code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
obj = javabridge.call(self.jobject, "getOwner", "()Lweka/core/CapabilitiesHandler;")
if obj is None:
return None
else:
return JavaObject(jobject=obj) | def owner(self) | Returns the owner of these capabilities, if any.
:return: the owner, can be None
:rtype: JavaObject | 5.460055 | 4.713127 | 1.158478 |
result = []
iterator = javabridge.iterate_java(javabridge.call(self.jobject, "dependencies", "()Ljava/util/Iterator;"))
for c in iterator:
result.append(Capability(c))
return result | def dependencies(self) | Returns all the dependencies.
:return: the dependency list
:rtype: list | 7.255978 | 7.178643 | 1.010773 |
if multi is None:
return Capabilities(javabridge.static_call(
"weka/core/Capabilities", "forInstances",
"(Lweka/core/Instances;)Lweka/core/Capabilities;", data.jobject))
else:
return Capabilities(javabridge.static_call(
"weka/core/Capabilities", "forInstances",
"(Lweka/core/Instances;Z)Lweka/core/Capabilities;", data.jobject, multi)) | def for_instances(cls, data, multi=None) | returns a Capabilities object specific for this data. The minimum number of instances is not set, the check
for multi-instance data is optional.
:param data: the data to generate the capabilities for
:type data: Instances
:param multi: whether to check the structure, too
:type multi: bool
:return: the generated capabilities
:rtype: Capabilities | 2.331031 | 2.030382 | 1.148075 |
if not plot.matplotlib_available:
logger.error("Matplotlib is not installed, plotting unavailable!")
return
# create subsample
data = plot.create_subsample(data, percent=percent, seed=seed)
# collect data
x = []
y = []
if data.class_index == -1:
c = None
else:
c = []
for i in range(data.num_instances):
inst = data.get_instance(i)
x.append(inst.get_value(index_x))
y.append(inst.get_value(index_y))
if c is not None:
c.append(inst.get_value(inst.class_index))
# plot data
fig, ax = plt.subplots()
if c is None:
ax.scatter(x, y, s=size, alpha=0.5)
else:
ax.scatter(x, y, c=c, s=size, alpha=0.5)
ax.set_xlabel(data.attribute(index_x).name)
ax.set_ylabel(data.attribute(index_y).name)
if title is None:
title = "Attribute scatter plot"
if percent != 100:
title += " (%0.1f%%)" % percent
ax.set_title(title)
ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c="0.3")
ax.grid(True)
fig.canvas.set_window_title(data.relationname)
plt.draw()
if outfile is not None:
plt.savefig(outfile)
if wait:
plt.show() | def scatter_plot(data, index_x, index_y, percent=100.0, seed=1, size=50, title=None, outfile=None, wait=True) | Plots two attributes against each other.
TODO: click events http://matplotlib.org/examples/event_handling/data_browser.html
:param data: the dataset
:type data: Instances
:param index_x: the 0-based index of the attribute on the x axis
:type index_x: int
:param index_y: the 0-based index of the attribute on the y axis
:type index_y: int
:param percent: the percentage of the dataset to use for plotting
:type percent: float
:param seed: the seed value to use for subsampling
:type seed: int
:param size: the size of the circles in point
:type size: int
:param title: an optional title
:type title: str
:param outfile: the (optional) file to save the generated plot to. The extension determines the file format.
:type outfile: str
:param wait: whether to wait for the user to close the plot
:type wait: bool | 2.202852 | 2.088433 | 1.054787 |
if not plot.matplotlib_available:
logger.error("Matplotlib is not installed, plotting unavailable!")
return
# create subsample
data = plot.create_subsample(data, percent=percent, seed=seed)
fig = plt.figure()
if atts is None:
x = []
for i in range(data.num_attributes):
x.append(i)
else:
x = atts
ax = fig.add_subplot(111)
ax.set_xlabel("attributes")
ax.set_ylabel("value")
ax.grid(True)
for index_y in range(data.num_instances):
y = []
for index_x in x:
y.append(data.get_instance(index_y).get_value(index_x))
ax.plot(x, y, "o-", alpha=0.5)
if title is None:
title = data.relationname
if percent != 100:
title += " (%0.1f%%)" % percent
fig.canvas.set_window_title(title)
plt.draw()
if outfile is not None:
plt.savefig(outfile)
if wait:
plt.show() | def line_plot(data, atts=None, percent=100.0, seed=1, title=None, outfile=None, wait=True) | Uses the internal format to plot the dataset, one line per instance.
:param data: the dataset
:type data: Instances
:param atts: the list of 0-based attribute indices of attributes to plot
:type atts: list
:param percent: the percentage of the dataset to use for plotting
:type percent: float
:param seed: the seed value to use for subsampling
:type seed: int
:param title: an optional title
:type title: str
:param outfile: the (optional) file to save the generated plot to. The extension determines the file format.
:type outfile: str
:param wait: whether to wait for the user to close the plot
:type wait: bool | 2.485669 | 2.407488 | 1.032474 |
if isinstance(data, list):
result = []
for d in data:
result.append(Instances(javabridge.static_call(
"Lweka/filters/Filter;", "useFilter",
"(Lweka/core/Instances;Lweka/filters/Filter;)Lweka/core/Instances;",
d.jobject, self.jobject)))
return result
else:
return Instances(javabridge.static_call(
"Lweka/filters/Filter;", "useFilter",
"(Lweka/core/Instances;Lweka/filters/Filter;)Lweka/core/Instances;",
data.jobject, self.jobject)) | def filter(self, data) | Filters the dataset(s). When providing a list, this can be used to create compatible train/test sets,
since the filter only gets initialized with the first dataset and all subsequent datasets get transformed
using the same setup.
NB: inputformat(Instances) must have been called beforehand.
:param data: the Instances to filter
:type data: Instances or list of Instances
:return: the filtered Instances object(s)
:rtype: Instances or list of Instances | 2.2752 | 2.091553 | 1.087804 |
objects = javabridge.get_env().get_object_array_elements(
javabridge.call(self.jobject, "getFilters", "()[Lweka/filters/Filter;"))
result = []
for obj in objects:
result.append(Filter(jobject=obj))
return result | def filters(self) | Returns the list of base filters.
:return: the filter list
:rtype: list | 3.480597 | 3.4668 | 1.00398 |
obj = []
for fltr in filters:
obj.append(fltr.jobject)
javabridge.call(self.jobject, "setFilters", "([Lweka/filters/Filter;)V", obj) | def filters(self, filters) | Sets the base filters.
