body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def get_nm_node_yaml(nm_host, node_name, ssl_verify=False, verbose=False): '\n Get the raw ENC YAML for a given node\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_name: name of the node to get YAML for\n :type node_name: string\n :param ssl_verify: whether or not to verify SSL certificate, default False\n :type ssl_verify: boolean\n :rtype: string\n :returns: raw YAML string, or None\n ' nm_url = ('http://%s/enc/puppet/%s' % (nm_host, node_name)) r = requests.get(nm_url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if (r.status_code == 200): return r.content else: logger.error('got status code {s} for {u}'.format(s=r.status_code, u=nm_url)) return None
6,246,137,961,526,569,000
Get the raw ENC YAML for a given node :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_name: name of the node to get YAML for :type node_name: string :param ssl_verify: whether or not to verify SSL certificate, default False :type ssl_verify: boolean :rtype: string :returns: raw YAML string, or None
contrib/cli_scripts/nodemeisterlib.py
get_nm_node_yaml
coxmediagroup/nodemeister
python
def get_nm_node_yaml(nm_host, node_name, ssl_verify=False, verbose=False): '\n Get the raw ENC YAML for a given node\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_name: name of the node to get YAML for\n :type node_name: string\n :param ssl_verify: whether or not to verify SSL certificate, default False\n :type ssl_verify: boolean\n :rtype: string\n :returns: raw YAML string, or None\n ' nm_url = ('http://%s/enc/puppet/%s' % (nm_host, node_name)) r = requests.get(nm_url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if (r.status_code == 200): return r.content else: logger.error('got status code {s} for {u}'.format(s=r.status_code, u=nm_url)) return None
def get_dashboard_node_yaml(url, ssl_verify=False, verbose=False): '\n Given the full URL to a Puppet Dashboard node YAML file,\n return the content of the YAML file as a string.\n\n :param url: full URL to Dashboard node yaml\n :type url: string\n :param ssl_verify: whether or not to verify SSL certificate, default False\n :type ssl_verify: boolean\n :rtype: string\n :returns: raw YAML string, or None\n ' r = requests.get(url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if (r.status_code == 200): return r.content else: logger.error('got status code {s} for {u}'.format(s=r.status_code, u=url)) return None
1,135,490,431,877,605,600
Given the full URL to a Puppet Dashboard node YAML file, return the content of the YAML file as a string. :param url: full URL to Dashboard node yaml :type url: string :param ssl_verify: whether or not to verify SSL certificate, default False :type ssl_verify: boolean :rtype: string :returns: raw YAML string, or None
contrib/cli_scripts/nodemeisterlib.py
get_dashboard_node_yaml
coxmediagroup/nodemeister
python
def get_dashboard_node_yaml(url, ssl_verify=False, verbose=False): '\n Given the full URL to a Puppet Dashboard node YAML file,\n return the content of the YAML file as a string.\n\n :param url: full URL to Dashboard node yaml\n :type url: string\n :param ssl_verify: whether or not to verify SSL certificate, default False\n :type ssl_verify: boolean\n :rtype: string\n :returns: raw YAML string, or None\n ' r = requests.get(url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if (r.status_code == 200): return r.content else: logger.error('got status code {s} for {u}'.format(s=r.status_code, u=url)) return None
def get_json(url): "\n uses requests to GET and return deserialized json\n\n uses anyjson if the Response object doesn't have .json()\n\n :param url: the URL to get\n :type url: string\n :rtype: dict/mixed or None\n :returns: unserialized JSON, or None\n " r = requests.get(url) if ('json' in dir(r)): return r.json() try: j = anyjson.deserialize(r.content) return j except: logger.error('could not deserialize JSON for {u} (got status code {s})'.format(s=r.status_code, u=url)) return None
-8,498,332,083,392,072,000
uses requests to GET and return deserialized json uses anyjson if the Response object doesn't have .json() :param url: the URL to get :type url: string :rtype: dict/mixed or None :returns: unserialized JSON, or None
contrib/cli_scripts/nodemeisterlib.py
get_json
coxmediagroup/nodemeister
python
def get_json(url): "\n uses requests to GET and return deserialized json\n\n uses anyjson if the Response object doesn't have .json()\n\n :param url: the URL to get\n :type url: string\n :rtype: dict/mixed or None\n :returns: unserialized JSON, or None\n " r = requests.get(url) if ('json' in dir(r)): return r.json() try: j = anyjson.deserialize(r.content) return j except: logger.error('could not deserialize JSON for {u} (got status code {s})'.format(s=r.status_code, u=url)) return None
def get_group_names(nm_host): '\n Return a dict of groups in the NM instance,\n id => name\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM groups, dict of the form {id<int>: name<string>}\n ' j = get_json(('http://%s/enc/groups/' % nm_host)) names = {} for n in j: names[n['id']] = n['name'] return names
2,884,852,824,760,734,000
Return a dict of groups in the NM instance, id => name :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM groups, dict of the form {id<int>: name<string>}
contrib/cli_scripts/nodemeisterlib.py
get_group_names
coxmediagroup/nodemeister
python
def get_group_names(nm_host): '\n Return a dict of groups in the NM instance,\n id => name\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM groups, dict of the form {id<int>: name<string>}\n ' j = get_json(('http://%s/enc/groups/' % nm_host)) names = {} for n in j: names[n['id']] = n['name'] return names
def get_nm_group_classes(nm_host): "\n Return a dict of all group classes in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM group classes, dict of the form:\n {id<int>: {'classname': <string>, 'classparams': <string or None>, 'group': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/classes/groups/' % nm_host)) for o in j: r[o['id']] = o return r
1,286,843,342,070,683,100
Return a dict of all group classes in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM group classes, dict of the form: {id<int>: {'classname': <string>, 'classparams': <string or None>, 'group': <int>, 'id': <int>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_group_classes
coxmediagroup/nodemeister
python
def get_nm_group_classes(nm_host): "\n Return a dict of all group classes in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM group classes, dict of the form:\n {id<int>: {'classname': <string>, 'classparams': <string or None>, 'group': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/classes/groups/' % nm_host)) for o in j: r[o['id']] = o return r
def get_nm_group_params(nm_host): "\n Return a dict of all group params in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM group params, dict of the form:\n {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'group': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/parameters/groups/' % nm_host)) for o in j: if (o['paramvalue'] is not None): o['paramvalue'] = clean_value(o['paramvalue']) r[o['id']] = o return r
-6,756,621,771,376,389,000
Return a dict of all group params in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM group params, dict of the form: {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'group': <int>, 'id': <int>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_group_params
coxmediagroup/nodemeister
python
def get_nm_group_params(nm_host): "\n Return a dict of all group params in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM group params, dict of the form:\n {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'group': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/parameters/groups/' % nm_host)) for o in j: if (o['paramvalue'] is not None): o['paramvalue'] = clean_value(o['paramvalue']) r[o['id']] = o return r
def get_nm_group(nm_host, gname=None, gid=None, groupnames=None): "\n Return a dict of information about a group\n in NM, by either name or ID. If gname is specified,\n it will be resolved to the id.\n\n groupnames, if specified, is the output dict from get_group_names();\n if it is not specified, get_group_names() will be called internally.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :param gname: name of group to get\n :type gname: string\n :param gid: ID of group to get, overrides gname\n :type gid: int\n :param groupnames: output of get_group_names(), to prevent calling it again if we already have it\n :type groupnames: dict\n :rtype: dict\n :returns: unserialized JSON dict representing the specified group, of the form:\n {'name': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>}\n " if ((gid is None) and (gname is None)): raise ValueError('get_nm_group called without gname or gid') if (gid is None): if (groupnames is None): groupnames = get_group_names(nm_host) for n in groupnames: if (groupnames[n] == gname): gid = n if (gid is None): return {} j = get_json(('http://%s/enc/groups/%d/' % (nm_host, gid))) return j
-2,901,903,478,772,705,000
Return a dict of information about a group in NM, by either name or ID. If gname is specified, it will be resolved to the id. groupnames, if specified, is the output dict from get_group_names(); if it is not specified, get_group_names() will be called internally. :param nm_host: NodeMeister hostname/IP :type nm_host: string :param gname: name of group to get :type gname: string :param gid: ID of group to get, overrides gname :type gid: int :param groupnames: output of get_group_names(), to prevent calling it again if we already have it :type groupnames: dict :rtype: dict :returns: unserialized JSON dict representing the specified group, of the form: {'name': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_group
coxmediagroup/nodemeister
python
def get_nm_group(nm_host, gname=None, gid=None, groupnames=None): "\n Return a dict of information about a group\n in NM, by either name or ID. If gname is specified,\n it will be resolved to the id.\n\n groupnames, if specified, is the output dict from get_group_names();\n if it is not specified, get_group_names() will be called internally.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :param gname: name of group to get\n :type gname: string\n :param gid: ID of group to get, overrides gname\n :type gid: int\n :param groupnames: output of get_group_names(), to prevent calling it again if we already have it\n :type groupnames: dict\n :rtype: dict\n :returns: unserialized JSON dict representing the specified group, of the form:\n {'name': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>}\n " if ((gid is None) and (gname is None)): raise ValueError('get_nm_group called without gname or gid') if (gid is None): if (groupnames is None): groupnames = get_group_names(nm_host) for n in groupnames: if (groupnames[n] == gname): gid = n if (gid is None): return {} j = get_json(('http://%s/enc/groups/%d/' % (nm_host, gid))) return j
def interpolate_group(group, classes, params, group_names): '\n In the dict returned by get_nm_group, replace class\n and parameter IDs, and other group IDs, with their\n appropriate string or dict representations.\n\n :param group: the Group dict returned by get_nm_group()\n :type group: dict\n :param classes: the dict of classes returned by get_nm_group_classes()\n :type classes: dict\n :param params: the dict of parameters returned by get_nm_group_params()\n :type params: dict\n :param group_names: the dict of group IDs to names returned by get_group_names()\n :type group_names: dict\n :returns: group dict, with classes and params interpolated\n :rtype: dict\n ' g_params = group.get('parameters', {}) params_text = {} for p in g_params: foo = params[p] params_text[foo['paramkey']] = foo['paramvalue'] group['parameters'] = params_text g_classes = group.get('classes', {}) classes_text = {} for c in g_classes: foo = classes[c] classes_text[foo['classname']] = foo['classparams'] group['classes'] = classes_text g_parents = group.get('parents', {}) parents_text = [] for p in g_parents: parents_text.append(group_names[p]) group['parents'] = parents_text g_groups = group.get('groups', {}) groups_text = [] for g in g_groups: groups_text.append(group_names[g]) group['groups'] = groups_text return group
-3,105,283,020,348,467,700
In the dict returned by get_nm_group, replace class and parameter IDs, and other group IDs, with their appropriate string or dict representations. :param group: the Group dict returned by get_nm_group() :type group: dict :param classes: the dict of classes returned by get_nm_group_classes() :type classes: dict :param params: the dict of parameters returned by get_nm_group_params() :type params: dict :param group_names: the dict of group IDs to names returned by get_group_names() :type group_names: dict :returns: group dict, with classes and params interpolated :rtype: dict
contrib/cli_scripts/nodemeisterlib.py
interpolate_group
coxmediagroup/nodemeister
python
def interpolate_group(group, classes, params, group_names): '\n In the dict returned by get_nm_group, replace class\n and parameter IDs, and other group IDs, with their\n appropriate string or dict representations.\n\n :param group: the Group dict returned by get_nm_group()\n :type group: dict\n :param classes: the dict of classes returned by get_nm_group_classes()\n :type classes: dict\n :param params: the dict of parameters returned by get_nm_group_params()\n :type params: dict\n :param group_names: the dict of group IDs to names returned by get_group_names()\n :type group_names: dict\n :returns: group dict, with classes and params interpolated\n :rtype: dict\n ' g_params = group.get('parameters', {}) params_text = {} for p in g_params: foo = params[p] params_text[foo['paramkey']] = foo['paramvalue'] group['parameters'] = params_text g_classes = group.get('classes', {}) classes_text = {} for c in g_classes: foo = classes[c] classes_text[foo['classname']] = foo['classparams'] group['classes'] = classes_text g_parents = group.get('parents', {}) parents_text = [] for p in g_parents: parents_text.append(group_names[p]) group['parents'] = parents_text g_groups = group.get('groups', {}) groups_text = [] for g in g_groups: groups_text.append(group_names[g]) group['groups'] = groups_text return group
def add_group(nm_host, name, description, parents=None, groups=None, dry_run=False): '\n add a group to NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param name: name of the new group\n :type name: string\n :param description: description of the new group\n :type description: string\n :param parents: parents of this group\n :type parents: list of int IDs\n :param groups: child groups of this group\n :type groups: list of int IDs\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: int ID of the new group on success or False on failure\n :rtype: int or False\n ' payload = {'name': name, 'description': description} if (parents is not None): payload['parents'] = parents if (groups is not None): payload['groups'] = groups url = ('http://%s/enc/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return get_nm_group_id(nm_host, name, dry_run=dry_run) logger.error(('ERROR: add_group got status code %d' % status_code)) return False
6,958,710,027,952,785,000
add a group to NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param name: name of the new group :type name: string :param description: description of the new group :type description: string :param parents: parents of this group :type parents: list of int IDs :param groups: child groups of this group :type groups: list of int IDs :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: int ID of the new group on success or False on failure :rtype: int or False
contrib/cli_scripts/nodemeisterlib.py
add_group
coxmediagroup/nodemeister
python
def add_group(nm_host, name, description, parents=None, groups=None, dry_run=False): '\n add a group to NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param name: name of the new group\n :type name: string\n :param description: description of the new group\n :type description: string\n :param parents: parents of this group\n :type parents: list of int IDs\n :param groups: child groups of this group\n :type groups: list of int IDs\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: int ID of the new group on success or False on failure\n :rtype: int or False\n ' payload = {'name': name, 'description': description} if (parents is not None): payload['parents'] = parents if (groups is not None): payload['groups'] = groups url = ('http://%s/enc/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return get_nm_group_id(nm_host, name, dry_run=dry_run) logger.error(('ERROR: add_group got status code %d' % status_code)) return False
def get_nm_group_id(nm_host, name, groups=None, dry_run=False): '\n Get the group ID of a group specified by name\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param name: name of the new group\n :type name: string\n :param groups: dict of groups as returned by get_group_names()\n :type groups: dict\n :returns: int ID of the group or False on failure\n :rtype: int or False\n ' if dry_run: return 0 if (groups is None): groups = get_group_names(nm_host) for n in groups: if (groups[n] == name): return n return False
6,712,355,395,058,232,000
Get the group ID of a group specified by name :param nm_host: NodeMeister hostname or IP :type nm_host: string :param name: name of the new group :type name: string :param groups: dict of groups as returned by get_group_names() :type groups: dict :returns: int ID of the group or False on failure :rtype: int or False
