code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
return "dir: " + str(self.config["dir"]) \ + ", files: " + str(self.config["list_files"]) \ + ", dirs: " + str(self.resolve_option("list_dirs")) \ + ", recursive: " + str(self.config["recursive"])
def quickinfo(self)
Returns a short string describing some of the options of the actor. :return: the info, None if not available :rtype: str
4.586586
4.83251
0.949111
options = super(ListFiles, self).fix_config(options) opt = "dir" if opt not in options: options[opt] = "." if opt not in self.help: self.help[opt] = "The directory to search (string)." opt = "recursive" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to search recursively (bool)." opt = "list_files" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to include files (bool)." opt = "list_dirs" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to include directories (bool)." opt = "regexp" if opt not in options: options[opt] = ".*" if opt not in self.help: self.help[opt] = "The regular expression that files/dirs must match (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
1.834038
1.899685
0.965443
list_files = self.resolve_option("list_files") list_dirs = self.resolve_option("list_dirs") recursive = self.resolve_option("recursive") spattern = str(self.resolve_option("regexp")) pattern = None if (spattern is not None) and (spattern != ".*"): pattern = re.compile(spattern) try: items = os.listdir(path) for item in items: fp = path + os.sep + item if list_files and os.path.isfile(fp): if (pattern is None) or pattern.match(item): collected.append(fp) if list_dirs and os.path.isdir(fp): if (pattern is None) or pattern.match(item): collected.append(fp) if recursive and os.path.isdir(fp): self._list(fp, collected) except Exception as e: return "Error listing '" + path + "': " + str(e)
def _list(self, path, collected)
Lists all the files/dirs in directory that match the pattern. :param path: the directory to search :type path: str :param collected: the files/dirs collected so far (full path) :type collected: list :return: None if successful, error otherwise :rtype: str
2.222301
2.270455
0.978791
directory = str(self.resolve_option("dir")) if not os.path.exists(directory): return "Directory '" + directory + "' does not exist!" if not os.path.isdir(directory): return "Location '" + directory + "' is not a directory!" collected = [] result = self._list(directory, collected) if result is None: for c in collected: self._output.append(Token(c)) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
4.486608
4.414887
1.016245
options = super(GetStorageValue, self).fix_config(options) opt = "storage_name" if opt not in options: options[opt] = "unknown" if opt not in self.help: self.help[opt] = "The name of the storage value to retrieve (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
5.104459
5.897116
0.865586
if self.storagehandler is None: return "No storage handler available!" sname = str(self.resolve_option("storage_name")) if sname not in self.storagehandler.storage: return "No storage item called '" + sname + "' present!" self._output.append(Token(self.storagehandler.storage[sname])) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
6.774808
6.534309
1.036806
options = super(ForLoop, self).fix_config(options) opt = "min" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The minimum for the loop (included, int)." opt = "max" if opt not in options: options[opt] = 10 if opt not in self.help: self.help[opt] = "The maximum for the loop (included, int)." opt = "step" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The step size (int)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.279399
2.335729
0.975883
for i in range( int(self.resolve_option("min")), int(self.resolve_option("max")) + 1, int(self.resolve_option("step"))): self._output.append(Token(i)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
5.374179
5.466762
0.983064
opt = "db_url" if opt not in options: options[opt] = "jdbc:mysql://somehost:3306/somedatabase" if opt not in self.help: self.help[opt] = "The JDBC database URL to connect to (str)." opt = "user" if opt not in options: options[opt] = "user" if opt not in self.help: self.help[opt] = "The database user to use for connecting (str)." opt = "password" if opt not in options: options[opt] = "secret" if opt not in self.help: self.help[opt] = "The password for the database user (str)." opt = "query" if opt not in options: options[opt] = "SELECT * FROM table" if opt not in self.help: self.help[opt] = "The SQL query for generating the dataset (str)." opt = "sparse" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to return the data in sparse format (bool)." opt = "custom_props" if opt not in options: options[opt] = "" if opt not in self.help: self.help[opt] = "Custom properties filename (str)." return super(LoadDatabase, self).fix_config(options)
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.126395
2.159485
0.984677
iquery = InstanceQuery() iquery.db_url = str(self.resolve_option("db_url")) iquery.user = str(self.resolve_option("user")) iquery.password = str(self.resolve_option("password")) props = str(self.resolve_option("custom_props")) if (len(props) > 0) and os.path.isfile(props): iquery.custom_properties = props iquery.query = str(self.resolve_option("query")) data = iquery.retrieve_instances() self._output.append(Token(data)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
3.8621
3.831719
1.007929
opt = "setup" if opt not in options: options[opt] = datagen.DataGenerator(classname="weka.datagenerators.classifiers.classification.Agrawal") if opt not in self.help: self.help[opt] = "The data generator to use (DataGenerator)." opt = "incremental" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to output the data incrementally, in case the generator supports that (bool)." return super(DataGenerator, self).fix_config(options)
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
4.999303
4.968476
1.006205
if k == "setup": return base.to_commandline(v) return super(DataGenerator, self).to_config(k, v)
def to_config(self, k, v)
Hook method that allows conversion of individual options. :param k: the key of the option :type k: str :param v: the value :type v: object :return: the potentially processed value :rtype: object
7.444757
9.038914
0.823634
if k == "setup": return from_commandline(v, classname=to_commandline(datagen.DataGenerator())) return super(DataGenerator, self).from_config(k, v)
def from_config(self, k, v)
Hook method that allows converting values from the dictionary. :param k: the key in the dictionary :type k: str :param v: the value :type v: object :return: the potentially parsed value :rtype: object
9.527073
11.928812
0.798661
generator = datagen.DataGenerator.make_copy(self.resolve_option("setup")) generator.dataset_format = generator.define_data_format() if bool(self.resolve_option("incremental")) and generator.single_mode_flag: for i in range(generator.num_examples_act): self._output.append(Token(generator.generate_example())) else: data = generator.generate_examples() self._output.append(Token(data)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
9.070274
9.115243
0.995067
options = super(CombineStorage, self).fix_config(options) opt = "format" if opt not in options: options[opt] = "" if opt not in self.help: self.help[opt] = "The format to use for generating the combined string; use '@{blah}' for accessing "\ "storage item 'blah' (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
9.907729
11.06297
0.895576
formatstr = str(self.resolve_option("format")) expanded = self.storagehandler.expand(formatstr) self._output.append(Token(expanded)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
21.70269
22.075062
0.983132
options = super(StringConstants, self).fix_config(options) opt = "strings" if opt not in options: options[opt] = [] if opt not in self.help: self.help[opt] = "The strings to output (list of string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
5.469515
6.32073
0.86533
for s in self.resolve_option("strings"): self._output.append(Token(s)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
24.463732
25.995251
0.941085
result = super(Sink, self).post_execute() if result is None: self._input = None return result
def post_execute(self)
Gets executed after the actual execution. :return: None if successful, otherwise error message :rtype: str
7.328916
8.110748
0.903605
options = super(Console, self).fix_config(options) opt = "prefix" if opt not in options: options[opt] = "" if opt not in self.help: self.help[opt] = "The prefix for the output (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
4.678596
5.211709
0.897709
options = super(FileOutputSink, self).fix_config(options) opt = "output" if opt not in options: options[opt] = "." if opt not in self.help: self.help[opt] = "The file to write to (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
5.045625
5.911604
0.853512
options = super(DumpFile, self).fix_config(options) opt = "append" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to append to the file or overwrite (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
4.840782
5.588987
0.866129
result = None f = None try: if bool(self.resolve_option("append")): f = open(str(self.resolve_option("output")), "a") else: f = open(str(self.resolve_option("output")), "w") f.write(str(self.input.payload)) f.write("\n") except Exception as e: result = self.full_name + "\n" + traceback.format_exc() finally: if f is not None: f.close() return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
3.190384
2.988695
1.067484
if not isinstance(token.payload, ModelContainer): raise Exception(self.full_name + ": Input token is not a ModelContainer!")