:param filters: the list of base filters to use
:type filters: list | 4.28738 | 5.231853 | 0.819476 |
result = []
result.append(self.__class__.__name__)
result.append(re.sub(r'.', '=', self.__class__.__name__))
result.append("")
result.append("Supported value names:")
for a in self.allowed:
result.append(a)
return '\n'.join(result) | def generate_help(self) | Generates a help string for this container.
:return: the help string
:rtype: str | 4.355897 | 4.47113 | 0.974227 |
result = super(Transformer, self).post_execute()
if result is None:
self._input = None
return result | def post_execute(self) | Gets executed after the actual execution.
:return: None if successful, otherwise error message
:rtype: str | 6.940053 | 7.582624 | 0.915258 |
return "incremental: " + str(self.config["incremental"]) \
+ ", custom: " + str(self.config["use_custom_loader"]) \
+ ", loader: " + base.to_commandline(self.config["custom_loader"]) | def quickinfo(self) | Returns a short string describing some of the options of the actor.
:return: the info, None if not available
:rtype: str | 7.154207 | 8.083498 | 0.885038 |
opt = "incremental"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to load the dataset incrementally (bool)."
opt = "use_custom_loader"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to use a custom loader."
opt = "custom_loader"
if opt not in options:
options[opt] = converters.Loader(classname="weka.core.converters.ArffLoader")
if opt not in self.help:
self.help[opt] = "The custom loader to use (Loader)."
return super(LoadDataset, self).fix_config(options) | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.022713 | 3.063711 | 0.986618 |
if token is None:
raise Exception(self.full_name + ": No token provided!")
if isinstance(token.payload, str):
return
raise Exception(self.full_name + ": Unhandled class: " + classes.get_classname(token.payload)) | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 6.197305 | 6.552011 | 0.945863 |
fname = str(self.input.payload)
if not os.path.exists(fname):
return "File '" + fname + "' does not exist!"
if not os.path.isfile(fname):
return "Location '" + fname + "' is not a file!"
if self.resolve_option("use_custom_loader"):
self._loader = self.resolve_option("custom_loader")
else:
self._loader = converters.loader_for_file(fname)
dataset = self._loader.load_file(fname, incremental=bool(self.resolve_option("incremental")))
if not self.resolve_option("incremental"):
self._output.append(Token(dataset))
else:
self._iterator = self._loader.__iter__()
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 4.395151 | 4.263729 | 1.030823 |
if self._iterator is not None:
try:
inst = self._iterator.next()
result = Token(inst)
except Exception as e:
self._iterator = None
result = None
else:
result = super(LoadDataset, self).output()
return result | def output(self) | Returns the next available output token.
:return: the next token, None if none available
:rtype: Token | 5.406641 | 4.521791 | 1.195686 |
super(LoadDataset, self).stop_execution()
self._loader = None
self._iterator = None | def stop_execution(self) | Triggers the stopping of the object. | 10.272593 | 9.539651 | 1.076831 |
self._loader = None
self._iterator = None
super(LoadDataset, self).wrapup() | def wrapup(self) | Finishes up after execution finishes, does not remove any graphical output. | 12.014915 | 12.273273 | 0.97895 |
options = super(SetStorageValue, self).fix_config(options)
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The storage value name for storing the payload under (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 6.757708 | 7.857314 | 0.860053 |
if self.storagehandler is None:
return "No storage handler available!"
self.storagehandler.storage[self.resolve_option("storage_name")] = self.input.payload
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 11.556395 | 10.404181 | 1.110745 |
options = super(DeleteStorageValue, self).fix_config(options)
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The name of the storage value to delete (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 5.002699 | 5.778937 | 0.865678 |
options = super(InitStorageValue, self).fix_config(options)
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The name of the storage value to delete (string)."
opt = "value"
if opt not in options:
options[opt] = "1"
if opt not in self.help:
self.help[opt] = "The initial value (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.445902 | 3.801734 | 0.906403 |
if self.storagehandler is None:
return "No storage handler available!"
self.storagehandler.storage[self.resolve_option("storage_name")] = eval(str(self.resolve_option("value")))
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 9.59347 | 9.0408 | 1.061131 |
options = super(UpdateStorageValue, self).fix_config(options)
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The name of the storage value to update (string)."
opt = "expression"
if opt not in options:
options[opt] = "int({X} + 1)"
if opt not in self.help:
self.help[opt] = "The expression for updating the storage value; use {X} for current value (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.789345 | 4.069009 | 0.93127 |
if self.storagehandler is None:
return "No storage handler available!"
expr = str(self.resolve_option("expression")).replace(
"{X}", str(self.storagehandler.storage[str(self.resolve_option("storage_name"))]))
expr = self.storagehandler.expand(expr)
self.storagehandler.storage[self.resolve_option("storage_name")] = eval(expr)
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 6.15875 | 5.727062 | 1.075377 |
options = super(MathExpression, self).fix_config(options)
opt = "expression"
if opt not in options:
options[opt] = "{X}"
if opt not in self.help:
self.help[opt] = "The mathematical expression to evaluate (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 5.170448 | 5.639712 | 0.916793 |
expr = str(self.resolve_option("expression"))
expr = expr.replace("{X}", str(self.input.payload))
self._output.append(Token(eval(expr)))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 15.926697 | 16.06299 | 0.991515 |
options = super(ClassSelector, self).fix_config(options)
opt = "index"
if opt not in options:
options[opt] = "last"
if opt not in self.help:
self.help[opt] = "The class index (1-based number); 'first' and 'last' are accepted as well (string)."