contrib/cli_scripts/nodemeisterlib.py
get_nm_group_id
coxmediagroup/nodemeister
python
def get_nm_group_id(nm_host, name, groups=None, dry_run=False): '\n Get the group ID of a group specified by name\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param name: name of the new group\n :type name: string\n :param groups: dict of groups as returned by get_group_names()\n :type groups: dict\n :returns: int ID of the group or False on failure\n :rtype: int or False\n ' if dry_run: return 0 if (groups is None): groups = get_group_names(nm_host) for n in groups: if (groups[n] == name): return n return False
def add_param_to_group(nm_host, gid, pname, pval, dry_run=False): '\n add a parameter to a group in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param gid: numeric ID of the group to add param to\n :type gid: int\n :param pname: parameter name\n :type pname: string\n :param pval: parameter value\n :type pval: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' if (isinstance(pval, basestring) and ((pval.strip() == '') or (pval == '') or (pval == "''"))): pval = None payload = {'group': gid, 'paramkey': pname, 'paramvalue': pval} url = ('http://%s/enc/parameters/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_param_to_group got status code %d' % status_code)) return False
7,117,024,628,070,776,000
add a parameter to a group in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param gid: numeric ID of the group to add param to :type gid: int :param pname: parameter name :type pname: string :param pval: parameter value :type pval: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean
contrib/cli_scripts/nodemeisterlib.py
add_param_to_group
coxmediagroup/nodemeister
python
def add_param_to_group(nm_host, gid, pname, pval, dry_run=False): '\n add a parameter to a group in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param gid: numeric ID of the group to add param to\n :type gid: int\n :param pname: parameter name\n :type pname: string\n :param pval: parameter value\n :type pval: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' if (isinstance(pval, basestring) and ((pval.strip() == ) or (pval == ) or (pval == ))): pval = None payload = {'group': gid, 'paramkey': pname, 'paramvalue': pval} url = ('http://%s/enc/parameters/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_param_to_group got status code %d' % status_code)) return False
def add_class_to_group(nm_host, gid, classname, classparams=None, dry_run=False): '\n add a class to a group in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param gid: numeric ID of the group to add param to\n :type gid: int\n :param classname: class name\n :type classname: string\n :param classparams: class parameters, default None\n :type classparams: string or None\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'group': gid, 'classname': classname, 'classparams': classparams} url = ('http://%s/enc/classes/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_class_to_group got status code %d' % status_code)) return False
-6,649,117,288,331,533,000
add a class to a group in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param gid: numeric ID of the group to add param to :type gid: int :param classname: class name :type classname: string :param classparams: class parameters, default None :type classparams: string or None :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean
contrib/cli_scripts/nodemeisterlib.py
add_class_to_group
coxmediagroup/nodemeister
python
def add_class_to_group(nm_host, gid, classname, classparams=None, dry_run=False): '\n add a class to a group in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param gid: numeric ID of the group to add param to\n :type gid: int\n :param classname: class name\n :type classname: string\n :param classparams: class parameters, default None\n :type classparams: string or None\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'group': gid, 'classname': classname, 'classparams': classparams} url = ('http://%s/enc/classes/groups/' % nm_host) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_class_to_group got status code %d' % status_code)) return False
def get_node_names(nm_host): '\n Return a dict of nodes in the NM instance,\n id => hostname\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM nodes, dict of the form {id<int>: hostname<string>}\n ' j = get_json(('http://%s/enc/nodes/' % nm_host)) names = {} for n in j: names[n['id']] = n['hostname'] return names
-3,141,816,096,082,172,400
Return a dict of nodes in the NM instance, id => hostname :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM nodes, dict of the form {id<int>: hostname<string>}
contrib/cli_scripts/nodemeisterlib.py
get_node_names
coxmediagroup/nodemeister
python
def get_node_names(nm_host): '\n Return a dict of nodes in the NM instance,\n id => hostname\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM nodes, dict of the form {id<int>: hostname<string>}\n ' j = get_json(('http://%s/enc/nodes/' % nm_host)) names = {} for n in j: names[n['id']] = n['hostname'] return names
def get_nm_node_id(nm_host, hostname, nodenames=None, dry_run=False): '\n Get the node ID of a node specified by hostname\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param hostname: hostname of the node\n :type hostname: string\n :param nodenames: dict of nodes as returned by get_node_names()\n :type nodenames: dict\n :returns: int ID of the group or False on failure\n :rtype: int or False\n ' if dry_run: return 0 if (nodenames is None): nodenames = get_node_names(nm_host) for n in nodenames: if (nodenames[n] == hostname): return n logger.error('could not find node ID for {h}'.format(h=hostname)) return False
-3,084,336,057,350,448,000
Get the node ID of a node specified by hostname :param nm_host: NodeMeister hostname or IP :type nm_host: string :param hostname: hostname of the node :type hostname: string :param nodenames: dict of nodes as returned by get_node_names() :type nodenames: dict :returns: int ID of the group or False on failure :rtype: int or False
contrib/cli_scripts/nodemeisterlib.py
get_nm_node_id
coxmediagroup/nodemeister
python
def get_nm_node_id(nm_host, hostname, nodenames=None, dry_run=False): '\n Get the node ID of a node specified by hostname\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param hostname: hostname of the node\n :type hostname: string\n :param nodenames: dict of nodes as returned by get_node_names()\n :type nodenames: dict\n :returns: int ID of the group or False on failure\n :rtype: int or False\n ' if dry_run: return 0 if (nodenames is None): nodenames = get_node_names(nm_host) for n in nodenames: if (nodenames[n] == hostname): return n logger.error('could not find node ID for {h}'.format(h=hostname)) return False
def get_nm_node(nm_host, hostname=None, node_id=None, nodenames=None): "\n Return a dict of information about a node\n in NM, by either name or ID. If nodename is specified,\n it will be resolved to the id.\n\n nodenames, if specified, is the output dict from get_node_names();\n if it is not specified, get_node_names() will be called internally.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :param hostname: name of node to get\n :type hostname: string\n :param node_id: ID of node to get, overrides hostname\n :type node_id: int\n :param nodenames: output of get_node_names(), to prevent calling it again if we already have it\n :type nodenames: dict\n :rtype: dict\n :returns: unserialized JSON dict representing the specified group, of the form:\n {'hostname': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>],\n 'groups': [<group IDs>], 'id': <int>, 'description': <string>}\n " if ((node_id is None) and (hostname is None)): raise ValueError('get_nm_node called without hostname or node_id') if (node_id is None): if (nodenames is None): nodenames = get_node_names(nm_host) for n in nodenames: if (nodenames[n] == hostname): node_id = n if (node_id is None): logger.error('could not find hode with hostname {h}'.format(h=hostname)) return {} j = get_json(('http://%s/enc/nodes/%d/' % (nm_host, node_id))) return j
-935,066,461,939,325,300
Return a dict of information about a node in NM, by either name or ID. If nodename is specified, it will be resolved to the id. nodenames, if specified, is the output dict from get_node_names(); if it is not specified, get_node_names() will be called internally. :param nm_host: NodeMeister hostname/IP :type nm_host: string :param hostname: name of node to get :type hostname: string :param node_id: ID of node to get, overrides hostname :type node_id: int :param nodenames: output of get_node_names(), to prevent calling it again if we already have it :type nodenames: dict :rtype: dict :returns: unserialized JSON dict representing the specified group, of the form: {'hostname': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_node
coxmediagroup/nodemeister
python
def get_nm_node(nm_host, hostname=None, node_id=None, nodenames=None): "\n Return a dict of information about a node\n in NM, by either name or ID. If nodename is specified,\n it will be resolved to the id.\n\n nodenames, if specified, is the output dict from get_node_names();\n if it is not specified, get_node_names() will be called internally.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :param hostname: name of node to get\n :type hostname: string\n :param node_id: ID of node to get, overrides hostname\n :type node_id: int\n :param nodenames: output of get_node_names(), to prevent calling it again if we already have it\n :type nodenames: dict\n :rtype: dict\n :returns: unserialized JSON dict representing the specified group, of the form:\n {'hostname': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>],\n 'groups': [<group IDs>], 'id': <int>, 'description': <string>}\n " if ((node_id is None) and (hostname is None)): raise ValueError('get_nm_node called without hostname or node_id') if (node_id is None): if (nodenames is None): nodenames = get_node_names(nm_host) for n in nodenames: if (nodenames[n] == hostname): node_id = n if (node_id is None): logger.error('could not find hode with hostname {h}'.format(h=hostname)) return {} j = get_json(('http://%s/enc/nodes/%d/' % (nm_host, node_id))) return j
def get_nm_node_classes(nm_host): "\n Return a dict of all node classes in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM node classes, dict of the form:\n {id<int>: {'classname': <string>, 'classparams': <string or None>, 'node': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/classes/nodes/' % nm_host)) for o in j: r[o['id']] = o return r
2,523,380,446,720,163,000
Return a dict of all node classes in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM node classes, dict of the form: {id<int>: {'classname': <string>, 'classparams': <string or None>, 'node': <int>, 'id': <int>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_node_classes
coxmediagroup/nodemeister
python
def get_nm_node_classes(nm_host): "\n Return a dict of all node classes in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM node classes, dict of the form:\n {id<int>: {'classname': <string>, 'classparams': <string or None>, 'node': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/classes/nodes/' % nm_host)) for o in j: r[o['id']] = o return r
def get_nm_node_params(nm_host): "\n Return a dict of all node params in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM node params, dict of the form:\n {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'node': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/parameters/nodes/' % nm_host)) for o in j: r[o['id']] = o return r
5,518,445,424,977,798,000
Return a dict of all node params in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM node params, dict of the form: {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'node': <int>, 'id': <int>}
contrib/cli_scripts/nodemeisterlib.py
get_nm_node_params
coxmediagroup/nodemeister
python
def get_nm_node_params(nm_host): "\n Return a dict of all node params in NM,\n with their id as the dict key.\n\n :param nm_host: NodeMeister hostname/IP\n :type nm_host: string\n :rtype: dict\n :returns: NM node params, dict of the form:\n {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'node': <int>, 'id': <int>}\n " r = {} j = get_json(('http://%s/enc/parameters/nodes/' % nm_host)) for o in j: r[o['id']] = o return r
def add_node(nm_host, hostname, description, groups=None, dry_run=False): '\n add a node to NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param hostname: hostname of the new node\n :type hostname: string\n :param description: description of the new node\n :type description: string\n :param groups: groups that this node is in\n :type groups: list of int IDs\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: int ID of the new node on success or False on failure\n :rtype: int or False\n ' payload = {'hostname': hostname, 'description': description} if (groups is not None): payload['groups'] = groups url = ('http://%s/enc/nodes/' % nm_host) logger.debug('adding node {h}'.format(h=hostname)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return get_nm_node_id(nm_host, hostname, dry_run=dry_run) logger.error(('ERROR: add_node got status code %d' % status_code)) return False
5,612,093,654,777,876,000
add a node to NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param hostname: hostname of the new node :type hostname: string :param description: description of the new node :type description: string :param groups: groups that this node is in :type groups: list of int IDs :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: int ID of the new node on success or False on failure :rtype: int or False
contrib/cli_scripts/nodemeisterlib.py
add_node
coxmediagroup/nodemeister
python
def add_node(nm_host, hostname, description, groups=None, dry_run=False): '\n add a node to NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param hostname: hostname of the new node\n :type hostname: string\n :param description: description of the new node\n :type description: string\n :param groups: groups that this node is in\n :type groups: list of int IDs\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: int ID of the new node on success or False on failure\n :rtype: int or False\n ' payload = {'hostname': hostname, 'description': description} if (groups is not None): payload['groups'] = groups url = ('http://%s/enc/nodes/' % nm_host) logger.debug('adding node {h}'.format(h=hostname)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return get_nm_node_id(nm_host, hostname, dry_run=dry_run) logger.error(('ERROR: add_node got status code %d' % status_code)) return False
def add_param_to_node(nm_host, node_id, pname, pval, dry_run=False): '\n add a parameter to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param pname: parameter name\n :type pname: string\n :param pval: parameter value\n :type pval: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' if ((pval.strip() == '') or (pval == '') or (pval == "''")): pval = None payload = {'node': node_id, 'paramkey': pname, 'paramvalue': pval} url = ('http://%s/enc/parameters/nodes/' % nm_host) logger.debug("adding param '{pname}' to node {n} with val: {pval}".format(n=node_id, pname=pname, pval=pval)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_param_to_node got status code %d' % status_code)) return False
8,472,072,113,677,377,000
add a parameter to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param pname: parameter name :type pname: string :param pval: parameter value :type pval: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean
contrib/cli_scripts/nodemeisterlib.py
add_param_to_node
coxmediagroup/nodemeister
python
def add_param_to_node(nm_host, node_id, pname, pval, dry_run=False): '\n add a parameter to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param pname: parameter name\n :type pname: string\n :param pval: parameter value\n :type pval: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' if ((pval.strip() == ) or (pval == ) or (pval == )): pval = None payload = {'node': node_id, 'paramkey': pname, 'paramvalue': pval} url = ('http://%s/enc/parameters/nodes/' % nm_host) logger.debug("adding param '{pname}' to node {n} with val: {pval}".format(n=node_id, pname=pname, pval=pval)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_param_to_node got status code %d' % status_code)) return False
def add_class_to_node(nm_host, node_id, classname, classparams=None, dry_run=False): '\n add a class to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param classname: class name\n :type classname: string\n :param classparams: class parameters, default None\n :type classparams: string or None\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'node': node_id, 'classname': classname, 'classparams': classparams} url = ('http://%s/enc/classes/nodes/' % nm_host) logger.debug("adding class '{cn}' to node {n} with params: {cp}".format(n=node_id, cn=classname, cp=classparams)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_class_to_node got status code %d' % status_code)) return False
-8,682,323,673,473,580,000
add a class to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param classname: class name :type classname: string :param classparams: class parameters, default None :type classparams: string or None :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean
contrib/cli_scripts/nodemeisterlib.py
add_class_to_node
coxmediagroup/nodemeister
python