def check_input(self, token)
Performs checks on the input token. Raises an exception if unsupported. :param token: the token to check :type token: Token
12.015512
14.060963
0.85453
result = None cont = self.input.payload serialization.write_all( str(self.resolve_option("output")), [cont.get("Model").jobject, cont.get("Header").jobject]) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
23.920528
21.615364
1.106645
options = super(MatrixPlot, self).fix_config(options) opt = "percent" if opt not in options: options[opt] = 100.0 if opt not in self.help: self.help[opt] = "The percentage of the data to display (0-100, float)." opt = "seed" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The seed value for randomizing the plot when viewing a subset (int)." opt = "size" if opt not in options: options[opt] = 10 if opt not in self.help: self.help[opt] = "The size of the circles in the plot (int)." opt = "title" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The title for the plot (str)." opt = "outfile" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The file to store the plot in (str)." opt = "wait" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to wait for user to close the plot window (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.025046
2.084896
0.971293
options = super(LinePlot, self).fix_config(options) opt = "attributes" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The list of 0-based attribute indices to print; None for all (int)." opt = "percent" if opt not in options: options[opt] = 100.0 if opt not in self.help: self.help[opt] = "The percentage of the data to display (0-100, float)." opt = "seed" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The seed value for randomizing the plot when viewing a subset (int)." opt = "title" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The title for the plot (str)." opt = "outfile" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The file to store the plot in (str)." opt = "wait" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to wait for user to close the plot window (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.264987
2.35652
0.961158
result = None data = self.input.payload pltdataset.line_plot( data, atts=self.resolve_option("attributes"), percent=float(self.resolve_option("percent")), seed=int(self.resolve_option("seed")), title=self.resolve_option("title"), outfile=self.resolve_option("outfile"), wait=bool(self.resolve_option("wait"))) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
6.322665
6.204335
1.019072
options = super(ClassifierErrors, self).fix_config(options) opt = "absolute" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to use absolute errors as size or relative ones (bool)." opt = "max_relative_size" if opt not in options: options[opt] = 50 if opt not in self.help: self.help[opt] = "The maximum size in point in case of relative mode (int)." opt = "absolute_size" if opt not in options: options[opt] = 50 if opt not in self.help: self.help[opt] = "The size in point in case of absolute mode (int)." opt = "title" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The title for the plot (str)." opt = "outfile" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The file to store the plot in (str)." opt = "wait" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to wait for user to close the plot window (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.133651
2.183335
0.977244
if not isinstance(token.payload, Evaluation): raise Exception(self.full_name + ": Input token is not an Evaluation object!")
def check_input(self, token)
Performs checks on the input token. Raises an exception if unsupported. :param token: the token to check :type token: Token
12.965484
15.089693
0.859228
result = None evl = self.input.payload pltclassifier.plot_classifier_errors( evl.predictions, absolute=bool(self.resolve_option("absolute")), max_relative_size=int(self.resolve_option("max_relative_size")), absolute_size=int(self.resolve_option("absolute_size")), title=self.resolve_option("title"), outfile=self.resolve_option("outfile"), wait=bool(self.resolve_option("wait"))) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
6.033694
5.996435
1.006213
options = super(ROC, self).fix_config(options) opt = "class_index" if opt not in options: options[opt] = [0] if opt not in self.help: self.help[opt] = "The list of 0-based class-label indices to display (list)." opt = "key_loc" if opt not in options: options[opt] = "lower right" if opt not in self.help: self.help[opt] = "The location of the key in the plot (str)." opt = "title" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The title for the plot (str)." opt = "outfile" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The file to store the plot in (str)." opt = "wait" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to wait for user to close the plot window (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.229239
2.332136
0.955879
options = super(PRC, self).fix_config(options) opt = "class_index" if opt not in options: options[opt] = [0] if opt not in self.help: self.help[opt] = "The list of 0-based class-label indices to display (list)." opt = "key_loc" if opt not in options: options[opt] = "lower center" if opt not in self.help: self.help[opt] = "The location of the key in the plot (str)." opt = "title" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The title for the plot (str)." opt = "outfile" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The file to store the plot in (str)." opt = "wait" if opt not in options: options[opt] = True if opt not in self.help: self.help[opt] = "Whether to wait for user to close the plot window (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
2.257967
2.348779
0.961337
result = None evl = self.input.payload pltclassifier.plot_prc( evl, class_index=self.resolve_option("class_index"), title=self.resolve_option("title"), key_loc=self.resolve_option("key_loc"), outfile=self.resolve_option("outfile"), wait=bool(self.resolve_option("wait"))) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
7.845672
8.013375
0.979072
result = None data = self.input.payload if isinstance(self._input.payload, Instance): inst = self.input.payload data = inst.dataset elif isinstance(self.input.payload, Instances): data = self.input.payload inst = None append = True if self._header is None or (self._header.equal_headers(data) is not None): self._header = Instances.template_instances(data, 0) outstr = str(data) append = False elif inst is not None: outstr = str(inst) else: outstr = str(data) f = None try: if append: f = open(str(self.resolve_option("output")), "a") else: f = open(str(self.resolve_option("output")), "w") f.write(outstr) f.write("\n") except Exception as e: result = self.full_name + "\n" + traceback.format_exc() finally: if f is not None: f.close() return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
3.880408
3.786462
1.024811
if self.classification: speval = javabridge.make_instance("weka/experiment/ClassifierSplitEvaluator", "()V") else: speval = javabridge.make_instance("weka/experiment/RegressionSplitEvaluator", "()V") classifier = javabridge.call(speval, "getClassifier", "()Lweka/classifiers/Classifier;") return speval, classifier
def configure_splitevaluator(self)
Configures and returns the SplitEvaluator and Classifier instance as tuple. :return: evaluator and classifier :rtype: tuple
3.328075
3.267534
1.018528
# basic options javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V", javabridge.get_env().make_object_array(0, javabridge.get_env().find_class("weka/classifiers/Classifier"))) javabridge.call( self.jobject, "setUsePropertyIterator", "(Z)V", True) javabridge.call( self.jobject, "setRunLower", "(I)V", 1) javabridge.call( self.jobject, "setRunUpper", "(I)V", self.runs) # setup result producer rproducer, prop_path = self.configure_resultproducer() javabridge.call( self.jobject, "setResultProducer", "(Lweka/experiment/ResultProducer;)V", rproducer) javabridge.call( self.jobject, "setPropertyPath", "([Lweka/experiment/PropertyNode;)V", prop_path) # classifiers classifiers = javabridge.get_env().make_object_array( len(self.classifiers), javabridge.get_env().find_class("weka/classifiers/Classifier")) for i, classifier in enumerate(self.classifiers): if type(classifier) is Classifier: javabridge.get_env().set_object_array_element( classifiers, i, classifier.jobject) else: javabridge.get_env().set_object_array_element( classifiers, i, from_commandline(classifier).jobject) javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V", classifiers) # datasets datasets = javabridge.make_instance("javax/swing/DefaultListModel", "()V") for dataset in self.datasets: f = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", dataset) javabridge.call(datasets, "addElement", "(Ljava/lang/Object;)V", f) javabridge.call( self.jobject, "setDatasets", "(Ljavax/swing/DefaultListModel;)V", datasets) # output file if str(self.result).lower().endswith(".arff"): rlistener = javabridge.make_instance("weka/experiment/InstancesResultListener", "()V") elif str(self.result).lower().endswith(".csv"): rlistener = javabridge.make_instance("weka/experiment/CSVResultListener", "()V") else: raise Exception("Unhandled output format for results: " + self.result) rfile = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", self.result) javabridge.call( rlistener, "setOutputFile", "(Ljava/io/File;)V", rfile) javabridge.call( self.jobject, "setResultListener", "(Lweka/experiment/ResultListener;)V", rlistener)
def setup(self)
Initializes the experiment.