opt = "unset"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to unset the class index (bool)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.696467 | 3.982488 | 0.92818 |
if isinstance(self.input.payload, Instances):
inst = None
data = self.input.payload
elif isinstance(self.input.payload, Instance):
inst = self.input.payload
data = inst.dataset
index = str(self.resolve_option("index"))
unset = bool(self.resolve_option("unset"))
if unset:
data.no_class()
else:
if index == "first":
data.class_is_first()
elif index == "last":
data.class_is_last()
else:
data.class_index = int(index) - 1
if inst is None:
self._output.append(Token(data))
else:
self._output.append(Token(inst))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 4.290696 | 4.301231 | 0.997551 |
options = super(Train, self).fix_config(options)
opt = "setup"
if opt not in options:
options[opt] = Classifier(classname="weka.classifiers.rules.ZeroR")
if opt not in self.help:
self.help[opt] = "The classifier/clusterer/associator to train (Classifier/Clusterer/Associator)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 6.677081 | 7.107767 | 0.939406 |
if isinstance(self.input.payload, Instances):
inst = None
data = self.input.payload
else:
inst = self.input.payload
data = inst.dataset
retrain = False
if (self._header is None) or (self._header.equal_headers(data) is not None) or (inst is None):
retrain = True
self._header = Instances.template_instances(data, 0)
if retrain or (self._model is None):
cls = self.resolve_option("setup")
if isinstance(cls, Classifier):
self._model = Classifier.make_copy(cls)
elif isinstance(cls, Clusterer):
self._model = Clusterer.make_copy(cls)
elif isinstance(cls, Associator):
self._model = Associator.make_copy(cls)
else:
return "Unhandled class: " + classes.get_classname(cls)
if retrain:
if inst is not None:
data = Instances.template_instances(data, 1)
data.add_instance(inst)
if isinstance(self._model, Classifier):
self._model.build_classifier(data)
elif isinstance(self._model, Clusterer):
self._model.build_clusterer(data)
elif isinstance(self._model, Associator):
self._model.build_associations(data)
else:
if isinstance(self._model, Classifier):
self._model.update_classifier(inst)
elif isinstance(self._model, Clusterer):
self._model.update_clusterer(inst)
else:
return "Cannot train incrementally: " + classes.get_classname(self._model)
cont = ModelContainer(model=self._model, header=self._header)
self._output.append(Token(cont))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 3.082759 | 3.048023 | 1.011396 |
opt = "setup"
if opt not in options:
options[opt] = filters.Filter(classname="weka.filters.AllFilter")
if opt not in self.help:
self.help[opt] = "The filter to apply to the dataset (Filter)."
opt = "keep_relationname"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to keep the original relation name (bool)."
return super(Filter, self).fix_config(options) | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 4.655805 | 4.734876 | 0.9833 |
if token is None:
raise Exception(self.full_name + ": No token provided!")
if isinstance(token.payload, Instances):
return
if isinstance(token.payload, Instance):
return
raise Exception(self.full_name + ": Unhandled class: " + classes.get_classname(token.payload)) | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 5.627841 | 6.007185 | 0.936852 |
if isinstance(self.input.payload, Instance):
inst = self.input.payload
data = Instances.template_instances(inst.dataset, 1)
data.add_instance(inst)
else:
inst = None
data = self.input.payload
relname = data.relationname
keep = self.resolve_option("keep_relationname")
if inst is None:
if (self._filter is None) or self._header.equal_headers(data) is not None:
self._header = Instances.template_instances(data)
self._filter = filters.Filter.make_copy(self.resolve_option("setup"))
self._filter.inputformat(data)
filtered = self._filter.filter(data)
if keep:
filtered.relationname = relname
self._output.append(Token(filtered))
else:
if (self._filter is None) or self._header.equal_headers(data) is not None:
self._header = Instances.template_instances(data)
self._filter = filters.Filter.make_copy(self.resolve_option("setup"))
self._filter.inputformat(data)
filtered = self._filter.filter(data)
if keep:
filtered.relationname = relname
self._output.append(Token(filtered.get_instance(0)))
else:
self._filter.input(inst)
self._filter.batch_finished()
filtered = self._filter.output()
if keep:
filtered.dataset.relationname = relname
self._output.append(Token(filtered))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 3.593068 | 3.602852 | 0.997284 |
options = super(DeleteFile, self).fix_config(options)
opt = "regexp"
if opt not in options:
options[opt] = ".*"
if opt not in self.help:
self.help[opt] = "The regular expression that the files must match (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 4.823689 | 5.463096 | 0.882959 |
fname = str(self.input.payload)
spattern = str(self.resolve_option("regexp"))
pattern = None
if (spattern is not None) and (spattern != ".*"):
pattern = re.compile(spattern)
if (pattern is None) or (pattern.match(fname)):
os.remove(fname)
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 5.852952 | 5.799117 | 1.009283 |
options = super(CrossValidate, self).fix_config(options)
opt = "setup"
if opt not in options:
options[opt] = Classifier(classname="weka.classifiers.rules.ZeroR")
if opt not in self.help:
self.help[opt] = "The classifier/clusterer to train (Classifier/Clusterer)."
opt = "folds"
if opt not in options:
options[opt] = 10
if opt not in self.help:
self.help[opt] = "The number of folds for CV (int)."
opt = "seed"
if opt not in options:
options[opt] = 1
if opt not in self.help:
self.help[opt] = "The seed value for randomizing the data (int)."
opt = "discard_predictions"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Discard classifier predictions to save memory (bool)."
opt = "output"
if opt not in options:
options[opt] = None
if opt not in self.help:
self.help[opt] = "For capturing the classifier's prediction output (PredictionOutput)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 2.532337 | 2.605354 | 0.971974 |
data = self.input.payload
cls = self.resolve_option("setup")
if isinstance(cls, Classifier):
cls = Classifier.make_copy(cls)
evl = Evaluation(data)
evl.discard_predictions = bool(self.resolve_option("discard_predictions"))
evl.crossvalidate_model(
cls,
data,
int(self.resolve_option("folds")),
Random(int(self.resolve_option("seed"))),
self.resolve_option("output"))
self._output.append(Token(evl))
elif isinstance(cls, Clusterer):
cls = Clusterer.make_copy(cls)
evl = ClusterEvaluation()
llh = evl.crossvalidate_model(
cls,
data,
int(self.resolve_option("folds")),
Random(int(self.resolve_option("seed"))))
self._output.append(Token(llh))
else:
return "Unhandled class: " + classes.get_classname(cls)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 4.266096 | 4.182817 | 1.01991 |
options = super(Evaluate, self).fix_config(options)
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The name of the classifier model in storage (string)."
opt = "discard_predictions"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Discard classifier predictions to save memory (bool)."
opt = "output"
if opt not in options:
options[opt] = None
if opt not in self.help:
self.help[opt] = "For capturing the classifier's prediction output (PredictionOutput)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.471926 | 3.713419 | 0.934967 |
data = self.input.payload
if self.storagehandler is None:
return "No storage handler available!"
sname = str(self.resolve_option("storage_name"))
if sname not in self.storagehandler.storage:
return "No storage item called '" + sname + "' present!"
cls = self.storagehandler.storage[sname]
if isinstance(cls, Classifier):
evl = Evaluation(data)
evl.discard_predictions = bool(self.resolve_option("discard_predictions"))
evl.test_model(
cls,
data,
self.resolve_option("output"))
elif isinstance(cls, Clusterer):
evl = ClusterEvaluation()
evl.set_model(cls)
evl.test_model(data)
else:
return "Unhandled class: " + classes.get_classname(cls)
self._output.append(Token(evl))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 5.079478 | 4.945368 | 1.027118 |
options = super(EvaluationSummary, self).fix_config(options)
opt = "title"
if opt not in options:
options[opt] = None
if opt not in self.help:
self.help[opt] = "The title for the output (string)."