def add_class_to_node(nm_host, node_id, classname, classparams=None, dry_run=False): '\n add a class to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param classname: class name\n :type classname: string\n :param classparams: class parameters, default None\n :type classparams: string or None\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'node': node_id, 'classname': classname, 'classparams': classparams} url = ('http://%s/enc/classes/nodes/' % nm_host) logger.debug("adding class '{cn}' to node {n} with params: {cp}".format(n=node_id, cn=classname, cp=classparams)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_class_to_node got status code %d' % status_code)) return False
def get_name_for_class_exclusion(nm_host, class_exclusion_id, verbose): '\n Get the excluded class name for a given ClassExclusion ID.\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param class_exclusion_id: numeric ID of the class exclusion\n :type class_exclusion_id: int\n :returns: string name of class, or False on faliure\n :rtype: string or False\n ' r = {} j = get_json(('http://%s/enc/exclusions/classes/' % nm_host)) if (j is None): return False for o in j: if (o['id'] == class_exclusion_id): return o['exclusion'] return False
5,429,085,462,293,692,000
Get the excluded class name for a given ClassExclusion ID. :param nm_host: NodeMeister hostname or IP :type nm_host: string :param class_exclusion_id: numeric ID of the class exclusion :type class_exclusion_id: int :returns: string name of class, or False on faliure :rtype: string or False
contrib/cli_scripts/nodemeisterlib.py
get_name_for_class_exclusion
coxmediagroup/nodemeister
python
def get_name_for_class_exclusion(nm_host, class_exclusion_id, verbose): '\n Get the excluded class name for a given ClassExclusion ID.\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param class_exclusion_id: numeric ID of the class exclusion\n :type class_exclusion_id: int\n :returns: string name of class, or False on faliure\n :rtype: string or False\n ' r = {} j = get_json(('http://%s/enc/exclusions/classes/' % nm_host)) if (j is None): return False for o in j: if (o['id'] == class_exclusion_id): return o['exclusion'] return False
def add_node_class_exclusion(nm_host, node_id, classname, dry_run=False, verbose=False): '\n add a class exclusion to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param classname: class name to exclude\n :type classname: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'node': node_id, 'exclusion': classname} url = ('http://%s/enc/exclusions/classes/' % nm_host) logger.debug("adding class exclusion for '{cn}' to node {n}".format(n=node_id, cn=classname)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_node_class_exclusion got status code %d' % status_code)) return False
9,084,398,723,056,467,000
add a class exclusion to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param classname: class name to exclude :type classname: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean
contrib/cli_scripts/nodemeisterlib.py
add_node_class_exclusion
coxmediagroup/nodemeister
python
def add_node_class_exclusion(nm_host, node_id, classname, dry_run=False, verbose=False): '\n add a class exclusion to a node in NodeMeister\n\n :param nm_host: NodeMeister hostname or IP\n :type nm_host: string\n :param node_id: numeric ID of the node to add param to\n :type node_id: int\n :param classname: class name to exclude\n :type classname: string\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: True on success or False on failure\n :rtype: boolean\n ' payload = {'node': node_id, 'exclusion': classname} url = ('http://%s/enc/exclusions/classes/' % nm_host) logger.debug("adding class exclusion for '{cn}' to node {n}".format(n=node_id, cn=classname)) status_code = do_post(url, payload, dry_run=dry_run) if (status_code == 201): return True logger.error(('ERROR: add_node_class_exclusion got status code %d' % status_code)) return False
def clean_value(v, debug=False): '\n Strip bad characters off of values\n ' if debug: print(("clean_value '%s'" % v)) if ((type(v) == type('')) or (type(v) == type(u''))): v = v.strip('"\\') return v
-7,613,022,941,749,971,000
Strip bad characters off of values
contrib/cli_scripts/nodemeisterlib.py
clean_value
coxmediagroup/nodemeister
python
def clean_value(v, debug=False): '\n \n ' if debug: print(("clean_value '%s'" % v)) if ((type(v) == type()) or (type(v) == type(u))): v = v.strip('"\\') return v
def do_post(url, payload, dry_run=False): '\n Do a POST request with Requests, return the status code.\n\n :param url: URL to POST to\n :type nm_host: string\n :param payload: the payload data, to be JSON encoded\n :type name: dict\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: HTTP status code from the request\n :rtype: int\n ' headers = {'content-type': 'application/json'} if dry_run: logger.warning(('DRY RUN: do_post to url %s - payload:\n\t%s\n' % (url, payload))) return 201 r = requests.post(url, data=anyjson.serialize(payload), headers=headers) return r.status_code
7,076,742,732,408,014,000
Do a POST request with Requests, return the status code. :param url: URL to POST to :type nm_host: string :param payload: the payload data, to be JSON encoded :type name: dict :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: HTTP status code from the request :rtype: int
contrib/cli_scripts/nodemeisterlib.py
do_post
coxmediagroup/nodemeister
python
def do_post(url, payload, dry_run=False): '\n Do a POST request with Requests, return the status code.\n\n :param url: URL to POST to\n :type nm_host: string\n :param payload: the payload data, to be JSON encoded\n :type name: dict\n :param dry_run: if True, only print what would be done, do not make any changes\n :type dry_run: boolean\n :returns: HTTP status code from the request\n :rtype: int\n ' headers = {'content-type': 'application/json'} if dry_run: logger.warning(('DRY RUN: do_post to url %s - payload:\n\t%s\n' % (url, payload))) return 201 r = requests.post(url, data=anyjson.serialize(payload), headers=headers) return r.status_code
def clone_nodemeister_node(nm_host, dst_name, src_name, munge_res, group_replace=None, noop=False, verbose=False): '\n Clone a node in nodemeister, munging all parameters and class params through munge_re,\n a list of lists, each having 2 elements, a regex and a string to replace matches with.\n\n group_replace is a hash of old_group_id => new_group_id to replace when creating the new node\n ' nodes = get_node_names(nm_host) dst_node_id = get_nm_node_id(nm_host, dst_name, nodenames=nodes) if (dst_node_id is not False): logger.error(('ERROR: node %s already exists in NodeMeister with id %d.' % (dst_name, dst_node_id))) return False src_node = get_nm_node(nm_host, hostname=src_name, nodenames=nodes) if (len(src_node) == 0): logger.error(('ERROR: could not find source node %s' % src_name)) return False if verbose: logger.debug('Got source node id: {n}\n{src}'.format(n=src_node['id'], src=src_node)) classes = get_nm_node_classes(nm_host) params = get_nm_node_params(nm_host) groups = [] for g in src_node['groups']: if (group_replace is not None): if (g in group_replace): if verbose: logger.debug((' changing group %d to %d (group_replace)' % (g, group_replace[g]))) g = group_replace[g] groups.append(g) node_id = add_node(nm_host, dst_name, ('imported by %s' % __file__), groups=groups, dry_run=noop) if (node_id is False): logger.error('ERROR adding node in Nodemeister.') return False else: logger.info(('Node added to NodeMeister with id %d' % node_id)) ok = True for c in src_node['excluded_classes']: c_name = get_name_for_class_exclusion(nm_host, c, verbose=verbose) if verbose: logger.debug(('excluded class %s (%d)' % (c_name, c))) res = add_node_class_exclusion(nm_host, node_id, c_name, dry_run=noop, verbose=verbose) if (not res): logger.error(("ERROR adding class exclusion of '%s' to node %d" % (c_name, node_id))) ok = False if verbose: logger.info(("added class_exclusion of '%s' to group %d" % (c_name, node_id))) for p in src_node['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_node['parameters'][p]) if ((foo != src_node['parameters'][p]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (p, src_node['parameters'][p], foo))) src_node['parameters'][p] = foo res = add_param_to_node(nm_host, node_id, p, src_node['parameters'][p], dry_run=noop) if (not res): logger.error(("ERROR adding param %s with value '%s' to node %d" % (p, src_node['parameters'][p], node_id))) ok = False if verbose: logger.info(("\tadded param %s with value '%s' to group %d" % (p, src_node['parameters'][p], node_id))) if (len(src_node['classes']) > 0): logger.critical('ERROR: script does not yet migrate classes for nodes.') ok = False if (ok is False): return False return node_id
-3,694,976,738,779,596,000
Clone a node in nodemeister, munging all parameters and class params through munge_re, a list of lists, each having 2 elements, a regex and a string to replace matches with. group_replace is a hash of old_group_id => new_group_id to replace when creating the new node
contrib/cli_scripts/nodemeisterlib.py
clone_nodemeister_node
coxmediagroup/nodemeister
python
def clone_nodemeister_node(nm_host, dst_name, src_name, munge_res, group_replace=None, noop=False, verbose=False): '\n Clone a node in nodemeister, munging all parameters and class params through munge_re,\n a list of lists, each having 2 elements, a regex and a string to replace matches with.\n\n group_replace is a hash of old_group_id => new_group_id to replace when creating the new node\n ' nodes = get_node_names(nm_host) dst_node_id = get_nm_node_id(nm_host, dst_name, nodenames=nodes) if (dst_node_id is not False): logger.error(('ERROR: node %s already exists in NodeMeister with id %d.' % (dst_name, dst_node_id))) return False src_node = get_nm_node(nm_host, hostname=src_name, nodenames=nodes) if (len(src_node) == 0): logger.error(('ERROR: could not find source node %s' % src_name)) return False if verbose: logger.debug('Got source node id: {n}\n{src}'.format(n=src_node['id'], src=src_node)) classes = get_nm_node_classes(nm_host) params = get_nm_node_params(nm_host) groups = [] for g in src_node['groups']: if (group_replace is not None): if (g in group_replace): if verbose: logger.debug((' changing group %d to %d (group_replace)' % (g, group_replace[g]))) g = group_replace[g] groups.append(g) node_id = add_node(nm_host, dst_name, ('imported by %s' % __file__), groups=groups, dry_run=noop) if (node_id is False): logger.error('ERROR adding node in Nodemeister.') return False else: logger.info(('Node added to NodeMeister with id %d' % node_id)) ok = True for c in src_node['excluded_classes']: c_name = get_name_for_class_exclusion(nm_host, c, verbose=verbose) if verbose: logger.debug(('excluded class %s (%d)' % (c_name, c))) res = add_node_class_exclusion(nm_host, node_id, c_name, dry_run=noop, verbose=verbose) if (not res): logger.error(("ERROR adding class exclusion of '%s' to node %d" % (c_name, node_id))) ok = False if verbose: logger.info(("added class_exclusion of '%s' to group %d" % (c_name, node_id))) for p in src_node['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_node['parameters'][p]) if ((foo != src_node['parameters'][p]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (p, src_node['parameters'][p], foo))) src_node['parameters'][p] = foo res = add_param_to_node(nm_host, node_id, p, src_node['parameters'][p], dry_run=noop) if (not res): logger.error(("ERROR adding param %s with value '%s' to node %d" % (p, src_node['parameters'][p], node_id))) ok = False if verbose: logger.info(("\tadded param %s with value '%s' to group %d" % (p, src_node['parameters'][p], node_id))) if (len(src_node['classes']) > 0): logger.critical('ERROR: script does not yet migrate classes for nodes.') ok = False if (ok is False): return False return node_id
def clone_nodemeister_group(nm_host, dst_gname, src_gname, munge_re=None, noop=False, verbose=False): '\n Clone a group in nodemeister, munging all parameters and class params through munge_re,\n a list of lists, each having 2 elements, a regex and a string to replace matches with.\n ' group_names = get_group_names(nm_host) dst_gid = get_nm_group_id(nm_host, dst_gname, groups=group_names) if (dst_gid is not False): logger.error(('ERROR: group %s already exists in NodeMeister with id %d.' % (dst_gname, dst_gid))) return False src_group = get_nm_group(nm_host, gname=src_gname, groupnames=group_names) if (len(src_group) == 0): logger.error(('ERROR: could not find source group %s' % src_gname)) return False if verbose: logger.debug('Got source group id: {n}\n{src}'.format(n=src_group['id'], src=src_group)) classes = get_nm_group_classes(nm_host) params = get_nm_group_params(nm_host) interp_src_group = interpolate_group(src_group, classes, params, group_names) groups = [] for foo in src_group['groups']: bar = get_nm_group_id(nm_host, foo, groups=group_names) if bar: groups.append(bar) gid = add_group(nm_host, dst_gname, ('imported by %s' % __file__), groups=groups, dry_run=noop) if (gid is False): logger.error('ERROR adding group in Nodemeister.') return False else: logger.info(('Group added to NodeMeister with id %d' % gid)) ok = True for p in src_group['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['parameters'][p]) if ((foo != src_group['parameters'][p]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (p, src_group['parameters'][p], foo))) src_group['parameters'][p] = foo res = add_param_to_group(nm_host, gid, p, src_group['parameters'][p], dry_run=noop) if (not res): logger.error(("ERROR adding param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid))) ok = False if verbose: logger.info(("added param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid))) for c in src_group['classes']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['classes'][c]) if ((foo != src_group['classes'][c]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (c, src_group['classes'][c], foo))) src_group['classes'][c] = foo res = add_class_to_group(nm_host, gid, c, src_group['classes'][c], dry_run=noop) if (not res): logger.error(("ERROR adding class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid))) ok = False if verbose: logger.info(("added class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid))) if (ok is False): logger.critical('cloning group failed.') return False return gid
321,454,846,756,746,200
Clone a group in nodemeister, munging all parameters and class params through munge_re, a list of lists, each having 2 elements, a regex and a string to replace matches with.
contrib/cli_scripts/nodemeisterlib.py
clone_nodemeister_group
coxmediagroup/nodemeister
python
def clone_nodemeister_group(nm_host, dst_gname, src_gname, munge_re=None, noop=False, verbose=False): '\n Clone a group in nodemeister, munging all parameters and class params through munge_re,\n a list of lists, each having 2 elements, a regex and a string to replace matches with.\n ' group_names = get_group_names(nm_host) dst_gid = get_nm_group_id(nm_host, dst_gname, groups=group_names) if (dst_gid is not False): logger.error(('ERROR: group %s already exists in NodeMeister with id %d.' % (dst_gname, dst_gid))) return False src_group = get_nm_group(nm_host, gname=src_gname, groupnames=group_names) if (len(src_group) == 0): logger.error(('ERROR: could not find source group %s' % src_gname)) return False if verbose: logger.debug('Got source group id: {n}\n{src}'.format(n=src_group['id'], src=src_group)) classes = get_nm_group_classes(nm_host) params = get_nm_group_params(nm_host) interp_src_group = interpolate_group(src_group, classes, params, group_names) groups = [] for foo in src_group['groups']: bar = get_nm_group_id(nm_host, foo, groups=group_names) if bar: groups.append(bar) gid = add_group(nm_host, dst_gname, ('imported by %s' % __file__), groups=groups, dry_run=noop) if (gid is False): logger.error('ERROR adding group in Nodemeister.') return False else: logger.info(('Group added to NodeMeister with id %d' % gid)) ok = True for p in src_group['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['parameters'][p]) if ((foo != src_group['parameters'][p]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (p, src_group['parameters'][p], foo))) src_group['parameters'][p] = foo res = add_param_to_group(nm_host, gid, p, src_group['parameters'][p], dry_run=noop) if (not res): logger.error(("ERROR adding param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid))) ok = False if verbose: logger.info(("added param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid))) for c in src_group['classes']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['classes'][c]) if ((foo != src_group['classes'][c]) and verbose): logger.debug(("Munged value of '%s' from '%s' to '%s'" % (c, src_group['classes'][c], foo))) src_group['classes'][c] = foo res = add_class_to_group(nm_host, gid, c, src_group['classes'][c], dry_run=noop) if (not res): logger.error(("ERROR adding class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid))) ok = False if verbose: logger.info(("added class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid))) if (ok is False): logger.critical('cloning group failed.') return False return gid
def DetectGae(): "Determine whether or not we're running on GAE.\n\n This is based on:\n https://developers.google.com/appengine/docs/python/#The_Environment\n\n Returns:\n True iff we're running on GAE.\n " server_software = os.environ.get('SERVER_SOFTWARE', '') return (server_software.startswith('Development/') or server_software.startswith('Google App Engine/'))
6,583,939,300,005,637,000
Determine whether or not we're running on GAE. This is based on: https://developers.google.com/appengine/docs/python/#The_Environment Returns: True iff we're running on GAE.
