBJECT) self.format_idp_cert() if ('x509certMulti' in self.__idp): self.format_idp_cert_multi() self.format_sp_cert() if ('x509certNew' in self.__sp): self.format_sp_cert_new() self.format_sp_key()
-4,102,128,884,988,414,500
Initializes the settings: - Sets the paths of the different folders - Loads settings info from settings file or array/object provided :param settings: SAML Toolkit Settings :type settings: dict :param custom_base_path: Path where are stored the settings file and the cert folder :type custom_base_path: string :param sp_validation_only: Avoid the IdP validation :type sp_validation_only: boolean
app/utils/onelogin/saml2/settings.py
__init__
nycrecords/intranet
python
def __init__(self, settings=None, custom_base_path=None, sp_validation_only=False): '\n Initializes the settings:\n - Sets the paths of the different folders\n - Loads settings info from settings file or array/object provided\n\n :param settings: SAML Toolkit Settings\n :type settings: dict\n\n :param custom_base_path: Path where are stored the settings file and the cert folder\n :type custom_base_path: string\n\n :param sp_validation_only: Avoid the IdP validation\n :type sp_validation_only: boolean\n ' self.__sp_validation_only = sp_validation_only self.__paths = {} self.__strict = False self.__debug = False self.__sp = {} self.__idp = {} self.__security = {} self.__contacts = {} self.__organization = {} self.__errors = [] self.__load_paths(base_path=custom_base_path) self.__update_paths(settings) if (settings is None): try: valid = self.__load_settings_from_file() except Exception as e: raise e if (not valid): raise OneLogin_Saml2_Error('Invalid dict settings at the file: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors)) elif isinstance(settings, dict): if (not self.__load_settings_from_dict(settings)): raise OneLogin_Saml2_Error('Invalid dict settings: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors)) else: raise OneLogin_Saml2_Error('Unsupported settings object', OneLogin_Saml2_Error.UNSUPPORTED_SETTINGS_OBJECT) self.format_idp_cert() if ('x509certMulti' in self.__idp): self.format_idp_cert_multi() self.format_sp_cert() if ('x509certNew' in self.__sp): self.format_sp_cert_new() self.format_sp_key()
def __load_paths(self, base_path=None): '\n Set the paths of the different folders\n ' if (base_path is None): base_path = dirname(dirname(dirname(__file__))) if (not base_path.endswith(sep)): base_path += sep self.__paths = {'base': base_path, 'cert': ((base_path + 'certs') + sep), 'lib': ((base_path + 'lib') + sep), 'extlib': ((base_path + 'extlib') + sep)}
-7,425,753,098,019,775,000
Set the paths of the different folders
app/utils/onelogin/saml2/settings.py
__load_paths
nycrecords/intranet
python
def __load_paths(self, base_path=None): '\n \n ' if (base_path is None): base_path = dirname(dirname(dirname(__file__))) if (not base_path.endswith(sep)): base_path += sep self.__paths = {'base': base_path, 'cert': ((base_path + 'certs') + sep), 'lib': ((base_path + 'lib') + sep), 'extlib': ((base_path + 'extlib') + sep)}
def __update_paths(self, settings): '\n Set custom paths if necessary\n ' if (not isinstance(settings, dict)): return if ('custom_base_path' in settings): base_path = settings['custom_base_path'] base_path = join(dirname(__file__), base_path) self.__load_paths(base_path)
-851,702,267,590,710,300
Set custom paths if necessary
app/utils/onelogin/saml2/settings.py
__update_paths
nycrecords/intranet
python
def __update_paths(self, settings): '\n \n ' if (not isinstance(settings, dict)): return if ('custom_base_path' in settings): base_path = settings['custom_base_path'] base_path = join(dirname(__file__), base_path) self.__load_paths(base_path)
def get_base_path(self): '\n Returns base path\n\n :return: The base toolkit folder path\n :rtype: string\n ' return self.__paths['base']
-3,251,405,120,382,975,500
Returns base path :return: The base toolkit folder path :rtype: string
app/utils/onelogin/saml2/settings.py
get_base_path
nycrecords/intranet
python
def get_base_path(self): '\n Returns base path\n\n :return: The base toolkit folder path\n :rtype: string\n ' return self.__paths['base']
def get_cert_path(self): '\n Returns cert path\n\n :return: The cert folder path\n :rtype: string\n ' return self.__paths['cert']
-2,868,438,709,607,504,400
Returns cert path :return: The cert folder path :rtype: string
app/utils/onelogin/saml2/settings.py
get_cert_path
nycrecords/intranet
python
def get_cert_path(self): '\n Returns cert path\n\n :return: The cert folder path\n :rtype: string\n ' return self.__paths['cert']
def get_lib_path(self): '\n Returns lib path\n\n :return: The library folder path\n :rtype: string\n ' return self.__paths['lib']
-3,343,954,377,221,302,300
Returns lib path :return: The library folder path :rtype: string
app/utils/onelogin/saml2/settings.py
get_lib_path
nycrecords/intranet
python
def get_lib_path(self): '\n Returns lib path\n\n :return: The library folder path\n :rtype: string\n ' return self.__paths['lib']
def get_ext_lib_path(self): '\n Returns external lib path\n\n :return: The external library folder path\n :rtype: string\n ' return self.__paths['extlib']
-7,216,888,168,113,255,000
Returns external lib path :return: The external library folder path :rtype: string
app/utils/onelogin/saml2/settings.py
get_ext_lib_path
nycrecords/intranet
python
def get_ext_lib_path(self): '\n Returns external lib path\n\n :return: The external library folder path\n :rtype: string\n ' return self.__paths['extlib']
def get_schemas_path(self): '\n Returns schema path\n\n :return: The schema folder path\n :rtype: string\n ' return (self.__paths['lib'] + 'schemas/')
-4,632,891,345,904,846,000
Returns schema path :return: The schema folder path :rtype: string
app/utils/onelogin/saml2/settings.py
get_schemas_path
nycrecords/intranet
python
def get_schemas_path(self): '\n Returns schema path\n\n :return: The schema folder path\n :rtype: string\n ' return (self.__paths['lib'] + 'schemas/')
def __load_settings_from_dict(self, settings): '\n Loads settings info from a settings Dict\n\n :param settings: SAML Toolkit Settings\n :type settings: dict\n\n :returns: True if the settings info is valid\n :rtype: boolean\n ' errors = self.check_settings(settings) if (len(errors) == 0): self.__errors = [] self.__sp = settings['sp'] self.__idp = settings.get('idp', {}) self.__strict = settings.get('strict', False) self.__debug = settings.get('debug', False) self.__security = settings.get('security', {}) self.__contacts = settings.get('contactPerson', {}) self.__organization = settings.get('organization', {}) self.__add_default_values() return True self.__errors = errors return False
9,101,060,825,214,802,000
Loads settings info from a settings Dict :param settings: SAML Toolkit Settings :type settings: dict :returns: True if the settings info is valid :rtype: boolean
app/utils/onelogin/saml2/settings.py
__load_settings_from_dict
nycrecords/intranet
python
def __load_settings_from_dict(self, settings): '\n Loads settings info from a settings Dict\n\n :param settings: SAML Toolkit Settings\n :type settings: dict\n\n :returns: True if the settings info is valid\n :rtype: boolean\n ' errors = self.check_settings(settings) if (len(errors) == 0): self.__errors = [] self.__sp = settings['sp'] self.__idp = settings.get('idp', {}) self.__strict = settings.get('strict', False) self.__debug = settings.get('debug', False) self.__security = settings.get('security', {}) self.__contacts = settings.get('contactPerson', {}) self.__organization = settings.get('organization', {}) self.__add_default_values() return True self.__errors = errors return False
def __load_settings_from_file(self): '\n Loads settings info from the settings json file\n\n :returns: True if the settings info is valid\n :rtype: boolean\n ' filename = (self.get_base_path() + 'settings.json') if (not exists(filename)): raise OneLogin_Saml2_Error('Settings file not found: %s', OneLogin_Saml2_Error.SETTINGS_FILE_NOT_FOUND, filename) with open(filename, 'r') as json_data: settings = json.loads(json_data.read()) advanced_filename = (self.get_base_path() + 'advanced_settings.json') if exists(advanced_filename): with open(advanced_filename, 'r') as json_data: settings.update(json.loads(json_data.read())) return self.__load_settings_from_dict(settings)
3,696,009,825,667,300,400
Loads settings info from the settings json file :returns: True if the settings info is valid :rtype: boolean
app/utils/onelogin/saml2/settings.py
__load_settings_from_file
nycrecords/intranet
python
def __load_settings_from_file(self): '\n Loads settings info from the settings json file\n\n :returns: True if the settings info is valid\n :rtype: boolean\n ' filename = (self.get_base_path() + 'settings.json') if (not exists(filename)): raise OneLogin_Saml2_Error('Settings file not found: %s', OneLogin_Saml2_Error.SETTINGS_FILE_NOT_FOUND, filename) with open(filename, 'r') as json_data: settings = json.loads(json_data.read()) advanced_filename = (self.get_base_path() + 'advanced_settings.json') if exists(advanced_filename): with open(advanced_filename, 'r') as json_data: settings.update(json.loads(json_data.read())) return self.__load_settings_from_dict(settings)
def __add_default_values(self): '\n Add default values if the settings info is not complete\n ' self.__sp.setdefault('assertionConsumerService', {}) self.__sp['assertionConsumerService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_POST) self.__sp.setdefault('attributeConsumingService', {}) self.__sp.setdefault('singleLogoutService', {}) self.__sp['singleLogoutService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_REDIRECT) self.__idp.setdefault('singleLogoutService', {}) self.__sp.setdefault('NameIDFormat', OneLogin_Saml2_Constants.NAMEID_UNSPECIFIED) self.__security.setdefault('nameIdEncrypted', False) self.__security.setdefault('metadataValidUntil', None) self.__security.setdefault('metadataCacheDuration', None) self.__security.setdefault('authnRequestsSigned', False) self.__security.setdefault('logoutRequestSigned', False) self.__security.setdefault('logoutResponseSigned', False) self.__security.setdefault('signMetadata', False) self.__security.setdefault('wantMessagesSigned', False) self.__security.setdefault('wantAssertionsSigned', False) self.__security.setdefault('wantNameId', True) self.__security.setdefault('wantAssertionsEncrypted', False) self.__security.setdefault('wantNameIdEncrypted', False) self.__security.setdefault('signatureAlgorithm', OneLogin_Saml2_Constants.RSA_SHA1) self.__security.setdefault('digestAlgorithm', OneLogin_Saml2_Constants.SHA1) self.__security.setdefault('wantAttributeStatement', True) self.__idp.setdefault('x509cert', '') self.__idp.setdefault('certFingerprint', '') self.__idp.setdefault('certFingerprintAlgorithm', 'sha1') self.__sp.setdefault('x509cert', '') self.__sp.setdefault('privateKey', '') self.__security.setdefault('requestedAuthnContext', True) self.__security.setdefault('failOnAuthnContextMismatch', False)
8,789,121,310,913,046,000
Add default values if the settings info is not complete
app/utils/onelogin/saml2/settings.py
__add_default_values
nycrecords/intranet
python
def __add_default_values(self): '\n \n ' self.__sp.setdefault('assertionConsumerService', {}) self.__sp['assertionConsumerService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_POST) self.__sp.setdefault('attributeConsumingService', {}) self.__sp.setdefault('singleLogoutService', {}) self.__sp['singleLogoutService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_REDIRECT) self.__idp.setdefault('singleLogoutService', {}) self.__sp.setdefault('NameIDFormat', OneLogin_Saml2_Constants.NAMEID_UNSPECIFIED) self.__security.setdefault('nameIdEncrypted', False) self.__security.setdefault('metadataValidUntil', None) self.__security.setdefault('metadataCacheDuration', None) self.__security.setdefault('authnRequestsSigned', False) self.__security.setdefault('logoutRequestSigned', False) self.__security.setdefault('logoutResponseSigned', False) self.__security.setdefault('signMetadata', False) self.__security.setdefault('wantMessagesSigned', False) self.__security.setdefault('wantAssertionsSigned', False) self.__security.setdefault('wantNameId', True) self.__security.setdefault('wantAssertionsEncrypted', False) self.__security.setdefault('wantNameIdEncrypted', False) self.__security.setdefault('signatureAlgorithm', OneLogin_Saml2_Constants.RSA_SHA1) self.__security.setdefault('digestAlgorithm', OneLogin_Saml2_Constants.SHA1) self.__security.setdefault('wantAttributeStatement', True) self.__idp.setdefault('x509cert', ) self.__idp.setdefault('certFingerprint', ) self.__idp.setdefault('certFingerprintAlgorithm', 'sha1') self.__sp.setdefault('x509cert', ) self.__sp.setdefault('privateKey', ) self.__security.setdefault('requestedAuthnContext', True) self.__security.setdefault('failOnAuthnContextMismatch', False)
def check_settings(self, settings): '\n Checks the settings info.\n\n :param settings: Dict with settings data\n :type settings: dict\n\n :returns: Errors found on the settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (len(settings) == 0)): errors.append('invalid_syntax') else: if (not self.__sp_validation_only): errors += self.check_idp_settings(settings) sp_errors = self.check_sp_settings(settings) errors += sp_errors return errors
6,683,541,287,288,272,000
Checks the settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the settings data :rtype: list
app/utils/onelogin/saml2/settings.py
check_settings
nycrecords/intranet
python
def check_settings(self, settings): '\n Checks the settings info.\n\n :param settings: Dict with settings data\n :type settings: dict\n\n :returns: Errors found on the settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (len(settings) == 0)): errors.append('invalid_syntax') else: if (not self.__sp_validation_only): errors += self.check_idp_settings(settings) sp_errors = self.check_sp_settings(settings) errors += sp_errors return errors