opt = "complexity"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to output classifier complexity information (bool)."
opt = "matrix"
if opt not in options:
options[opt] = False
if opt not in self.help:
self.help[opt] = "Whether to output the classifier confusion matrix (bool)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 2.823039 | 3.00814 | 0.938466 |
if isinstance(token.payload, Evaluation):
return None
if isinstance(token.payload, ClusterEvaluation):
return None
raise Exception(
self.full_name + ": Input token is not a supported Evaluation object - "
+ classes.get_classname(token.payload)) | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 10.644255 | 11.162065 | 0.95361 |
evl = self.input.payload
if isinstance(evl, Evaluation):
summary = evl.summary(title=self.resolve_option("title"), complexity=bool(self.resolve_option("complexity")))
if bool(self.resolve_option("matrix")):
summary += "\n" + evl.matrix(title=self.resolve_option("title"))
else:
summary = evl.cluster_results
self._output.append(Token(summary))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 7.207852 | 7.194637 | 1.001837 |
fname = self.input.payload
data = serialization.read_all(fname)
if len(data) == 1:
if is_instance_of(data[0], "weka.classifiers.Classifier"):
cont = ModelContainer(model=Classifier(jobject=data[0]))
elif is_instance_of(data[0], "weka.clusterers.Clusterer"):
cont = ModelContainer(model=Clusterer(jobject=data[0]))
else:
return "Unhandled class: " + classes.get_classname(data[0])
elif len(data) == 2:
if is_instance_of(data[0], "weka.classifiers.Classifier"):
cont = ModelContainer(model=Classifier(jobject=data[0]), header=Instances(data[1]))
elif is_instance_of(data[0], "weka.clusterers.Clusterer"):
cont = ModelContainer(model=Clusterer(jobject=data[0]), header=Instances(data[1]))
else:
return "Unhandled class: " + classes.get_classname(data[0])
else:
return "Expected 1 or 2 objects, but got " + str(len(data)) + " instead reading: " + fname
self._output.append(Token(cont))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 2.674342 | 2.646237 | 1.010621 |
opt = "setup"
if opt not in options:
options[opt] = conversion.PassThrough()
if opt not in self.help:
self.help[opt] = "The conversion to apply to the input data (Conversion)."
return super(Convert, self).fix_config(options) | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 8.438257 | 8.571314 | 0.984477 |
if token is None:
raise Exception(self.full_name + ": No token provided!")
self.config["setup"].check_input(token.payload) | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 11.124425 | 12.729884 | 0.873883 |
conv = self.config["setup"].shallow_copy()
conv.input = self._input.payload
result = conv.convert()
if result is None:
if conv.output is not None:
self._output.append(Token(conv.output))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 10.812778 | 10.058526 | 1.074986 |
return "search: " + base.to_commandline(self.config["search"]) + ", eval: " \
+ base.to_commandline(self.config["eval"]) | def quickinfo(self) | Returns a short string describing some of the options of the actor.
:return: the info, None if not available
:rtype: str | 10.098751 | 11.411718 | 0.884946 |
opt = "search"
if opt not in options:
options[opt] = attsel.ASSearch(classname="weka.attributeSelection.BestFirst")
if opt not in self.help:
self.help[opt] = "The search algorithm to use (ASSearch)."
opt = "eval"
if opt not in options:
options[opt] = attsel.ASEvaluation(classname="weka.attributeSelection.CfsSubsetEval")
if opt not in self.help:
self.help[opt] = "The evaluation algorithm to use (ASEvaluation)."
return super(AttributeSelection, self).fix_config(options) | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 3.67751 | 3.770751 | 0.975272 |
if token is None:
raise Exception(self.full_name + ": No token provided!")
if not isinstance(token.payload, Instances):
raise Exception(self.full_name + ": Not an Instances object!") | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 5.76839 | 6.497803 | 0.887745 |
data = self.input.payload
search = self.config["search"].shallow_copy()
evl = self.config["eval"].shallow_copy()
asel = attsel.AttributeSelection()
asel.search(search)
asel.evaluator(evl)
asel.select_attributes(data)
cont = AttributeSelectionContainer(
original=data,
reduced=asel.reduce_dimensionality(data),
num_atts=asel.number_attributes_selected,
selected=asel.selected_attributes,
results=asel.results_string)
self._output.append(Token(cont))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 7.303955 | 7.126659 | 1.024878 |
options = super(RenameRelation, self).fix_config(options)
opt = "name"
if opt not in options:
options[opt] = "newname"
if opt not in self.help:
self.help[opt] = "The new relation name to use (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 4.793558 | 5.389555 | 0.889416 |
relname = self.resolve_option("name")
if isinstance(self.input.payload, Instance):
self.input.payload.dataset.relationname = relname
else:
self.input.payload.relationname = relname
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 7.582281 | 7.654747 | 0.990533 |
if isinstance(self.input.payload, classes.JavaObject) and self.input.payload.is_serializable:
copy = serialization.deepcopy(self.input.payload)
if copy is not None:
self._output.append(Token(copy))
else:
self._output.append(self.input)
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 6.219161 | 6.217138 | 1.000325 |
options = super(Predict, self).fix_config(options)
opt = "model"
if opt not in options:
options[opt] = "."
if opt not in self.help:
self.help[opt] = "The serialized model to use for making predictions (string)."
opt = "storage_name"
if opt not in options:
options[opt] = "unknown"
if opt not in self.help:
self.help[opt] = "The name of the model (or ModelContainer) in storage to use (string)."
return options | def fix_config(self, options) | Fixes the options, if necessary. I.e., it adds all required elements to the dictionary.
:param options: the options to fix
:type options: dict
:return: the (potentially) fixed options
:rtype: dict | 4.14488 | 4.413836 | 0.939065 |
if isinstance(token.payload, Instance):
return
raise Exception(self.full_name + ": Unhandled data type: " + str(token.payload.__class__.__name__)) | def check_input(self, token) | Performs checks on the input token. Raises an exception if unsupported.
:param token: the token to check
:type token: Token | 9.221407 | 10.103695 | 0.912677 |
inst = self.input.payload
if not inst.has_class:
return "No class set!"