.install/.backup/lib/apitools/base/py/util.py
DetectGae
Technology-Hatchery/google-cloud-sdk
python
def DetectGae(): "Determine whether or not we're running on GAE.\n\n This is based on:\n https://developers.google.com/appengine/docs/python/#The_Environment\n\n Returns:\n True iff we're running on GAE.\n " server_software = os.environ.get('SERVER_SOFTWARE', ) return (server_software.startswith('Development/') or server_software.startswith('Google App Engine/'))
def DetectGce(): "Determine whether or not we're running on GCE.\n\n This is based on:\n https://developers.google.com/compute/docs/instances#dmi\n\n Returns:\n True iff we're running on a GCE instance.\n " try: o = urllib2.urlopen('http://metadata.google.internal') except urllib2.URLError: return False return (o.getcode() == httplib.OK)
-1,671,743,839,594,448,400
Determine whether or not we're running on GCE. This is based on: https://developers.google.com/compute/docs/instances#dmi Returns: True iff we're running on a GCE instance.
.install/.backup/lib/apitools/base/py/util.py
DetectGce
Technology-Hatchery/google-cloud-sdk
python
def DetectGce(): "Determine whether or not we're running on GCE.\n\n This is based on:\n https://developers.google.com/compute/docs/instances#dmi\n\n Returns:\n True iff we're running on a GCE instance.\n " try: o = urllib2.urlopen('http://metadata.google.internal') except urllib2.URLError: return False return (o.getcode() == httplib.OK)
def NormalizeScopes(scope_spec): 'Normalize scope_spec to a set of strings.' if isinstance(scope_spec, types.StringTypes): return set(scope_spec.split(' ')) elif isinstance(scope_spec, collections.Iterable): return set(scope_spec) raise exceptions.TypecheckError(('NormalizeScopes expected string or iterable, found %s' % (type(scope_spec),)))
7,627,925,049,917,214,000
Normalize scope_spec to a set of strings.
.install/.backup/lib/apitools/base/py/util.py
NormalizeScopes
Technology-Hatchery/google-cloud-sdk
python
def NormalizeScopes(scope_spec): if isinstance(scope_spec, types.StringTypes): return set(scope_spec.split(' ')) elif isinstance(scope_spec, collections.Iterable): return set(scope_spec) raise exceptions.TypecheckError(('NormalizeScopes expected string or iterable, found %s' % (type(scope_spec),)))
def __init__(self, model: Model, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'Constructor for the MCAcquisitionFunction base class.\n\n Args:\n model: A fitted model.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`.\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated.\n ' super().__init__(model=model) if (sampler is None): sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module('sampler', sampler) if (objective is None): objective = IdentityMCObjective() elif (not isinstance(objective, MCAcquisitionObjective)): raise UnsupportedError('Only objectives of type MCAcquisitionObjective are supported for MC acquisition functions.') self.add_module('objective', objective) self.set_X_pending(X_pending)
-5,483,613,012,783,740,000
Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated.
botorch/acquisition/monte_carlo.py
__init__
BradyBromley/botorch
python
def __init__(self, model: Model, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'Constructor for the MCAcquisitionFunction base class.\n\n Args:\n model: A fitted model.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`.\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated.\n ' super().__init__(model=model) if (sampler is None): sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module('sampler', sampler) if (objective is None): objective = IdentityMCObjective() elif (not isinstance(objective, MCAcquisitionObjective)): raise UnsupportedError('Only objectives of type MCAcquisitionObjective are supported for MC acquisition functions.') self.add_module('objective', objective) self.set_X_pending(X_pending)
@abstractmethod def forward(self, X: Tensor) -> Tensor: 'Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim\n design points each, and returns a one-dimensional Tensor with\n `(b)` elements. Should utilize the result of set_X_pending as needed\n to account for pending function evaluations.\n ' pass
216,779,565,676,812,380
Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@abstractmethod def forward(self, X: Tensor) -> Tensor: 'Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim\n design points each, and returns a one-dimensional Tensor with\n `(b)` elements. Should utilize the result of set_X_pending as needed\n to account for pending function evaluations.\n ' pass
def __init__(self, model: Model, best_f: Union[(float, Tensor)], sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'q-Expected Improvement.\n\n Args:\n model: A fitted model.\n best_f: The best objective value observed so far (assumed noiseless).\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if (not torch.is_tensor(best_f)): best_f = torch.tensor(float(best_f)) self.register_buffer('best_f', best_f)
821,717,853,403,361,700
q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient.
botorch/acquisition/monte_carlo.py
__init__
BradyBromley/botorch
python
def __init__(self, model: Model, best_f: Union[(float, Tensor)], sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'q-Expected Improvement.\n\n Args:\n model: A fitted model.\n best_f: The best objective value observed so far (assumed noiseless).\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if (not torch.is_tensor(best_f)): best_f = torch.tensor(float(best_f)) self.register_buffer('best_f', best_f)
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qExpectedImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Expected Improvement values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=(- 1))[0].mean(dim=0) return q_ei
1,334,818,452,204,513,800
Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qExpectedImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Expected Improvement values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=(- 1))[0].mean(dim=0) return q_ei
def __init__(self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None, prune_baseline: bool=False) -> None: 'q-Noisy Expected Improvement.\n\n Args:\n model: A fitted model.\n X_baseline: A `r x d`-dim Tensor of `r` design points that have\n already been observed. These points are considered as the\n potential best design point.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`.\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n prune_baseline: If True, remove points in `X_baseline` that are\n highly unlikely to be the best point. This can significantly\n improve performance and is generally recommended. In order to\n customize pruning parameters, instead manually call\n `botorch.acquisition.utils.prune_inferior_points` on `X_baseline`\n before instantiating the acquisition function.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if prune_baseline: X_baseline = prune_inferior_points(model=model, X=X_baseline, objective=objective) self.register_buffer('X_baseline', X_baseline)
7,793,565,535,815,692,000
q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function.
botorch/acquisition/monte_carlo.py
__init__
BradyBromley/botorch
python
def __init__(self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None, prune_baseline: bool=False) -> None: 'q-Noisy Expected Improvement.\n\n Args:\n model: A fitted model.\n X_baseline: A `r x d`-dim Tensor of `r` design points that have\n already been observed. These points are considered as the\n potential best design point.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`.\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n prune_baseline: If True, remove points in `X_baseline` that are\n highly unlikely to be the best point. This can significantly\n improve performance and is generally recommended. In order to\n customize pruning parameters, instead manually call\n `botorch.acquisition.utils.prune_inferior_points` on `X_baseline`\n before instantiating the acquisition function.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if prune_baseline: X_baseline = prune_inferior_points(model=model, X=X_baseline, objective=objective) self.register_buffer('X_baseline', X_baseline)
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qNoisyExpectedImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Noisy Expected Improvement values at the given\n design points `X`.\n ' q = X.shape[(- 2)] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=(- 2)) posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = (obj[:, :, :q].max(dim=(- 1))[0] - obj[:, :, q:].max(dim=(- 1))[0]) return diffs.clamp_min(0).mean(dim=0)
2,343,125,599,921,369,600
Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qNoisyExpectedImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Noisy Expected Improvement values at the given\n design points `X`.\n ' q = X.shape[(- 2)] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=(- 2)) posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = (obj[:, :, :q].max(dim=(- 1))[0] - obj[:, :, q:].max(dim=(- 1))[0]) return diffs.clamp_min(0).mean(dim=0)
def __init__(self, model: Model, best_f: Union[(float, Tensor)], sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None, tau: float=0.001) -> None: 'q-Probability of Improvement.\n\n Args:\n model: A fitted model.\n best_f: The best objective value observed so far (assumed noiseless).\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n tau: The temperature parameter used in the sigmoid approximation\n of the step function. Smaller values yield more accurate\n approximations of the function, but result in gradients\n estimates with higher variance.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if (not torch.is_tensor(best_f)): best_f = torch.tensor(float(best_f)) self.register_buffer('best_f', best_f) if (not torch.is_tensor(tau)): tau = torch.tensor(float(tau)) self.register_buffer('tau', tau)
-4,439,551,676,147,822,000
q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance.
botorch/acquisition/monte_carlo.py
__init__
BradyBromley/botorch
python
def __init__(self, model: Model, best_f: Union[(float, Tensor)], sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None, tau: float=0.001) -> None: 'q-Probability of Improvement.\n\n Args:\n model: A fitted model.\n best_f: The best objective value observed so far (assumed noiseless).\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n tau: The temperature parameter used in the sigmoid approximation\n of the step function. Smaller values yield more accurate\n approximations of the function, but result in gradients\n estimates with higher variance.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) if (not torch.is_tensor(best_f)): best_f = torch.tensor(float(best_f)) self.register_buffer('best_f', best_f) if (not torch.is_tensor(tau)): tau = torch.tensor(float(tau)) self.register_buffer('tau', tau)
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qProbabilityOfImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Probability of Improvement values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=(- 1))[0] val = torch.sigmoid(((max_obj - self.best_f) / self.tau)).mean(dim=0) return val
-2,381,835,318,596,340,700
Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qProbabilityOfImprovement on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Probability of Improvement values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=(- 1))[0] val = torch.sigmoid(((max_obj - self.best_f) / self.tau)).mean(dim=0) return val
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qSimpleRegret on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Simple Regret values at the given design\n points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=(- 1))[0].mean(dim=0) return val
-2,640,521,809,605,749,000
Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qSimpleRegret on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Simple Regret values at the given design\n points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=(- 1))[0].mean(dim=0) return val
def __init__(self, model: Model, beta: float, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'q-Upper Confidence Bound.\n\n Args:\n model: A fitted model.\n beta: Controls tradeoff between mean and standard deviation in UCB.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) self.beta_prime = math.sqrt(((beta * math.pi) / 2))
-9,073,965,729,121,521,000
q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient.
botorch/acquisition/monte_carlo.py
__init__
BradyBromley/botorch
python
def __init__(self, model: Model, beta: float, sampler: Optional[MCSampler]=None, objective: Optional[MCAcquisitionObjective]=None, X_pending: Optional[Tensor]=None) -> None: 'q-Upper Confidence Bound.\n\n Args:\n model: A fitted model.\n beta: Controls tradeoff between mean and standard deviation in UCB.\n sampler: The sampler used to draw base samples. Defaults to\n `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`\n objective: The MCAcquisitionObjective under which the samples are\n evaluated. Defaults to `IdentityMCObjective()`.\n X_pending: A `m x d`-dim Tensor of `m` design points that have\n points that have been submitted for function evaluation\n but have not yet been evaluated. Concatenated into X upon\n forward call. Copied and set to have no gradient.\n ' super().__init__(model=model, sampler=sampler, objective=objective, X_pending=X_pending) self.beta_prime = math.sqrt(((beta * math.pi) / 2))
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qUpperConfidenceBound on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Upper Confidence Bound values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = (mean + (self.beta_prime * (obj - mean).abs())) return ucb_samples.max(dim=(- 1))[0].mean(dim=0)
4,111,730,714,202,724,000
Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`.