2.165128
2.152083
1.006062
logger.info("Initializing...") javabridge.call(self.jobject, "initialize", "()V") logger.info("Running...") javabridge.call(self.jobject, "runExperiment", "()V") logger.info("Finished...") javabridge.call(self.jobject, "postProcess", "()V")
def run(self)
Executes the experiment.
3.411167
3.039342
1.122337
jobject = javabridge.static_call( "weka/experiment/Experiment", "read", "(Ljava/lang/String;)Lweka/experiment/Experiment;", filename) return Experiment(jobject=jobject)
def load(cls, filename)
Loads the experiment from disk. :param filename: the filename of the experiment to load :type filename: str :return: the experiment :rtype: Experiment
5.436683
5.315521
1.022794
rproducer = javabridge.make_instance("weka/experiment/RandomSplitResultProducer", "()V") javabridge.call(rproducer, "setRandomizeData", "(Z)V", not self.preserve_order) javabridge.call(rproducer, "setTrainPercent", "(D)V", self.percentage) speval, classifier = self.configure_splitevaluator() javabridge.call(rproducer, "setSplitEvaluator", "(Lweka/experiment/SplitEvaluator;)V", speval) prop_path = javabridge.get_env().make_object_array( 2, javabridge.get_env().find_class("weka/experiment/PropertyNode")) cls = javabridge.get_env().find_class("weka/experiment/RandomSplitResultProducer") desc = javabridge.make_instance( "java/beans/PropertyDescriptor", "(Ljava/lang/String;Ljava/lang/Class;)V", "splitEvaluator", cls) node = javabridge.make_instance( "weka/experiment/PropertyNode", "(Ljava/lang/Object;Ljava/beans/PropertyDescriptor;Ljava/lang/Class;)V", speval, desc, cls) javabridge.get_env().set_object_array_element(prop_path, 0, node) cls = javabridge.get_env().get_object_class(speval) desc = javabridge.make_instance( "java/beans/PropertyDescriptor", "(Ljava/lang/String;Ljava/lang/Class;)V", "classifier", cls) node = javabridge.make_instance( "weka/experiment/PropertyNode", "(Ljava/lang/Object;Ljava/beans/PropertyDescriptor;Ljava/lang/Class;)V", javabridge.call(speval, "getClass", "()Ljava/lang/Class;"), desc, cls) javabridge.get_env().set_object_array_element(prop_path, 1, node) return rproducer, prop_path
def configure_resultproducer(self)
Configures and returns the ResultProducer and PropertyPath as tuple. :return: producer and property path :rtype: tuple
2.307375
2.245021
1.027775
javabridge.call(self.jobject, "setRowName", "(ILjava/lang/String;)V", index, name)
def set_row_name(self, index, name)
Sets the row name. :param index: the 0-based row index :type index: int :param name: the name of the row :type name: str
4.06458
4.05179
1.003157
javabridge.call(self.jobject, "setColName", "(ILjava/lang/String;)V", index, name)
def set_col_name(self, index, name)
Sets the column name. :param index: the 0-based row index :type index: int :param name: the name of the column :type name: str
4.194018
4.223117
0.99311
return javabridge.call(self.jobject, "getMean", "(II)D", col, row)
def get_mean(self, col, row)
Returns the mean at this location (if valid location). :param col: the 0-based column index :type col: int :param row: the 0-based row index :type row: int :return: the mean :rtype: float
5.775783
5.961674
0.968819
javabridge.call(self.jobject, "setMean", "(IID)V", col, row, mean)
def set_mean(self, col, row, mean)
Sets the mean at this location (if valid location). :param col: the 0-based column index :type col: int :param row: the 0-based row index :type row: int :param mean: the mean to set :type mean: float
5.78529
5.897328
0.981002
return javabridge.call(self.jobject, "getStdDev", "(II)D", col, row)
def get_stdev(self, col, row)
Returns the standard deviation at this location (if valid location). :param col: the 0-based column index :type col: int :param row: the 0-based row index :type row: int :return: the standard deviation :rtype: float
5.667764
5.963448
0.950417
javabridge.call(self.jobject, "setStdDev", "(IID)V", col, row, stdev)
def set_stdev(self, col, row, stdev)
Sets the standard deviation at this location (if valid location). :param col: the 0-based column index :type col: int :param row: the 0-based row index :type row: int :param stdev: the standard deviation to set :type stdev: float
5.862227
5.69185
1.029934
required = ['token', 'content'] valid_data = { 'exp_record': (['type', 'format'], 'record', 'Exporting record but content is not record'), 'imp_record': (['type', 'overwriteBehavior', 'data', 'format'], 'record', 'Importing record but content is not record'), 'metadata': (['format'], 'metadata', 'Requesting metadata but content != metadata'), 'exp_file': (['action', 'record', 'field'], 'file', 'Exporting file but content is not file'), 'imp_file': (['action', 'record', 'field'], 'file', 'Importing file but content is not file'), 'del_file': (['action', 'record', 'field'], 'file', 'Deleteing file but content is not file'), 'exp_event': (['format'], 'event', 'Exporting events but content is not event'), 'exp_arm': (['format'], 'arm', 'Exporting arms but content is not arm'), 'exp_fem': (['format'], 'formEventMapping', 'Exporting form-event mappings but content != formEventMapping'), 'exp_user': (['format'], 'user', 'Exporting users but content is not user'), 'exp_survey_participant_list': (['instrument'], 'participantList', 'Exporting Survey Participant List but content != participantList'), 'version': (['format'], 'version', 'Requesting version but content != version') } extra, req_content, err_msg = valid_data[self.type] required.extend(extra) required = set(required) pl_keys = set(self.payload.keys()) # if req is not subset of payload keys, this call is wrong if not set(required) <= pl_keys: # what is not in pl_keys? not_pre = required - pl_keys raise RCAPIError("Required keys: %s" % ', '.join(not_pre)) # Check content, raise with err_msg if not good try: if self.payload['content'] != req_content: raise RCAPIError(err_msg) except KeyError: raise RCAPIError('content not in payload')