# load model?
if self._model is None:
model = None
fname = str(self.resolve_option("model"))
if os.path.isfile(fname):
model = serialization.read(fname)
else:
name = self.resolve_option("storage_name")
if name in self.storagehandler.storage:
model = self.storagehandler.storage.get(name)
if isinstance(model, ModelContainer):
model = model.get("Model").jobject
if model is None:
return "No model available from storage or serialized file!"
self._is_classifier = is_instance_of(model, "weka.classifiers.Classifier")
if self._is_classifier:
self._model = Classifier(jobject=model)
else:
self._model = Clusterer(jobject=model)
if self._is_classifier:
cls = self._model.classify_instance(inst)
dist = self._model.distribution_for_instance(inst)
label = inst.class_attribute.value(int(cls))
cont = ClassificationContainer(inst=inst, classification=cls, distribution=dist, label=label)
else:
cls = self._model.cluster_instance(inst)
dist = self._model.distribution_for_instance(inst)
cont = ClusteringContainer(inst=inst, cluster=int(cls), distribution=dist)
self._output.append(Token(cont))
return None | def do_execute(self) | The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str | 3.727619 | 3.649939 | 1.021282 |
if not plot.pygraphviz_available:
logger.error("Pygraphviz is not installed, cannot generate graph plot!")
return
if not plot.PIL_available:
logger.error("PIL is not installed, cannot display graph plot!")
return
agraph = AGraph(graph)
agraph.layout(prog='dot')
if filename is None:
filename = tempfile.mktemp(suffix=".png")
agraph.draw(filename)
image = Image.open(filename)
image.show() | def plot_dot_graph(graph, filename=None) | Plots a graph in graphviz dot notation.
:param graph: the dot notation graph
:type graph: str
:param filename: the (optional) file to save the generated plot to. The extension determines the file format.
:type filename: str | 2.969424 | 3.48731 | 0.851494 |
return javabridge.get_env().get_string(self.__stem(javabridge.get_env().new_string_utf(s))) | def stem(self, s) | Performs stemming on the string.
:param s: the string to stem
:type s: str
:return: the stemmed string
:rtype: str | 5.560882 | 5.7279 | 0.970841 |
if y is not None:
if len(x) != len(y):
raise Exception("Dimensions of x and y differ: " + str(len(x)) + " != " + str(len(y)))
# create header
atts = []
for i in range(len(x[0])):
atts.append(Attribute.create_numeric("x" + str(i+1)))
if y is not None:
atts.append(Attribute.create_numeric("y"))
result = Instances.create_instances(name, atts, len(x))
# add data
for i in range(len(x)):
values = list(x[i])
if y is not None:
values.append(y[i])
result.add_instance(Instance.create_instance(values))
return result | def create_instances_from_matrices(x, y=None, name="data") | Allows the generation of an Instances object from a 2-dimensional matrix for X and a
1-dimensional matrix for Y (optional).
All data must be numerical. Attributes can be converted to nominal with the
weka.filters.unsupervised.attribute.NumericToNominal filter.
:param x: the input variables
:type x: ndarray
:param y: the output variable (optional)
:type y: ndarray
:param name: the name of the dataset
:type name: str
:return: the generated dataset
:rtype: Instances | 2.154844 | 2.108949 | 1.021762 |
att = self.__attribute_by_name(javabridge.get_env().new_string(name))
if att is None:
return None
else:
return Attribute(att) | def attribute_by_name(self, name) | Returns the specified attribute, None if not found.
:param name: the name of the attribute
:type name: str
:return: the attribute or None
:rtype: Attribute | 5.01579 | 5.115084 | 0.980588 |
if index is None:
self.__append_instance(inst.jobject)
else:
self.__insert_instance(index, inst.jobject) | def add_instance(self, inst, index=None) | Adds the specified instance to the dataset.
:param inst: the Instance to add
:type inst: Instance
:param index: the 0-based index where to add the Instance
:type index: int | 4.119404 | 4.728401 | 0.871205 |
return Instance(
self.__set_instance(index, inst.jobject)) | def set_instance(self, index, inst) | Sets the Instance at the specified location in the dataset.
:param index: the 0-based index of the instance to replace
:type index: int
:param inst: the Instance to set
:type inst: Instance
:return: the instance
:rtype: Instance | 25.897547 | 33.404037 | 0.775282 |
if index is None:
javabridge.call(self.jobject, "delete", "()V")
else:
javabridge.call(self.jobject, "delete", "(I)V", index) | def delete(self, index=None) | Removes either the specified Instance or all Instance objects.
:param index: the 0-based index of the instance to remove
:type index: int | 2.488287 | 2.565766 | 0.969803 |
javabridge.call(self.jobject, "insertAttributeAt", "(Lweka/core/Attribute;I)V", att.jobject, index) | def insert_attribute(self, att, index) | Inserts the attribute at the specified location.
:param att: the attribute to insert
:type att: Attribute
:param index: the index to insert the attribute at
:type index: int | 4.248164 | 3.967657 | 1.070698 |
if random is None:
return Instances(
javabridge.call(self.jobject, "trainCV", "(II)Lweka/core/Instances;",
num_folds, fold))
else:
return Instances(
javabridge.call(self.jobject, "trainCV", "(IILjava/util/Random;)Lweka/core/Instances;",
num_folds, fold, random.jobject)) | def train_cv(self, num_folds, fold, random=None) | Generates a training fold for cross-validation.
:param num_folds: the number of folds of cross-validation, eg 10
:type num_folds: int
:param fold: the current fold (0-based)
:type fold: int
:param random: the random number generator
:type random: Random
:return: the training fold
:rtype: Instances | 2.836482 | 2.446155 | 1.159567 |
if from_row is None or num_rows is None:
return Instances(
javabridge.make_instance(
"weka/core/Instances", "(Lweka/core/Instances;)V",
dataset.jobject))
else:
dataset = cls.copy_instances(dataset)
return Instances(
javabridge.make_instance(
"weka/core/Instances", "(Lweka/core/Instances;II)V",
dataset.jobject, from_row, num_rows)) | def copy_instances(cls, dataset, from_row=None, num_rows=None) | Creates a copy of the Instances. If either from_row or num_rows are None, then all of
the data is being copied.
:param dataset: the original dataset
:type dataset: Instances
:param from_row: the 0-based start index of the rows to copy
:type from_row: int
:param num_rows: the number of rows to copy
:type num_rows: int
:return: the copy of the data
:rtype: Instances | 2.641627 | 2.662096 | 0.992311 |
return Instances(
javabridge.make_instance(
"weka/core/Instances", "(Lweka/core/Instances;I)V", dataset.jobject, capacity)) | def template_instances(cls, dataset, capacity=0) | Uses the Instances as template to create an empty dataset.
:param dataset: the original dataset
:type dataset: Instances
:param capacity: how many data rows to reserve initially (see compactify)
:type capacity: int
:return: the empty dataset
:rtype: Instances | 7.037639 | 7.221372 | 0.974557 |
attributes = []
for att in atts:
attributes.append(att.jobject)
return Instances(
javabridge.make_instance(
"weka/core/Instances", "(Ljava/lang/String;Ljava/util/ArrayList;I)V",
name, javabridge.make_list(attributes), capacity)) | def create_instances(cls, name, atts, capacity) | Creates a new Instances.
:param name: the relation name
:type name: str
:param atts: the list of attributes to use for the dataset
:type atts: list of Attribute
:param capacity: how many data rows to reserve initially (see compactify)
:type capacity: int
:return: the dataset
:rtype: Instances | 4.364546 | 4.181293 | 1.043827 |
return Instances(javabridge.static_call(
"weka/core/Instances", "mergeInstances",
"(Lweka/core/Instances;Lweka/core/Instances;)Lweka/core/Instances;", inst1.jobject, inst2.jobject)) | def merge_instances(cls, inst1, inst2) | Merges the two datasets (side-by-side).
:param inst1: the first dataset
:type inst1: Instances or str
:param inst2: the first dataset
:type inst2: Instances
:return: the combined dataset
:rtype: Instances | 3.244851 | 3.23283 | 1.003718 |
dataset = javabridge.call(self.jobject, "dataset", "()Lweka/core/Instances;")
if dataset is None:
return None
else:
return Instances(dataset) | def dataset(self) | Returns the dataset that this instance belongs to.
:return: the dataset or None if no dataset set
:rtype: Instances | 3.823583 | 3.6591 | 1.044952 |
return self.__set_string_value(index, javabridge.get_env().new_string(s)) | def set_string_value(self, index, s) | Sets the string value at the specified position (0-based).
:param index: the 0-based index of the inernal value
:type index: int
:param s: the string value
:type s: str | 5.744958 | 7.379081 | 0.778547 |
jni_classname = classname.replace(".", "/")
if type(values) is list:
for i in range(len(values)):
values[i] = float(values[i])
values = numpy.array(values)
return Instance(
javabridge.make_instance(
jni_classname, "(D[D)V",
weight, javabridge.get_env().make_double_array(values))) | def create_instance(cls, values, classname="weka.core.DenseInstance", weight=1.0) | Creates a new instance.
:param values: the float values (internal format) to use, numpy array or list.
:type values: ndarray or list
:param classname: the classname of the instance (eg weka.core.DenseInstance).
:type classname: str
:param weight: the weight of the instance
:type weight: float | 4.115379 | 4.371419 | 0.941429 |
jni_classname = classname.replace(".", "/")
indices = []
vals = []
for (i, v) in values:
indices.append(i)
vals.append(float(v))
indices = numpy.array(indices, dtype=numpy.int32)
vals = numpy.array(vals)
return Instance(
javabridge.make_instance(
jni_classname, "(D[D[II)V",
weight, javabridge.get_env().make_double_array(vals),
javabridge.get_env().make_int_array(indices), max_values)) | def create_sparse_instance(cls, values, max_values, classname="weka.core.SparseInstance", weight=1.0) | Creates a new sparse instance.
:param values: the list of tuples (0-based index and internal format float). The indices of the
tuples must be in ascending order and "max_values" must be set to the maximum
number of attributes in the dataset.
:type values: list
:param max_values: the maximum number of attributes
:type max_values: int
:param classname: the classname of the instance (eg weka.core.SparseInstance).
:type classname: str
:param weight: the weight of the instance
:type weight: float | 3.378784 | 3.406919 | 0.991742 |
enm = javabridge.call(self.jobject, "enumerateValues", "()Ljava/util/Enumeration;")
if enm is None:
return None
else:
return typeconv.enumeration_to_list(enm) | def values(self) | Returns the labels, strings or relation-values.
:return: all the values, None if not NOMINAL, STRING, or RELATION
:rtype: list | 6.154755 | 6.907508 | 0.891024 |
if short:
return javabridge.static_call(
"weka/core/Attribute", "typeToStringShort", "(Lweka/core/Attribute;)Ljava/lang/String;",
self.jobject)
else:
return javabridge.static_call(
"weka/core/Attribute", "typeToString", "(Lweka/core/Attribute;)Ljava/lang/String;",
self.jobject) | def type_str(self, short=False) | Returns the type of the attribute as string.
:return: the type
:rtype: str | 2.136451 | 2.132722 | 1.001749 |
if name is None:
return Attribute(
javabridge.call(self.jobject, "copy", "()Ljava/lang/Object;"))
else:
return Attribute(
javabridge.call(self.jobject, "copy", "(Ljava/lang/String;)Lweka/core/Attribute;", name)) | def copy(self, name=None) | Creates a copy of this attribute.
:param name: the new name, uses the old one if None
:type name: str
:return: the copy of the attribute
:rtype: Attribute | 2.86642 | 2.762825 | 1.037496 |
return Attribute(
javabridge.make_instance(
"weka/core/Attribute", "(Ljava/lang/String;Ljava/util/List;)V", name, javabridge.make_list(labels))) | def create_nominal(cls, name, labels) | Creates a nominal attribute.
:param name: the name of the attribute
:type name: str
:param labels: the list of string labels to use
:type labels: list | 4.741653 | 5.490652 | 0.863586 |
return Attribute(
javabridge.make_instance(
"weka/core/Attribute", "(Ljava/lang/String;Lweka/core/Instances;)V", name, inst.jobject)) | def create_relational(cls, name, inst) | Creates a relational attribute.
:param name: the name of the attribute
:type name: str
:param inst: the structure of the relational attribute
:type inst: Instances | 6.117594 | 7.008978 | 0.872823 |
# determine lib directory with jars
rootdir = os.path.split(os.path.dirname(__file__))[0]
libdir = rootdir + os.sep + "lib"
# add jars from lib directory
for l in glob.glob(libdir + os.sep + "*.jar"):
if l.lower().find("-src.") == -1:
javabridge.JARS.append(str(l)) | def add_bundled_jars() | Adds the bundled jars to the JVM's classpath. | 4.20117 | 4.292566 | 0.978708 |
if 'CLASSPATH' in os.environ:
parts = os.environ['CLASSPATH'].split(os.pathsep)
for part in parts:
javabridge.JARS.append(part) | def add_system_classpath() | Adds the system's classpath to the JVM's classpath. | 3.055835 | 3.057463 | 0.999468 |
global started
if started is not None:
logger.info("JVM already running, call jvm.stop() first")
return
# add user-defined jars first
if class_path is not None:
for cp in class_path:
logger.debug("Adding user-supplied classpath=" + cp)
javabridge.JARS.append(cp)
if bundled:
logger.debug("Adding bundled jars")
add_bundled_jars()
if system_cp:
logger.debug("Adding system classpath")
add_system_classpath()
logger.debug("Classpath=" + str(javabridge.JARS))
logger.debug("MaxHeapSize=" + ("default" if (max_heap_size is None) else max_heap_size))
args = []
weka_home = None
if packages is not None:
if isinstance(packages, bool):
if packages:
logger.debug("Package support enabled")
else:
logger.debug("Package support disabled")
args.append("-Dweka.packageManager.loadPackages=false")
if isinstance(packages, str):
if os.path.exists(packages) and os.path.isdir(packages):
logger.debug("Using alternative Weka home directory: " + packages)
weka_home = packages
else:
logger.warning("Invalid Weka home: " + packages)
javabridge.start_vm(args=args, run_headless=True, max_heap_size=max_heap_size)
javabridge.attach()
started = True
if weka_home is not None:
from weka.core.classes import Environment
env = Environment.system_wide()
logger.debug("Using alternative Weka home directory: " + packages)
env.add_variable("WEKA_HOME", weka_home)
# initialize package manager
javabridge.static_call(
"Lweka/core/WekaPackageManager;", "loadPackages",
"(Z)V",
False) | def start(class_path=None, bundled=True, packages=False, system_cp=False, max_heap_size=None) | Initializes the javabridge connection (starts up the JVM).
:param class_path: the additional classpath elements to add
:type class_path: list
:param bundled: whether to add jars from the "lib" directory
:type bundled: bool
:param packages: whether to add jars from Weka packages as well (bool) or an alternative Weka home directory (str)
:type packages: bool or str
:param system_cp: whether to add the system classpath as well
:type system_cp: bool
:param max_heap_size: the maximum heap size (-Xmx parameter, eg 512m or 4g)
:type max_heap_size: str | 2.878108 | 2.760155 | 1.042734 |
parts = classname.split('.')
module = ".".join(parts[:-1])
m = __import__(module)
for comp in parts[1:]:
m = getattr(m, comp)
return m | def get_class(classname) | Returns the class object associated with the dot-notation classname.
Taken from here: http://stackoverflow.com/a/452981
:param classname: the classname
:type classname: str
:return: the class object
:rtype: object | 1.638995 | 1.884149 | 0.869886 |
try:
return javabridge.class_for_name(classname)
except:
return javabridge.static_call(
"Lweka/core/ClassHelper;", "forName",
"(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Class;",
javabridge.class_for_name("java.lang.Object"), classname) | def get_jclass(classname) | Returns the Java class object associated with the dot-notation classname.
:param classname: the classname
:type classname: str
:return: the class object
:rtype: JB_Object | 3.151213 | 3.388691 | 0.92992 |
try:
return javabridge.get_static_field(classname, fieldname, signature)
except:
return javabridge.static_call(
"Lweka/core/ClassHelper;", "getStaticField",
"(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;",
classname, fieldname) | def get_static_field(classname, fieldname, signature) | Returns the Java object associated with the static field of the specified class.
:param classname: the classname of the class to get the field from
:type classname: str
:param fieldname: the name of the field to retriev
:type fieldname: str
:return: the object
:rtype: JB_Object | 2.620389 | 3.030438 | 0.86469 |
if isinstance(obj, javabridge.JB_Object):
cls = javabridge.call(obj, "getClass", "()Ljava/lang/Class;")
return javabridge.call(cls, "getName", "()Ljava/lang/String;")
elif inspect.isclass(obj):
return obj.__module__ + "." + obj.__name__
else:
return get_classname(obj.__class__) | def get_classname(obj) | Returns the classname of the JB_Object, Python class or object.
:param obj: the java object or Python class/object to get the classname for
:type obj: object
:return: the classname
:rtype: str | 2.171626 | 2.167011 | 1.00213 |
class_or_intf_name = class_or_intf_name.replace("/", ".")
classname = get_classname(obj)
# array? retrieve component type and check that
if is_array(obj):
jarray = JavaArray(jobject=obj)
classname = jarray.component_type()
result = javabridge.static_call(
"Lweka/core/InheritanceUtils;", "isSubclass",
"(Ljava/lang/String;Ljava/lang/String;)Z",
class_or_intf_name, classname)
if result:
return True
return javabridge.static_call(
"Lweka/core/InheritanceUtils;", "hasInterface",
"(Ljava/lang/String;Ljava/lang/String;)Z",
class_or_intf_name, classname) | def is_instance_of(obj, class_or_intf_name) | Checks whether the Java object implements the specified interface or is a subclass of the superclass.
:param obj: the Java object to check
:type obj: JB_Object
:param class_or_intf_name: the superclass or interface to check, dot notation or with forward slashes
:type class_or_intf_name: str
:return: true if either implements interface or subclass of superclass
:rtype: bool | 3.160551 | 3.073107 | 1.028455 |
params = split_options(cmdline)
cls = params[0]
params = params[1:]
handler = OptionHandler(javabridge.static_call(
"Lweka/core/Utils;", "forName",
"(Ljava/lang/Class;Ljava/lang/String;[Ljava/lang/String;)Ljava/lang/Object;",
javabridge.class_for_name("java.lang.Object"), cls, params))
if classname is None:
return handler
else:
c = get_class(classname)
return c(jobject=handler.jobject) | def from_commandline(cmdline, classname=None) | Creates an OptionHandler based on the provided commandline string.
:param cmdline: the commandline string to use
:type cmdline: str
:param classname: the classname of the wrapper to return other than OptionHandler (in dot-notation)
:type classname: str
:return: the generated option handler instance
:rtype: object | 4.123589 | 4.182929 | 0.985814 |
result = javabridge.get_collection_wrapper(
javabridge.static_call(
"Lweka/Run;", "findSchemeMatch",
"(Ljava/lang/String;Z)Ljava/util/List;",
classname, True))
if len(result) == 1:
return str(result[0])
elif len(result) == 0:
raise Exception("No classname matches found for: " + classname)
else:
matches = []
for i in range(len(result)):
matches.append(str(result[i]))
raise Exception("Found multiple matches for '" + classname + "':\n" + '\n'.join(matches)) | def complete_classname(classname) | Attempts to complete a partial classname like '.J48' and returns the full
classname if a single match was found, otherwise an exception is raised.
:param classname: the partial classname to expand
:type classname: str
:return: the full classname
:rtype: str | 3.524683 | 3.486715 | 1.010889 |
parser = argparse.ArgumentParser(
description='Performs option handling operations from the command-line. Calls JVM start/stop automatically.')
parser.add_argument("-j", metavar="classpath", dest="classpath", help="additional classpath, jars/directories")
parser.add_argument("-action", metavar="action", dest="action", required=True,
help="The action to perform on the options: join=create single string, "\
"split=create array from quoted option, code=generate code from options")
parser.add_argument("option", nargs=argparse.REMAINDER, help="The option(s) to process")
parsed = parser.parse_args()
jars = []
if parsed.classpath is not None:
jars = parsed.classpath.split(os.pathsep)
jvm.start(jars, packages=True)
try:
if parsed.action == "join":
output = "cmdline = \"" + backquote(join_options(parsed.option)) + "\""
elif parsed.action == "split" and len(parsed.option) == 1:
output = "options = [\n"
opts = split_options(parsed.option[0])
for idx, opt in enumerate(opts):
if idx > 0:
output += ",\n"
output += " \"" + backquote(opt) + "\""
output += "]"
elif parsed.action == "code":
options = parsed.option[:]
cname = None
# classname + options?
if options[0].find(".") > -1:
cname = options[0]
options = options[1:]
output = "options = [ \n"
for idx, opt in enumerate(options):
if idx > 0:
output += ",\n"
output += " \"" + backquote(opt) + "\""
output += "]\n"
if cname is not None:
output += 'handler = OptionHandler(JavaObject.new_instance("' + cname + '"))\n'
output += 'handler.options = options\n'
else:
raise Exception("Unsupported action: " + parsed.action)
if output is not None:
print(output)
except Exception as e:
print(e)
finally:
jvm.stop() | def main() | Runs a classifier from the command-line. Calls JVM start/stop automatically.
Use -h to see all options. | 3.145871 | 2.939903 | 1.07006 |
return json.dumps(self.to_dict(), sort_keys=True, indent=2, separators=(',', ': ')) | def to_json(self) | Returns the options as JSON.
:return: the object as string
:rtype: str | 2.689218 | 3.063118 | 0.877935 |
d = json.loads(s)
return get_dict_handler(d["type"])(d) | def from_json(cls, s) | Restores the object from the given JSON.
:param s: the JSON string to parse
:type s: str
:return: the | 9.717994 | 19.791954 | 0.491007 |
result = {}
result["type"] = "Configurable"
result["class"] = get_classname(self)
result["config"] = {}
for k in self._config:
v = self._config[k]
if isinstance(v, JSONObject):
result["config"][k] = v.to_dict()
else:
result["config"][k] = v
return result | def to_dict(self) | Returns a dictionary that represents this object, to be used for JSONification.
:return: the object dictionary
:rtype: dict | 2.890927 | 2.825859 | 1.023026 |
conf = {}
for k in d["config"]:
v = d["config"][k]
if isinstance(v, dict):
conf[str(k)] = get_dict_handler(d["config"]["type"])(v)
else:
conf[str(k)] = v
return get_class(str(d["class"]))(config=conf) | def from_dict(cls, d) | Restores its state from a dictionary, used in de-JSONification.
:param d: the object dictionary
:type d: dict | 3.989102 | 4.143539 | 0.962728 |
if self._logger is None:
self._logger = self.new_logger()
return self._logger | def logger(self) | Returns the logger object.
:return: the logger
:rtype: logger | 3.930452 | 4.33371 | 0.906949 |
result = []
result.append(self.__class__.__name__)
result.append(re.sub(r'.', '=', self.__class__.__name__))
result.append("")
result.append("DESCRIPTION")
result.append(self.description())
result.append("")
result.append("OPTIONS")
opts = sorted(self.config.keys())
for opt in opts:
result.append(opt)
helpstr = self.help[opt]
if helpstr is None:
helpstr = "-missing help-"
result.append("\t" + helpstr)
result.append("")
return '\n'.join(result) | def generate_help(self) | Generates a help string for this actor.
:return: the help string
:rtype: str | 2.751572 | 2.784801 | 0.988068 |
cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;")
return javabridge.call(cls, "getName", "()Ljava/lang/String;") | def classname(self) | Returns the Java classname in dot-notation.
:return: the Java classname
:rtype: str | 3.378295 | 3.169067 | 1.066022 |
# unwrap?
if isinstance(jobject, JavaObject):
jobject = jobject.jobject
javabridge.static_call(
"Lweka/core/PropertyPath;", "setValue",
"(Ljava/lang/Object;Ljava/lang/String;Ljava/lang/Object;)V",
self.jobject, path, jobject) | def set_property(self, path, jobject) | Attempts to set the value (jobject, a Java object) of the provided (bean) property path.
:param path: the property path, e.g., "filter" for a setFilter(...)/getFilter() method pair
:type path: str
:param jobject: the Java object to set; if instance of JavaObject class, the jobject member is automatically used
:type jobject: JB_Object | 4.117914 | 3.871305 | 1.063702 |
if not cls.check_type(jobject, intf_or_class):
raise TypeError("Object does not implement or subclass " + intf_or_class + ": " + get_classname(jobject)) | def enforce_type(cls, jobject, intf_or_class) | Raises an exception if the object does not implement the specified interface or is not a subclass.
:param jobject: the Java object to check
:type jobject: JB_Object
:param intf_or_class: the classname in Java notation (eg "weka.core.DenseInstance")
:type intf_or_class: str | 3.864321 | 3.178762 | 1.215669 |
try:
return javabridge.static_call(
"Lweka/core/Utils;", "forName",
"(Ljava/lang/Class;Ljava/lang/String;[Ljava/lang/String;)Ljava/lang/Object;",
javabridge.class_for_name("java.lang.Object"), classname, [])
except JavaException as e:
print("Failed to instantiate " + classname + ": " + str(e))
return None | def new_instance(cls, classname) | Creates a new object from the given classname using the default constructor, None in case of error.
:param classname: the classname in Java notation (eg "weka.core.DenseInstance")
:type classname: str
:return: the Java object
:rtype: JB_Object | 3.231758 | 3.058582 | 1.05662 |
if system_wide:
javabridge.call(self.jobject, "addVariableSystemWide", "(Ljava/lang/String;Ljava/lang/String;)V", key, value)
else:
javabridge.call(self.jobject, "addVariable", "(Ljava/lang/String;Ljava/lang/String;)V", key, value) | def add_variable(self, key, value, system_wide=False) | Adds the environment variable.
:param key: the name of the variable
:type key: str
:param value: the value
:type value: str
:param system_wide: whether to add the variable system wide
:type system_wide: bool | 1.917858 | 1.879204 | 1.020569 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.