def check_idp_settings(self, settings): '\n Checks the IdP settings info.\n :param settings: Dict with settings data\n :type settings: dict\n :returns: Errors found on the IdP settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (len(settings) == 0)): errors.append('invalid_syntax') elif (not settings.get('idp')): errors.append('idp_not_found') else: idp = settings['idp'] if (not idp.get('entityId')): errors.append('idp_entityId_not_found') if (not idp.get('singleSignOnService', {}).get('url')): errors.append('idp_sso_not_found') elif (not validate_url(idp['singleSignOnService']['url'])): errors.append('idp_sso_url_invalid') slo_url = idp.get('singleLogoutService', {}).get('url') if (slo_url and (not validate_url(slo_url))): errors.append('idp_slo_url_invalid') if ('security' in settings): security = settings['security'] exists_x509 = bool(idp.get('x509cert')) exists_fingerprint = bool(idp.get('certFingerprint')) exists_multix509sign = (('x509certMulti' in idp) and ('signing' in idp['x509certMulti']) and idp['x509certMulti']['signing']) exists_multix509enc = (('x509certMulti' in idp) and ('encryption' in idp['x509certMulti']) and idp['x509certMulti']['encryption']) want_assert_sign = bool(security.get('wantAssertionsSigned')) want_mes_signed = bool(security.get('wantMessagesSigned')) nameid_enc = bool(security.get('nameIdEncrypted')) if ((want_assert_sign or want_mes_signed) and (not (exists_x509 or exists_fingerprint or exists_multix509sign))): errors.append('idp_cert_or_fingerprint_not_found_and_required') if (nameid_enc and (not (exists_x509 or exists_multix509enc))): errors.append('idp_cert_not_found_and_required') return errors
8,715,893,815,939,197,000
Checks the IdP settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the IdP settings data :rtype: list
app/utils/onelogin/saml2/settings.py
check_idp_settings
nycrecords/intranet
python
def check_idp_settings(self, settings): '\n Checks the IdP settings info.\n :param settings: Dict with settings data\n :type settings: dict\n :returns: Errors found on the IdP settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (len(settings) == 0)): errors.append('invalid_syntax') elif (not settings.get('idp')): errors.append('idp_not_found') else: idp = settings['idp'] if (not idp.get('entityId')): errors.append('idp_entityId_not_found') if (not idp.get('singleSignOnService', {}).get('url')): errors.append('idp_sso_not_found') elif (not validate_url(idp['singleSignOnService']['url'])): errors.append('idp_sso_url_invalid') slo_url = idp.get('singleLogoutService', {}).get('url') if (slo_url and (not validate_url(slo_url))): errors.append('idp_slo_url_invalid') if ('security' in settings): security = settings['security'] exists_x509 = bool(idp.get('x509cert')) exists_fingerprint = bool(idp.get('certFingerprint')) exists_multix509sign = (('x509certMulti' in idp) and ('signing' in idp['x509certMulti']) and idp['x509certMulti']['signing']) exists_multix509enc = (('x509certMulti' in idp) and ('encryption' in idp['x509certMulti']) and idp['x509certMulti']['encryption']) want_assert_sign = bool(security.get('wantAssertionsSigned')) want_mes_signed = bool(security.get('wantMessagesSigned')) nameid_enc = bool(security.get('nameIdEncrypted')) if ((want_assert_sign or want_mes_signed) and (not (exists_x509 or exists_fingerprint or exists_multix509sign))): errors.append('idp_cert_or_fingerprint_not_found_and_required') if (nameid_enc and (not (exists_x509 or exists_multix509enc))): errors.append('idp_cert_not_found_and_required') return errors
def check_sp_settings(self, settings): '\n Checks the SP settings info.\n :param settings: Dict with settings data\n :type settings: dict\n :returns: Errors found on the SP settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (not settings)): errors.append('invalid_syntax') else: if (not settings.get('sp')): errors.append('sp_not_found') else: old_sp = self.__sp self.__sp = settings['sp'] sp = settings['sp'] security = settings.get('security', {}) if (not sp.get('entityId')): errors.append('sp_entityId_not_found') if (not sp.get('assertionConsumerService', {}).get('url')): errors.append('sp_acs_not_found') elif (not validate_url(sp['assertionConsumerService']['url'])): errors.append('sp_acs_url_invalid') if sp.get('attributeConsumingService'): attributeConsumingService = sp['attributeConsumingService'] if ('serviceName' not in attributeConsumingService): errors.append('sp_attributeConsumingService_serviceName_not_found') elif (not isinstance(attributeConsumingService['serviceName'], basestring)): errors.append('sp_attributeConsumingService_serviceName_type_invalid') if ('requestedAttributes' not in attributeConsumingService): errors.append('sp_attributeConsumingService_requestedAttributes_not_found') elif (not isinstance(attributeConsumingService['requestedAttributes'], list)): errors.append('sp_attributeConsumingService_serviceName_type_invalid') else: for req_attrib in attributeConsumingService['requestedAttributes']: if ('name' not in req_attrib): errors.append('sp_attributeConsumingService_requestedAttributes_name_not_found') if (('name' in req_attrib) and (not req_attrib['name'].strip())): errors.append('sp_attributeConsumingService_requestedAttributes_name_invalid') if (('attributeValue' in req_attrib) and (type(req_attrib['attributeValue']) != list)): errors.append('sp_attributeConsumingService_requestedAttributes_attributeValue_type_invalid') if (('isRequired' in req_attrib) and (type(req_attrib['isRequired']) != bool)): errors.append('sp_attributeConsumingService_requestedAttributes_isRequired_type_invalid') if (('serviceDescription' in attributeConsumingService) and (not isinstance(attributeConsumingService['serviceDescription'], basestring))): errors.append('sp_attributeConsumingService_serviceDescription_type_invalid') slo_url = sp.get('singleLogoutService', {}).get('url') if (slo_url and (not validate_url(slo_url))): errors.append('sp_sls_url_invalid') if (('signMetadata' in security) and isinstance(security['signMetadata'], dict)): if (('keyFileName' not in security['signMetadata']) or ('certFileName' not in security['signMetadata'])): errors.append('sp_signMetadata_invalid') authn_sign = bool(security.get('authnRequestsSigned')) logout_req_sign = bool(security.get('logoutRequestSigned')) logout_res_sign = bool(security.get('logoutResponseSigned')) want_assert_enc = bool(security.get('wantAssertionsEncrypted')) want_nameid_enc = bool(security.get('wantNameIdEncrypted')) if (not self.check_sp_certs()): if (authn_sign or logout_req_sign or logout_res_sign or want_assert_enc or want_nameid_enc): errors.append('sp_cert_not_found_and_required') if ('contactPerson' in settings): types = settings['contactPerson'] valid_types = ['technical', 'support', 'administrative', 'billing', 'other'] for c_type in types: if (c_type not in valid_types): errors.append('contact_type_invalid') break for c_type in settings['contactPerson']: contact = settings['contactPerson'][c_type] if ((('givenName' not in contact) or (len(contact['givenName']) == 0)) or (('emailAddress' not in contact) or (len(contact['emailAddress']) == 0))): errors.append('contact_not_enought_data') break if ('organization' in settings): for org in settings['organization']: organization = settings['organization'][org] if ((('name' not in organization) or (len(organization['name']) == 0)) or (('displayname' not in organization) or (len(organization['displayname']) == 0)) or (('url' not in organization) or (len(organization['url']) == 0))): errors.append('organization_not_enought_data') break if ('old_sp' in locals()): self.__sp = old_sp return errors
-2,496,403,301,086,345,700
Checks the SP settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the SP settings data :rtype: list
app/utils/onelogin/saml2/settings.py
check_sp_settings
nycrecords/intranet
python
def check_sp_settings(self, settings): '\n Checks the SP settings info.\n :param settings: Dict with settings data\n :type settings: dict\n :returns: Errors found on the SP settings data\n :rtype: list\n ' assert isinstance(settings, dict) errors = [] if ((not isinstance(settings, dict)) or (not settings)): errors.append('invalid_syntax') else: if (not settings.get('sp')): errors.append('sp_not_found') else: old_sp = self.__sp self.__sp = settings['sp'] sp = settings['sp'] security = settings.get('security', {}) if (not sp.get('entityId')): errors.append('sp_entityId_not_found') if (not sp.get('assertionConsumerService', {}).get('url')): errors.append('sp_acs_not_found') elif (not validate_url(sp['assertionConsumerService']['url'])): errors.append('sp_acs_url_invalid') if sp.get('attributeConsumingService'): attributeConsumingService = sp['attributeConsumingService'] if ('serviceName' not in attributeConsumingService): errors.append('sp_attributeConsumingService_serviceName_not_found') elif (not isinstance(attributeConsumingService['serviceName'], basestring)): errors.append('sp_attributeConsumingService_serviceName_type_invalid') if ('requestedAttributes' not in attributeConsumingService): errors.append('sp_attributeConsumingService_requestedAttributes_not_found') elif (not isinstance(attributeConsumingService['requestedAttributes'], list)): errors.append('sp_attributeConsumingService_serviceName_type_invalid') else: for req_attrib in attributeConsumingService['requestedAttributes']: if ('name' not in req_attrib): errors.append('sp_attributeConsumingService_requestedAttributes_name_not_found') if (('name' in req_attrib) and (not req_attrib['name'].strip())): errors.append('sp_attributeConsumingService_requestedAttributes_name_invalid') if (('attributeValue' in req_attrib) and (type(req_attrib['attributeValue']) != list)): errors.append('sp_attributeConsumingService_requestedAttributes_attributeValue_type_invalid') if (('isRequired' in req_attrib) and (type(req_attrib['isRequired']) != bool)): errors.append('sp_attributeConsumingService_requestedAttributes_isRequired_type_invalid') if (('serviceDescription' in attributeConsumingService) and (not isinstance(attributeConsumingService['serviceDescription'], basestring))): errors.append('sp_attributeConsumingService_serviceDescription_type_invalid') slo_url = sp.get('singleLogoutService', {}).get('url') if (slo_url and (not validate_url(slo_url))): errors.append('sp_sls_url_invalid') if (('signMetadata' in security) and isinstance(security['signMetadata'], dict)): if (('keyFileName' not in security['signMetadata']) or ('certFileName' not in security['signMetadata'])): errors.append('sp_signMetadata_invalid') authn_sign = bool(security.get('authnRequestsSigned')) logout_req_sign = bool(security.get('logoutRequestSigned')) logout_res_sign = bool(security.get('logoutResponseSigned')) want_assert_enc = bool(security.get('wantAssertionsEncrypted')) want_nameid_enc = bool(security.get('wantNameIdEncrypted')) if (not self.check_sp_certs()): if (authn_sign or logout_req_sign or logout_res_sign or want_assert_enc or want_nameid_enc): errors.append('sp_cert_not_found_and_required') if ('contactPerson' in settings): types = settings['contactPerson'] valid_types = ['technical', 'support', 'administrative', 'billing', 'other'] for c_type in types: if (c_type not in valid_types): errors.append('contact_type_invalid') break for c_type in settings['contactPerson']: contact = settings['contactPerson'][c_type] if ((('givenName' not in contact) or (len(contact['givenName']) == 0)) or (('emailAddress' not in contact) or (len(contact['emailAddress']) == 0))): errors.append('contact_not_enought_data') break if ('organization' in settings): for org in settings['organization']: organization = settings['organization'][org] if ((('name' not in organization) or (len(organization['name']) == 0)) or (('displayname' not in organization) or (len(organization['displayname']) == 0)) or (('url' not in organization) or (len(organization['url']) == 0))): errors.append('organization_not_enought_data') break if ('old_sp' in locals()): self.__sp = old_sp return errors
def check_sp_certs(self): '\n Checks if the x509 certs of the SP exists and are valid.\n :returns: If the x509 certs of the SP exists and are valid\n :rtype: boolean\n ' key = self.get_sp_key() cert = self.get_sp_cert() return ((key is not None) and (cert is not None))
-7,812,650,226,965,906,000
Checks if the x509 certs of the SP exists and are valid. :returns: If the x509 certs of the SP exists and are valid :rtype: boolean
app/utils/onelogin/saml2/settings.py
check_sp_certs
nycrecords/intranet
python
def check_sp_certs(self): '\n Checks if the x509 certs of the SP exists and are valid.\n :returns: If the x509 certs of the SP exists and are valid\n :rtype: boolean\n ' key = self.get_sp_key() cert = self.get_sp_cert() return ((key is not None) and (cert is not None))
def get_sp_key(self): '\n Returns the x509 private key of the SP.\n :returns: SP private key\n :rtype: string or None\n ' key = self.__sp.get('privateKey') key_file_name = (self.__paths['cert'] + 'sp.key') if ((not key) and exists(key_file_name)): with open(key_file_name) as f: key = f.read() return (key or None)
-4,037,297,485,836,650,000
Returns the x509 private key of the SP. :returns: SP private key :rtype: string or None
app/utils/onelogin/saml2/settings.py
get_sp_key
nycrecords/intranet
python
def get_sp_key(self): '\n Returns the x509 private key of the SP.\n :returns: SP private key\n :rtype: string or None\n ' key = self.__sp.get('privateKey') key_file_name = (self.__paths['cert'] + 'sp.key') if ((not key) and exists(key_file_name)): with open(key_file_name) as f: key = f.read() return (key or None)
def get_sp_cert(self): '\n Returns the x509 public cert of the SP.\n :returns: SP public cert\n :rtype: string or None\n ' cert = self.__sp.get('x509cert') cert_file_name = (self.__paths['cert'] + 'sp.crt') if ((not cert) and exists(cert_file_name)): with open(cert_file_name) as f: cert = f.read() return (cert or None)
3,085,101,086,525,962,000
Returns the x509 public cert of the SP. :returns: SP public cert :rtype: string or None