def validate(self)
Checks that at least required params exist
3.920292
3.839576
1.021022
r = post(self.url, data=self.payload, **kwargs) # Raise if we need to self.raise_for_status(r) content = self.get_content(r) return content, r.headers
def execute(self, **kwargs)
Execute the API request and return data Parameters ---------- kwargs : passed to requests.post() Returns ------- response : list, str data object from JSON decoding process if format=='json', else return raw string (ie format=='csv'|'xml')
4.989601
5.489159
0.908992
if self.type == 'exp_file': # don't use the decoded r.text return r.content elif self.type == 'version': return r.content else: if self.fmt == 'json': content = {} # Decode try: # Watch out for bad/empty json content = json.loads(r.text, strict=False) except ValueError as e: if not self.expect_empty_json(): # reraise for requests that shouldn't send empty json raise ValueError(e) finally: return content else: return r.text
def get_content(self, r)
Abstraction for grabbing content from a returned response
6.368833
6.405096
0.994338
if self.type in ('metadata', 'exp_file', 'imp_file', 'del_file'): r.raise_for_status() # see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html # specifically 10.5 if 500 <= r.status_code < 600: raise RedcapError(r.content)
def raise_for_status(self, r)
Given a response, raise for bad status for certain actions Some redcap api methods don't return error messages that the user could test for or otherwise use. Therefore, we need to do the testing ourself Raising for everything wouldn't let the user see the (hopefully helpful) error message
4.243107
4.084573
1.038813
d = {'token': self.token, 'content': content, 'format': format} if content not in ['metadata', 'file']: d['type'] = rec_type return d
def __basepl(self, content, rec_type='flat', format='json')
Return a dictionary which can be used as is or added to for payloads
5.301429
4.951056
1.070767
return len(self.events) > 0 and \ len(self.arm_nums) > 0 and \ len(self.arm_names) > 0
def is_longitudinal(self)
Returns ------- boolean : longitudinal status of this project
5.23194
6.218283
0.84138
filtered = [field[key] for field in self.metadata if key in field] if len(filtered) == 0: raise KeyError("Key not found in metadata") return filtered
def filter_metadata(self, key)
Return a list of values for the metadata key from each field of the project's metadata. Parameters ---------- key: str A known key in the metadata structure Returns ------- filtered : attribute list from each field
3.785403
3.828297
0.988796
ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('formEventMapping', format=ret_format) to_add = [arms] str_add = ['arms'] for key, data in zip(str_add, to_add): if data: pl[key] = ','.join(data) response, _ = self._call_api(pl, 'exp_fem') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: return read_csv(StringIO(response)) else: return read_csv(StringIO(response), **df_kwargs)
def export_fem(self, arms=None, format='json', df_kwargs=None)
Export the project's form to event mapping Parameters ---------- arms : list Limit exported form event mappings to these arm numbers format : (``'json'``), ``'csv'``, ``'xml'`` Return the form event mappings in native objects, csv or xml, ``'df''`` will return a ``pandas.DataFrame`` df_kwargs : dict Passed to pandas.read_csv to control construction of returned DataFrame Returns ------- fem : list, str, ``pandas.DataFrame`` form-event mapping for the project
4.402174
4.272166
1.030431
ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('metadata', format=ret_format) to_add = [fields, forms] str_add = ['fields', 'forms'] for key, data in zip(str_add, to_add): if data: pl[key] = ','.join(data) response, _ = self._call_api(pl, 'metadata') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: df_kwargs = {'index_col': 'field_name'} return read_csv(StringIO(response), **df_kwargs)
def export_metadata(self, fields=None, forms=None, format='json', df_kwargs=None)
Export the project's metadata Parameters ---------- fields : list Limit exported metadata to these fields forms : list Limit exported metadata to these forms format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Return the metadata in native objects, csv or xml. ``'df'`` will return a ``pandas.DataFrame``. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default ``{'index_col': 'field_name'}`` Returns ------- metadata : list, str, ``pandas.DataFrame`` metadata sttructure for the project.
3.427099
3.444124
0.995057
ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('record', format=ret_format) fields = self.backfill_fields(fields, forms) keys_to_add = (records, fields, forms, events, raw_or_label, event_name, export_survey_fields, export_data_access_groups, export_checkbox_labels) str_keys = ('records', 'fields', 'forms', 'events', 'rawOrLabel', 'eventName', 'exportSurveyFields', 'exportDataAccessGroups', 'exportCheckboxLabel') for key, data in zip(str_keys, keys_to_add): if data: # Make a url-ok string if key in ('fields', 'records', 'forms', 'events'): pl[key] = ','.join(data) else: pl[key] = data if filter_logic: pl["filterLogic"] = filter_logic response, _ = self._call_api(pl, 'exp_record') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: if self.is_longitudinal(): df_kwargs = {'index_col': [self.def_field, 'redcap_event_name']} else: df_kwargs = {'index_col': self.def_field} buf = StringIO(response) df = read_csv(buf, **df_kwargs) buf.close() return df
def export_records(self, records=None, fields=None, forms=None, events=None, raw_or_label='raw', event_name='label', format='json', export_survey_fields=False, export_data_access_groups=False, df_kwargs=None, export_checkbox_labels=False, filter_logic=None)
Export data from the REDCap project. Parameters ---------- records : list array of record names specifying specific records to export. by default, all records are exported fields : list array of field names specifying specific fields to pull by default, all fields are exported forms : list array of form names to export. If in the web UI, the form name has a space in it, replace the space with an underscore by default, all forms are exported events : list an array of unique event names from which to export records :note: this only applies to longitudinal projects raw_or_label : (``'raw'``), ``'label'``, ``'both'`` export the raw coded values or labels for the options of multiple choice fields, or both event_name : (``'label'``), ``'unique'`` export the unique event name or the event label format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Format of returned data. ``'json'`` returns json-decoded objects while ``'csv'`` and ``'xml'`` return other formats. ``'df'`` will attempt to return a ``pandas.DataFrame``. export_survey_fields : (``False``), True specifies whether or not to export the survey identifier field (e.g., "redcap_survey_identifier") or survey timestamp fields (e.g., form_name+"_timestamp") when surveys are utilized in the project. export_data_access_groups : (``False``), ``True`` specifies whether or not to export the ``"redcap_data_access_group"`` field when data access groups are utilized in the project. :note: This flag is only viable if the user whose token is being used to make the API request is *not* in a data access group. If the user is in a group, then this flag will revert to its default value. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default, ``{'index_col': self.def_field}`` export_checkbox_labels : (``False``), ``True`` specify whether to export checkbox values as their label on export. filter_logic : string specify the filterLogic to be sent to the API. Returns ------- data : list, str, ``pandas.DataFrame`` exported data
3.301558
3.033665
1.088307
mf = '' try: mf = str([f[key] for f in self.metadata if f['field_name'] == field][0]) except IndexError: print("%s not in metadata field:%s" % (key, field)) return mf else: return mf
def __meta_metadata(self, field, key)
Return the value for key for the field in the metadata
4.768062
4.520652
1.054729
if forms and not fields: new_fields = [self.def_field] elif fields and self.def_field not in fields: new_fields = list(fields) if self.def_field not in fields: new_fields.append(self.def_field) elif not fields: new_fields = self.field_names else: new_fields = list(fields) return new_fields
def backfill_fields(self, fields, forms)
Properly backfill fields to explicitly request specific keys. The issue is that >6.X servers *only* return requested fields so to improve backwards compatiblity for PyCap clients, add specific fields when required. Parameters ---------- fields: list requested fields forms: list requested forms Returns ------- new fields, forms
2.482528
2.749152
0.903016
query_keys = query.fields() if not set(query_keys).issubset(set(self.field_names)): raise ValueError("One or more query keys not in project keys") query_keys.append(self.def_field) data = self.export_records(fields=query_keys) matches = query.filter(data, self.def_field) if matches: # if output_fields is empty, we'll download all fields, which is # not desired, so we limit download to def_field if not output_fields: output_fields = [self.def_field] # But if caller passed a string and not list, we need to listify if isinstance(output_fields, basestring): output_fields = [output_fields] return self.export_records(records=matches, fields=output_fields) else: # If there are no matches, then sending an empty list to # export_records will actually return all rows, which is not # what we want return []
def filter(self, query, output_fields=None)
Query the database and return subject information for those who match the query logic Parameters ---------- query: Query or QueryGroup Query(Group) object to process output_fields: list The fields desired for matching subjects Returns ------- A list of dictionaries whose keys contains at least the default field and at most each key passed in with output_fields, each dictionary representing a surviving row in the database.
4.493304
4.454881
1.008625
if do_print: for name, label in zip(self.field_names, self.field_labels): print('%s --> %s' % (str(name), str(label))) return self.field_names, self.field_labels
def names_labels(self, do_print=False)
Simple helper function to get all field names and labels
2.372611
2.075127
1.143357
pl = self.__basepl('record') if hasattr(to_import, 'to_csv'): # We'll assume it's a df buf = StringIO() if self.is_longitudinal(): csv_kwargs = {'index_label': [self.def_field, 'redcap_event_name']} else: csv_kwargs = {'index_label': self.def_field} to_import.to_csv(buf, **csv_kwargs) pl['data'] = buf.getvalue() buf.close() format = 'csv' elif format == 'json': pl['data'] = json.dumps(to_import, separators=(',', ':')) else: # don't do anything to csv/xml pl['data'] = to_import pl['overwriteBehavior'] = overwrite pl['format'] = format pl['returnFormat'] = return_format pl['returnContent'] = return_content pl['dateFormat'] = date_format pl['forceAutoNumber'] = force_auto_number response = self._call_api(pl, 'imp_record')[0] if 'error' in response: raise RedcapError(str(response)) return response
def import_records(self, to_import, overwrite='normal', format='json', return_format='json', return_content='count', date_format='YMD', force_auto_number=False)
Import data into the RedCap Project Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. :note: Keys of the dictionaries should be subset of project's, fields, but this isn't a requirement. If you provide keys that aren't defined fields, the returned response will contain an ``'error'`` key. overwrite : ('normal'), 'overwrite' ``'overwrite'`` will erase values previously stored in the database if not specified in the to_import dictionaries. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded return_format : ('json'), 'csv', 'xml' Response format. By default, response will be json-decoded. return_content : ('count'), 'ids', 'nothing' By default, the response contains a 'count' key with the number of records just imported. By specifying 'ids', a list of ids imported will be returned. 'nothing' will only return the HTTP status code and no message. date_format : ('YMD'), 'DMY', 'MDY' Describes the formatting of dates. By default, date strings are formatted as 'YYYY-MM-DD' corresponding to 'YMD'. If date strings are formatted as 'MM/DD/YYYY' set this parameter as 'MDY' and if formatted as 'DD/MM/YYYY' set as 'DMY'. No other formattings are allowed. force_auto_number : ('False') Enables automatic assignment of record IDs of imported records by REDCap. If this is set to true, and auto-numbering for records is enabled for the project, auto-numbering of imported records will be enabled. Returns ------- response : dict, str response from REDCap API, json-decoded if ``return_format`` == ``'json'``
3.126214
3.156391
0.99044
self._check_file_field(field) # load up payload pl = self.__basepl(content='file', format=return_format) # there's no format field in this call del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'export' pl['field'] = field pl['record'] = record if event: pl['event'] = event content, headers = self._call_api(pl, 'exp_file') #REDCap adds some useful things in content-type if 'content-type' in headers: splat = [kv.strip() for kv in headers['content-type'].split(';')] kv = [(kv.split('=')[0], kv.split('=')[1].replace('"', '')) for kv in splat if '=' in kv] content_map = dict(kv) else: content_map = {} return content, content_map