botorch/acquisition/monte_carlo.py
forward
BradyBromley/botorch
python
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: 'Evaluate qUpperConfidenceBound on the candidate set `X`.\n\n Args:\n X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim\n design points each.\n\n Returns:\n A `(b)`-dim Tensor of Upper Confidence Bound values at the given\n design points `X`.\n ' posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = (mean + (self.beta_prime * (obj - mean).abs())) return ucb_samples.max(dim=(- 1))[0].mean(dim=0)
def resize_img(img, input_size=600): '\n resize img and limit the longest side of the image to input_size\n ' img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = (float(input_size) / float(im_size_max)) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img
2,730,486,028,993,369,000
resize img and limit the longest side of the image to input_size
tools/infer/utility.py
resize_img
OcrOrg/PaddleOCR
python
def resize_img(img, input_size=600): '\n \n ' img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = (float(input_size) / float(im_size_max)) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img
def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path='./doc/simfang.ttf'): '\n Visualize the results of OCR detection and recognition\n args:\n image(Image|array): RGB image\n boxes(list): boxes with shape(N, 4, 2)\n txts(list): the texts\n scores(list): txxs corresponding scores\n drop_score(float): only scores greater than drop_threshold will be visualized\n font_path: the path of font which is used to draw text\n return(array):\n the visualized img\n ' if (scores is None): scores = ([1] * len(boxes)) box_num = len(boxes) for i in range(box_num): if ((scores is not None) and ((scores[i] < drop_score) or math.isnan(scores[i]))): continue box = np.reshape(np.array(boxes[i]), [(- 1), 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if (txts is not None): img = np.array(resize_img(image, input_size=600)) txt_img = text_visual(txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image
5,244,719,996,499,496,000
Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img
tools/infer/utility.py
draw_ocr
OcrOrg/PaddleOCR
python
def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path='./doc/simfang.ttf'): '\n Visualize the results of OCR detection and recognition\n args:\n image(Image|array): RGB image\n boxes(list): boxes with shape(N, 4, 2)\n txts(list): the texts\n scores(list): txxs corresponding scores\n drop_score(float): only scores greater than drop_threshold will be visualized\n font_path: the path of font which is used to draw text\n return(array):\n the visualized img\n ' if (scores is None): scores = ([1] * len(boxes)) box_num = len(boxes) for i in range(box_num): if ((scores is not None) and ((scores[i] < drop_score) or math.isnan(scores[i]))): continue box = np.reshape(np.array(boxes[i]), [(- 1), 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if (txts is not None): img = np.array(resize_img(image, input_size=600)) txt_img = text_visual(txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image
def str_count(s): '\n Count the number of Chinese characters,\n a single English character and a single number\n equal to half the length of Chinese characters.\n args:\n s(string): the input of string\n return(int):\n the number of Chinese characters\n ' import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if ((c in string.ascii_letters) or c.isdigit() or c.isspace()): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return (s_len - math.ceil((en_dg_count / 2)))
-4,828,038,653,253,307,000
Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters
tools/infer/utility.py
str_count
OcrOrg/PaddleOCR
python
def str_count(s): '\n Count the number of Chinese characters,\n a single English character and a single number\n equal to half the length of Chinese characters.\n args:\n s(string): the input of string\n return(int):\n the number of Chinese characters\n ' import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if ((c in string.ascii_letters) or c.isdigit() or c.isspace()): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return (s_len - math.ceil((en_dg_count / 2)))
def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.0, font_path='./doc/simfang.ttf'): '\n create new blank img and draw txt on it\n args:\n texts(list): the text will be draw\n scores(list|None): corresponding score of each txt\n img_h(int): the height of blank img\n img_w(int): the width of blank img\n font_path: the path of font which is used to draw text\n return(array):\n ' if (scores is not None): assert (len(texts) == len(scores)), 'The number of txts and corresponding scores must match' def create_blank_img(): blank_img = (np.ones(shape=[img_h, img_w], dtype=np.int8) * 255) blank_img[:, (img_w - 1):] = 0 blank_img = Image.fromarray(blank_img).convert('RGB') draw_txt = ImageDraw.Draw(blank_img) return (blank_img, draw_txt) (blank_img, draw_txt) = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding='utf-8') gap = (font_size + 5) txt_img_list = [] (count, index) = (1, 0) for (idx, txt) in enumerate(texts): index += 1 if ((scores[idx] < threshold) or math.isnan(scores[idx])): index -= 1 continue first_line = True while (str_count(txt) >= ((img_w // font_size) - 4)): tmp = txt txt = tmp[:((img_w // font_size) - 4)] if first_line: new_txt = ((str(index) + ': ') + txt) first_line = False else: new_txt = (' ' + txt) draw_txt.text((0, (gap * count)), new_txt, txt_color, font=font) txt = tmp[((img_w // font_size) - 4):] if (count >= ((img_h // gap) - 1)): txt_img_list.append(np.array(blank_img)) (blank_img, draw_txt) = create_blank_img() count = 0 count += 1 if first_line: new_txt = ((((str(index) + ': ') + txt) + ' ') + ('%.3f' % scores[idx])) else: new_txt = (((' ' + txt) + ' ') + ('%.3f' % scores[idx])) draw_txt.text((0, (gap * count)), new_txt, txt_color, font=font) if ((count >= ((img_h // gap) - 1)) and ((idx + 1) < len(texts))): txt_img_list.append(np.array(blank_img)) (blank_img, draw_txt) = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if (len(txt_img_list) == 1): blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img)
-803,037,385,994,058,100
create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array):
tools/infer/utility.py
text_visual
OcrOrg/PaddleOCR
python
def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.0, font_path='./doc/simfang.ttf'): '\n create new blank img and draw txt on it\n args:\n texts(list): the text will be draw\n scores(list|None): corresponding score of each txt\n img_h(int): the height of blank img\n img_w(int): the width of blank img\n font_path: the path of font which is used to draw text\n return(array):\n ' if (scores is not None): assert (len(texts) == len(scores)), 'The number of txts and corresponding scores must match' def create_blank_img(): blank_img = (np.ones(shape=[img_h, img_w], dtype=np.int8) * 255) blank_img[:, (img_w - 1):] = 0 blank_img = Image.fromarray(blank_img).convert('RGB') draw_txt = ImageDraw.Draw(blank_img) return (blank_img, draw_txt) (blank_img, draw_txt) = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding='utf-8') gap = (font_size + 5) txt_img_list = [] (count, index) = (1, 0) for (idx, txt) in enumerate(texts): index += 1 if ((scores[idx] < threshold) or math.isnan(scores[idx])): index -= 1 continue first_line = True while (str_count(txt) >= ((img_w // font_size) - 4)): tmp = txt txt = tmp[:((img_w // font_size) - 4)] if first_line: new_txt = ((str(index) + ': ') + txt) first_line = False else: new_txt = (' ' + txt) draw_txt.text((0, (gap * count)), new_txt, txt_color, font=font) txt = tmp[((img_w // font_size) - 4):] if (count >= ((img_h // gap) - 1)): txt_img_list.append(np.array(blank_img)) (blank_img, draw_txt) = create_blank_img() count = 0 count += 1 if first_line: new_txt = ((((str(index) + ': ') + txt) + ' ') + ('%.3f' % scores[idx])) else: new_txt = (((' ' + txt) + ' ') + ('%.3f' % scores[idx])) draw_txt.text((0, (gap * count)), new_txt, txt_color, font=font) if ((count >= ((img_h // gap) - 1)) and ((idx + 1) < len(texts))): txt_img_list.append(np.array(blank_img)) (blank_img, draw_txt) = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if (len(txt_img_list) == 1): blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img)
def __init__(self, report, metrics, destination_uuid, destination): 'Initialise the Notification with the required info.' self.report_title = report['title'] self.url = report.get('url') self.metrics: list[MetricNotificationData] = metrics self.destination_uuid = destination_uuid self.destination = destination
-5,459,359,732,503,704,000
Initialise the Notification with the required info.
components/notifier/src/models/notification.py
__init__
m-zakeri/quality-time
python
def __init__(self, report, metrics, destination_uuid, destination): self.report_title = report['title'] self.url = report.get('url') self.metrics: list[MetricNotificationData] = metrics self.destination_uuid = destination_uuid self.destination = destination
def __eq__(self, other): 'Check if the notification itself is the same, regardless of its metric content.' return ((self.report_title == other.report_title) and (self.destination_uuid == other.destination_uuid) and (self.destination == other.destination))
-6,105,355,902,732,706,000
Check if the notification itself is the same, regardless of its metric content.
components/notifier/src/models/notification.py
__eq__
m-zakeri/quality-time
python
def __eq__(self, other): return ((self.report_title == other.report_title) and (self.destination_uuid == other.destination_uuid) and (self.destination == other.destination))
def merge_notification(self, new_metrics): 'Merge new metrics into this notification.' self.metrics.extend(new_metrics)
-4,852,404,083,510,270,000
Merge new metrics into this notification.
components/notifier/src/models/notification.py
merge_notification
m-zakeri/quality-time
python
def merge_notification(self, new_metrics): self.metrics.extend(new_metrics)
def get_express_route_gateway(express_route_gateway_name: Optional[str]=None, resource_group_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetExpressRouteGatewayResult: '\n ExpressRoute gateway resource.\n API Version: 2020-08-01.\n\n\n :param str express_route_gateway_name: The name of the ExpressRoute gateway.\n :param str resource_group_name: The name of the resource group.\n ' __args__ = dict() __args__['expressRouteGatewayName'] = express_route_gateway_name __args__['resourceGroupName'] = resource_group_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network:getExpressRouteGateway', __args__, opts=opts, typ=GetExpressRouteGatewayResult).value return AwaitableGetExpressRouteGatewayResult(auto_scale_configuration=__ret__.auto_scale_configuration, etag=__ret__.etag, express_route_connections=__ret__.express_route_connections, id=__ret__.id, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, tags=__ret__.tags, type=__ret__.type, virtual_hub=__ret__.virtual_hub)
-1,198,269,896,106,264,000
ExpressRoute gateway resource. API Version: 2020-08-01. :param str express_route_gateway_name: The name of the ExpressRoute gateway. :param str resource_group_name: The name of the resource group.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
get_express_route_gateway
pulumi/pulumi-azure-nextgen
python
def get_express_route_gateway(express_route_gateway_name: Optional[str]=None, resource_group_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetExpressRouteGatewayResult: '\n ExpressRoute gateway resource.\n API Version: 2020-08-01.\n\n\n :param str express_route_gateway_name: The name of the ExpressRoute gateway.\n :param str resource_group_name: The name of the resource group.\n ' __args__ = dict() __args__['expressRouteGatewayName'] = express_route_gateway_name __args__['resourceGroupName'] = resource_group_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network:getExpressRouteGateway', __args__, opts=opts, typ=GetExpressRouteGatewayResult).value return AwaitableGetExpressRouteGatewayResult(auto_scale_configuration=__ret__.auto_scale_configuration, etag=__ret__.etag, express_route_connections=__ret__.express_route_connections, id=__ret__.id, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, tags=__ret__.tags, type=__ret__.type, virtual_hub=__ret__.virtual_hub)
@property @pulumi.getter(name='autoScaleConfiguration') def auto_scale_configuration(self) -> Optional['outputs.ExpressRouteGatewayPropertiesResponseAutoScaleConfiguration']: '\n Configuration for auto scaling.\n ' return pulumi.get(self, 'auto_scale_configuration')
-8,462,896,628,956,177,000
Configuration for auto scaling.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
auto_scale_configuration
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='autoScaleConfiguration') def auto_scale_configuration(self) -> Optional['outputs.ExpressRouteGatewayPropertiesResponseAutoScaleConfiguration']: '\n \n ' return pulumi.get(self, 'auto_scale_configuration')
@property @pulumi.getter def etag(self) -> str: '\n A unique read-only string that changes whenever the resource is updated.\n ' return pulumi.get(self, 'etag')
-4,757,010,955,465,940,000
A unique read-only string that changes whenever the resource is updated.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
etag
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def etag(self) -> str: '\n \n ' return pulumi.get(self, 'etag')
@property @pulumi.getter(name='expressRouteConnections') def express_route_connections(self) -> Sequence['outputs.ExpressRouteConnectionResponse']: '\n List of ExpressRoute connections to the ExpressRoute gateway.\n ' return pulumi.get(self, 'express_route_connections')
7,243,677,662,968,671,000
List of ExpressRoute connections to the ExpressRoute gateway.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
express_route_connections
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='expressRouteConnections') def express_route_connections(self) -> Sequence['outputs.ExpressRouteConnectionResponse']: '\n \n ' return pulumi.get(self, 'express_route_connections')
@property @pulumi.getter def id(self) -> Optional[str]: '\n Resource ID.\n ' return pulumi.get(self, 'id')
6,887,155,523,158,811,000
Resource ID.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
id
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def id(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'id')
@property @pulumi.getter def location(self) -> Optional[str]: '\n Resource location.\n ' return pulumi.get(self, 'location')
8,841,543,228,718,414,000
Resource location.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
location
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def location(self) -> Optional[str]: '\n \n ' return pulumi.get(self, 'location')
@property @pulumi.getter def name(self) -> str: '\n Resource name.\n ' return pulumi.get(self, 'name')
-2,625,941,459,458,898,000
Resource name.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
name
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def name(self) -> str: '\n \n ' return pulumi.get(self, 'name')
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> str: '\n The provisioning state of the express route gateway resource.\n ' return pulumi.get(self, 'provisioning_state')
-3,724,907,156,352,075,000
The provisioning state of the express route gateway resource.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
provisioning_state
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> str: '\n \n ' return pulumi.get(self, 'provisioning_state')
@property @pulumi.getter def tags(self) -> Optional[Mapping[(str, str)]]: '\n Resource tags.\n ' return pulumi.get(self, 'tags')
562,229,697,900,116,900
Resource tags.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
tags
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def tags(self) -> Optional[Mapping[(str, str)]]: '\n \n ' return pulumi.get(self, 'tags')
@property @pulumi.getter def type(self) -> str: '\n Resource type.\n ' return pulumi.get(self, 'type')
-5,079,398,349,541,291,000
Resource type.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
type
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter def type(self) -> str: '\n \n ' return pulumi.get(self, 'type')
@property @pulumi.getter(name='virtualHub') def virtual_hub(self) -> 'outputs.VirtualHubIdResponse': '\n The Virtual Hub where the ExpressRoute gateway is or will be deployed.\n ' return pulumi.get(self, 'virtual_hub')
-8,851,470,528,751,838,000
The Virtual Hub where the ExpressRoute gateway is or will be deployed.