app/utils/onelogin/saml2/settings.py
get_sp_cert
nycrecords/intranet
python
def get_sp_cert(self): '\n Returns the x509 public cert of the SP.\n :returns: SP public cert\n :rtype: string or None\n ' cert = self.__sp.get('x509cert') cert_file_name = (self.__paths['cert'] + 'sp.crt') if ((not cert) and exists(cert_file_name)): with open(cert_file_name) as f: cert = f.read() return (cert or None)
def get_sp_cert_new(self): '\n Returns the x509 public of the SP planned\n to be used soon instead the other public cert\n :returns: SP public cert new\n :rtype: string or None\n ' cert = self.__sp.get('x509certNew') cert_file_name = (self.__paths['cert'] + 'sp_new.crt') if ((not cert) and exists(cert_file_name)): with open(cert_file_name) as f: cert = f.read() return (cert or None)
-1,498,846,491,623,402,500
Returns the x509 public of the SP planned to be used soon instead the other public cert :returns: SP public cert new :rtype: string or None
app/utils/onelogin/saml2/settings.py
get_sp_cert_new
nycrecords/intranet
python
def get_sp_cert_new(self): '\n Returns the x509 public of the SP planned\n to be used soon instead the other public cert\n :returns: SP public cert new\n :rtype: string or None\n ' cert = self.__sp.get('x509certNew') cert_file_name = (self.__paths['cert'] + 'sp_new.crt') if ((not cert) and exists(cert_file_name)): with open(cert_file_name) as f: cert = f.read() return (cert or None)
def get_idp_cert(self): '\n Returns the x509 public cert of the IdP.\n :returns: IdP public cert\n :rtype: string\n ' return self.__idp.get('x509cert')
4,088,177,130,043,971,000
Returns the x509 public cert of the IdP. :returns: IdP public cert :rtype: string
app/utils/onelogin/saml2/settings.py
get_idp_cert
nycrecords/intranet
python
def get_idp_cert(self): '\n Returns the x509 public cert of the IdP.\n :returns: IdP public cert\n :rtype: string\n ' return self.__idp.get('x509cert')
def get_idp_data(self): '\n Gets the IdP data.\n\n :returns: IdP info\n :rtype: dict\n ' return self.__idp
-3,116,901,750,163,315,000
Gets the IdP data. :returns: IdP info :rtype: dict
app/utils/onelogin/saml2/settings.py
get_idp_data
nycrecords/intranet
python
def get_idp_data(self): '\n Gets the IdP data.\n\n :returns: IdP info\n :rtype: dict\n ' return self.__idp
def get_sp_data(self): '\n Gets the SP data.\n\n :returns: SP info\n :rtype: dict\n ' return self.__sp
-7,802,741,565,788,101,000
Gets the SP data. :returns: SP info :rtype: dict
app/utils/onelogin/saml2/settings.py
get_sp_data
nycrecords/intranet
python
def get_sp_data(self): '\n Gets the SP data.\n\n :returns: SP info\n :rtype: dict\n ' return self.__sp
def get_security_data(self): '\n Gets security data.\n\n :returns: Security info\n :rtype: dict\n ' return self.__security
1,365,572,923,322,081,000
Gets security data. :returns: Security info :rtype: dict
app/utils/onelogin/saml2/settings.py
get_security_data
nycrecords/intranet
python
def get_security_data(self): '\n Gets security data.\n\n :returns: Security info\n :rtype: dict\n ' return self.__security
def get_contacts(self): '\n Gets contact data.\n\n :returns: Contacts info\n :rtype: dict\n ' return self.__contacts
-8,828,376,608,204,893,000
Gets contact data. :returns: Contacts info :rtype: dict
app/utils/onelogin/saml2/settings.py
get_contacts
nycrecords/intranet
python
def get_contacts(self): '\n Gets contact data.\n\n :returns: Contacts info\n :rtype: dict\n ' return self.__contacts
def get_organization(self): '\n Gets organization data.\n\n :returns: Organization info\n :rtype: dict\n ' return self.__organization
7,596,810,709,364,819,000
Gets organization data. :returns: Organization info :rtype: dict
app/utils/onelogin/saml2/settings.py
get_organization
nycrecords/intranet
python
def get_organization(self): '\n Gets organization data.\n\n :returns: Organization info\n :rtype: dict\n ' return self.__organization
def get_sp_metadata(self): '\n Gets the SP metadata. The XML representation.\n :returns: SP metadata (xml)\n :rtype: string\n ' metadata = OneLogin_Saml2_Metadata.builder(self.__sp, self.__security['authnRequestsSigned'], self.__security['wantAssertionsSigned'], self.__security['metadataValidUntil'], self.__security['metadataCacheDuration'], self.get_contacts(), self.get_organization()) add_encryption = (self.__security['wantNameIdEncrypted'] or self.__security['wantAssertionsEncrypted']) cert_new = self.get_sp_cert_new() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert_new, add_encryption) cert = self.get_sp_cert() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert, add_encryption) if (('signMetadata' in self.__security) and (self.__security['signMetadata'] is not False)): if (self.__security['signMetadata'] is True): if (not cert): raise OneLogin_Saml2_Error('Cannot sign metadata: missing SP public key certificate.', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND) cert_metadata = cert key_metadata = self.get_sp_key() if (not key_metadata): raise OneLogin_Saml2_Error('Cannot sign metadata: missing SP private key.', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND) else: if (('keyFileName' not in self.__security['signMetadata']) or ('certFileName' not in self.__security['signMetadata'])): raise OneLogin_Saml2_Error('Invalid Setting: signMetadata value of the sp is not valid', OneLogin_Saml2_Error.SETTINGS_INVALID_SYNTAX) key_file_name = self.__security['signMetadata']['keyFileName'] cert_file_name = self.__security['signMetadata']['certFileName'] key_metadata_file = (self.__paths['cert'] + key_file_name) cert_metadata_file = (self.__paths['cert'] + cert_file_name) try: with open(key_metadata_file, 'r') as f_metadata_key: key_metadata = f_metadata_key.read() except IOError: raise OneLogin_Saml2_Error('Private key file not readable: %s', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND, key_metadata_file) try: with open(cert_metadata_file, 'r') as f_metadata_cert: cert_metadata = f_metadata_cert.read() except IOError: raise OneLogin_Saml2_Error('Public cert file not readable: %s', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND, cert_metadata_file) signature_algorithm = self.__security['signatureAlgorithm'] digest_algorithm = self.__security['digestAlgorithm'] metadata = OneLogin_Saml2_Metadata.sign_metadata(metadata, key_metadata, cert_metadata, signature_algorithm, digest_algorithm) return metadata
-4,473,593,141,927,607,300
Gets the SP metadata. The XML representation. :returns: SP metadata (xml) :rtype: string
app/utils/onelogin/saml2/settings.py
get_sp_metadata
nycrecords/intranet
python
def get_sp_metadata(self): '\n Gets the SP metadata. The XML representation.\n :returns: SP metadata (xml)\n :rtype: string\n ' metadata = OneLogin_Saml2_Metadata.builder(self.__sp, self.__security['authnRequestsSigned'], self.__security['wantAssertionsSigned'], self.__security['metadataValidUntil'], self.__security['metadataCacheDuration'], self.get_contacts(), self.get_organization()) add_encryption = (self.__security['wantNameIdEncrypted'] or self.__security['wantAssertionsEncrypted']) cert_new = self.get_sp_cert_new() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert_new, add_encryption) cert = self.get_sp_cert() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert, add_encryption) if (('signMetadata' in self.__security) and (self.__security['signMetadata'] is not False)): if (self.__security['signMetadata'] is True): if (not cert): raise OneLogin_Saml2_Error('Cannot sign metadata: missing SP public key certificate.', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND) cert_metadata = cert key_metadata = self.get_sp_key() if (not key_metadata): raise OneLogin_Saml2_Error('Cannot sign metadata: missing SP private key.', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND) else: if (('keyFileName' not in self.__security['signMetadata']) or ('certFileName' not in self.__security['signMetadata'])): raise OneLogin_Saml2_Error('Invalid Setting: signMetadata value of the sp is not valid', OneLogin_Saml2_Error.SETTINGS_INVALID_SYNTAX) key_file_name = self.__security['signMetadata']['keyFileName'] cert_file_name = self.__security['signMetadata']['certFileName'] key_metadata_file = (self.__paths['cert'] + key_file_name) cert_metadata_file = (self.__paths['cert'] + cert_file_name) try: with open(key_metadata_file, 'r') as f_metadata_key: key_metadata = f_metadata_key.read() except IOError: raise OneLogin_Saml2_Error('Private key file not readable: %s', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND, key_metadata_file) try: with open(cert_metadata_file, 'r') as f_metadata_cert: cert_metadata = f_metadata_cert.read() except IOError: raise OneLogin_Saml2_Error('Public cert file not readable: %s', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND, cert_metadata_file) signature_algorithm = self.__security['signatureAlgorithm'] digest_algorithm = self.__security['digestAlgorithm'] metadata = OneLogin_Saml2_Metadata.sign_metadata(metadata, key_metadata, cert_metadata, signature_algorithm, digest_algorithm) return metadata
def validate_metadata(self, xml): "\n Validates an XML SP Metadata.\n\n :param xml: Metadata's XML that will be validate\n :type xml: string\n\n :returns: The list of found errors\n :rtype: list\n " assert isinstance(xml, compat.text_types) if (len(xml) == 0): raise Exception('Empty string supplied as input') errors = [] root = OneLogin_Saml2_XML.validate_xml(xml, 'saml-schema-metadata-2.0.xsd', self.__debug) if isinstance(root, str): errors.append(root) elif (root.tag != ('{%s}EntityDescriptor' % OneLogin_Saml2_Constants.NS_MD)): errors.append('noEntityDescriptor_xml') elif (len(root.findall('.//md:SPSSODescriptor', namespaces=OneLogin_Saml2_Constants.NSMAP)) != 1): errors.append('onlySPSSODescriptor_allowed_xml') else: (valid_until, cache_duration) = (root.get('validUntil'), root.get('cacheDuration')) if valid_until: valid_until = OneLogin_Saml2_Utils.parse_SAML_to_time(valid_until) expire_time = OneLogin_Saml2_Utils.get_expire_time(cache_duration, valid_until) if ((expire_time is not None) and (int(time()) > int(expire_time))): errors.append('expired_xml') return errors
3,210,722,307,556,125,000
Validates an XML SP Metadata. :param xml: Metadata's XML that will be validate :type xml: string :returns: The list of found errors :rtype: list
app/utils/onelogin/saml2/settings.py
validate_metadata
nycrecords/intranet
python
def validate_metadata(self, xml): "\n Validates an XML SP Metadata.\n\n :param xml: Metadata's XML that will be validate\n :type xml: string\n\n :returns: The list of found errors\n :rtype: list\n " assert isinstance(xml, compat.text_types) if (len(xml) == 0): raise Exception('Empty string supplied as input') errors = [] root = OneLogin_Saml2_XML.validate_xml(xml, 'saml-schema-metadata-2.0.xsd', self.__debug) if isinstance(root, str): errors.append(root) elif (root.tag != ('{%s}EntityDescriptor' % OneLogin_Saml2_Constants.NS_MD)): errors.append('noEntityDescriptor_xml') elif (len(root.findall('.//md:SPSSODescriptor', namespaces=OneLogin_Saml2_Constants.NSMAP)) != 1): errors.append('onlySPSSODescriptor_allowed_xml') else: (valid_until, cache_duration) = (root.get('validUntil'), root.get('cacheDuration')) if valid_until: valid_until = OneLogin_Saml2_Utils.parse_SAML_to_time(valid_until) expire_time = OneLogin_Saml2_Utils.get_expire_time(cache_duration, valid_until) if ((expire_time is not None) and (int(time()) > int(expire_time))): errors.append('expired_xml') return errors
def format_idp_cert(self): '\n Formats the IdP cert.\n ' self.__idp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509cert'])
154,846,901,795,047,100
Formats the IdP cert.
app/utils/onelogin/saml2/settings.py
format_idp_cert
nycrecords/intranet
python
def format_idp_cert(self): '\n \n ' self.__idp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509cert'])
def format_idp_cert_multi(self): '\n Formats the Multple IdP certs.\n ' if ('x509certMulti' in self.__idp): if ('signing' in self.__idp['x509certMulti']): for idx in range(len(self.__idp['x509certMulti']['signing'])): self.__idp['x509certMulti']['signing'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['signing'][idx]) if ('encryption' in self.__idp['x509certMulti']): for idx in range(len(self.__idp['x509certMulti']['encryption'])): self.__idp['x509certMulti']['encryption'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['encryption'][idx])
-5,308,441,926,965,280,000
Formats the Multple IdP certs.
app/utils/onelogin/saml2/settings.py
format_idp_cert_multi
nycrecords/intranet
python
def format_idp_cert_multi(self): '\n \n ' if ('x509certMulti' in self.__idp): if ('signing' in self.__idp['x509certMulti']): for idx in range(len(self.__idp['x509certMulti']['signing'])): self.__idp['x509certMulti']['signing'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['signing'][idx]) if ('encryption' in self.__idp['x509certMulti']): for idx in range(len(self.__idp['x509certMulti']['encryption'])): self.__idp['x509certMulti']['encryption'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['encryption'][idx])
def format_sp_cert(self): '\n Formats the SP cert.\n ' self.__sp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509cert'])
-8,799,753,653,561,585,000
Formats the SP cert.
app/utils/onelogin/saml2/settings.py
format_sp_cert
nycrecords/intranet
python
def format_sp_cert(self): '\n \n ' self.__sp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509cert'])
def format_sp_cert_new(self): '\n Formats the SP cert.\n ' self.__sp['x509certNew'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509certNew'])
-4,849,810,101,938,704,000
Formats the SP cert.
app/utils/onelogin/saml2/settings.py
format_sp_cert_new
nycrecords/intranet
python
def format_sp_cert_new(self): '\n \n ' self.__sp['x509certNew'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509certNew'])
def format_sp_key(self): '\n Formats the private key.\n ' self.__sp['privateKey'] = OneLogin_Saml2_Utils.format_private_key(self.__sp['privateKey'])
240,490,718,022,734,240
Formats the private key.