def export_file(self, record, field, event=None, return_format='json')
Export the contents of a file stored for a particular record Notes ----- Unlike other export methods, this works on a single record. Parameters ---------- record : str record ID field : str field name containing the file to be exported. event: str for longitudinal projects, specify the unique event here return_format: ('json'), 'csv', 'xml' format of error message Returns ------- content : bytes content of the file content_map : dict content-type dictionary
4.944016
4.848618
1.019675
self._check_file_field(field) # load up payload pl = self.__basepl(content='file', format=return_format) # no format in this call del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'import' pl['field'] = field pl['record'] = record if event: pl['event'] = event file_kwargs = {'files': {'file': (fname, fobj)}} return self._call_api(pl, 'imp_file', **file_kwargs)[0]
def import_file(self, record, field, fname, fobj, event=None, return_format='json')
Import the contents of a file represented by fobj to a particular records field Parameters ---------- record : str record ID field : str field name where the file will go fname : str file name visible in REDCap UI fobj : file object file object as returned by `open` event : str for longitudinal projects, specify the unique event here return_format : ('json'), 'csv', 'xml' format of error message Returns ------- response : response from server as specified by ``return_format``
5.601684
6.340606
0.883462
self._check_file_field(field) # Load up payload pl = self.__basepl(content='file', format=return_format) del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'delete' pl['record'] = record pl['field'] = field if event: pl['event'] = event return self._call_api(pl, 'del_file')[0]
def delete_file(self, record, field, return_format='json', event=None)
Delete a file from REDCap Notes ----- There is no undo button to this. Parameters ---------- record : str record ID field : str field name return_format : (``'json'``), ``'csv'``, ``'xml'`` return format for error message event : str If longitudinal project, event to delete file from Returns ------- response : dict, str response from REDCap after deleting file
5.030388
6.389164
0.787331
is_field = field in self.field_names is_file = self.__meta_metadata(field, 'field_type') == 'file' if not (is_field and is_file): msg = "'%s' is not a field or not a 'file' field" % field raise ValueError(msg) else: return True
def _check_file_field(self, field)
Check that field exists and is a file field
4.048696
3.632187
1.114672
pl = self.__basepl(content='user', format=format) return self._call_api(pl, 'exp_user')[0]
def export_users(self, format='json')
Export the users of the Project Notes ----- Each user will have the following keys: * ``'firstname'`` : User's first name * ``'lastname'`` : User's last name * ``'email'`` : Email address * ``'username'`` : User's username * ``'expiration'`` : Project access expiration date * ``'data_access_group'`` : data access group ID * ``'data_export'`` : (0=no access, 2=De-Identified, 1=Full Data Set) * ``'forms'`` : a list of dicts with a single key as the form name and value is an integer describing that user's form rights, where: 0=no access, 1=view records/responses and edit records (survey responses are read-only), 2=read only, and 3=edit survey responses, Parameters ---------- format : (``'json'``), ``'csv'``, ``'xml'`` response return format Returns ------- users: list, str list of users dicts when ``'format'='json'``, otherwise a string
18.126373
35.156281
0.515594
pl = self.__basepl(content='participantList', format=format) pl['instrument'] = instrument if event: pl['event'] = event return self._call_api(pl, 'exp_survey_participant_list')
def export_survey_participant_list(self, instrument, event=None, format='json')
Export the Survey Participant List Notes ----- The passed instrument must be set up as a survey instrument. Parameters ---------- instrument: str Name of instrument as seen in second column of Data Dictionary. event: str Unique event name, only used in longitudinal projects format: (json, xml, csv), json by default Format of returned data
6.528719
8.687018
0.751549
res = Resource(_api_url(ip), timeout) prompt = "Press the Bridge button, then press Return: " # Deal with one of the sillier python3 changes if sys.version_info.major == 2: _ = raw_input(prompt) else: _ = input(prompt) if devicetype is None: devicetype = "qhue#{}".format(getfqdn()) # raises QhueException if something went wrong response = res(devicetype=devicetype, http_method="post") return response[0]["success"]["username"]
def create_new_username(ip, devicetype=None, timeout=_DEFAULT_TIMEOUT)
Interactive helper function to generate a new anonymous username. Args: ip: ip address of the bridge devicetype (optional): devicetype to register with the bridge. If unprovided, generates a device type based on the local hostname. timeout (optional, default=5): request timeout in seconds Raises: QhueException if something went wrong with username generation (for example, if the bridge button wasn't pressed).
9.151263
7.069972
1.294385
logging.info('Starting message router...') coroutines = set() while True: coro = self._poll_channel() coroutines.add(coro) _, coroutines = await asyncio.wait(coroutines, timeout=0.1)
async def run(self)
Entrypoint to route messages between plugins.
6.29088
5.367689
1.17199
logging.info(f'Received exit signal {sig.name}...') tasks = [task for task in asyncio.Task.all_tasks() if task is not asyncio.tasks.Task.current_task()] for task in tasks: logging.debug(f'Cancelling task: {task}') task.cancel() results = await asyncio.gather(*tasks, return_exceptions=True) logging.debug(f'Done awaiting cancelled tasks, results: {results}') loop.stop() logging.info('Shutdown complete.')
async def shutdown(sig, loop)
Gracefully cancel current tasks when app receives a shutdown signal.
2.388511
2.264215
1.054896
for k, v in b.items(): if k in a and isinstance(a[k], dict) and isinstance(v, dict): _deep_merge_dict(a[k], v) else: a[k] = v
def _deep_merge_dict(a, b)
Additively merge right side dict into left side dict.
1.554427
1.450016
1.072007
installed_plugins = _gather_installed_plugins() metrics_plugin = _get_metrics_plugin(config, installed_plugins) if metrics_plugin: plugin_kwargs['metrics'] = metrics_plugin active_plugins = _get_activated_plugins(config, installed_plugins) if not active_plugins: return [], [], [], None plugin_namespaces = _get_plugin_config_keys(active_plugins) plugin_configs = _load_plugin_configs(plugin_namespaces, config) plugin_names, plugins, errors = _init_plugins( active_plugins, installed_plugins, plugin_configs, plugin_kwargs) return plugin_names, plugins, errors, plugin_kwargs
def load_plugins(config, plugin_kwargs)
Discover and instantiate plugins. Args: config (dict): loaded configuration for the Gordon service. plugin_kwargs (dict): keyword arguments to give to plugins during instantiation. Returns: Tuple of 3 lists: list of names of plugins, list of instantiated plugin objects, and any errors encountered while loading/instantiating plugins. A tuple of three empty lists is returned if there are no plugins found or activated in gordon config.
3.093756
2.989541
1.03486
self.transport = transport self.transport.sendto(self.message) self.transport.close()
def connection_made(self, transport)
Create connection, use to send message and close. Args: transport (asyncio.DatagramTransport): Transport used for sending.
3.928038
3.620686
1.084888
message = json.dumps(metric).encode('utf-8') await self.loop.create_datagram_endpoint( lambda: UDPClientProtocol(message), remote_addr=(self.ip, self.port))
async def send(self, metric)
Transform metric to JSON bytestring and send to server. Args: metric (dict): Complete metric to send as JSON.
3.078286
3.226395
0.954095
start_time = time.time() name, rr_data, r_type, ttl = self._extract_record_data(record) r_type_code = async_dns.types.get_code(r_type) resolvable_record = False retries = 0 sleep_time = 5 while not resolvable_record and \ timeout > retries * sleep_time: retries += 1 resolver_res = await self._resolver.query(name, r_type_code) possible_ans = resolver_res.an resolvable_record = \ await self._check_resolver_ans(possible_ans, name, rr_data, ttl, r_type_code) if not resolvable_record: await asyncio.sleep(sleep_time) if not resolvable_record: logging.info( f'Sending metric record-checker-failed: {record}.') else: final_time = float(time.time() - start_time) success_msg = (f'This record: {record} took {final_time} to ' 'register.') logging.info(success_msg)
async def check_record(self, record, timeout=60)
Measures the time for a DNS record to become available. Query a provided DNS server multiple times until the reply matches the information in the record or until timeout is reached. Args: record (dict): DNS record as a dict with record properties. timeout (int): Time threshold to query the DNS server.