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
virtual_hub
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='virtualHub') def virtual_hub(self) -> 'outputs.VirtualHubIdResponse': '\n \n ' return pulumi.get(self, 'virtual_hub')
def _fix_conf_defaults(config): 'Update some configuration defaults.' config['sid'] = config.pop(CONF_MAC, None) if (config.get(CONF_KEY) is None): _LOGGER.warning('Key is not provided for gateway %s. Controlling the gateway will not be possible', config['sid']) if (config.get(CONF_HOST) is None): config.pop(CONF_PORT) return config
-4,031,799,852,486,938,600
Update some configuration defaults.
homeassistant/components/xiaomi_aqara.py
_fix_conf_defaults
phispi/home-assistant
python
def _fix_conf_defaults(config): config['sid'] = config.pop(CONF_MAC, None) if (config.get(CONF_KEY) is None): _LOGGER.warning('Key is not provided for gateway %s. Controlling the gateway will not be possible', config['sid']) if (config.get(CONF_HOST) is None): config.pop(CONF_PORT) return config
def setup(hass, config): 'Set up the Xiaomi component.' gateways = [] interface = 'any' discovery_retry = 3 if (DOMAIN in config): gateways = config[DOMAIN][CONF_GATEWAYS] interface = config[DOMAIN][CONF_INTERFACE] discovery_retry = config[DOMAIN][CONF_DISCOVERY_RETRY] async def xiaomi_gw_discovered(service, discovery_info): 'Perform action when Xiaomi Gateway device(s) has been found.' discovery.listen(hass, SERVICE_XIAOMI_GW, xiaomi_gw_discovered) from xiaomi_gateway import XiaomiGatewayDiscovery xiaomi = hass.data[PY_XIAOMI_GATEWAY] = XiaomiGatewayDiscovery(hass.add_job, gateways, interface) _LOGGER.debug('Expecting %s gateways', len(gateways)) for k in range(discovery_retry): _LOGGER.info('Discovering Xiaomi Gateways (Try %s)', (k + 1)) xiaomi.discover_gateways() if (len(xiaomi.gateways) >= len(gateways)): break if (not xiaomi.gateways): _LOGGER.error('No gateway discovered') return False xiaomi.listen() _LOGGER.debug('Gateways discovered. Listening for broadcasts') for component in ['binary_sensor', 'sensor', 'switch', 'light', 'cover', 'lock']: discovery.load_platform(hass, component, DOMAIN, {}, config) def stop_xiaomi(event): 'Stop Xiaomi Socket.' _LOGGER.info('Shutting down Xiaomi Hub') xiaomi.stop_listen() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_xiaomi) def play_ringtone_service(call): 'Service to play ringtone through Gateway.' ring_id = call.data.get(ATTR_RINGTONE_ID) gateway = call.data.get(ATTR_GW_MAC) kwargs = {'mid': ring_id} ring_vol = call.data.get(ATTR_RINGTONE_VOL) if (ring_vol is not None): kwargs['vol'] = ring_vol gateway.write_to_hub(gateway.sid, **kwargs) def stop_ringtone_service(call): 'Service to stop playing ringtone on Gateway.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, mid=10000) def add_device_service(call): 'Service to add a new sub-device within the next 30 seconds.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, join_permission='yes') hass.components.persistent_notification.async_create('Join permission enabled for 30 seconds! Please press the pairing button of the new device once.', title='Xiaomi Aqara Gateway') def remove_device_service(call): 'Service to remove a sub-device from the gateway.' device_id = call.data.get(ATTR_DEVICE_ID) gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, remove_device=device_id) gateway_only_schema = _add_gateway_to_schema(xiaomi, vol.Schema({})) hass.services.register(DOMAIN, SERVICE_PLAY_RINGTONE, play_ringtone_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_PLAY_RINGTONE)) hass.services.register(DOMAIN, SERVICE_STOP_RINGTONE, stop_ringtone_service, schema=gateway_only_schema) hass.services.register(DOMAIN, SERVICE_ADD_DEVICE, add_device_service, schema=gateway_only_schema) hass.services.register(DOMAIN, SERVICE_REMOVE_DEVICE, remove_device_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_REMOVE_DEVICE)) return True
5,895,890,946,076,640,000
Set up the Xiaomi component.
homeassistant/components/xiaomi_aqara.py
setup
phispi/home-assistant
python
def setup(hass, config): gateways = [] interface = 'any' discovery_retry = 3 if (DOMAIN in config): gateways = config[DOMAIN][CONF_GATEWAYS] interface = config[DOMAIN][CONF_INTERFACE] discovery_retry = config[DOMAIN][CONF_DISCOVERY_RETRY] async def xiaomi_gw_discovered(service, discovery_info): 'Perform action when Xiaomi Gateway device(s) has been found.' discovery.listen(hass, SERVICE_XIAOMI_GW, xiaomi_gw_discovered) from xiaomi_gateway import XiaomiGatewayDiscovery xiaomi = hass.data[PY_XIAOMI_GATEWAY] = XiaomiGatewayDiscovery(hass.add_job, gateways, interface) _LOGGER.debug('Expecting %s gateways', len(gateways)) for k in range(discovery_retry): _LOGGER.info('Discovering Xiaomi Gateways (Try %s)', (k + 1)) xiaomi.discover_gateways() if (len(xiaomi.gateways) >= len(gateways)): break if (not xiaomi.gateways): _LOGGER.error('No gateway discovered') return False xiaomi.listen() _LOGGER.debug('Gateways discovered. Listening for broadcasts') for component in ['binary_sensor', 'sensor', 'switch', 'light', 'cover', 'lock']: discovery.load_platform(hass, component, DOMAIN, {}, config) def stop_xiaomi(event): 'Stop Xiaomi Socket.' _LOGGER.info('Shutting down Xiaomi Hub') xiaomi.stop_listen() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_xiaomi) def play_ringtone_service(call): 'Service to play ringtone through Gateway.' ring_id = call.data.get(ATTR_RINGTONE_ID) gateway = call.data.get(ATTR_GW_MAC) kwargs = {'mid': ring_id} ring_vol = call.data.get(ATTR_RINGTONE_VOL) if (ring_vol is not None): kwargs['vol'] = ring_vol gateway.write_to_hub(gateway.sid, **kwargs) def stop_ringtone_service(call): 'Service to stop playing ringtone on Gateway.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, mid=10000) def add_device_service(call): 'Service to add a new sub-device within the next 30 seconds.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, join_permission='yes') hass.components.persistent_notification.async_create('Join permission enabled for 30 seconds! Please press the pairing button of the new device once.', title='Xiaomi Aqara Gateway') def remove_device_service(call): 'Service to remove a sub-device from the gateway.' device_id = call.data.get(ATTR_DEVICE_ID) gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, remove_device=device_id) gateway_only_schema = _add_gateway_to_schema(xiaomi, vol.Schema({})) hass.services.register(DOMAIN, SERVICE_PLAY_RINGTONE, play_ringtone_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_PLAY_RINGTONE)) hass.services.register(DOMAIN, SERVICE_STOP_RINGTONE, stop_ringtone_service, schema=gateway_only_schema) hass.services.register(DOMAIN, SERVICE_ADD_DEVICE, add_device_service, schema=gateway_only_schema) hass.services.register(DOMAIN, SERVICE_REMOVE_DEVICE, remove_device_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_REMOVE_DEVICE)) return True
def _add_gateway_to_schema(xiaomi, schema): 'Extend a voluptuous schema with a gateway validator.' def gateway(sid): 'Convert sid to a gateway.' sid = str(sid).replace(':', '').lower() for gateway in xiaomi.gateways.values(): if (gateway.sid == sid): return gateway raise vol.Invalid('Unknown gateway sid {}'.format(sid)) gateways = list(xiaomi.gateways.values()) kwargs = {} if (len(gateways) == 1): kwargs['default'] = gateways[0] return schema.extend({vol.Required(ATTR_GW_MAC, **kwargs): gateway})
-9,154,849,926,144,047,000
Extend a voluptuous schema with a gateway validator.
homeassistant/components/xiaomi_aqara.py
_add_gateway_to_schema
phispi/home-assistant
python
def _add_gateway_to_schema(xiaomi, schema): def gateway(sid): 'Convert sid to a gateway.' sid = str(sid).replace(':', ).lower() for gateway in xiaomi.gateways.values(): if (gateway.sid == sid): return gateway raise vol.Invalid('Unknown gateway sid {}'.format(sid)) gateways = list(xiaomi.gateways.values()) kwargs = {} if (len(gateways) == 1): kwargs['default'] = gateways[0] return schema.extend({vol.Required(ATTR_GW_MAC, **kwargs): gateway})
async def xiaomi_gw_discovered(service, discovery_info): 'Perform action when Xiaomi Gateway device(s) has been found.'
-155,846,655,710,240,350
Perform action when Xiaomi Gateway device(s) has been found.
homeassistant/components/xiaomi_aqara.py
xiaomi_gw_discovered
phispi/home-assistant
python
async def xiaomi_gw_discovered(service, discovery_info):
def stop_xiaomi(event): 'Stop Xiaomi Socket.' _LOGGER.info('Shutting down Xiaomi Hub') xiaomi.stop_listen()
-8,394,709,030,353,044,000
Stop Xiaomi Socket.
homeassistant/components/xiaomi_aqara.py
stop_xiaomi
phispi/home-assistant
python
def stop_xiaomi(event): _LOGGER.info('Shutting down Xiaomi Hub') xiaomi.stop_listen()
def play_ringtone_service(call): 'Service to play ringtone through Gateway.' ring_id = call.data.get(ATTR_RINGTONE_ID) gateway = call.data.get(ATTR_GW_MAC) kwargs = {'mid': ring_id} ring_vol = call.data.get(ATTR_RINGTONE_VOL) if (ring_vol is not None): kwargs['vol'] = ring_vol gateway.write_to_hub(gateway.sid, **kwargs)
6,053,461,574,489,661,000
Service to play ringtone through Gateway.
homeassistant/components/xiaomi_aqara.py
play_ringtone_service
phispi/home-assistant
python
def play_ringtone_service(call): ring_id = call.data.get(ATTR_RINGTONE_ID) gateway = call.data.get(ATTR_GW_MAC) kwargs = {'mid': ring_id} ring_vol = call.data.get(ATTR_RINGTONE_VOL) if (ring_vol is not None): kwargs['vol'] = ring_vol gateway.write_to_hub(gateway.sid, **kwargs)
def stop_ringtone_service(call): 'Service to stop playing ringtone on Gateway.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, mid=10000)
6,169,792,271,970,421,000
Service to stop playing ringtone on Gateway.
homeassistant/components/xiaomi_aqara.py
stop_ringtone_service
phispi/home-assistant
python
def stop_ringtone_service(call): gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, mid=10000)
def add_device_service(call): 'Service to add a new sub-device within the next 30 seconds.' gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, join_permission='yes') hass.components.persistent_notification.async_create('Join permission enabled for 30 seconds! Please press the pairing button of the new device once.', title='Xiaomi Aqara Gateway')
-6,641,737,974,181,730,000
Service to add a new sub-device within the next 30 seconds.
homeassistant/components/xiaomi_aqara.py
add_device_service
phispi/home-assistant
python
def add_device_service(call): gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, join_permission='yes') hass.components.persistent_notification.async_create('Join permission enabled for 30 seconds! Please press the pairing button of the new device once.', title='Xiaomi Aqara Gateway')
def remove_device_service(call): 'Service to remove a sub-device from the gateway.' device_id = call.data.get(ATTR_DEVICE_ID) gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, remove_device=device_id)
4,640,170,528,080,460,000
Service to remove a sub-device from the gateway.
homeassistant/components/xiaomi_aqara.py
remove_device_service
phispi/home-assistant
python
def remove_device_service(call): device_id = call.data.get(ATTR_DEVICE_ID) gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, remove_device=device_id)
def __init__(self, device, device_type, xiaomi_hub): 'Initialize the Xiaomi device.' self._state = None self._is_available = True self._sid = device['sid'] self._name = '{}_{}'.format(device_type, self._sid) self._type = device_type self._write_to_hub = xiaomi_hub.write_to_hub self._get_from_hub = xiaomi_hub.get_from_hub self._device_state_attributes = {} self._remove_unavailability_tracker = None self._xiaomi_hub = xiaomi_hub self.parse_data(device['data'], device['raw_data']) self.parse_voltage(device['data']) if (hasattr(self, '_data_key') and self._data_key): self._unique_id = slugify('{}-{}'.format(self._data_key, self._sid)) else: self._unique_id = slugify('{}-{}'.format(self._type, self._sid))
2,500,651,193,361,393,700
Initialize the Xiaomi device.
homeassistant/components/xiaomi_aqara.py
__init__
phispi/home-assistant
python
def __init__(self, device, device_type, xiaomi_hub): self._state = None self._is_available = True self._sid = device['sid'] self._name = '{}_{}'.format(device_type, self._sid) self._type = device_type self._write_to_hub = xiaomi_hub.write_to_hub self._get_from_hub = xiaomi_hub.get_from_hub self._device_state_attributes = {} self._remove_unavailability_tracker = None self._xiaomi_hub = xiaomi_hub self.parse_data(device['data'], device['raw_data']) self.parse_voltage(device['data']) if (hasattr(self, '_data_key') and self._data_key): self._unique_id = slugify('{}-{}'.format(self._data_key, self._sid)) else: self._unique_id = slugify('{}-{}'.format(self._type, self._sid))
async def async_added_to_hass(self): 'Start unavailability tracking.' self._xiaomi_hub.callbacks[self._sid].append(self._add_push_data_job) self._async_track_unavailable()
-9,045,418,221,189,626,000
Start unavailability tracking.
homeassistant/components/xiaomi_aqara.py
async_added_to_hass
phispi/home-assistant
python
async def async_added_to_hass(self): self._xiaomi_hub.callbacks[self._sid].append(self._add_push_data_job) self._async_track_unavailable()
@property def name(self): 'Return the name of the device.' return self._name
-4,231,536,673,663,769,600
Return the name of the device.
homeassistant/components/xiaomi_aqara.py
name
phispi/home-assistant
python
@property def name(self): return self._name
@property def unique_id(self) -> str: 'Return a unique ID.' return self._unique_id
-4,749,013,748,456,637,000
Return a unique ID.
homeassistant/components/xiaomi_aqara.py
unique_id
phispi/home-assistant
python
@property def unique_id(self) -> str: return self._unique_id
@property def available(self): 'Return True if entity is available.' return self._is_available
-7,264,764,334,597,754,000
Return True if entity is available.
homeassistant/components/xiaomi_aqara.py
available
phispi/home-assistant
python
@property def available(self): return self._is_available
@property def should_poll(self): 'Return the polling state. No polling needed.' return False
-8,466,736,641,829,833,000
Return the polling state. No polling needed.
homeassistant/components/xiaomi_aqara.py
should_poll
phispi/home-assistant
python
@property def should_poll(self): return False
@property def device_state_attributes(self): 'Return the state attributes.' return self._device_state_attributes
7,697,970,802,956,560,000
Return the state attributes.
homeassistant/components/xiaomi_aqara.py
device_state_attributes
phispi/home-assistant
python
@property def device_state_attributes(self): return self._device_state_attributes
@callback def _async_set_unavailable(self, now): 'Set state to UNAVAILABLE.' self._remove_unavailability_tracker = None self._is_available = False self.async_schedule_update_ha_state()
2,169,749,372,944,836,600
Set state to UNAVAILABLE.
homeassistant/components/xiaomi_aqara.py
_async_set_unavailable
phispi/home-assistant
python
@callback def _async_set_unavailable(self, now): self._remove_unavailability_tracker = None self._is_available = False self.async_schedule_update_ha_state()
@callback def push_data(self, data, raw_data): 'Push from Hub.' _LOGGER.debug('PUSH >> %s: %s', self, data) was_unavailable = self._async_track_unavailable() is_data = self.parse_data(data, raw_data) is_voltage = self.parse_voltage(data) if (is_data or is_voltage or was_unavailable): self.async_schedule_update_ha_state()
4,364,394,288,379,428,400
Push from Hub.