app/utils/onelogin/saml2/settings.py
format_sp_key
nycrecords/intranet
python
def format_sp_key(self): '\n \n ' self.__sp['privateKey'] = OneLogin_Saml2_Utils.format_private_key(self.__sp['privateKey'])
def get_errors(self): '\n Returns an array with the errors, the array is empty when the settings is ok.\n\n :returns: Errors\n :rtype: list\n ' return self.__errors
-450,769,031,362,331,000
Returns an array with the errors, the array is empty when the settings is ok. :returns: Errors :rtype: list
app/utils/onelogin/saml2/settings.py
get_errors
nycrecords/intranet
python
def get_errors(self): '\n Returns an array with the errors, the array is empty when the settings is ok.\n\n :returns: Errors\n :rtype: list\n ' return self.__errors
def set_strict(self, value): '\n Activates or deactivates the strict mode.\n\n :param value: Strict parameter\n :type value: boolean\n ' assert isinstance(value, bool) self.__strict = value
-1,835,184,990,267,616,000
Activates or deactivates the strict mode. :param value: Strict parameter :type value: boolean
app/utils/onelogin/saml2/settings.py
set_strict
nycrecords/intranet
python
def set_strict(self, value): '\n Activates or deactivates the strict mode.\n\n :param value: Strict parameter\n :type value: boolean\n ' assert isinstance(value, bool) self.__strict = value
def is_strict(self): "\n Returns if the 'strict' mode is active.\n\n :returns: Strict parameter\n :rtype: boolean\n " return self.__strict
-5,834,133,523,043,742,000
Returns if the 'strict' mode is active. :returns: Strict parameter :rtype: boolean
app/utils/onelogin/saml2/settings.py
is_strict
nycrecords/intranet
python
def is_strict(self): "\n Returns if the 'strict' mode is active.\n\n :returns: Strict parameter\n :rtype: boolean\n " return self.__strict
def is_debug_active(self): '\n Returns if the debug is active.\n\n :returns: Debug parameter\n :rtype: boolean\n ' return self.__debug
2,389,600,388,186,807,000
Returns if the debug is active. :returns: Debug parameter :rtype: boolean
app/utils/onelogin/saml2/settings.py
is_debug_active
nycrecords/intranet
python
def is_debug_active(self): '\n Returns if the debug is active.\n\n :returns: Debug parameter\n :rtype: boolean\n ' return self.__debug
@pytest.mark.ui def test_apply_mag_field_view1(exopy_qtbot, root_view, task_workbench): 'Test ApplyMagFieldView widget outisde of a LoopTask.\n\n ' task = ApplyMagFieldTask(name='Test') root_view.task.add_child_task(0, task) show_and_close_widget(exopy_qtbot, ApplyMagFieldView(task=task, root=root_view))
8,545,179,322,454,801,000
Test ApplyMagFieldView widget outisde of a LoopTask.
tests/tasks/tasks/instr/test_apply_mag_field_task.py
test_apply_mag_field_view1
Qcircuits/exopy_hqc_legacy
python
@pytest.mark.ui def test_apply_mag_field_view1(exopy_qtbot, root_view, task_workbench): '\n\n ' task = ApplyMagFieldTask(name='Test') root_view.task.add_child_task(0, task) show_and_close_widget(exopy_qtbot, ApplyMagFieldView(task=task, root=root_view))
@pytest.mark.ui def test_apply_mag_field_view2(exopy_qtbot, root_view, task_workbench): 'Test ApplyMagFieldView widget inside of a LoopTask.\n\n ' task = ApplyMagFieldTask(name='Test') loop = LoopTask(name='r', task=task) root_view.task.add_child_task(0, loop) show_and_close_widget(exopy_qtbot, LoopView(task=loop, root=root_view))
4,429,556,137,842,436,600
Test ApplyMagFieldView widget inside of a LoopTask.
tests/tasks/tasks/instr/test_apply_mag_field_task.py
test_apply_mag_field_view2
Qcircuits/exopy_hqc_legacy
python
@pytest.mark.ui def test_apply_mag_field_view2(exopy_qtbot, root_view, task_workbench): '\n\n ' task = ApplyMagFieldTask(name='Test') loop = LoopTask(name='r', task=task) root_view.task.add_child_task(0, loop) show_and_close_widget(exopy_qtbot, LoopView(task=loop, root=root_view))
def test_check1(self): 'Simply test that everything is ok if field can be evaluated.\n\n ' self.task.field = '3.0' (test, traceback) = self.task.check(test_instr=True) assert test assert (not traceback) assert (self.task.get_from_database('Test_field') == 3.0)
3,313,670,270,641,834,000
Simply test that everything is ok if field can be evaluated.
tests/tasks/tasks/instr/test_apply_mag_field_task.py
test_check1
Qcircuits/exopy_hqc_legacy
python
def test_check1(self): '\n\n ' self.task.field = '3.0' (test, traceback) = self.task.check(test_instr=True) assert test assert (not traceback) assert (self.task.get_from_database('Test_field') == 3.0)
def test_check2(self): 'Check handling a wrong field.\n\n ' self.task.field = '*1.0*' (test, traceback) = self.task.check(test_instr=True) assert (not test) assert (len(traceback) == 1) assert ('root/Test-field' in traceback) assert (self.task.get_from_database('Test_field') == 0.01)
7,797,678,657,480,563,000
Check handling a wrong field.
tests/tasks/tasks/instr/test_apply_mag_field_task.py
test_check2
Qcircuits/exopy_hqc_legacy
python
def test_check2(self): '\n\n ' self.task.field = '*1.0*' (test, traceback) = self.task.check(test_instr=True) assert (not test) assert (len(traceback) == 1) assert ('root/Test-field' in traceback) assert (self.task.get_from_database('Test_field') == 0.01)
def test_perform1(self): 'Simple test when everything is right.\n\n ' self.task.field = '2.0' self.root.prepare() self.task.perform() assert (self.root.get_from_database('Test_field') == 2.0)
-9,060,059,394,285,495,000
Simple test when everything is right.
tests/tasks/tasks/instr/test_apply_mag_field_task.py
test_perform1
Qcircuits/exopy_hqc_legacy
python
def test_perform1(self): '\n\n ' self.task.field = '2.0' self.root.prepare() self.task.perform() assert (self.root.get_from_database('Test_field') == 2.0)
def _skip_date_tokens(tokens): '\n Based on RFC 3164 + RFC 5424 and real-world logs\n ' if (tokens and tokens[0].startswith('<')): tokens.pop(0) while (tokens and ((not tokens[0]) or tokens[0][:1].isdigit())): tokens.pop(0)
-6,881,443,272,031,541,000
Based on RFC 3164 + RFC 5424 and real-world logs
syslog.py
_skip_date_tokens
Bun/ha-syslog-devtracker
python
def _skip_date_tokens(tokens): '\n \n ' if (tokens and tokens[0].startswith('<')): tokens.pop(0) while (tokens and ((not tokens[0]) or tokens[0][:1].isdigit())): tokens.pop(0)
def parse_syslog_line(line): 'Parses lines created by hostapd and dnsmasq DHCP' tokens = line.split(' ') _skip_date_tokens(tokens) process = _find_process(tokens) if ((not process) or (not tokens)): _LOGGER.debug('Unable to process line: %r', line) return if (process == 'hostapd'): if (len(tokens) == 3): if (tokens[1] == 'AP-STA-CONNECTED'): return Event(tokens[2], 'home', True, tokens[1]) elif (tokens[1] == 'AP-STA-DISCONNECTED'): return Event(tokens[2], 'timeout', True, tokens[1]) elif ((len(tokens) > 4) and (tokens[1] == 'STA')): suffix = ' '.join(_remove_param(tokens[3:])) for (consider, status) in STA_EVENTS.items(): if suffix.endswith(consider): if (status == ''): return return Event(tokens[2], status, True, suffix) _LOGGER.warning('Unhandled line: %r', line) elif (process == 'dnsmasq-dhcp'): if (len(tokens) >= 3): if tokens[0].startswith('DHCPACK('): return Event(tokens[2], 'home', False, tokens[0])
-6,569,647,656,581,431,000
Parses lines created by hostapd and dnsmasq DHCP
syslog.py
parse_syslog_line
Bun/ha-syslog-devtracker
python
def parse_syslog_line(line): tokens = line.split(' ') _skip_date_tokens(tokens) process = _find_process(tokens) if ((not process) or (not tokens)): _LOGGER.debug('Unable to process line: %r', line) return if (process == 'hostapd'): if (len(tokens) == 3): if (tokens[1] == 'AP-STA-CONNECTED'): return Event(tokens[2], 'home', True, tokens[1]) elif (tokens[1] == 'AP-STA-DISCONNECTED'): return Event(tokens[2], 'timeout', True, tokens[1]) elif ((len(tokens) > 4) and (tokens[1] == 'STA')): suffix = ' '.join(_remove_param(tokens[3:])) for (consider, status) in STA_EVENTS.items(): if suffix.endswith(consider): if (status == ): return return Event(tokens[2], status, True, suffix) _LOGGER.warning('Unhandled line: %r', line) elif (process == 'dnsmasq-dhcp'): if (len(tokens) >= 3): if tokens[0].startswith('DHCPACK('): return Event(tokens[2], 'home', False, tokens[0])
def _add_conv_fc_branch(self, num_branch_convs, num_branch_fcs, in_channels, is_shared=False): 'Add shared or separable branch.\n\n convs -> avg pool (optional) -> fcs\n ' last_layer_dim = in_channels branch_convs = nn.ModuleList() if (num_branch_convs > 0): for i in range(num_branch_convs): conv_in_channels = (last_layer_dim if (i == 0) else self.conv_out_channels) branch_convs.append(ConvModule(conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) last_layer_dim = self.conv_out_channels branch_fcs = nn.ModuleList() if (num_branch_fcs > 0): if ((is_shared or (self.num_shared_fcs == 0)) and (not self.with_avg_pool)): last_layer_dim *= self.roi_feat_area for i in range(num_branch_fcs): fc_in_channels = (last_layer_dim if (i == 0) else self.fc_out_channels) branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return (branch_convs, branch_fcs, last_layer_dim)
-8,176,502,878,514,245,000
Add shared or separable branch. convs -> avg pool (optional) -> fcs
mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py
_add_conv_fc_branch
marcovalenti/mmdetection
python
def _add_conv_fc_branch(self, num_branch_convs, num_branch_fcs, in_channels, is_shared=False): 'Add shared or separable branch.\n\n convs -> avg pool (optional) -> fcs\n ' last_layer_dim = in_channels branch_convs = nn.ModuleList() if (num_branch_convs > 0): for i in range(num_branch_convs): conv_in_channels = (last_layer_dim if (i == 0) else self.conv_out_channels) branch_convs.append(ConvModule(conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) last_layer_dim = self.conv_out_channels branch_fcs = nn.ModuleList() if (num_branch_fcs > 0): if ((is_shared or (self.num_shared_fcs == 0)) and (not self.with_avg_pool)): last_layer_dim *= self.roi_feat_area for i in range(num_branch_fcs): fc_in_channels = (last_layer_dim if (i == 0) else self.fc_out_channels) branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return (branch_convs, branch_fcs, last_layer_dim)
def get_targets(self, sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg, reference_labels, classes, concat=True): "Calculate the ground truth for all samples in a batch according to\n the sampling_results.\n Almost the same as the implementation in bbox_head, we passed\n additional parameters pos_inds_list and neg_inds_list to\n `_get_target_single` function.\n Args:\n sampling_results (List[obj:SamplingResults]): Assign results of\n all images in a batch after sampling.\n gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,\n each tensor has shape (num_gt, 4), the last dimension 4\n represents [tl_x, tl_y, br_x, br_y].\n gt_labels (list[Tensor]): Gt_labels of all images in a batch,\n each tensor has shape (num_gt,).\n rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.\n concat (bool): Whether to concatenate the results of all\n the images in a single batch.\n Returns:\n Tuple[Tensor]: Ground truth for proposals in a single image.\n Containing the following list of Tensors:\n - labels (list[Tensor],Tensor): Gt_labels for all\n proposals in a batch, each tensor in list has\n shape (num_proposals,) when `concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n - label_weights (list[Tensor]): Labels_weights for\n all proposals in a batch, each tensor in list has\n shape (num_proposals,) when `concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n - bbox_targets (list[Tensor],Tensor): Regression target\n for all proposals in a batch, each tensor in list\n has shape (num_proposals, 4) when `concat=False`,\n otherwise just a single tensor has shape\n (num_all_proposals, 4), the last dimension 4 represents\n [tl_x, tl_y, br_x, br_y].\n - bbox_weights (list[tensor],Tensor): Regression weights for\n all proposals in a batch, each tensor in list has shape\n (num_proposals, 4) when `concat=False`, otherwise just a\n single tensor has shape (num_all_proposals, 4).