4.360099
4.262062
1.023002
type_filtered_list = [ ans for ans in dns_answer_list if ans.qtype == record_type_code ] # check to see that type_filtered_lst has # the same number of records as record_data_list if len(type_filtered_list) != len(record_data_list): return False # check each record data is equal to the given data for rec in type_filtered_list: conditions = [rec.name == record_name, rec.ttl == record_ttl, rec.data in record_data_list] # if ans record data is not equal # to the given data return False if not all(conditions): return False return True
async def _check_resolver_ans( self, dns_answer_list, record_name, record_data_list, record_ttl, record_type_code)
Check if resolver answer is equal to record data. Args: dns_answer_list (list): DNS answer list contains record objects. record_name (str): Record name. record_data_list (list): List of data values for the record. record_ttl (int): Record time-to-live info. record_type_code (int): Record type code. Returns: boolean indicating if DNS answer data is equal to record data.
3.265658
3.635214
0.89834
encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for fl in filenames: with codecs.open(os.path.join(HERE, fl), 'rb', encoding) as f: buf.append(f.read()) return sep.join(buf)
def read(*filenames, **kwargs)
Build an absolute path from ``*filenames``, and return contents of resulting file. Defaults to UTF-8 encoding.
2.242411
2.269715
0.98797
message = self.LOGFMT.format(**metric) if metric['context']: message += ' context: {context}'.format(context=metric['context']) self._logger.log(self.level, message)
def log(self, metric)
Format and output metric. Args: metric (dict): Complete metric.
5.370247
6.723957
0.798674
if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string.upper(): if c.isalpha(): ret += self.key[self.a2i(c)] else: ret += c return ret
def encipher(self,string,keep_punct=False)
Encipher string using Atbash cipher. Example:: ciphertext = Atbash().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string.
3.023229
3.72123
0.812427
string = self.remove_punctuation(string)#,filter='[^'+self.key+']') ret = '' for c in range(0,len(string)): ret += self.encipher_char(string[c]) return ret
def encipher(self,string)
Encipher string using Polybius square cipher according to initialised key. Example:: ciphertext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be twice the length of the plaintext.
5.751228
6.766154
0.85
string = self.remove_punctuation(string)#,filter='[^'+self.chars+']') ret = '' for i in range(0,len(string),2): ret += self.decipher_pair(string[i:i+2]) return ret
def decipher(self,string)
Decipher string using Polybius square cipher according to initialised key. Example:: plaintext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be half the length of the ciphertext.
5.014334
5.679571
0.882872
step2 = ColTrans(self.keyword).decipher(string) step1 = PolybiusSquare(self.key,size=6,chars='ADFGVX').decipher(step2) return step1
def decipher(self,string)
Decipher string using ADFGVX cipher according to initialised key information. Punctuation and whitespace are removed from the input. Example:: plaintext = ADFGVX('ph0qg64mea1yl2nofdxkr3cvs5zw7bj9uti8','HELLO').decipher(ciphertext) :param string: The string to decipher. :returns: The enciphered string.
14.401917
14.112472
1.02051
string = self.remove_punctuation(string) ret = '' for c in string.upper(): if c.isalpha(): ret += self.encipher_char(c) else: ret += c return ret
def encipher(self,string)
Encipher string using Enigma M3 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Enigma(settings=('A','A','A'),rotors=(1,2,3),reflector='B', ringstellung=('F','V','N'),steckers=[('P','O'),('M','L'), ('I','U'),('K','J'),('N','H'),('Y','T'),('G','B'),('V','F'), ('R','E'),('D','C')])).encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
3.2733
3.624214
0.903175
''' takes ciphertext, calculates index of coincidence.''' counts = ngram_count(ctext,N=1) icval = 0 for k in counts.keys(): icval += counts[k]*(counts[k]-1) icval /= (len(ctext)*(len(ctext)-1)) return icval
def ic(ctext)
takes ciphertext, calculates index of coincidence.
4.378196
3.453188
1.267871
''' if N=1, return a dict containing each letter along with how many times the letter occurred. if N=2, returns a dict containing counts of each bigram (pair of letters) etc. There is an option to remove all spaces and punctuation prior to processing ''' if not keep_punct: text = re.sub('[^A-Z]','',text.upper()) count = {} for i in range(len(text)-N+1): c = text[i:i+N] if c in count: count[c] += 1 else: count[c] = 1.0 return count
def ngram_count(text,N=1,keep_punct=False)
if N=1, return a dict containing each letter along with how many times the letter occurred. if N=2, returns a dict containing counts of each bigram (pair of letters) etc. There is an option to remove all spaces and punctuation prior to processing
4.379215
1.894717
2.311277
''' returns the n-gram frequencies of all n-grams encountered in text. Option to return log probabilities or standard probabilities. Note that only n-grams occurring in 'text' will have probabilities. For the probability of not-occurring n-grams, use freq['floor']. This is set to floor/len(text) ''' freq = ngram_count(text,N) L = 1.0*(len(text)-N+1) for c in freq.keys(): if log: freq[c] = math.log10(freq[c]/L) else: freq[c] = freq[c]/L if log: freq['floor'] = math.log10(floor/L) else: freq['floor'] = floor/L return freq
def ngram_freq(text,N=1,log=False,floor=0.01)
returns the n-gram frequencies of all n-grams encountered in text. Option to return log probabilities or standard probabilities. Note that only n-grams occurring in 'text' will have probabilities. For the probability of not-occurring n-grams, use freq['floor']. This is set to floor/len(text)
4.462799
1.850268
2.411974
''' If punctuation was accidently removed, use this function to restore it. requires the orignial string with punctuation. ''' ret = '' count = 0 try: for c in original: if c.isalpha(): ret+=modified[count] count+=1 else: ret+=c except IndexError: print('restore_punctuation: strings must have same number of alphabetic chars') raise return ret
def restore_punctuation(original,modified)
If punctuation was accidently removed, use this function to restore it. requires the orignial string with punctuation.
6.398579
4.033292
1.586441
''' convert a key word to a key by appending on the other letters of the alphabet. e.g. MONARCHY -> MONARCHYBDEFGIJKLPQSTUVWXZ ''' ret = '' word = (word + alphabet).upper() for i in word: if i in ret: continue ret += i return ret
def keyword_to_key(word,alphabet='ABCDEFGHIJKLMNOPQRSTUVWXYZ')
convert a key word to a key by appending on the other letters of the alphabet. e.g. MONARCHY -> MONARCHYBDEFGIJKLPQSTUVWXZ
10.065548
2.828178
3.559022
string = self.remove_punctuation(string) string = re.sub(r'[J]', 'I', string) if len(string) % 2 == 1: string += 'X' ret = '' for c in range(0, len(string), 2): ret += self.encipher_pair(string[c], string[c + 1]) return ret
def encipher(self, string)
Encipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
3.056269
3.089787
0.989152
string = self.remove_punctuation(string) if len(string) % 2 == 1: string += 'X' ret = '' for c in range(0, len(string), 2): ret += self.decipher_pair(string[c], string[c + 1]) return ret
def decipher(self, string)
Decipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example:: plaintext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string.
2.818997
2.752597
1.024123
string = self.remove_punctuation(string,filter='[^'+self.key+']') ctext = "" for c in string: ctext += ''.join([str(i) for i in L2IND[c]]) return ctext
def encipher(self,string)
Encipher string using Delastelle cipher according to initialised key. Example:: ciphertext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be 3 times the length of the plaintext.
8.644608
9.565595
0.903719
string = self.remove_punctuation(string,filter='[^'+self.chars+']') ret = '' for i in range(0,len(string),3): ind = tuple([int(string[i+k]) for k in [0,1,2]]) ret += IND2L[ind] return ret
def decipher(self,string)
Decipher string using Delastelle cipher according to initialised key. Example:: plaintext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be 1/3 the length of the ciphertext.
5.659142
6.049271
0.935508
string = self.remove_punctuation(string) if len(string)%2 == 1: string = string + 'X' ret = '' for c in range(0,len(string.upper()),2): a,b = self.encipher_pair(string[c],string[c+1]) ret += a + b return ret
def encipher(self,string)
Encipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Foursquare(key1='zgptfoihmuwdrcnykeqaxvsbl',key2='mfnbdcrhsaxyogvituewlqzkp').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
3.393305
3.424036
0.991025
string = self.remove_punctuation(string) if len(string)%2 == 1: string = string + 'X' ret = '' for c in range(0,len(string.upper()),2): a,b = self.decipher_pair(string[c],string[c+1]) ret += a + b return ret
def decipher(self,string)
Decipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example:: plaintext = Foursquare(key1='zgptfoihmuwdrcnykeqaxvsbl',key2='mfnbdcrhsaxyogvituewlqzkp').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string.
3.475384
3.61619
0.961062
r if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string: if c.isalpha(): ret += self.i2a( self.a2i(c) + 13 ) else: ret += c return ret
def encipher(self,string,keep_punct=False)
r"""Encipher string using rot13 cipher. Example:: ciphertext = Rot13().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string.
4.221045
3.912865
1.078761
string = self.remove_punctuation(string) ret = '' for (i,c) in enumerate(string): i = i%len(self.key) if self.key[i] in 'AB': ret += 'NOPQRSTUVWXYZABCDEFGHIJKLM'[self.a2i(c)] elif self.key[i] in 'YZ': ret += 'ZNOPQRSTUVWXYBCDEFGHIJKLMA'[self.a2i(c)] elif self.key[i] in 'WX': ret += 'YZNOPQRSTUVWXCDEFGHIJKLMAB'[self.a2i(c)] elif self.key[i] in 'UV': ret += 'XYZNOPQRSTUVWDEFGHIJKLMABC'[self.a2i(c)] elif self.key[i] in 'ST': ret += 'WXYZNOPQRSTUVEFGHIJKLMABCD'[self.a2i(c)] elif self.key[i] in 'QR': ret += 'VWXYZNOPQRSTUFGHIJKLMABCDE'[self.a2i(c)] elif self.key[i] in 'OP': ret += 'UVWXYZNOPQRSTGHIJKLMABCDEF'[self.a2i(c)] elif self.key[i] in 'MN': ret += 'TUVWXYZNOPQRSHIJKLMABCDEFG'[self.a2i(c)] elif self.key[i] in 'KL': ret += 'STUVWXYZNOPQRIJKLMABCDEFGH'[self.a2i(c)] elif self.key[i] in 'IJ': ret += 'RSTUVWXYZNOPQJKLMABCDEFGHI'[self.a2i(c)] elif self.key[i] in 'GH': ret += 'QRSTUVWXYZNOPKLMABCDEFGHIJ'[self.a2i(c)] elif self.key[i] in 'EF': ret += 'PQRSTUVWXYZNOLMABCDEFGHIJK'[self.a2i(c)] elif self.key[i] in 'CD': ret += 'OPQRSTUVWXYZNMABCDEFGHIJKL'[self.a2i(c)] return ret
def encipher(self,string)
Encipher string using Porta cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Porta('HELLO').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
2.038419
2.05923
0.989894
message = self.remove_punctuation(message) effective_ch = [0,0,0,0,0,0,0] # these are the wheels which are effective currently, 1 for yes, 0 no # -the zero at the beginning is extra, indicates lug was in pos 0 ret = '' # from now we no longer need the wheel starts, we can just increment the actual key for j in range(len(message)): shift = 0 effective_ch[0] = 0; effective_ch[1] = self.wheel_1_settings[self.actual_key[0]] effective_ch[2] = self.wheel_2_settings[self.actual_key[1]] effective_ch[3] = self.wheel_3_settings[self.actual_key[2]] effective_ch[4] = self.wheel_4_settings[self.actual_key[3]] effective_ch[5] = self.wheel_5_settings[self.actual_key[4]] effective_ch[6] = self.wheel_6_settings[self.actual_key[5]] for i in range(0,27): # implements the cylindrical drum with lugs on it if effective_ch[self.lug_positions[i][0]] or effective_ch[self.lug_positions[i][1]]: shift+=1 # shift has been found, now actually encrypt letter ret += self.subst(message[j],key='ZYXWVUTSRQPONMLKJIHGFEDCBA',offset=-shift); # encrypt letter self.advance_key(); # advance the key wheels return ret
def encipher(self,message)
Encipher string using M209 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example (continuing from the example above):: ciphertext = m.encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
5.024487
5.208415
0.964686
string = string.upper() #print string morsestr = self.enmorse(string) # make sure the morse string is a multiple of 3 in length if len(morsestr) % 3 == 1: morsestr = morsestr[0:-1] elif len(morsestr) % 3 == 2: morsestr = morsestr + 'x' #print morsestr mapping = dict(zip(self.table,self.key)) ctext = "" for i in range(0,len(morsestr),3): ctext += mapping[morsestr[i:i+3]] return ctext
def encipher(self,string)
Encipher string using FracMorse cipher according to initialised key. Example:: ciphertext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
2.867544
2.973396
0.9644
string = string.upper() mapping = dict(zip(self.key,self.table)) ptext = "" for i in string: ptext += mapping[i] return self.demorse(ptext)
def decipher(self,string)
Decipher string using FracMorse cipher according to initialised key. Example:: plaintext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').decipher(ciphertext) :param string: The string to decipher. :returns: The enciphered string.
5.050065
6.144127
0.821934
string = self.remove_punctuation(string) ret = '' ind = self.sortind(self.keyword) for i in range(len(self.keyword)): ret += string[ind.index(i)::len(self.keyword)] return ret
def encipher(self,string)
Encipher string using Columnar Transposition cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = ColTrans('GERMAN').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string.
6.250831
7.095693
0.880933