homeassistant/components/xiaomi_aqara.py
push_data
phispi/home-assistant
python
@callback def push_data(self, data, raw_data): _LOGGER.debug('PUSH >> %s: %s', self, data) was_unavailable = self._async_track_unavailable() is_data = self.parse_data(data, raw_data) is_voltage = self.parse_voltage(data) if (is_data or is_voltage or was_unavailable): self.async_schedule_update_ha_state()
def parse_voltage(self, data): 'Parse battery level data sent by gateway.' if ('voltage' not in data): return False max_volt = 3300 min_volt = 2800 voltage = data['voltage'] voltage = min(voltage, max_volt) voltage = max(voltage, min_volt) percent = (((voltage - min_volt) / (max_volt - min_volt)) * 100) self._device_state_attributes[ATTR_BATTERY_LEVEL] = round(percent, 1) return True
5,407,283,607,935,144,000
Parse battery level data sent by gateway.
homeassistant/components/xiaomi_aqara.py
parse_voltage
phispi/home-assistant
python
def parse_voltage(self, data): if ('voltage' not in data): return False max_volt = 3300 min_volt = 2800 voltage = data['voltage'] voltage = min(voltage, max_volt) voltage = max(voltage, min_volt) percent = (((voltage - min_volt) / (max_volt - min_volt)) * 100) self._device_state_attributes[ATTR_BATTERY_LEVEL] = round(percent, 1) return True
def parse_data(self, data, raw_data): 'Parse data sent by gateway.' raise NotImplementedError()
-2,793,087,297,486,568,400
Parse data sent by gateway.
homeassistant/components/xiaomi_aqara.py
parse_data
phispi/home-assistant
python
def parse_data(self, data, raw_data): raise NotImplementedError()
def gateway(sid): 'Convert sid to a gateway.' sid = str(sid).replace(':', '').lower() for gateway in xiaomi.gateways.values(): if (gateway.sid == sid): return gateway raise vol.Invalid('Unknown gateway sid {}'.format(sid))
7,615,367,604,917,559,000
Convert sid to a gateway.
homeassistant/components/xiaomi_aqara.py
gateway
phispi/home-assistant
python
def gateway(sid): sid = str(sid).replace(':', ).lower() for gateway in xiaomi.gateways.values(): if (gateway.sid == sid): return gateway raise vol.Invalid('Unknown gateway sid {}'.format(sid))
def fake_method(self, name): "This doesn't do anything.\n\n Args:\n name: str. Means nothing.\n\n Yields:\n tuple(str, str). The argument passed in but twice in a tuple.\n " (yield (name, name))
1,632,981,890,375,594,500
This doesn't do anything. Args: name: str. Means nothing. Yields: tuple(str, str). The argument passed in but twice in a tuple.
scripts/linters/test_files/invalid_python_three.py
fake_method
Aarjav-Jain/oppia
python
def fake_method(self, name): "This doesn't do anything.\n\n Args:\n name: str. Means nothing.\n\n Yields:\n tuple(str, str). The argument passed in but twice in a tuple.\n " (yield (name, name))
def calc_fall_flush_durations_2(filter_data, date): 'Left side sharp' der_percent_threshold_left = 50 flow_percent_threshold_left = 80 'Right side mellow' der_percent_threshold_right = 30 flow_percent_threshold_right = 80 duration = None left = 0 right = 0 if (date or (date == 0)): date = int(date) (left_maxarray, left_minarray) = peakdet(filter_data[:date], 0.01) (right_maxarray, right_minarray) = peakdet(filter_data[date:], 0.01) if (not list(left_minarray)): left = 0 else: left = int(left_minarray[(- 1)][0]) if (not list(right_minarray)): right = 0 else: right = int(((date - 2) + right_minarray[0][0])) if ((date - left) > 10): 'create spline, and find derivative' x_axis_left = list(range(len(filter_data[left:date]))) spl_left = ip.UnivariateSpline(x_axis_left, filter_data[left:date], k=3, s=3) spl_first_left = spl_left.derivative(1) 'check if derivative value falls below certain threshold' spl_first_left_median = np.nanpercentile(spl_first_left(x_axis_left), der_percent_threshold_left) 'check if actual value falls below threshold, avoiding the rounded peak' median_left = np.nanpercentile(list(set(filter_data[left:date])), flow_percent_threshold_left) for (index_left, der) in enumerate(reversed(spl_first_left(x_axis_left))): if ((der < spl_first_left_median) and (filter_data[(date - index_left)] < median_left)): left = (date - index_left) break if ((right - date) > 10): x_axis_right = list(range(len(filter_data[date:right]))) spl_right = ip.UnivariateSpline(x_axis_right, filter_data[date:right], k=3, s=3) spl_first_right = spl_right.derivative(1) spl_first_right_median = abs(np.nanpercentile(spl_first_right(x_axis_right), der_percent_threshold_right)) median_right = np.nanpercentile(list(set(filter_data[date:right])), flow_percent_threshold_right) for (index_right, der) in enumerate(spl_first_right(x_axis_right)): if ((abs(der) < spl_first_right_median) and (filter_data[(date + index_right)] < median_right)): right = (date + index_right) break if left: duration = int((date - left)) elif ((not left) and right): duration = int((right - date)) else: duration = 0 return (duration, left, right)
8,728,510,604,129,855,000
Left side sharp
utils/calc_fall_flush.py
calc_fall_flush_durations_2
NoellePatterson/func-flow-plot
python
def calc_fall_flush_durations_2(filter_data, date): der_percent_threshold_left = 50 flow_percent_threshold_left = 80 'Right side mellow' der_percent_threshold_right = 30 flow_percent_threshold_right = 80 duration = None left = 0 right = 0 if (date or (date == 0)): date = int(date) (left_maxarray, left_minarray) = peakdet(filter_data[:date], 0.01) (right_maxarray, right_minarray) = peakdet(filter_data[date:], 0.01) if (not list(left_minarray)): left = 0 else: left = int(left_minarray[(- 1)][0]) if (not list(right_minarray)): right = 0 else: right = int(((date - 2) + right_minarray[0][0])) if ((date - left) > 10): 'create spline, and find derivative' x_axis_left = list(range(len(filter_data[left:date]))) spl_left = ip.UnivariateSpline(x_axis_left, filter_data[left:date], k=3, s=3) spl_first_left = spl_left.derivative(1) 'check if derivative value falls below certain threshold' spl_first_left_median = np.nanpercentile(spl_first_left(x_axis_left), der_percent_threshold_left) 'check if actual value falls below threshold, avoiding the rounded peak' median_left = np.nanpercentile(list(set(filter_data[left:date])), flow_percent_threshold_left) for (index_left, der) in enumerate(reversed(spl_first_left(x_axis_left))): if ((der < spl_first_left_median) and (filter_data[(date - index_left)] < median_left)): left = (date - index_left) break if ((right - date) > 10): x_axis_right = list(range(len(filter_data[date:right]))) spl_right = ip.UnivariateSpline(x_axis_right, filter_data[date:right], k=3, s=3) spl_first_right = spl_right.derivative(1) spl_first_right_median = abs(np.nanpercentile(spl_first_right(x_axis_right), der_percent_threshold_right)) median_right = np.nanpercentile(list(set(filter_data[date:right])), flow_percent_threshold_right) for (index_right, der) in enumerate(spl_first_right(x_axis_right)): if ((abs(der) < spl_first_right_median) and (filter_data[(date + index_right)] < median_right)): right = (date + index_right) break if left: duration = int((date - left)) elif ((not left) and right): duration = int((right - date)) else: duration = 0 return (duration, left, right)
def wait_until_upload_url_changed(self, uploadproxy_url, timeout=TIMEOUT): '\n Wait until upload proxy url is changed\n\n Args:\n timeout (int): Time to wait for CDI Config.\n\n Returns:\n bool: True if url is equal to uploadProxyURL.\n ' LOGGER.info(f'Wait for {self.kind} {self.name} to ensure current URL == uploadProxyURL') samples = TimeoutSampler(wait_timeout=timeout, sleep=1, exceptions_dict=PROTOCOL_ERROR_EXCEPTION_DICT, func=self.api.get, field_selector=f'metadata.name=={self.name}') for sample in samples: if sample.items: status = sample.items[0].status current_url = status.uploadProxyURL if (current_url == uploadproxy_url): return
-8,378,396,817,678,230,000
Wait until upload proxy url is changed Args: timeout (int): Time to wait for CDI Config. Returns: bool: True if url is equal to uploadProxyURL.
ocp_resources/cdi_config.py
wait_until_upload_url_changed
amastbau/openshift-python-wrapper
python
def wait_until_upload_url_changed(self, uploadproxy_url, timeout=TIMEOUT): '\n Wait until upload proxy url is changed\n\n Args:\n timeout (int): Time to wait for CDI Config.\n\n Returns:\n bool: True if url is equal to uploadProxyURL.\n ' LOGGER.info(f'Wait for {self.kind} {self.name} to ensure current URL == uploadProxyURL') samples = TimeoutSampler(wait_timeout=timeout, sleep=1, exceptions_dict=PROTOCOL_ERROR_EXCEPTION_DICT, func=self.api.get, field_selector=f'metadata.name=={self.name}') for sample in samples: if sample.items: status = sample.items[0].status current_url = status.uploadProxyURL if (current_url == uploadproxy_url): return
def validate(coll, record, schemas): 'Validate a record for a given db\n\n Parameters\n ----------\n coll : str\n The name of the db in question\n record : dict\n The record to be validated\n schemas : dict\n The schema to validate against\n\n Returns\n -------\n rtn : bool\n True is valid\n errors: dict\n The errors encountered (if any)\n\n ' if (coll in schemas): schema = copy.deepcopy(schemas[coll]) v = NoDescriptionValidator(schema) return (v.validate(record), v.errors) else: return (True, ())
1,143,343,369,521,928,200
Validate a record for a given db Parameters ---------- coll : str The name of the db in question record : dict The record to be validated schemas : dict The schema to validate against Returns ------- rtn : bool True is valid errors: dict The errors encountered (if any)
regolith/schemas.py
validate
priyankaanehra/regolith
python
def validate(coll, record, schemas): 'Validate a record for a given db\n\n Parameters\n ----------\n coll : str\n The name of the db in question\n record : dict\n The record to be validated\n schemas : dict\n The schema to validate against\n\n Returns\n -------\n rtn : bool\n True is valid\n errors: dict\n The errors encountered (if any)\n\n ' if (coll in schemas): schema = copy.deepcopy(schemas[coll]) v = NoDescriptionValidator(schema) return (v.validate(record), v.errors) else: return (True, ())
def _validate_description(self, description, field, value): "Don't validate descriptions\n\n The rule's arguments are validated against this schema:\n {'type': 'string'}" if False: pass
6,530,752,815,826,422,000
Don't validate descriptions The rule's arguments are validated against this schema: {'type': 'string'}
regolith/schemas.py
_validate_description
priyankaanehra/regolith
python
def _validate_description(self, description, field, value): "Don't validate descriptions\n\n The rule's arguments are validated against this schema:\n {'type': 'string'}" if False: pass
def _validate_eallowed(self, eallowed, field, value): "Test if value is in list\n The rule's arguments are validated against this schema:\n {'type': 'list'}\n " if (value not in eallowed): warn('"{}" is not in the preferred entries for "{}", please consider changing this entry to conform or add this to the ``eallowed`` field in the schema.'.format(value, field))
1,803,606,705,388,359,200
Test if value is in list The rule's arguments are validated against this schema: {'type': 'list'}
regolith/schemas.py
_validate_eallowed
priyankaanehra/regolith
python
def _validate_eallowed(self, eallowed, field, value): "Test if value is in list\n The rule's arguments are validated against this schema:\n {'type': 'list'}\n " if (value not in eallowed): warn('"{}" is not in the preferred entries for "{}", please consider changing this entry to conform or add this to the ``eallowed`` field in the schema.'.format(value, field))
def count_vocab_items(self, token: Token, counter: Dict[(str, Dict[(str, int)])]): '\n The :class:`Vocabulary` needs to assign indices to whatever strings we see in the training\n data (possibly doing some frequency filtering and using an OOV, or out of vocabulary,\n token). This method takes a token and a dictionary of counts and increments counts for\n whatever vocabulary items are present in the token. If this is a single token ID\n representation, the vocabulary item is likely the token itself. If this is a token\n characters representation, the vocabulary items are all of the characters in the token.\n ' raise NotImplementedError
7,749,317,807,429,429,000
The :class:`Vocabulary` needs to assign indices to whatever strings we see in the training data (possibly doing some frequency filtering and using an OOV, or out of vocabulary, token). This method takes a token and a dictionary of counts and increments counts for whatever vocabulary items are present in the token. If this is a single token ID representation, the vocabulary item is likely the token itself. If this is a token characters representation, the vocabulary items are all of the characters in the token.
allennlp/data/token_indexers/token_indexer.py
count_vocab_items
loopylangur/allennlp
python
def count_vocab_items(self, token: Token, counter: Dict[(str, Dict[(str, int)])]): '\n The :class:`Vocabulary` needs to assign indices to whatever strings we see in the training\n data (possibly doing some frequency filtering and using an OOV, or out of vocabulary,\n token). This method takes a token and a dictionary of counts and increments counts for\n whatever vocabulary items are present in the token. If this is a single token ID\n representation, the vocabulary item is likely the token itself. If this is a token\n characters representation, the vocabulary items are all of the characters in the token.\n ' raise NotImplementedError
def tokens_to_indices(self, tokens: List[Token], vocabulary: Vocabulary, index_name: str) -> Dict[(str, List[TokenType])]: '\n Takes a list of tokens and converts them to one or more sets of indices.\n This could be just an ID for each token from the vocabulary.\n Or it could split each token into characters and return one ID per character.\n Or (for instance, in the case of byte-pair encoding) there might not be a clean\n mapping from individual tokens to indices.\n ' raise NotImplementedError
2,723,525,293,100,898,300
Takes a list of tokens and converts them to one or more sets of indices. This could be just an ID for each token from the vocabulary. Or it could split each token into characters and return one ID per character. Or (for instance, in the case of byte-pair encoding) there might not be a clean mapping from individual tokens to indices.