\n - dis_targets (list[tensor], Tensor): Gt_dis for all\n proposal in a batch, each tensor in list has\n shape (num_proposal,) when 'concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n " pos_bboxes_list = [res.pos_bboxes for res in sampling_results] neg_bboxes_list = [res.neg_bboxes for res in sampling_results] pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] (labels, label_weights, bbox_targets, bbox_weights) = multi_apply(self._get_target_single, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=rcnn_train_cfg) iou_calculator = dict(type='BboxOverlaps2D') iou_calculator = build_iou_calculator(iou_calculator) isolation_thr = 0.45 dis_targets = [] for (i, res) in enumerate(sampling_results): ref_grap_list = [] ref_leav_list = [] ref_grap_dis_list = [] ref_leav_dis_list = [] for (j, bbox) in enumerate(gt_bboxes[i]): if (self.dis_selector == 0): if (('grappolo' in classes[gt_labels[i][j]]) and (gt_labels[i][j] != reference_labels['grappolo_vite'])): ref_grap_dis_list.append(bbox) elif ((('foglia' in classes[gt_labels[i][j]]) or (classes[gt_labels[i][j]] == 'malattia_esca') or (classes[gt_labels[i][j]] == 'virosi_pinot_grigio')) and (gt_labels[i][j] != reference_labels['foglia_vite'])): ref_leav_dis_list.append(bbox) elif (self.dis_selector == 1): if (gt_labels[i][j] == reference_labels['grappolo_vite']): ref_grap_list.append(bbox) elif (gt_labels[i][j] == reference_labels['foglia_vite']): ref_leav_list.append(bbox) elif (self.dis_selector == 2): if (gt_labels[i][j] == reference_labels['grappolo_vite']): ref_grap_list.append(bbox) elif (gt_labels[i][j] == reference_labels['foglia_vite']): ref_leav_list.append(bbox) elif ('grappolo' in classes[gt_labels[i][j]]): ref_grap_dis_list.append(bbox) elif (('foglia' in classes[gt_labels[i][j]]) or (classes[gt_labels[i][j]] == 'malattia_esca') or (classes[gt_labels[i][j]] == 'virosi_pinot_grigio')): ref_leav_dis_list.append(bbox) "\n if 'grappolo' in classes[gt_labels[i][j]] and gt_labels[i][j] != reference_labels['grappolo_vite']:\n ref_grap_dis_list.append(bbox)\n elif (('foglia' in classes[gt_labels[i][j]] or classes[gt_labels[i][j]] == 'malattia_esca' or classes[gt_labels[i][j]] == 'virosi_pinot_grigio')\n and gt_labels[i][j] != reference_labels['foglia_vite']):\n ref_leav_dis_list.append(bbox)\n " if (len(ref_grap_list) > 0): ref_grap_tensor = torch.cat(ref_grap_list) ref_grap_tensor = torch.reshape(ref_grap_tensor, (len(ref_grap_list), 4)) if (len(ref_leav_list) > 0): ref_leav_tensor = torch.cat(ref_leav_list) ref_leav_tensor = torch.reshape(ref_leav_tensor, (len(ref_leav_list), 4)) if (len(ref_grap_dis_list) > 0): ref_grap_dis_tensor = torch.cat(ref_grap_dis_list) ref_grap_dis_tensor = torch.reshape(ref_grap_dis_tensor, (len(ref_grap_dis_list), 4)) if (len(ref_leav_dis_list) > 0): ref_leav_dis_tensor = torch.cat(ref_leav_dis_list) ref_leav_dis_tensor = torch.reshape(ref_leav_dis_tensor, (len(ref_leav_dis_list), 4)) num_pos = res.pos_bboxes.size(0) num_neg = res.neg_bboxes.size(0) num_samples = (num_pos + num_neg) dis_tensor = res.pos_bboxes.new_full((num_samples,), (- 1), dtype=torch.long) dis_list = [] for (j, bbox) in enumerate(res.pos_bboxes): bbox = bbox.unsqueeze(0) if (res.pos_gt_labels[j] == reference_labels['grappolo_vite']): if (self.dis_selector == 0): dis_list.append((- 1)) elif ((self.dis_selector == 1) or (self.dis_selector == 2)): if (len(ref_grap_dis_list) > 0): overlaps = iou_calculator(ref_grap_dis_tensor, bbox, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (res.pos_gt_labels[j] == reference_labels['foglia_vite']): if (self.dis_selector == 0): dis_list.append((- 1)) elif ((self.dis_selector == 1) or (self.dis_selector == 2)): if (len(ref_leav_dis_list) > 0): overlaps = iou_calculator(ref_leav_dis_tensor, bbox, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (('grappolo' in classes[res.pos_gt_labels[j]]) and (res.pos_gt_labels[j] != reference_labels['grappolo_vite'])): if (self.dis_selector == 1): dis_list.append((- 1)) elif (self.dis_selector == 0): if (len(ref_grap_list) > 0): overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (self.dis_selector == 2): if (len(ref_grap_list) > 0): overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(2) else: dis_list.append(3) else: dis_list.append(2) elif ((('foglia' in classes[res.pos_gt_labels[j]]) or (classes[res.pos_gt_labels[j]] == 'malattia_esca') or (classes[res.pos_gt_labels[j]] == 'virosi_pinot_grigio')) and (res.pos_gt_labels[j] != reference_labels['foglia_vite'])): if (self.dis_selector == 1): dis_list.append((- 1)) elif (self.dis_selector == 0): if (len(ref_leav_list) > 0): overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (self.dis_selector == 2): if (len(ref_leav_list) > 0): overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(2) else: dis_list.append(3) else: dis_list.append(2) dis_tensor[:num_pos] = torch.tensor(dis_list) dis_targets.append(dis_tensor) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) dis_targets = torch.cat(dis_targets, 0) return (labels, label_weights, bbox_targets, bbox_weights, dis_targets)
-50,011,819,819,159,050
Calculate the ground truth for all samples in a batch according to the sampling_results. Almost the same as the implementation in bbox_head, we passed additional parameters pos_inds_list and neg_inds_list to `_get_target_single` function. Args: sampling_results (List[obj:SamplingResults]): Assign results of all images in a batch after sampling. gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch, each tensor has shape (num_gt, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. gt_labels (list[Tensor]): Gt_labels of all images in a batch, each tensor has shape (num_gt,). rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. concat (bool): Whether to concatenate the results of all the images in a single batch. Returns: Tuple[Tensor]: Ground truth for proposals in a single image. Containing the following list of Tensors: - labels (list[Tensor],Tensor): Gt_labels for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - label_weights (list[Tensor]): Labels_weights for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - bbox_targets (list[Tensor],Tensor): Regression target for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. - bbox_weights (list[tensor],Tensor): Regression weights for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4). - dis_targets (list[tensor], Tensor): Gt_dis for all proposal in a batch, each tensor in list has shape (num_proposal,) when 'concat=False`, otherwise just a single tensor has shape (num_all_proposals,).
mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py
get_targets
marcovalenti/mmdetection
python
def get_targets(self, sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg, reference_labels, classes, concat=True): "Calculate the ground truth for all samples in a batch according to\n the sampling_results.\n Almost the same as the implementation in bbox_head, we passed\n additional parameters pos_inds_list and neg_inds_list to\n `_get_target_single` function.\n Args:\n sampling_results (List[obj:SamplingResults]): Assign results of\n all images in a batch after sampling.\n gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,\n each tensor has shape (num_gt, 4), the last dimension 4\n represents [tl_x, tl_y, br_x, br_y].\n gt_labels (list[Tensor]): Gt_labels of all images in a batch,\n each tensor has shape (num_gt,).\n rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.\n concat (bool): Whether to concatenate the results of all\n the images in a single batch.\n Returns:\n Tuple[Tensor]: Ground truth for proposals in a single image.\n Containing the following list of Tensors:\n - labels (list[Tensor],Tensor): Gt_labels for all\n proposals in a batch, each tensor in list has\n shape (num_proposals,) when `concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n - label_weights (list[Tensor]): Labels_weights for\n all proposals in a batch, each tensor in list has\n shape (num_proposals,) when `concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n - bbox_targets (list[Tensor],Tensor): Regression target\n for all proposals in a batch, each tensor in list\n has shape (num_proposals, 4) when `concat=False`,\n otherwise just a single tensor has shape\n (num_all_proposals, 4), the last dimension 4 represents\n [tl_x, tl_y, br_x, br_y].\n - bbox_weights (list[tensor],Tensor): Regression weights for\n all proposals in a batch, each tensor in list has shape\n (num_proposals, 4) when `concat=False`, otherwise just a\n single tensor has shape (num_all_proposals, 4).\n - dis_targets (list[tensor], Tensor): Gt_dis for all\n proposal in a batch, each tensor in list has\n shape (num_proposal,) when 'concat=False`, otherwise\n just a single tensor has shape (num_all_proposals,).\n " pos_bboxes_list = [res.pos_bboxes for res in sampling_results] neg_bboxes_list = [res.neg_bboxes for res in sampling_results] pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] (labels, label_weights, bbox_targets, bbox_weights) = multi_apply(self._get_target_single, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=rcnn_train_cfg) iou_calculator = dict(type='BboxOverlaps2D') iou_calculator = build_iou_calculator(iou_calculator) isolation_thr = 0.45 dis_targets = [] for (i, res) in enumerate(sampling_results): ref_grap_list = [] ref_leav_list = [] ref_grap_dis_list = [] ref_leav_dis_list = [] for (j, bbox) in enumerate(gt_bboxes[i]): if (self.dis_selector == 0): if (('grappolo' in classes[gt_labels[i][j]]) and (gt_labels[i][j] != reference_labels['grappolo_vite'])): ref_grap_dis_list.append(bbox) elif ((('foglia' in classes[gt_labels[i][j]]) or (classes[gt_labels[i][j]] == 'malattia_esca') or (classes[gt_labels[i][j]] == 'virosi_pinot_grigio')) and (gt_labels[i][j] != reference_labels['foglia_vite'])): ref_leav_dis_list.append(bbox) elif (self.dis_selector == 1): if (gt_labels[i][j] == reference_labels['grappolo_vite']): ref_grap_list.append(bbox) elif (gt_labels[i][j] == reference_labels['foglia_vite']): ref_leav_list.append(bbox) elif (self.dis_selector == 2): if (gt_labels[i][j] == reference_labels['grappolo_vite']): ref_grap_list.append(bbox) elif (gt_labels[i][j] == reference_labels['foglia_vite']): ref_leav_list.append(bbox) elif ('grappolo' in classes[gt_labels[i][j]]): ref_grap_dis_list.append(bbox) elif (('foglia' in classes[gt_labels[i][j]]) or (classes[gt_labels[i][j]] == 'malattia_esca') or (classes[gt_labels[i][j]] == 'virosi_pinot_grigio')): ref_leav_dis_list.append(bbox) "\n if 'grappolo' in classes[gt_labels[i][j]] and gt_labels[i][j] != reference_labels['grappolo_vite']:\n ref_grap_dis_list.append(bbox)\n elif (('foglia' in classes[gt_labels[i][j]] or classes[gt_labels[i][j]] == 'malattia_esca' or classes[gt_labels[i][j]] == 'virosi_pinot_grigio')\n and gt_labels[i][j] != reference_labels['foglia_vite']):\n ref_leav_dis_list.append(bbox)\n " if (len(ref_grap_list) > 0): ref_grap_tensor = torch.cat(ref_grap_list) ref_grap_tensor = torch.reshape(ref_grap_tensor, (len(ref_grap_list), 4)) if (len(ref_leav_list) > 0): ref_leav_tensor = torch.cat(ref_leav_list) ref_leav_tensor = torch.reshape(ref_leav_tensor, (len(ref_leav_list), 4)) if (len(ref_grap_dis_list) > 0): ref_grap_dis_tensor = torch.cat(ref_grap_dis_list) ref_grap_dis_tensor = torch.reshape(ref_grap_dis_tensor, (len(ref_grap_dis_list), 4)) if (len(ref_leav_dis_list) > 0): ref_leav_dis_tensor = torch.cat(ref_leav_dis_list) ref_leav_dis_tensor = torch.reshape(ref_leav_dis_tensor, (len(ref_leav_dis_list), 4)) num_pos = res.pos_bboxes.size(0) num_neg = res.neg_bboxes.size(0) num_samples = (num_pos + num_neg) dis_tensor = res.pos_bboxes.new_full((num_samples,), (- 1), dtype=torch.long) dis_list = [] for (j, bbox) in enumerate(res.pos_bboxes): bbox = bbox.unsqueeze(0) if (res.pos_gt_labels[j] == reference_labels['grappolo_vite']): if (self.dis_selector == 0): dis_list.append((- 1)) elif ((self.dis_selector == 1) or (self.dis_selector == 2)): if (len(ref_grap_dis_list) > 0): overlaps = iou_calculator(ref_grap_dis_tensor, bbox, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (res.pos_gt_labels[j] == reference_labels['foglia_vite']): if (self.dis_selector == 0): dis_list.append((- 1)) elif ((self.dis_selector == 1) or (self.dis_selector == 2)): if (len(ref_leav_dis_list) > 0): overlaps = iou_calculator(ref_leav_dis_tensor, bbox, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (('grappolo' in classes[res.pos_gt_labels[j]]) and (res.pos_gt_labels[j] != reference_labels['grappolo_vite'])): if (self.dis_selector == 1): dis_list.append((- 1)) elif (self.dis_selector == 0): if (len(ref_grap_list) > 0): overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (self.dis_selector == 2): if (len(ref_grap_list) > 0): overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(2) else: dis_list.append(3) else: dis_list.append(2) elif ((('foglia' in classes[res.pos_gt_labels[j]]) or (classes[res.pos_gt_labels[j]] == 'malattia_esca') or (classes[res.pos_gt_labels[j]] == 'virosi_pinot_grigio')) and (res.pos_gt_labels[j] != reference_labels['foglia_vite'])): if (self.dis_selector == 1): dis_list.append((- 1)) elif (self.dis_selector == 0): if (len(ref_leav_list) > 0): overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(0) else: dis_list.append(1) else: dis_list.append(0) elif (self.dis_selector == 2): if (len(ref_leav_list) > 0): overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = (overlaps < isolation_thr) if overlaps.all(): dis_list.append(2) else: dis_list.append(3) else: dis_list.append(2) dis_tensor[:num_pos] = torch.tensor(dis_list) dis_targets.append(dis_tensor) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) dis_targets = torch.cat(dis_targets, 0) return (labels, label_weights, bbox_targets, bbox_weights, dis_targets)
def test_publisher_structure(): '\n The module.publisher itself is a bit of a skeleton...\n ' params = {'1': 1, '2': 2, 'channel_name': 'test'} test_publisher = Publisher(params) assert (test_publisher.get_parameters() == {'1': 1, '2': 2, 'channel_name': 'test'}) test_publisher.set_data_block('example') assert (test_publisher.get_data_block() == 'example') assert (test_publisher._consumes == {}) test_publisher.publish() test_publisher.publish(data_block='asdf') test_publisher.shutdown()
2,516,664,684,722,745,000
The module.publisher itself is a bit of a skeleton...
src/decisionengine/framework/modules/tests/test_Publisher.py
test_publisher_structure
BrunoCoimbra/decisionengine
python
def test_publisher_structure(): '\n \n ' params = {'1': 1, '2': 2, 'channel_name': 'test'} test_publisher = Publisher(params) assert (test_publisher.get_parameters() == {'1': 1, '2': 2, 'channel_name': 'test'}) test_publisher.set_data_block('example') assert (test_publisher.get_data_block() == 'example') assert (test_publisher._consumes == {}) test_publisher.publish() test_publisher.publish(data_block='asdf') test_publisher.shutdown()
def create_dataset_from_tf_record_files(input_file_pattern, pre_batch_size, batch_size, is_training=True): 'Creates dataset from (tf)records files for training/evaluation.' files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training) def make_dataset(files_dataset, shard_index): 'Returns dataset for sharded tf record files.' if (pre_batch_size != batch_size): raise ValueError('Pre-batch ({}) size is not equal to batch size ({})'.format(pre_batch_size, batch_size)) files_dataset = files_dataset.shard(NUM_SHARDS, shard_index) dataset = files_dataset.interleave(tf.data.TFRecordDataset) decode_fn = functools.partial(data_pipeline.DatasetManager.deserialize, batch_size=pre_batch_size, is_training=is_training) dataset = dataset.map(decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset dataset = tf.data.Dataset.range(NUM_SHARDS) map_fn = functools.partial(make_dataset, files) dataset = dataset.interleave(map_fn, cycle_length=NUM_SHARDS, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset
-4,105,225,009,478,872,600
Creates dataset from (tf)records files for training/evaluation.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
create_dataset_from_tf_record_files
Ezra-H/autodist
python
def create_dataset_from_tf_record_files(input_file_pattern, pre_batch_size, batch_size, is_training=True): files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training) def make_dataset(files_dataset, shard_index): 'Returns dataset for sharded tf record files.' if (pre_batch_size != batch_size): raise ValueError('Pre-batch ({}) size is not equal to batch size ({})'.format(pre_batch_size, batch_size)) files_dataset = files_dataset.shard(NUM_SHARDS, shard_index) dataset = files_dataset.interleave(tf.data.TFRecordDataset) decode_fn = functools.partial(data_pipeline.DatasetManager.deserialize, batch_size=pre_batch_size, is_training=is_training) dataset = dataset.map(decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset dataset = tf.data.Dataset.range(NUM_SHARDS) map_fn = functools.partial(make_dataset, files) dataset = dataset.interleave(map_fn, cycle_length=NUM_SHARDS, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset
def create_dataset_from_data_producer(producer, params): 'Return dataset online-generating data.' def preprocess_train_input(features, labels): 'Pre-process the training data.\n\n This is needed because\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for DUPLICATE_MASK in training data.\n\n Args:\n features: Dictionary of features for training.\n labels: Training labels.\n\n Returns:\n Processed training features.\n ' fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN]) features[rconst.DUPLICATE_MASK] = fake_dup_mask features[rconst.TRAIN_LABEL_KEY] = labels return features train_input_fn = producer.make_input_fn(is_training=True) train_input_dataset = train_input_fn(params).map(preprocess_train_input) def preprocess_eval_input(features): 'Pre-process the eval data.\n\n This is needed because:\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for VALID_PT_MASK in eval data.\n\n Args:\n features: Dictionary of features for evaluation.\n\n Returns:\n Processed evaluation features.\n ' labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) fake_valid_pt_mask = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask features[rconst.TRAIN_LABEL_KEY] = labels return features eval_input_fn = producer.make_input_fn(is_training=False) eval_input_dataset = eval_input_fn(params).map(preprocess_eval_input) return (train_input_dataset, eval_input_dataset)
-7,371,762,913,903,107,000
Return dataset online-generating data.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
create_dataset_from_data_producer
Ezra-H/autodist
python
def create_dataset_from_data_producer(producer, params): def preprocess_train_input(features, labels): 'Pre-process the training data.\n\n This is needed because\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for DUPLICATE_MASK in training data.\n\n Args:\n features: Dictionary of features for training.\n labels: Training labels.\n\n Returns:\n Processed training features.\n ' fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN]) features[rconst.DUPLICATE_MASK] = fake_dup_mask features[rconst.TRAIN_LABEL_KEY] = labels return features train_input_fn = producer.make_input_fn(is_training=True) train_input_dataset = train_input_fn(params).map(preprocess_train_input) def preprocess_eval_input(features): 'Pre-process the eval data.\n\n This is needed because:\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for VALID_PT_MASK in eval data.\n\n Args:\n features: Dictionary of features for evaluation.\n\n Returns:\n Processed evaluation features.\n ' labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) fake_valid_pt_mask = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask features[rconst.TRAIN_LABEL_KEY] = labels return features eval_input_fn = producer.make_input_fn(is_training=False) eval_input_dataset = eval_input_fn(params).map(preprocess_eval_input) return (train_input_dataset, eval_input_dataset)
def create_ncf_input_data(params, producer=None, input_meta_data=None, strategy=None): 'Creates NCF training/evaluation dataset.\n\n Args:\n params: Dictionary containing parameters for train/evaluation data.\n producer: Instance of BaseDataConstructor that generates data online. Must\n not be None when params[\'train_dataset_path\'] or\n params[\'eval_dataset_path\'] is not specified.\n input_meta_data: A dictionary of input metadata to be used when reading data\n from tf record files. Must be specified when params["train_input_dataset"]\n is specified.\n strategy: Distribution strategy used for distributed training. If specified,\n used to assert that evaluation batch size is correctly a multiple of\n total number of devices used.\n\n Returns:\n (training dataset, evaluation dataset, train steps per epoch,\n eval steps per epoch)\n\n Raises:\n ValueError: If data is being generated online for when using TPU\'s.\n ' num_devices = (strategy.num_replicas_in_sync if strategy else 1) if (params['eval_batch_size'] % (num_devices * (1 + rconst.NUM_EVAL_NEGATIVES))): raise ValueError('Evaluation batch size must be divisible by {} times {}'.format(num_devices, (1 + rconst.NUM_EVAL_NEGATIVES))) if params['train_dataset_path']: assert params['eval_dataset_path'] train_dataset = create_dataset_from_tf_record_files(params['train_dataset_path'], input_meta_data['train_prebatch_size'], params['batch_size'], is_training=True) eval_dataset = create_dataset_from_tf_record_files(params['eval_dataset_path'], input_meta_data['eval_prebatch_size'], params['eval_batch_size'], is_training=False) num_train_steps = int(input_meta_data['num_train_steps']) num_eval_steps = int(input_meta_data['num_eval_steps']) else: if params['use_tpu']: raise ValueError('TPU training does not support data producer yet. Use pre-processed data.') assert producer (train_dataset, eval_dataset) = create_dataset_from_data_producer(producer, params) num_train_steps = producer.train_batches_per_epoch num_eval_steps = producer.eval_batches_per_epoch return (train_dataset, eval_dataset, num_train_steps, num_eval_steps)
-6,474,459,502,976,197,000
Creates NCF training/evaluation dataset. Args: params: Dictionary containing parameters for train/evaluation data. producer: Instance of BaseDataConstructor that generates data online. Must not be None when params['train_dataset_path'] or params['eval_dataset_path'] is not specified. input_meta_data: A dictionary of input metadata to be used when reading data from tf record files. Must be specified when params["train_input_dataset"] is specified. strategy: Distribution strategy used for distributed training. If specified, used to assert that evaluation batch size is correctly a multiple of total number of devices used. Returns: (training dataset, evaluation dataset, train steps per epoch, eval steps per epoch) Raises: ValueError: If data is being generated online for when using TPU's.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
create_ncf_input_data
Ezra-H/autodist
python
def create_ncf_input_data(params, producer=None, input_meta_data=None, strategy=None): 'Creates NCF training/evaluation dataset.\n\n Args:\n params: Dictionary containing parameters for train/evaluation data.\n producer: Instance of BaseDataConstructor that generates data online. Must\n not be None when params[\'train_dataset_path\'] or\n params[\'eval_dataset_path\'] is not specified.\n input_meta_data: A dictionary of input metadata to be used when reading data\n from tf record files. Must be specified when params["train_input_dataset"]\n is specified.\n strategy: Distribution strategy used for distributed training. If specified,\n used to assert that evaluation batch size is correctly a multiple of\n total number of devices used.\n\n Returns:\n (training dataset, evaluation dataset, train steps per epoch,\n eval steps per epoch)\n\n Raises:\n ValueError: If data is being generated online for when using TPU\'s.\n ' num_devices = (strategy.num_replicas_in_sync if strategy else 1) if (params['eval_batch_size'] % (num_devices * (1 + rconst.NUM_EVAL_NEGATIVES))): raise ValueError('Evaluation batch size must be divisible by {} times {}'.format(num_devices, (1 + rconst.NUM_EVAL_NEGATIVES))) if params['train_dataset_path']: assert params['eval_dataset_path'] train_dataset = create_dataset_from_tf_record_files(params['train_dataset_path'], input_meta_data['train_prebatch_size'], params['batch_size'], is_training=True) eval_dataset = create_dataset_from_tf_record_files(params['eval_dataset_path'], input_meta_data['eval_prebatch_size'], params['eval_batch_size'], is_training=False) num_train_steps = int(input_meta_data['num_train_steps']) num_eval_steps = int(input_meta_data['num_eval_steps']) else: if params['use_tpu']: raise ValueError('TPU training does not support data producer yet. Use pre-processed data.') assert producer (train_dataset, eval_dataset) = create_dataset_from_data_producer(producer, params) num_train_steps = producer.train_batches_per_epoch num_eval_steps = producer.eval_batches_per_epoch return (train_dataset, eval_dataset, num_train_steps, num_eval_steps)
def make_dataset(files_dataset, shard_index): 'Returns dataset for sharded tf record files.' if (pre_batch_size != batch_size): raise ValueError('Pre-batch ({}) size is not equal to batch size ({})'.format(pre_batch_size, batch_size)) files_dataset = files_dataset.shard(NUM_SHARDS, shard_index) dataset = files_dataset.interleave(tf.data.TFRecordDataset) decode_fn = functools.partial(data_pipeline.DatasetManager.deserialize, batch_size=pre_batch_size, is_training=is_training) dataset = dataset.map(decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset
-8,816,612,933,234,172,000
Returns dataset for sharded tf record files.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
make_dataset
Ezra-H/autodist
python
def make_dataset(files_dataset, shard_index): if (pre_batch_size != batch_size): raise ValueError('Pre-batch ({}) size is not equal to batch size ({})'.format(pre_batch_size, batch_size)) files_dataset = files_dataset.shard(NUM_SHARDS, shard_index) dataset = files_dataset.interleave(tf.data.TFRecordDataset) decode_fn = functools.partial(data_pipeline.DatasetManager.deserialize, batch_size=pre_batch_size, is_training=is_training) dataset = dataset.map(decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset
def preprocess_train_input(features, labels): 'Pre-process the training data.\n\n This is needed because\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for DUPLICATE_MASK in training data.\n\n Args:\n features: Dictionary of features for training.\n labels: Training labels.\n\n Returns:\n Processed training features.\n ' fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN]) features[rconst.DUPLICATE_MASK] = fake_dup_mask features[rconst.TRAIN_LABEL_KEY] = labels return features
1,766,241,002,850,631,000
Pre-process the training data. This is needed because - The label needs to be extended to be used in the loss fn - We need the same inputs for training and eval so adding fake inputs for DUPLICATE_MASK in training data. Args: features: Dictionary of features for training. labels: Training labels. Returns: Processed training features.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
preprocess_train_input
Ezra-H/autodist
python
def preprocess_train_input(features, labels): 'Pre-process the training data.\n\n This is needed because\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for DUPLICATE_MASK in training data.\n\n Args:\n features: Dictionary of features for training.\n labels: Training labels.\n\n Returns:\n Processed training features.\n ' fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN]) features[rconst.DUPLICATE_MASK] = fake_dup_mask features[rconst.TRAIN_LABEL_KEY] = labels return features
def preprocess_eval_input(features): 'Pre-process the eval data.\n\n This is needed because:\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for VALID_PT_MASK in eval data.\n\n Args:\n features: Dictionary of features for evaluation.\n\n Returns:\n Processed evaluation features.\n ' labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) fake_valid_pt_mask = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask features[rconst.TRAIN_LABEL_KEY] = labels return features
5,271,456,008,588,656,000
Pre-process the eval data. This is needed because: - The label needs to be extended to be used in the loss fn - We need the same inputs for training and eval so adding fake inputs for VALID_PT_MASK in eval data. Args: features: Dictionary of features for evaluation. Returns: Processed evaluation features.
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
preprocess_eval_input
Ezra-H/autodist
python
def preprocess_eval_input(features): 'Pre-process the eval data.\n\n This is needed because:\n - The label needs to be extended to be used in the loss fn\n - We need the same inputs for training and eval so adding fake inputs\n for VALID_PT_MASK in eval data.\n\n Args:\n features: Dictionary of features for evaluation.\n\n Returns:\n Processed evaluation features.\n ' labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) fake_valid_pt_mask = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask features[rconst.TRAIN_LABEL_KEY] = labels return features
def playbook_path(playbook_name): '\n Get the path to the named playbook. To allow for\n as much brevity as possible in the given playbook\n name, we will attempt to search under:\n - oct/playbooks\n - openshift-ansible/playbooks\n\n :param playbook_name: the name of the playbook\n :type playbook_name: str\n\n :return: the path to the playbook\n :rtype: str\n\n :raises ClickException: when no playbook is found\n ' from ..oct import __file__ as root_path for parent_repo in ['oct', 'openshift-ansible']: playbook_file = join(abspath(dirname(root_path)), 'ansible', parent_repo, 'playbooks', (playbook_name + '.yml')) if exists(playbook_file): return playbook_file raise ClickException('No playbook named {} found!'.format(playbook_name))
-6,925,699,650,955,053,000
Get the path to the named playbook. To allow for as much brevity as possible in the given playbook name, we will attempt to search under: - oct/playbooks - openshift-ansible/playbooks :param playbook_name: the name of the playbook :type playbook_name: str :return: the path to the playbook :rtype: str :raises ClickException: when no playbook is found
oct/util/playbook.py
playbook_path
DennisPeriquet/origin-ci-tool
python
def playbook_path(playbook_name): '\n Get the path to the named playbook. To allow for\n as much brevity as possible in the given playbook\n name, we will attempt to search under:\n - oct/playbooks\n - openshift-ansible/playbooks\n\n :param playbook_name: the name of the playbook\n :type playbook_name: str\n\n :return: the path to the playbook\n :rtype: str\n\n :raises ClickException: when no playbook is found\n ' from ..oct import __file__ as root_path for parent_repo in ['oct', 'openshift-ansible']: playbook_file = join(abspath(dirname(root_path)), 'ansible', parent_repo, 'playbooks', (playbook_name + '.yml')) if exists(playbook_file): return playbook_file raise ClickException('No playbook named {} found!'.format(playbook_name))
def test_location_handles_reused(instance, monkeypatch, grpc_server_registry): '\n verifies that only one repository location is created when two queued runs from the same\n location are dequeued in the same iteration\n ' create_run(instance, run_id='queued-run', status=PipelineRunStatus.QUEUED) create_run(instance, run_id='queued-run-2', status=PipelineRunStatus.QUEUED) original_method = GrpcServerRepositoryLocationHandle.__init__ method_calls = [] def mocked_handle_init(self, origin, host=None, port=None, socket=None, server_id=None, heartbeat=False, watch_server=True): method_calls.append(origin) return original_method(self, origin, host, port, socket, server_id, heartbeat, watch_server) monkeypatch.setattr(GrpcServerRepositoryLocationHandle, '__init__', mocked_handle_init) coordinator = QueuedRunCoordinatorDaemon(interval_seconds=5, max_concurrent_runs=10) list(coordinator.run_iteration(instance, grpc_server_registry)) assert (get_run_ids(instance.run_launcher.queue()) == ['queued-run', 'queued-run-2']) assert (len(method_calls) == 1)
7,905,741,415,444,816,000
verifies that only one repository location is created when two queued runs from the same location are dequeued in the same iteration
python_modules/dagster/dagster_tests/daemon_tests/test_queued_run_coordinator_daemon.py
test_location_handles_reused
PenguinToast/dagster
python
def test_location_handles_reused(instance, monkeypatch, grpc_server_registry): '\n verifies that only one repository location is created when two queued runs from the same\n location are dequeued in the same iteration\n ' create_run(instance, run_id='queued-run', status=PipelineRunStatus.QUEUED) create_run(instance, run_id='queued-run-2', status=PipelineRunStatus.QUEUED) original_method = GrpcServerRepositoryLocationHandle.__init__ method_calls = [] def mocked_handle_init(self, origin, host=None, port=None, socket=None, server_id=None, heartbeat=False, watch_server=True): method_calls.append(origin) return original_method(self, origin, host, port, socket, server_id, heartbeat, watch_server) monkeypatch.setattr(GrpcServerRepositoryLocationHandle, '__init__', mocked_handle_init) coordinator = QueuedRunCoordinatorDaemon(interval_seconds=5, max_concurrent_runs=10) list(coordinator.run_iteration(instance, grpc_server_registry)) assert (get_run_ids(instance.run_launcher.queue()) == ['queued-run', 'queued-run-2']) assert (len(method_calls) == 1)
def _update_dag_tasks(function_name, caller_line, dependencies, depends_logic, args=None, template_name=None, step_name=None): '\n A task in DAG of Argo YAML contains name, related template and parameters.\n Here we insert a single task into the global tasks.\n ' if (step_name is None): function_id = utils.invocation_name(function_name, caller_line) else: function_id = step_name task_template = states.workflow.get_dag_task(function_id) if (task_template is None): task_template = OrderedDict({'name': function_id}) if ((dependencies is not None) and isinstance(dependencies, list)): if ('dependencies' in task_template): task_template['dependencies'].extend(dependencies) else: task_template['dependencies'] = dependencies if (depends_logic is not None): task_template['depends'] = depends_logic if (template_name is None): task_template['template'] = function_name else: task_template['template'] = template_name if (args is not None): (parameters, artifacts) = _get_params_and_artifacts_from_args(args, function_name, prefix='tasks') if (len(parameters) > 0): task_template['arguments'] = OrderedDict() task_template['arguments']['parameters'] = parameters if (len(artifacts) > 0): if ('arguments' not in task_template): task_template['arguments'] = OrderedDict() task_template['arguments']['artifacts'] = artifacts else: if (dependencies is not None): if ('dependencies' in task_template): task_template['dependencies'].extend(dependencies) else: task_template['dependencies'] = [dependencies] if (depends_logic is not None): task_template['depends'] = depends_logic t_name = (function_name if (template_name is None) else template_name) step = Step(name=function_id, template=t_name) if states._exit_handler_enable: if (states._when_prefix is not None): step.when = states._when_prefix if (function_id in states.workflow.exit_handler_step): states.workflow.exit_handler_step.get(function_id).append(step.to_dict()) else: states.workflow.exit_handler_step[function_id] = [step.to_dict()] elif (states._when_prefix is not None): step.when = states._when_prefix if (step.name not in states.workflow.dag_tasks.keys()): step_spec = step.to_dict() step_spec['dependencies'] = [states._when_task] states.workflow.dag_tasks[step.name] = step_spec else: states.workflow.update_dag_task(function_id, task_template) return function_id
2,822,368,232,564,738,600
A task in DAG of Argo YAML contains name, related template and parameters. Here we insert a single task into the global tasks.
couler/core/step_update_utils.py
_update_dag_tasks
javoweb/couler
python
def _update_dag_tasks(function_name, caller_line, dependencies, depends_logic, args=None, template_name=None, step_name=None): '\n A task in DAG of Argo YAML contains name, related template and parameters.\n Here we insert a single task into the global tasks.\n ' if (step_name is None): function_id = utils.invocation_name(function_name, caller_line) else: function_id = step_name task_template = states.workflow.get_dag_task(function_id) if (task_template is None): task_template = OrderedDict({'name': function_id}) if ((dependencies is not None) and isinstance(dependencies, list)): if ('dependencies' in task_template): task_template['dependencies'].extend(dependencies) else: task_template['dependencies'] = dependencies if (depends_logic is not None): task_template['depends'] = depends_logic if (template_name is None): task_template['template'] = function_name else: task_template['template'] = template_name if (args is not None): (parameters, artifacts) = _get_params_and_artifacts_from_args(args, function_name, prefix='tasks') if (len(parameters) > 0): task_template['arguments'] = OrderedDict() task_template['arguments']['parameters'] = parameters if (len(artifacts) > 0): if ('arguments' not in task_template): task_template['arguments'] = OrderedDict() task_template['arguments']['artifacts'] = artifacts else: if (dependencies is not None): if ('dependencies' in task_template): task_template['dependencies'].extend(dependencies) else: task_template['dependencies'] = [dependencies] if (depends_logic is not None): task_template['depends'] = depends_logic t_name = (function_name if (template_name is None) else template_name) step = Step(name=function_id, template=t_name) if states._exit_handler_enable: if (states._when_prefix is not None): step.when = states._when_prefix if (function_id in states.workflow.exit_handler_step): states.workflow.exit_handler_step.get(function_id).append(step.to_dict()) else: states.workflow.exit_handler_step[function_id] = [step.to_dict()] elif (states._when_prefix is not None): step.when = states._when_prefix if (step.name not in states.workflow.dag_tasks.keys()): step_spec = step.to_dict() step_spec['dependencies'] = [states._when_task] states.workflow.dag_tasks[step.name] = step_spec else: states.workflow.update_dag_task(function_id, task_template) return function_id
def _update_steps(function_name, caller_line, args=None, template_name=None): '\n A step in Argo YAML contains name, related template and parameters.\n Here we insert a single step into the global steps.\n ' function_id = utils.invocation_name(function_name, caller_line) if states._update_steps_lock: name = function_id if states._run_concurrent_lock: _id = utils.invocation_name(template_name, caller_line) name = ('%s-%s' % (_id, states._concurrent_func_id)) if (states._sub_steps is not None): states._concurrent_func_id = (states._concurrent_func_id + 1) t_name = (function_name if (template_name is None) else template_name) step = Step(name=name, template=t_name) if (states._when_prefix is not None): step.when = states._when_prefix if (args is not None): (parameters, artifacts) = _get_params_and_artifacts_from_args(args, (template_name if states._run_concurrent_lock else function_name), prefix='steps') if (len(parameters) > 0): step.arguments = OrderedDict() step.arguments['parameters'] = parameters if (len(artifacts) > 0): if (step.arguments is None): step.arguments = OrderedDict() step.arguments['artifacts'] = artifacts if (states._condition_id is not None): function_id = states._condition_id if states._while_lock: if (function_id in states._while_steps): states._while_steps.get(function_id).append(step.to_dict()) else: states._while_steps[function_id] = [step.to_dict()] elif (states._sub_steps is not None): if (function_id in states._sub_steps): states._sub_steps.get(function_id).append(step.to_dict()) else: states._sub_steps[function_id] = [step.to_dict()] elif (states._exit_handler_enable is True): if (function_id in states.workflow.exit_handler_step): states.workflow.exit_handler_step.get(function_id).append(step.to_dict()) else: states.workflow.exit_handler_step[function_id] = [step.to_dict()] else: states.workflow.add_step(function_id, step) return step.name else: return function_id
-1,058,683,839,742,048,800
A step in Argo YAML contains name, related template and parameters. Here we insert a single step into the global steps.
couler/core/step_update_utils.py
_update_steps
javoweb/couler
python
def _update_steps(function_name, caller_line, args=None, template_name=None): '\n A step in Argo YAML contains name, related template and parameters.\n Here we insert a single step into the global steps.\n ' function_id = utils.invocation_name(function_name, caller_line) if states._update_steps_lock: name = function_id if states._run_concurrent_lock: _id = utils.invocation_name(template_name, caller_line) name = ('%s-%s' % (_id, states._concurrent_func_id)) if (states._sub_steps is not None): states._concurrent_func_id = (states._concurrent_func_id + 1) t_name = (function_name if (template_name is None) else template_name) step = Step(name=name, template=t_name) if (states._when_prefix is not None): step.when = states._when_prefix if (args is not None): (parameters, artifacts) = _get_params_and_artifacts_from_args(args, (template_name if states._run_concurrent_lock else function_name), prefix='steps') if (len(parameters) > 0): step.arguments = OrderedDict() step.arguments['parameters'] = parameters if (len(artifacts) > 0): if (step.arguments is None): step.arguments = OrderedDict() step.arguments['artifacts'] = artifacts if (states._condition_id is not None): function_id = states._condition_id if states._while_lock: if (function_id in states._while_steps): states._while_steps.get(function_id).append(step.to_dict()) else: states._while_steps[function_id] = [step.to_dict()] elif (states._sub_steps is not None): if (function_id in states._sub_steps): states._sub_steps.get(function_id).append(step.to_dict()) else: states._sub_steps[function_id] = [step.to_dict()] elif (states._exit_handler_enable is True): if (function_id in states.workflow.exit_handler_step): states.workflow.exit_handler_step.get(function_id).append(step.to_dict()) else: states.workflow.exit_handler_step[function_id] = [step.to_dict()] else: states.workflow.add_step(function_id, step) return step.name else: return function_id
@contextmanager def silence_stderr(): ' Redirect stderr. ' if DEBUG: (yield) else: with threading.Lock(): stderr = sys.stderr sys.stderr = StringIO() (yield) with threading.Lock(): sys.stderr = stderr
-2,169,894,562,685,810,000
Redirect stderr.
bundle/python-mode/pymode/utils.py
silence_stderr
Jenkin0603/myvim
python
@contextmanager def silence_stderr(): ' ' if DEBUG: (yield) else: with threading.Lock(): stderr = sys.stderr sys.stderr = StringIO() (yield) with threading.Lock(): sys.stderr = stderr
def patch_paths(): ' Function description. ' sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs')) if PY2: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs2')) else: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs3'))
-1,636,797,612,643,356,200
Function description.
bundle/python-mode/pymode/utils.py
patch_paths
Jenkin0603/myvim
python
def patch_paths(): ' ' sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs')) if PY2: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs2')) else: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs3'))
@abstractmethod def eval(self, tokens: List[str]) -> bool: 'If the given tokens sequence matches the given command execute it\n and return True. Otherwise, return False.\n\n Parameters\n ----------\n tokens: list(string)\n List of tokens in the command line\n\n Returns\n -------\n bool\n ' raise NotImplementedError()
-3,451,811,905,667,464,000
If the given tokens sequence matches the given command execute it and return True. Otherwise, return False. Parameters ---------- tokens: list(string) List of tokens in the command line Returns ------- bool
vizier/api/client/cli/command.py
eval
VizierDB/web-api-async
python
@abstractmethod def eval(self, tokens: List[str]) -> bool: 'If the given tokens sequence matches the given command execute it\n and return True. Otherwise, return False.\n\n Parameters\n ----------\n tokens: list(string)\n List of tokens in the command line\n\n Returns\n -------\n bool\n ' raise NotImplementedError()
@abstractmethod def help(self) -> None: 'Print a simple help statement for the command.' raise NotImplementedError()
592,158,047,742,548,200
Print a simple help statement for the command.
vizier/api/client/cli/command.py
help
VizierDB/web-api-async
python
@abstractmethod def help(self) -> None: raise NotImplementedError()
def output(self, rows): 'Output the given rows in tabular format. Each rows is a list of\n string values. All rows are expected to have the sam elength. The first\n row is the table header.\n\n Parameters\n ----------\n rows: list(string)\n List of rows in the table\n ' columns = ([0] * len(rows[0])) for row in rows: for col in range(len(columns)): count = len(row[col]) if (count > columns[col]): columns[col] = count format = None divider = list() for col_len in columns: f = (('%-' + str(col_len)) + 's') if (format is None): format = f else: format += (' | ' + f) if (len(divider) in [0, (len(columns) - 1)]): i = 1 else: i = 2 divider.append(('-' * (col_len + i))) print((format % tuple(rows[0]))) print('|'.join(divider)) for row in rows[1:]: print((format % tuple(row)))
8,790,974,993,255,597,000
Output the given rows in tabular format. Each rows is a list of string values. All rows are expected to have the sam elength. The first row is the table header. Parameters ---------- rows: list(string) List of rows in the table
vizier/api/client/cli/command.py
output
VizierDB/web-api-async
python
def output(self, rows): 'Output the given rows in tabular format. Each rows is a list of\n string values. All rows are expected to have the sam elength. The first\n row is the table header.\n\n Parameters\n ----------\n rows: list(string)\n List of rows in the table\n ' columns = ([0] * len(rows[0])) for row in rows: for col in range(len(columns)): count = len(row[col]) if (count > columns[col]): columns[col] = count format = None divider = list() for col_len in columns: f = (('%-' + str(col_len)) + 's') if (format is None): format = f else: format += (' | ' + f) if (len(divider) in [0, (len(columns) - 1)]): i = 1 else: i = 2 divider.append(('-' * (col_len + i))) print((format % tuple(rows[0]))) print('|'.join(divider)) for row in rows[1:]: print((format % tuple(row)))
def ProcessTag(self, line, type): '\n Process a single string tag.\n \n :param line: an array of lines making a single string tag.\n :param type: the tag type, such as TYPE_STR or TYPE_PLUR\n :return: an array of lines representing the processed tag.\n ' return line
-3,578,550,112,715,211,000
Process a single string tag. :param line: an array of lines making a single string tag. :param type: the tag type, such as TYPE_STR or TYPE_PLUR :return: an array of lines representing the processed tag.
scripts/translations/base_string_script.py
ProcessTag
1y445rc/FirebaseUI-Android
python
def ProcessTag(self, line, type): '\n Process a single string tag.\n \n :param line: an array of lines making a single string tag.\n :param type: the tag type, such as TYPE_STR or TYPE_PLUR\n :return: an array of lines representing the processed tag.\n ' return line
def ProcessFile(self, file_name): '\n Process and write a file of string resources.\n \n :param file_name: path to the file to process.\n :return: None.\n ' lines = [] state = self.STATE_SEARCHING curr_tag = [] pending_process_type = None with open(file_name, 'r') as myfile: data = myfile.read() for line in data.split('\n'): if (state == self.STATE_SEARCHING): if (self.START_STR in line): state = self.STATE_IN_STR elif (self.START_PLUR in line): state = self.STATE_IN_PLUR else: lines.append(line) if (state == self.STATE_IN_STR): curr_tag.append(line) if (self.END_STR in line): pending_process_type = self.TYPE_STR if (state == self.STATE_IN_PLUR): curr_tag.append(line) if (self.END_PLUR in line): pending_process_type = self.TYPE_PLUR if pending_process_type: lines += self.ProcessTag(curr_tag, pending_process_type) pending_process_type = None state = self.STATE_SEARCHING curr_tag = [] self.WriteFile(file_name, '\n'.join(lines))
-1,617,482,522,694,352,400
Process and write a file of string resources. :param file_name: path to the file to process. :return: None.
scripts/translations/base_string_script.py
ProcessFile
1y445rc/FirebaseUI-Android
python
def ProcessFile(self, file_name): '\n Process and write a file of string resources.\n \n :param file_name: path to the file to process.\n :return: None.\n ' lines = [] state = self.STATE_SEARCHING curr_tag = [] pending_process_type = None with open(file_name, 'r') as myfile: data = myfile.read() for line in data.split('\n'): if (state == self.STATE_SEARCHING): if (self.START_STR in line): state = self.STATE_IN_STR elif (self.START_PLUR in line): state = self.STATE_IN_PLUR else: lines.append(line) if (state == self.STATE_IN_STR): curr_tag.append(line) if (self.END_STR in line): pending_process_type = self.TYPE_STR if (state == self.STATE_IN_PLUR): curr_tag.append(line) if (self.END_PLUR in line): pending_process_type = self.TYPE_PLUR if pending_process_type: lines += self.ProcessTag(curr_tag, pending_process_type) pending_process_type = None state = self.STATE_SEARCHING curr_tag = [] self.WriteFile(file_name, '\n'.join(lines))
def WriteFile(self, file_name, file_contents): '\n Overwrite the contents of a file.\n \n :param file_name: path to the file to write.\n :param file_contents: string containing new file contents. \n :return: None\n ' with open(file_name, 'w') as myfile: myfile.write(file_contents)
3,607,157,379,932,279,000
Overwrite the contents of a file. :param file_name: path to the file to write. :param file_contents: string containing new file contents. :return: None
scripts/translations/base_string_script.py
WriteFile
1y445rc/FirebaseUI-Android
python
def WriteFile(self, file_name, file_contents): '\n Overwrite the contents of a file.\n \n :param file_name: path to the file to write.\n :param file_contents: string containing new file contents. \n :return: None\n ' with open(file_name, 'w') as myfile: myfile.write(file_contents)
def __init__(self, config_entry: config_entries.ConfigEntry) -> None: 'Init object.' self.config_entry = config_entry
-2,559,020,865,665,428,000
Init object.
homeassistant/components/netgear/config_flow.py
__init__
2004happy/core
python
def __init__(self, config_entry: config_entries.ConfigEntry) -> None: self.config_entry = config_entry
async def async_step_init(self, user_input=None): 'Manage the options.' if (user_input is not None): return self.async_create_entry(title='', data=user_input) settings_schema = vol.Schema({vol.Optional(CONF_CONSIDER_HOME, default=self.config_entry.options.get(CONF_CONSIDER_HOME, DEFAULT_CONSIDER_HOME.total_seconds())): int}) return self.async_show_form(step_id='init', data_schema=settings_schema)
6,396,657,444,366,347,000
Manage the options.
homeassistant/components/netgear/config_flow.py
async_step_init
2004happy/core
python
async def async_step_init(self, user_input=None): if (user_input is not None): return self.async_create_entry(title=, data=user_input) settings_schema = vol.Schema({vol.Optional(CONF_CONSIDER_HOME, default=self.config_entry.options.get(CONF_CONSIDER_HOME, DEFAULT_CONSIDER_HOME.total_seconds())): int}) return self.async_show_form(step_id='init', data_schema=settings_schema)
def __init__(self): 'Initialize the netgear config flow.' self.placeholders = {CONF_HOST: DEFAULT_HOST, CONF_PORT: DEFAULT_PORT, CONF_USERNAME: DEFAULT_USER, CONF_SSL: False} self.discovered = False
-8,401,081,290,602,939,000
Initialize the netgear config flow.
homeassistant/components/netgear/config_flow.py
__init__
2004happy/core
python
def __init__(self): self.placeholders = {CONF_HOST: DEFAULT_HOST, CONF_PORT: DEFAULT_PORT, CONF_USERNAME: DEFAULT_USER, CONF_SSL: False} self.discovered = False
@staticmethod @callback def async_get_options_flow(config_entry: config_entries.ConfigEntry) -> OptionsFlowHandler: 'Get the options flow.' return OptionsFlowHandler(config_entry)
46,051,271,963,521,970
Get the options flow.
homeassistant/components/netgear/config_flow.py
async_get_options_flow
2004happy/core
python
@staticmethod @callback def async_get_options_flow(config_entry: config_entries.ConfigEntry) -> OptionsFlowHandler: return OptionsFlowHandler(config_entry)
async def _show_setup_form(self, user_input=None, errors=None): 'Show the setup form to the user.' if (not user_input): user_input = {} if self.discovered: data_schema = _discovery_schema_with_defaults(user_input) else: data_schema = _user_schema_with_defaults(user_input) return self.async_show_form(step_id='user', data_schema=data_schema, errors=(errors or {}), description_placeholders=self.placeholders)
5,815,990,346,358,273,000
Show the setup form to the user.
homeassistant/components/netgear/config_flow.py
_show_setup_form
2004happy/core
python
async def _show_setup_form(self, user_input=None, errors=None): if (not user_input): user_input = {} if self.discovered: data_schema = _discovery_schema_with_defaults(user_input) else: data_schema = _user_schema_with_defaults(user_input) return self.async_show_form(step_id='user', data_schema=data_schema, errors=(errors or {}), description_placeholders=self.placeholders)
async def async_step_ssdp(self, discovery_info: ssdp.SsdpServiceInfo) -> FlowResult: 'Initialize flow from ssdp.' updated_data: dict[(str, ((str | int) | bool))] = {} device_url = urlparse(discovery_info.ssdp_location) if (hostname := device_url.hostname): hostname = cast(str, hostname) updated_data[CONF_HOST] = hostname if (not is_ipv4_address(str(hostname))): return self.async_abort(reason='not_ipv4_address') _LOGGER.debug('Netgear ssdp discovery info: %s', discovery_info) (await self.async_set_unique_id(discovery_info.upnp[ssdp.ATTR_UPNP_SERIAL])) self._abort_if_unique_id_configured(updates=updated_data) if (device_url.scheme == 'https'): updated_data[CONF_SSL] = True else: updated_data[CONF_SSL] = False updated_data[CONF_PORT] = DEFAULT_PORT for model in MODELS_PORT_80: if (discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, '').startswith(model) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, '').startswith(model)): updated_data[CONF_PORT] = PORT_80 for model in MODELS_PORT_5555: if (discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, '').startswith(model) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, '').startswith(model)): updated_data[CONF_PORT] = PORT_5555 updated_data[CONF_SSL] = True self.placeholders.update(updated_data) self.discovered = True return (await self.async_step_user())
-1,430,843,196,014,504,200
Initialize flow from ssdp.
homeassistant/components/netgear/config_flow.py
async_step_ssdp
2004happy/core
python
async def async_step_ssdp(self, discovery_info: ssdp.SsdpServiceInfo) -> FlowResult: updated_data: dict[(str, ((str | int) | bool))] = {} device_url = urlparse(discovery_info.ssdp_location) if (hostname := device_url.hostname): hostname = cast(str, hostname) updated_data[CONF_HOST] = hostname if (not is_ipv4_address(str(hostname))): return self.async_abort(reason='not_ipv4_address') _LOGGER.debug('Netgear ssdp discovery info: %s', discovery_info) (await self.async_set_unique_id(discovery_info.upnp[ssdp.ATTR_UPNP_SERIAL])) self._abort_if_unique_id_configured(updates=updated_data) if (device_url.scheme == 'https'): updated_data[CONF_SSL] = True else: updated_data[CONF_SSL] = False updated_data[CONF_PORT] = DEFAULT_PORT for model in MODELS_PORT_80: if (discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, ).startswith(model) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, ).startswith(model)): updated_data[CONF_PORT] = PORT_80 for model in MODELS_PORT_5555: if (discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, ).startswith(model) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, ).startswith(model)): updated_data[CONF_PORT] = PORT_5555 updated_data[CONF_SSL] = True self.placeholders.update(updated_data) self.discovered = True return (await self.async_step_user())
async def async_step_user(self, user_input=None): 'Handle a flow initiated by the user.' errors = {} if (user_input is None): return (await self._show_setup_form()) host = user_input.get(CONF_HOST, self.placeholders[CONF_HOST]) port = self.placeholders[CONF_PORT] ssl = self.placeholders[CONF_SSL] username = user_input.get(CONF_USERNAME, self.placeholders[CONF_USERNAME]) password = user_input[CONF_PASSWORD] if (not username): username = self.placeholders[CONF_USERNAME] try: api = (await self.hass.async_add_executor_job(get_api, password, host, username, port, ssl)) except CannotLoginException: errors['base'] = 'config' if errors: return (await self._show_setup_form(user_input, errors)) info = (await self.hass.async_add_executor_job(api.get_info)) (await self.async_set_unique_id(info['SerialNumber'], raise_on_progress=False)) self._abort_if_unique_id_configured() config_data = {CONF_USERNAME: username, CONF_PASSWORD: password, CONF_HOST: host, CONF_PORT: api.port, CONF_SSL: api.ssl} if ((info.get('ModelName') is not None) and (info.get('DeviceName') is not None)): name = f"{info['ModelName']} - {info['DeviceName']}" else: name = info.get('ModelName', DEFAULT_NAME) return self.async_create_entry(title=name, data=config_data)
-6,443,958,358,770,587,000
Handle a flow initiated by the user.
homeassistant/components/netgear/config_flow.py
async_step_user
2004happy/core
python
async def async_step_user(self, user_input=None): errors = {} if (user_input is None): return (await self._show_setup_form()) host = user_input.get(CONF_HOST, self.placeholders[CONF_HOST]) port = self.placeholders[CONF_PORT] ssl = self.placeholders[CONF_SSL] username = user_input.get(CONF_USERNAME, self.placeholders[CONF_USERNAME]) password = user_input[CONF_PASSWORD] if (not username): username = self.placeholders[CONF_USERNAME] try: api = (await self.hass.async_add_executor_job(get_api, password, host, username, port, ssl)) except CannotLoginException: errors['base'] = 'config' if errors: return (await self._show_setup_form(user_input, errors)) info = (await self.hass.async_add_executor_job(api.get_info)) (await self.async_set_unique_id(info['SerialNumber'], raise_on_progress=False)) self._abort_if_unique_id_configured() config_data = {CONF_USERNAME: username, CONF_PASSWORD: password, CONF_HOST: host, CONF_PORT: api.port, CONF_SSL: api.ssl} if ((info.get('ModelName') is not None) and (info.get('DeviceName') is not None)): name = f"{info['ModelName']} - {info['DeviceName']}" else: name = info.get('ModelName', DEFAULT_NAME) return self.async_create_entry(title=name, data=config_data)