allennlp/data/token_indexers/token_indexer.py
tokens_to_indices
loopylangur/allennlp
python
def tokens_to_indices(self, tokens: List[Token], vocabulary: Vocabulary, index_name: str) -> Dict[(str, List[TokenType])]: '\n Takes a list of tokens and converts them to one or more sets of indices.\n This could be just an ID for each token from the vocabulary.\n Or it could split each token into characters and return one ID per character.\n Or (for instance, in the case of byte-pair encoding) there might not be a clean\n mapping from individual tokens to indices.\n ' raise NotImplementedError
def get_padding_token(self) -> TokenType: '\n Deprecated. Please just implement the padding token in `as_padded_tensor` instead.\n TODO(Mark): remove in 1.0 release. This is only a concrete implementation to preserve\n backward compatability, otherwise it would be abstract.\n\n When we need to add padding tokens, what should they look like? This method returns a\n "blank" token of whatever type is returned by :func:`tokens_to_indices`.\n ' warnings.warn('Using a Field with get_padding_token as an inherited method, which will be depreciated in 1.0.0.Please implement as_padded_tensor instead.', FutureWarning) return 0
9,106,309,190,863,320,000
Deprecated. Please just implement the padding token in `as_padded_tensor` instead. TODO(Mark): remove in 1.0 release. This is only a concrete implementation to preserve backward compatability, otherwise it would be abstract. When we need to add padding tokens, what should they look like? This method returns a "blank" token of whatever type is returned by :func:`tokens_to_indices`.
allennlp/data/token_indexers/token_indexer.py
get_padding_token
loopylangur/allennlp
python
def get_padding_token(self) -> TokenType: '\n Deprecated. Please just implement the padding token in `as_padded_tensor` instead.\n TODO(Mark): remove in 1.0 release. This is only a concrete implementation to preserve\n backward compatability, otherwise it would be abstract.\n\n When we need to add padding tokens, what should they look like? This method returns a\n "blank" token of whatever type is returned by :func:`tokens_to_indices`.\n ' warnings.warn('Using a Field with get_padding_token as an inherited method, which will be depreciated in 1.0.0.Please implement as_padded_tensor instead.', FutureWarning) return 0
def get_padding_lengths(self, token: TokenType) -> Dict[(str, int)]: '\n This method returns a padding dictionary for the given token that specifies lengths for\n all arrays that need padding. For example, for single ID tokens the returned dictionary\n will be empty, but for a token characters representation, this will return the number\n of characters in the token.\n ' raise NotImplementedError
-3,874,557,666,197,784,600
This method returns a padding dictionary for the given token that specifies lengths for all arrays that need padding. For example, for single ID tokens the returned dictionary will be empty, but for a token characters representation, this will return the number of characters in the token.
allennlp/data/token_indexers/token_indexer.py
get_padding_lengths
loopylangur/allennlp
python
def get_padding_lengths(self, token: TokenType) -> Dict[(str, int)]: '\n This method returns a padding dictionary for the given token that specifies lengths for\n all arrays that need padding. For example, for single ID tokens the returned dictionary\n will be empty, but for a token characters representation, this will return the number\n of characters in the token.\n ' raise NotImplementedError
def get_token_min_padding_length(self) -> int: '\n This method returns the minimum padding length required for this TokenIndexer.\n For example, the minimum padding length of `SingleIdTokenIndexer` is the largest\n size of filter when using `CnnEncoder`.\n ' return self._token_min_padding_length
5,854,117,235,276,605,000
This method returns the minimum padding length required for this TokenIndexer. For example, the minimum padding length of `SingleIdTokenIndexer` is the largest size of filter when using `CnnEncoder`.
allennlp/data/token_indexers/token_indexer.py
get_token_min_padding_length
loopylangur/allennlp
python
def get_token_min_padding_length(self) -> int: '\n This method returns the minimum padding length required for this TokenIndexer.\n For example, the minimum padding length of `SingleIdTokenIndexer` is the largest\n size of filter when using `CnnEncoder`.\n ' return self._token_min_padding_length
def as_padded_tensor(self, tokens: Dict[(str, List[TokenType])], desired_num_tokens: Dict[(str, int)], padding_lengths: Dict[(str, int)]) -> Dict[(str, torch.Tensor)]: '\n This method pads a list of tokens to ``desired_num_tokens`` and returns that padded list\n of input tokens as a torch Tensor. If the input token list is longer than ``desired_num_tokens``\n then it will be truncated.\n\n ``padding_lengths`` is used to provide supplemental padding parameters which are needed\n in some cases. For example, it contains the widths to pad characters to when doing\n character-level padding.\n\n Note that this method should be abstract, but it is implemented to allow backward compatability.\n ' if (not self.has_warned_for_as_padded_tensor): warnings.warn('Using a Field with pad_token_sequence, which will be depreciated in 1.0.0.Please implement as_padded_tensor instead.', FutureWarning) self.has_warned_for_as_padded_tensor = True padded = self.pad_token_sequence(tokens, desired_num_tokens, padding_lengths) return {key: torch.LongTensor(array) for (key, array) in padded.items()}
6,763,238,428,948,606,000
This method pads a list of tokens to ``desired_num_tokens`` and returns that padded list of input tokens as a torch Tensor. If the input token list is longer than ``desired_num_tokens`` then it will be truncated. ``padding_lengths`` is used to provide supplemental padding parameters which are needed in some cases. For example, it contains the widths to pad characters to when doing character-level padding. Note that this method should be abstract, but it is implemented to allow backward compatability.
allennlp/data/token_indexers/token_indexer.py
as_padded_tensor
loopylangur/allennlp
python
def as_padded_tensor(self, tokens: Dict[(str, List[TokenType])], desired_num_tokens: Dict[(str, int)], padding_lengths: Dict[(str, int)]) -> Dict[(str, torch.Tensor)]: '\n This method pads a list of tokens to ``desired_num_tokens`` and returns that padded list\n of input tokens as a torch Tensor. If the input token list is longer than ``desired_num_tokens``\n then it will be truncated.\n\n ``padding_lengths`` is used to provide supplemental padding parameters which are needed\n in some cases. For example, it contains the widths to pad characters to when doing\n character-level padding.\n\n Note that this method should be abstract, but it is implemented to allow backward compatability.\n ' if (not self.has_warned_for_as_padded_tensor): warnings.warn('Using a Field with pad_token_sequence, which will be depreciated in 1.0.0.Please implement as_padded_tensor instead.', FutureWarning) self.has_warned_for_as_padded_tensor = True padded = self.pad_token_sequence(tokens, desired_num_tokens, padding_lengths) return {key: torch.LongTensor(array) for (key, array) in padded.items()}
def pad_token_sequence(self, tokens: Dict[(str, List[TokenType])], desired_num_tokens: Dict[(str, int)], padding_lengths: Dict[(str, int)]) -> Dict[(str, TokenType)]: '\n Deprecated. Please use `as_padded_tensor` instead.\n TODO(Mark): remove in 1.0 release.\n ' raise NotImplementedError
4,965,965,602,543,824,000
Deprecated. Please use `as_padded_tensor` instead. TODO(Mark): remove in 1.0 release.
allennlp/data/token_indexers/token_indexer.py
pad_token_sequence
loopylangur/allennlp
python
def pad_token_sequence(self, tokens: Dict[(str, List[TokenType])], desired_num_tokens: Dict[(str, int)], padding_lengths: Dict[(str, int)]) -> Dict[(str, TokenType)]: '\n Deprecated. Please use `as_padded_tensor` instead.\n TODO(Mark): remove in 1.0 release.\n ' raise NotImplementedError
def get_keys(self, index_name: str) -> List[str]: '\n Return a list of the keys this indexer return from ``tokens_to_indices``.\n ' return [index_name]
-478,031,282,990,556,700
Return a list of the keys this indexer return from ``tokens_to_indices``.
allennlp/data/token_indexers/token_indexer.py
get_keys
loopylangur/allennlp
python
def get_keys(self, index_name: str) -> List[str]: '\n \n ' return [index_name]
def run_executer(params, train_input_shapes=None, eval_input_shapes=None, train_input_fn=None, eval_input_fn=None): 'Runs Mask RCNN model on distribution strategy defined by the user.' executer = tpu_executor.TPUEstimatorExecuter(unet_model.unet_model_fn, params, train_input_shapes=train_input_shapes, eval_input_shapes=eval_input_shapes) if (FLAGS.mode == 'train'): assert (train_input_fn is not None) results = executer.train(train_input_fn) elif (FLAGS.mode == 'eval'): assert (eval_input_fn is not None) results = executer.evaluate(eval_input_fn) elif (FLAGS.mode == 'train_and_eval'): assert (train_input_fn is not None) assert (eval_input_fn is not None) results = executer.train_and_eval(train_input_fn, eval_input_fn) else: raise ValueError('Mode must be one of `train`, `eval`, or `train_and_eval`') return results
-3,124,367,094,866,476,500
Runs Mask RCNN model on distribution strategy defined by the user.
models/official/unet3d/unet_main.py
run_executer
tensorflow/tpu-demos
python
def run_executer(params, train_input_shapes=None, eval_input_shapes=None, train_input_fn=None, eval_input_fn=None): executer = tpu_executor.TPUEstimatorExecuter(unet_model.unet_model_fn, params, train_input_shapes=train_input_shapes, eval_input_shapes=eval_input_shapes) if (FLAGS.mode == 'train'): assert (train_input_fn is not None) results = executer.train(train_input_fn) elif (FLAGS.mode == 'eval'): assert (eval_input_fn is not None) results = executer.evaluate(eval_input_fn) elif (FLAGS.mode == 'train_and_eval'): assert (train_input_fn is not None) assert (eval_input_fn is not None) results = executer.train_and_eval(train_input_fn, eval_input_fn) else: raise ValueError('Mode must be one of `train`, `eval`, or `train_and_eval`') return results
@staticmethod def add_args(parser): 'Add model-specific arguments to the parser.' parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')
-7,860,622,762,592,880,000
Add model-specific arguments to the parser.
models/transformer.py
add_args
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@staticmethod def add_args(parser): parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')
@classmethod def build_model(cls, args, task): 'Build a new model instance.' base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args)
-8,093,440,201,363,817,000
Build a new model instance.
models/transformer.py
build_model
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@classmethod def build_model(cls, args, task): base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args)
@staticmethod def add_args(parser): 'Add model-specific arguments to the parser.' parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')
-7,860,622,762,592,880,000
Add model-specific arguments to the parser.
models/transformer.py
add_args
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@staticmethod def add_args(parser): parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')
@classmethod def build_model(cls, args, task): 'Build a new model instance.' base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerS2Model(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args)
2,629,639,965,958,634,000
Build a new model instance.
models/transformer.py
build_model
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@classmethod def build_model(cls, args, task): base_architecture(args) if (not hasattr(args, 'max_source_positions')): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if (not hasattr(args, 'max_target_positions')): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS (src_dict, tgt_dict) = (task.source_dictionary, task.target_dictionary) if (len(task.datasets) > 0): src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if (src_dict != tgt_dict): raise ValueError('--share-all-embeddings requires a joined dictionary') if (args.encoder_embed_dim != args.decoder_embed_dim): raise ValueError('--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if (args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path)): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim, args.encoder_embed_path) decoder_embed_tokens = build_embedding(tgt_dict, args.decoder_embed_dim, args.decoder_embed_path) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerS2Model(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args)
def forward(self, src_tokens, src_lengths, prev_output_tokens, bert_input, **kwargs): "\n Run the forward pass for an encoder-decoder model.\n\n First feed a batch of source tokens through the encoder. Then, feed the\n encoder output and previous decoder outputs (i.e., input feeding/teacher\n forcing) to the decoder to produce the next outputs::\n\n encoder_out = self.encoder(src_tokens, src_lengths)\n return self.decoder(prev_output_tokens, encoder_out)\n\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (LongTensor): source sentence lengths of shape `(batch)`\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " bert_encoder_padding_mask = bert_input.eq(self.berttokenizer.pad()) (bert_encoder_out, _) = self.bert_encoder(bert_input, output_all_encoded_layers=True, attention_mask=(~ bert_encoder_padding_mask)) bert_encoder_out = bert_encoder_out[self.bert_output_layer] if self.mask_cls_sep: bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.cls()) bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.sep()) bert_encoder_out = bert_encoder_out.permute(1, 0, 2).contiguous() bert_encoder_out = {'bert_encoder_out': bert_encoder_out, 'bert_encoder_padding_mask': bert_encoder_padding_mask} encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, bert_encoder_out=bert_encoder_out) decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out, bert_encoder_out=bert_encoder_out, **kwargs) return decoder_out
-2,871,094,157,983,944,700
Run the forward pass for an encoder-decoder model. First feed a batch of source tokens through the encoder. Then, feed the encoder output and previous decoder outputs (i.e., input feeding/teacher forcing) to the decoder to produce the next outputs:: encoder_out = self.encoder(src_tokens, src_lengths) return self.decoder(prev_output_tokens, encoder_out) Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs
models/transformer.py
forward
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
def forward(self, src_tokens, src_lengths, prev_output_tokens, bert_input, **kwargs): "\n Run the forward pass for an encoder-decoder model.\n\n First feed a batch of source tokens through the encoder. Then, feed the\n encoder output and previous decoder outputs (i.e., input feeding/teacher\n forcing) to the decoder to produce the next outputs::\n\n encoder_out = self.encoder(src_tokens, src_lengths)\n return self.decoder(prev_output_tokens, encoder_out)\n\n Args:\n src_tokens (LongTensor): tokens in the source language of shape\n `(batch, src_len)`\n src_lengths (LongTensor): source sentence lengths of shape `(batch)`\n prev_output_tokens (LongTensor): previous decoder outputs of shape\n `(batch, tgt_len)`, for input feeding/teacher forcing\n\n Returns:\n tuple:\n - the decoder's output of shape `(batch, tgt_len, vocab)`\n - a dictionary with any model-specific outputs\n " bert_encoder_padding_mask = bert_input.eq(self.berttokenizer.pad()) (bert_encoder_out, _) = self.bert_encoder(bert_input, output_all_encoded_layers=True, attention_mask=(~ bert_encoder_padding_mask)) bert_encoder_out = bert_encoder_out[self.bert_output_layer] if self.mask_cls_sep: bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.cls()) bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.sep()) bert_encoder_out = bert_encoder_out.permute(1, 0, 2).contiguous() bert_encoder_out = {'bert_encoder_out': bert_encoder_out, 'bert_encoder_padding_mask': bert_encoder_padding_mask} encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, bert_encoder_out=bert_encoder_out) decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out, bert_encoder_out=bert_encoder_out, **kwargs) return decoder_out
@staticmethod def add_args(parser): 'Add model-specific arguments to the parser.' parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')
-7,860,622,762,592,880,000
Add model-specific arguments to the parser.
models/transformer.py
add_args
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
python
@staticmethod def add_args(parser): parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') (parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion'),) parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections')