code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
result = [] names = javabridge.call(self.jobject, "getVariableNames", "()Ljava/util/Set;") for name in javabridge.iterate_collection(names): result.append(javabridge.to_string(name)) return result
def variable_names(self)
Returns the names of all environment variables. :return: the names of the variables :rtype: list
3.86736
3.941799
0.981115
cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;") comptype = javabridge.call(cls, "getComponentType", "()Ljava/lang/Class;") return javabridge.call(comptype, "getName", "()Ljava/lang/String;")
def component_type(self)
Returns the classname of the elements. :return: the class of the elements :rtype: str
2.605774
2.591824
1.005383
return javabridge.static_call( "Ljava/lang/reflect/Array;", "newInstance", "(Ljava/lang/Class;I)Ljava/lang/Object;", get_jclass(classname=classname), length)
def new_instance(cls, classname, length)
Creates a new array with the given classname and length; initial values are null. :param classname: the classname in Java notation (eg "weka.core.DenseInstance") :type classname: str :param length: the length of the array :type length: int :return: the Java array :rtype: JB_Object
3.638666
3.842524
0.946947
cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;") clsname = javabridge.call(cls, "getName", "()Ljava/lang/String;") l = javabridge.static_call(clsname.replace(".", "/"), "values", "()[L" + clsname.replace(".", "/") + ";") l = javabridge.get_env().get_object_array_elements(l) result = [] for item in l: result.append(Enum(jobject=item)) return result
def values(self)
Returns list of all enum members. :return: all enum members :rtype: list
2.821584
2.563605
1.100631
if n is None: return javabridge.call(self.jobject, "nextInt", "()I") else: return javabridge.call(self.jobject, "nextInt", "(I)I", n)
def next_int(self, n=None)
Next random integer. if n is provided, then between 0 and n-1. :param n: the upper limit (minus 1) for the random integer :type n: int :return: the next random integer :rtype: int
2.366568
2.439945
0.969927
if self.is_optionhandler: return typeconv.string_array_to_list(javabridge.call(self.jobject, "getOptions", "()[Ljava/lang/String;")) else: return []
def options(self)
Obtains the currently set options as list. :return: the list of options :rtype: list
7.119604
7.558863
0.941888
if self.is_optionhandler: javabridge.call(self.jobject, "setOptions", "([Ljava/lang/String;)V", typeconv.string_list_to_array(options))
def options(self, options)
Sets the command-line options (as list). :param options: the list of command-line options to set :type options: list
7.408288
7.97627
0.928791
result = [] result.append(self.classname) result.append("=" * len(self.classname)) result.append("") result.append("DESCRIPTION") result.append("") result.append(self.global_info()) result.append("") result.append("OPTIONS") result.append("") options = javabridge.call(self.jobject, "listOptions", "()Ljava/util/Enumeration;") enum = javabridge.get_enumeration_wrapper(options) while enum.hasMoreElements(): opt = Option(enum.nextElement()) result.append(opt.synopsis) result.append(opt.description) result.append("") return '\n'.join(result)
def to_help(self)
Returns a string that contains the 'global_info' text and the options. :return: the generated help string :rtype: str
2.786333
2.555544
1.090309
result = super(OptionHandler, self).to_dict() result["type"] = "OptionHandler" result["options"] = join_options(self.options) return result
def to_dict(self)
Returns a dictionary that represents this object, to be used for JSONification. :return: the object dictionary :rtype: dict
5.018431
5.235815
0.958481
result = OptionHandler(cls.new_instance(d["class"])) result.options = split_options(d["options"]) return result
def from_dict(cls, d)
Restores an object state from a dictionary, used in de-JSONification. :param d: the object dictionary :type d: dict :return: the object :rtype: object
12.137487
15.280807
0.794296
result = None for t in self.array: if str(t) == name: result = Tag(t.jobject) break return result
def find(self, name)
Returns the Tag that matches the name. :param name: the string representation of the tag :type name: str :return: the tag, None if not found :rtype: Tag
7.879306
6.271979
1.256271
return Tags(jobject=javabridge.call(javaobject.jobject, methodname, "()[Lweka/core/Tag;"))
def get_object_tags(cls, javaobject, methodname)
Instantiates the Tag array obtained from the object using the specified method name. Example: cls = Classifier(classname="weka.classifiers.meta.MultiSearch") tags = Tags.get_object_tags(cls, "getMetricsTags") :param javaobject: the javaobject to obtain the tags from :type javaobject: JavaObject :param methodname: the method name returning the Tag array :type methodname: str :return: the Tags objects :rtype: Tags
7.474898
4.716753
1.584755
result = [] a = javabridge.call(self.jobject, "getTags", "()Lweka/core/Tag;]") length = javabridge.get_env().get_array_length(a) wrapped = javabridge.get_env().get_object_array_elements(a) for i in range(length): result.append(Tag(javabridge.get_env().get_string(wrapped[i]))) return result
def tags(self)
Returns the associated tags. :return: the list of Tag objects :rtype: list
3.330917
3.285326
1.013877
jobj = javabridge.call(self.jobject, "getBaseObject", "()Ljava/io/Serializable;") if OptionHandler.check_type(jobj, "weka.core.OptionHandler"): return OptionHandler(jobj) else: return JavaObject(jobj)
def base_object(self)
Returns the base object to apply the setups to. :return: the base object :rtype: JavaObject or OptionHandler
5.11627
4.05487
1.261759
if not obj.is_serializable: raise Exception("Base object must be serializable: " + obj.classname) javabridge.call(self.jobject, "setBaseObject", "(Ljava/io/Serializable;)V", obj.jobject)
def base_object(self, obj)
Sets the base object to apply the setups to. :param obj: the object to use (must be serializable!) :type obj: JavaObject
4.8561
3.919152
1.239069
array = JavaArray(javabridge.call(self.jobject, "getParameters", "()[Lweka/core/setupgenerator/AbstractParameter;")) result = [] for item in array: result.append(AbstractParameter(jobject=item.jobject)) return result
def parameters(self)
Returns the list of currently set search parameters. :return: the list of AbstractSearchParameter objects :rtype: list
6.418454
7.317327
0.877158
array = JavaArray(jobject=JavaArray.new_instance("weka.core.setupgenerator.AbstractParameter", len(params))) for idx, obj in enumerate(params): array[idx] = obj.jobject javabridge.call(self.jobject, "setParameters", "([Lweka/core/setupgenerator/AbstractParameter;)V", array.jobject)
def parameters(self, params)
Sets the list of search parameters to use. :param params: list of AbstractSearchParameter objects :type params: list
5.059152
5.884021
0.859812
result = [] has_options = self.base_object.is_optionhandler enm = javabridge.get_enumeration_wrapper(javabridge.call(self.jobject, "setups", "()Ljava/util/Enumeration;")) while enm.hasMoreElements(): if has_options: result.append(OptionHandler(enm.nextElement())) else: result.append(JavaObject(enm.nextElement())) return result
def setups(self)
Generates and returns all the setups according to the parameter search space. :return: the list of configured objects (of type JavaObject) :rtype: list
5.138428
4.531825
1.133854
if isinstance(o, str) and o.startswith("@{") and o.endswith("}"): return o else: return classes.to_commandline(o)
def to_commandline(o)
Turns the object into a commandline string. However, first checks whether a string represents a internal value placeholder (@{...}). :param o: the object to turn into commandline :type o: object :return: the commandline :rtype: str
4.446142
3.551415
1.251935
result = name if self.parent is not None: index = self.index bname = re.sub(r'-[0-9]+$', '', name) names = [] for idx, actor in enumerate(self.parent.actors): if idx != index: names.append(actor.name) result = bname count = 0 while result in names: count += 1 result = bname + "-" + str(count) return result
def unique_name(self, name)
Generates a unique name. :param name: the name to check :type name: str :return: the unique name :rtype: str
3.352046
3.445946
0.97275
self._name = self.unique_name(self._name) self._full_name = None self._logger = None self._parent = parent
def parent(self, parent)
Sets the parent of the actor. :param parent: the parent :type parent: Actor
6.064452
8.335482
0.727547
if self._full_name is None: fn = self.name.replace(".", "\\.") parent = self._parent if parent is not None: fn = parent.full_name + "." + fn self._full_name = fn return self._full_name
def full_name(self)
Obtains the full name of the actor. :return: the full name :rtype: str
3.130739
3.354239
0.933368
opt = "annotation" if opt not in options: options[opt] = None if opt not in self.help: self.help[opt] = "The (optional) annotation for this actor (string)." opt = "skip" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to skip (disable) this actor (bool)." return super(Actor, self).fix_config(options)
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
3.537053
3.646428
0.970005
result = super(Actor, self).to_dict() result["type"] = "Actor" result["name"] = self.name return result
def to_dict(self)
Returns a dictionary that represents this object, to be used for JSONification. :return: the object dictionary :rtype: dict
3.865102
3.864309
1.000205
conf = {} for k in d["config"]: v = d["config"][k] if isinstance(v, dict): if u"type" in v: typestr = v[u"type"] else: typestr = v["type"] conf[str(k)] = classes.get_dict_handler(typestr)(v) else: conf[str(k)] = v return classes.get_class(d["class"])(name=d["name"], config=conf)
def from_dict(cls, d)
Restores an object state from a dictionary, used in de-JSONification. :param d: the object dictionary :type d: dict :return: the object :rtype: object
3.305866
3.406315
0.970511
value = self.config[name] if value is None: return default elif isinstance(value, str) \ and value.startswith("@{") \ and value.endswith("}") \ and (value.find("@{", 1) == -1): stname = value[2:len(value)-1] if (self.storagehandler is not None) and (stname in self.storagehandler.storage): return self.storagehandler.storage[stname] else: return default else: return value
def resolve_option(self, name, default=None)
Resolves the option, i.e., interprets "@{...}" values and retrievs them instead from internal storage. :param name: the name of the option :type name: str :param default: the optional default value :type default: object :return: the resolved value :rtype: object
3.059749
2.846262
1.075006
if isinstance(self, StorageHandler): return self elif self.parent is not None: return self.parent.storagehandler else: return None
def storagehandler(self)
Returns the storage handler available to thise actor. :return: the storage handler, None if not available
3.073113
3.575494
0.859493
if self.skip: return None result = self.pre_execute() if result is None: try: result = self.do_execute() except Exception as e: result = traceback.format_exc() print(self.full_name + "\n" + result) if result is None: result = self.post_execute() return result
def execute(self)
Executes the actor. :return: None if successful, otherwise error message :rtype: str
3.442988
3.351134
1.02741
if (self._output is None) or (len(self._output) == 0): result = None else: result = self._output.pop(0) return result
def output(self)
Returns the next available output token. :return: the next token, None if none available :rtype: Token
3.306227
3.052227
1.083218
result = s while result.find("@{") > -1: start = result.index("@{") end = result.index("}", start) name = result[start + 2:end] value = self.storage[name] if value is None: raise("Storage value '" + name + "' not present, failed to expand string: " + s) else: result = result[0:start] + str(value) + result[end + 1:] return result
def expand(self, s)
Expands all occurrences of "@{...}" within the string with the actual values currently stored in internal storage. :param s: the string to expand :type s: str :return: the expanded string :rtype: str
3.00763
2.506941
1.199721
if padded.startswith("@{") and padded.endswith("}"): return padded[2:len(padded)-1] else: return padded
def extract(cls, padded)
Removes the surrounding "@{...}" from the name. :param padded: the padded string :type padded: str :return: the extracted name :rtype: str
4.688678
2.843696
1.648797
options = super(ActorHandler, self).fix_config(options) opt = "actors" if opt not in options: options[opt] = self.default_actors() if opt not in self.help: self.help[opt] = "The list of sub-actors that this actor manages." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
4.863182
5.458702
0.890904
result = super(ActorHandler, self).to_dict() result["type"] = "ActorHandler" del result["config"]["actors"] result["actors"] = [] for actor in self.actors: result["actors"].append(actor.to_dict()) return result
def to_dict(self)
Returns a dictionary that represents this object, to be used for JSONification. :return: the object dictionary :rtype: dict
3.420422
3.510233
0.974414
result = super(ActorHandler, cls).from_dict(d) if "actors" in d: l = d["actors"] for e in l: if u"type" in e: typestr = e[u"type"] else: typestr = e["type"] result.actors.append(classes.get_dict_handler(typestr)(e)) return result
def from_dict(cls, d)
Restores an object state from a dictionary, used in de-JSONification. :param d: the object dictionary :type d: dict :return: the object :rtype: object
4.226474
4.547175
0.929472
if actors is None: actors = self.default_actors() self.check_actors(actors) self.config["actors"] = actors
def actors(self, actors)
Sets the sub-actors of the actor. :param actors: the sub-actors :type actors: list
3.953598
6.754673
0.585313
result = 0 for actor in self.actors: if not actor.skip: result += 1 return result
def active(self)
Returns the count of non-skipped actors. :return: the count :rtype: int
5.887525
3.317454
1.774712
result = None for actor in self.actors: if not actor.skip: result = actor break return result
def first_active(self)
Returns the first non-skipped actor. :return: the first active actor, None if not available :rtype: Actor
5.573334
3.892825
1.431694
result = None for actor in reversed(self.actors): if not actor.skip: result = actor break return result
def last_active(self)
Returns the last non-skipped actor. :return: the last active actor, None if not available :rtype: Actor
6.230399
4.085077
1.525161
result = -1 for index, actor in enumerate(self.actors): if actor.name == name: result = index break return result
def index_of(self, name)
Returns the index of the actor with the given name. :param name: the name of the Actor to find :type name: str :return: the index, -1 if not found :rtype: int
3.072366
2.513223
1.222481
result = super(ActorHandler, self).setup() if result is None: self.update_parent() try: self.check_actors(self.actors) except Exception as e: result = str(e) if result is None: for actor in self.actors: name = actor.name newname = actor.unique_name(actor.name) if name != newname: actor.name = newname if result is None: for actor in self.actors: if actor.skip: continue result = actor.setup() if result is not None: break if result is None: result = self._director.setup() return result
def setup(self)
Configures the actor before execution. :return: None if successful, otherwise error message :rtype: str
3.429972
3.094355
1.108461
for actor in self.actors: if actor.skip: continue actor.wrapup() super(ActorHandler, self).wrapup()
def wrapup(self)
Finishes up after execution finishes, does not remove any graphical output.
6.024958
5.6696
1.062678
for actor in self.actors: if actor.skip: continue actor.cleanup() super(ActorHandler, self).cleanup()
def cleanup(self)
Destructive finishing up after execution stopped.
6.326975
5.70747
1.108543
if not (self._stopping or self._stopped): for actor in self.owner.actors: actor.stop_execution() self._stopping = True
def stop_execution(self)
Triggers the stopping of the object.
6.042375
5.068565
1.192127
self._stopped = False self._stopping = False not_finished_actor = self.owner.first_active pending_actors = [] finished = False actor_result = None while not (self.is_stopping() or self.is_stopped()) and not finished: # determing starting point of next iteration if len(pending_actors) > 0: start_index = self.owner.index_of(pending_actors[-1].name) else: start_index = self.owner.index_of(not_finished_actor.name) not_finished_actor = None # iterate over actors token = None last_active = -1 if self.owner.active > 0: last_active = self.owner.last_active.index for i in range(start_index, last_active + 1): # do we have to stop the execution? if self.is_stopped() or self.is_stopping(): break curr = self.owner.actors[i] if curr.skip: continue # no token? get pending one or produce new one if token is None: if isinstance(curr, OutputProducer) and curr.has_output(): pending_actors.pop() else: actor_result = curr.execute() if actor_result is not None: self.owner.logger.error( curr.full_name + " generated following error output:\n" + actor_result) break if isinstance(curr, OutputProducer) and curr.has_output(): token = curr.output() else: token = None # still more to come? if isinstance(curr, OutputProducer) and curr.has_output(): pending_actors.append(curr) else: # process token curr.input = token actor_result = curr.execute() if actor_result is not None: self.owner.logger.error( curr.full_name + " generated following error output:\n" + actor_result) break # was a new token produced? if isinstance(curr, OutputProducer): if curr.has_output(): token = curr.output() else: token = None # still more to come? if curr.has_output(): pending_actors.append(curr) else: token = None # token from last actor generated? -> store if (i == self.owner.last_active.index) and (token is not None): if self._record_output: self._recorded_output.append(token) # no token produced, ignore rest of actors if isinstance(curr, OutputProducer) and (token is None): break # all actors finished? finished = (not_finished_actor is None) and (len(pending_actors) == 0) return actor_result
def do_execute(self)
Actual execution of the director. :return: None if successful, otherwise error message :rtype: str
3.214465
3.159067
1.017536
super(Flow, self).check_actors(actors) actor = self.first_active if (actor is not None) and not base.is_source(actor): raise Exception("First active actor is not a source: " + actor.full_name)
def check_actors(self, actors)
Performs checks on the actors that are to be used. Raises an exception if invalid setup. :param actors: the actors to check :type actors: list
6.817731
7.26034
0.939037
with open(fname) as f: content = f.readlines() return Flow.from_json(''.join(content))
def load(cls, fname)
Loads the flow from a JSON file. :param fname: the file to load :type fname: str :return: the flow :rtype: Flow
6.168649
5.677999
1.086412
result = SequentialDirector(self) result.record_output = False result.allow_source = False return result
def new_director(self)
Creates the director to use for handling the sub-actors. :return: the director instance :rtype: Director
16.413773
19.180418
0.855757
super(Sequence, self).check_actors(actors) actor = self.first_active if (actor is not None) and not isinstance(actor, InputConsumer): raise Exception("First active actor does not accept input: " + actor.full_name)
def check_actors(self, actors)
Performs checks on the actors that are to be used. Raises an exception if invalid setup. :param actors: the actors to check :type actors: list
6.643405
7.699221
0.862867
self.first_active.input = self.input result = self._director.execute() if result is None: self._output.append(self.input) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
10.945373
11.010391
0.994095
options = super(Tee, self).fix_config(options) opt = "condition" if opt not in options: options[opt] = "True" if opt not in self.help: self.help[opt] = "The (optional) condition for teeing off the tokens; uses the 'eval' method, "\ "ie the expression must evaluate to a boolean value; storage values placeholders "\ "'@{...}' get replaced with their string representations before evaluating the "\ "expression (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
12.049687
12.825914
0.93948
super(Tee, self).check_actors(actors) actor = self.first_active if actor is None: if self._requires_active_actors: raise Exception("No active actor!") elif not isinstance(actor, InputConsumer): raise Exception("First active actor does not accept input: " + actor.full_name)
def check_actors(self, actors)
Performs checks on the actors that are to be used. Raises an exception if invalid setup. :param actors: the actors to check :type actors: list
6.764783
7.40647
0.913361
result = None teeoff = True cond = self.storagehandler.expand(str(self.resolve_option("condition"))) if len(cond) > 0: teeoff = bool(eval(cond)) if teeoff: self.first_active.input = self.input result = self._director.execute() if result is None: self._output.append(self.input) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
9.326387
9.448761
0.987049
options = super(Trigger, self).fix_config(options) opt = "condition" if opt not in options: options[opt] = "True" if opt not in self.help: self.help[opt] = "The (optional) condition for teeing off the tokens; uses the 'eval' method, "\ "ie the expression must evaluate to a boolean value; storage values placeholders "\ "'@{...}' get replaced with their string representations before evaluating the "\ "expression (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
12.137281
13.249087
0.916084
actors = [] for actor in self.owner.actors: if actor.skip: continue actors.append(actor) if len(actors) == 0: return for actor in actors: if not isinstance(actor, InputConsumer): raise Exception("Actor does not accept any input: " + actor.full_name)
def check_actors(self)
Checks the actors of the owner. Raises an exception if invalid.
4.586056
3.684227
1.244781
result = None self._stopped = False self._stopping = False for actor in self.owner.actors: if self.is_stopping() or self.is_stopped(): break actor.input = self.owner.input result = actor.execute() if result is not None: break return result
def do_execute(self)
Actual execution of the director. :return: None if successful, otherwise error message :rtype: str
5.060192
4.753039
1.064622
options = super(ContainerValuePicker, self).fix_config(options) opt = "value" if opt not in options: options[opt] = "Model" if opt not in self.help: self.help[opt] = "The name of the container value to pick from the container (string)." opt = "switch" if opt not in options: options[opt] = False if opt not in self.help: self.help[opt] = "Whether to switch the ouputs, i.e., forward the container to the sub-flow and the " \ + "container value to the following actor instead (bool)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
5.30996
5.616788
0.945373
result = None cont = self.input.payload name = str(self.resolve_option("value")) value = cont.get(name) switch = bool(self.resolve_option("switch")) if switch: if self.first_active is not None: self.first_active.input = self.input result = self._director.execute() if result is None: self._output.append(Token(value)) else: if self.first_active is not None: self.first_active.input = Token(value) result = self._director.execute() if result is None: self._output.append(self.input) return result
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
4.40064
4.404368
0.999153
options = super(CommandlineToAny, self).fix_config(options) opt = "wrapper" if opt not in options: options[opt] = "weka.core.classes.OptionHandler" if opt not in self.help: self.help[opt] = "The name of the wrapper class to use (string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
6.682126
7.437073
0.898489
if isinstance(obj, str): return if isinstance(obj, unicode): return raise Exception("Unsupported class: " + self._input.__class__.__name__)
def check_input(self, obj)
Performs checks on the input object. Raises an exception if unsupported. :param obj: the object to check :type obj: object
6.462538
6.383549
1.012374
cname = str(self.config["wrapper"]) self._output = classes.from_commandline(self._input, classname=cname) return None
def convert(self)
Performs the actual conversion. :return: None if successful, otherwise errors message :rtype: str
22.888205
24.028816
0.952532
if not plot.matplotlib_available: logger.error("Matplotlib is not installed, plotting unavailable!") return if not isinstance(mat, ResultMatrix): logger.error("Need to supply a result matrix!") return fig, ax = plt.subplots() if axes_swapped: ax.set_xlabel(measure) ax.set_ylabel("Classifiers") else: ax.set_xlabel("Classifiers") ax.set_ylabel(measure) ax.set_title(title) fig.canvas.set_window_title(title) ax.grid(True) ticksx = [] ticks = [] inc = 1.0 / float(mat.columns) for i in range(mat.columns): ticksx.append((i + 0.5) * inc) ticks.append("[" + str(i+1) + "]") plt.xticks(ticksx, ticks) plt.xlim([0.0, 1.0]) for r in range(mat.rows): x = [] means = [] stdevs = [] for c in range(mat.columns): mean = mat.get_mean(c, r) stdev = mat.get_stdev(c, r) if not math.isnan(mean): x.append((c + 0.5) * inc) means.append(mean) if not math.isnan(stdev): stdevs.append(stdev) plot_label = mat.get_row_name(r) if show_stdev: ax.errorbar(x, means, yerr=stdevs, fmt='-o', ls="-", label=plot_label) else: ax.plot(x, means, "o-", label=plot_label) plt.draw() plt.legend(loc=key_loc, shadow=True) if outfile is not None: plt.savefig(outfile) if wait: plt.show()
def plot_experiment(mat, title="Experiment", axes_swapped=False, measure="Statistic", show_stdev=False, key_loc="lower right", outfile=None, wait=True)
Plots the results from an experiment. :param mat: the result matrix to plot :type mat: ResultMatrix :param title: the title for the experiment :type title: str :param axes_swapped: whether the axes whether swapped ("sets x cls" or "cls x sets") :type axes_swapped: bool :param measure: the measure that is being displayed :type measure: str :param show_stdev: whether to show the standard deviation as error bar :type show_stdev: bool :param key_loc: the location string for the key :type key_loc: str :param outfile: the output file, ignored if None :type outfile: str :param wait: whether to wait for the user to close the plot :type wait: bool
2.154227
2.10416
1.023794
if percent <= 0 or percent >= 100: return data data = Instances.copy_instances(data) data.randomize(Random(seed)) data = Instances.copy_instances(data, 0, int(round(data.num_instances * percent / 100.0))) return data
def create_subsample(data, percent, seed=1)
Generates a subsample of the dataset. :param data: the data to create the subsample from :type data: Instances :param percent: the percentage (0-100) :type percent: float :param seed: the seed value to use :type seed: int
3.74644
3.325949
1.126427
if len(preds) == 0: return None is_numeric = isinstance(preds[0], NumericPrediction) # create header atts = [] if is_numeric: atts.append(Attribute.create_numeric("index")) atts.append(Attribute.create_numeric("weight")) atts.append(Attribute.create_numeric("actual")) atts.append(Attribute.create_numeric("predicted")) atts.append(Attribute.create_numeric("error")) else: atts.append(Attribute.create_numeric("index")) atts.append(Attribute.create_numeric("weight")) atts.append(data.class_attribute.copy(name="actual")) atts.append(data.class_attribute.copy(name="predicted")) atts.append(Attribute.create_nominal("error", ["no", "yes"])) atts.append(Attribute.create_numeric("classification")) for i in range(data.class_attribute.num_values): atts.append(Attribute.create_numeric("distribution-" + data.class_attribute.value(i))) result = Instances.create_instances("Predictions", atts, len(preds)) count = 0 for pred in preds: count += 1 if is_numeric: values = array([count, pred.weight, pred.actual, pred.predicted, pred.error]) else: if pred.actual == pred.predicted: error = 0.0 else: error = 1.0 l = [count, pred.weight, pred.actual, pred.predicted, error, max(pred.distribution)] for i in range(data.class_attribute.num_values): l.append(pred.distribution[i]) values = array(l) inst = Instance.create_instance(values) result.add_instance(inst) return result
def predictions_to_instances(data, preds)
Turns the predictions turned into an Instances object. :param data: the original dataset format :type data: Instances :param preds: the predictions to convert :type preds: list :return: the predictions, None if no predictions present :rtype: Instances
2.2226
2.286524
0.972043
if self.is_batchpredictor: return typeconv.double_matrix_to_ndarray(self.__distributions(data.jobject)) else: return None
def distributions_for_instances(self, data)
Peforms predictions, returning the class distributions. :param data: the Instances to get the class distributions for :type data: Instances :return: the class distribution matrix, None if not a batch predictor :rtype: ndarray
22.877647
14.09586
1.623005
if self.is_batchpredictor: javabridge.call(self.jobject, "setBatchSize", "(Ljava/lang/String;)V", size)
def batch_size(self, size)
Sets the batch size, in case this classifier is a batch predictor. :param size: the size of the batch :type size: str
6.719282
4.295274
1.564343
if not self.check_type(self.jobject, "weka.classifiers.Sourcable"): return None return javabridge.call(self.jobject, "toSource", "(Ljava/lang/String;)Ljava/lang/String;", classname)
def to_source(self, classname)
Returns the model as Java source code if the classifier implements weka.classifiers.Sourcable. :param classname: the classname for the generated Java code :type classname: str :return: the model as source code string :rtype: str
4.361536
3.517056
1.24011
if isinstance(evl, str): evl = self.tags_evaluation.find(evl) if isinstance(evl, Tag): evl = SelectedTag(tag_id=evl.ident, tags=self.tags_evaluation) javabridge.call(self.jobject, "setEvaluation", "(Lweka/core/SelectedTag;)V", evl.jobject)
def evaluation(self, evl)
Sets the statistic to use for evaluation. :param evl: the statistic :type evl: SelectedTag, Tag or str
4.560258
3.632719
1.255329
result = {} result["property"] = javabridge.call(self.jobject, "getXProperty", "()Ljava/lang/String;") result["min"] = javabridge.call(self.jobject, "getXMin", "()D") result["max"] = javabridge.call(self.jobject, "getXMax", "()D") result["step"] = javabridge.call(self.jobject, "getXStep", "()D") result["base"] = javabridge.call(self.jobject, "getXBase", "()D") result["expression"] = javabridge.call(self.jobject, "getXExpression", "()Ljava/lang/String;") return result
def x(self)
Returns a dictionary with all the current values for the X of the grid. Keys for the dictionary: property, min, max, step, base, expression Types: property=str, min=float, max=float, step=float, base=float, expression=str :return: the dictionary with the parameters :rtype: dict
1.849737
1.481595
1.248477
if "property" in d: javabridge.call(self.jobject, "setXProperty", "(Ljava/lang/String;)V", d["property"]) if "min" in d: javabridge.call(self.jobject, "setXMin", "(D)V", d["min"]) if "max" in d: javabridge.call(self.jobject, "setXMax", "(D)V", d["max"]) if "step" in d: javabridge.call(self.jobject, "setXStep", "(D)V", d["step"]) if "base" in d: javabridge.call(self.jobject, "setXBase", "(D)V", d["base"]) if "expression" in d: javabridge.call(self.jobject, "setXExpression", "(Ljava/lang/String;)V", d["expression"])
def x(self, d)
Allows to configure the X of the grid with one method call. Keys for the dictionary: property, min, max, step, base, expression Types: property=str, min=float, max=float, step=float, base=float, expression=str :param d: the dictionary with the parameters :type d: dict
1.56284
1.337292
1.16866
result = {} result["property"] = javabridge.call(self.jobject, "getYProperty", "()Ljava/lang/String;") result["min"] = javabridge.call(self.jobject, "getYMin", "()D") result["max"] = javabridge.call(self.jobject, "getYMax", "()D") result["step"] = javabridge.call(self.jobject, "getYStep", "()D") result["base"] = javabridge.call(self.jobject, "getYBase", "()D") result["expression"] = javabridge.call(self.jobject, "getYExpression", "()Ljava/lang/String;") return result
def y(self)
Returns a dictionary with all the current values for the Y of the grid. Keys for the dictionary: property, min, max, step, base, expression Types: property=str, min=float, max=float, step=float, base=float, expression=str :return: the dictionary with the parameters :rtype: dict
1.849688
1.475399
1.253686
if "property" in d: javabridge.call(self.jobject, "setYProperty", "(Ljava/lang/String;)V", d["property"]) if "min" in d: javabridge.call(self.jobject, "setYMin", "(D)V", d["min"]) if "max" in d: javabridge.call(self.jobject, "setYMax", "(D)V", d["max"]) if "step" in d: javabridge.call(self.jobject, "setYStep", "(D)V", d["step"]) if "base" in d: javabridge.call(self.jobject, "setYBase", "(D)V", d["base"]) if "expression" in d: javabridge.call(self.jobject, "setYExpression", "(Ljava/lang/String;)V", d["expression"])
def y(self, d)
Allows to configure the Y of the grid with one method call. Keys for the dictionary: property, min, max, step, base, expression Types: property=str, min=float, max=float, step=float, base=float, expression=str :param d: the dictionary with the parameters :type d: dict
1.553662
1.315687
1.180875
objects = javabridge.get_env().get_object_array_elements( javabridge.call(self.jobject, "getClassifiers", "()[Lweka/classifiers/Classifier;")) result = [] for obj in objects: result.append(Classifier(jobject=obj)) return result
def classifiers(self)
Returns the list of base classifiers. :return: the classifier list :rtype: list
3.080954
3.158396
0.97548
obj = [] for classifier in classifiers: obj.append(classifier.jobject) javabridge.call(self.jobject, "setClassifiers", "([Lweka/classifiers/Classifier;)V", obj)
def classifiers(self, classifiers)
Sets the base classifiers. :param classifiers: the list of base classifiers to use :type classifiers: list
3.670161
4.211043
0.871556
jinst1 = None if inst1 is not None: jinst1 = inst1.jobject return javabridge.call(self.jobject, "eval", "(IILweka/core/Instance;)D", id1, id2, jinst1)
def eval(self, id1, id2, inst1)
Computes the result of the kernel function for two instances. If id1 == -1, eval use inst1 instead of an instance in the dataset. :param id1: the index of the first instance in the dataset :type id1: int :param id2: the index of the second instance in the dataset :type id2: int :param inst1: the instance corresponding to id1 (used if id1 == -1) :type inst1: Instance
4.688893
4.291958
1.092483
result = javabridge.static_call( "weka/classifiers/KernelHelper", "getKernel", "(Ljava/lang/Object;)Lweka/classifiers/functions/supportVector/Kernel;", self.jobject) if result is None: return None else: return Kernel(jobject=result)
def kernel(self)
Returns the current kernel. :return: the kernel or None if none found :rtype: Kernel
3.737587
3.448769
1.083745
result = javabridge.static_call( "weka/classifiers/KernelHelper", "setKernel", "(Ljava/lang/Object;Lweka/classifiers/functions/supportVector/Kernel;)Z", self.jobject, kernel.jobject) if not result: raise Exception("Failed to set kernel!")
def kernel(self, kernel)
Sets the kernel. :param kernel: the kernel to set :type kernel: Kernel
3.729146
3.807507
0.97942
return Instances( javabridge.call( self.jobject, "applyCostMatrix", "(Lweka/core/Instances;Ljava/util/Random;)Lweka/core/Instances;", data.jobject, rnd.jobject))
def apply_cost_matrix(self, data, rnd)
Applies the cost matrix to the data. :param data: the data to apply to :type data: Instances :param rnd: the random number generator :type rnd: Random
4.105083
4.021314
1.020831
if inst is None: costs = javabridge.call( self.jobject, "expectedCosts", "([D)[D", javabridge.get_env().make_double_array(class_probs)) return javabridge.get_env().get_double_array_elements(costs) else: costs = javabridge.call( self.jobject, "expectedCosts", "([DLweka/core/Instance;)[D", javabridge.get_env().make_double_array(class_probs), inst.jobject) return javabridge.get_env().get_double_array_elements(costs)
def expected_costs(self, class_probs, inst=None)
Calculates the expected misclassification cost for each possible class value, given class probability estimates. :param class_probs: the class probabilities :type class_probs: ndarray :return: the calculated costs :rtype: ndarray
2.50518
2.483672
1.00866
return javabridge.call( self.jobject, "getCell", "(II)Ljava/lang/Object;", row, col)
def get_cell(self, row, col)
Returns the JB_Object at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :return: the object in that cell :rtype: JB_Object
6.854106
7.215421
0.949925
if isinstance(obj, JavaObject): obj = obj.jobject javabridge.call( self.jobject, "setCell", "(IILjava/lang/Object;)V", row, col, obj)
def set_cell(self, row, col, obj)
Sets the JB_Object at the specified location. Automatically unwraps JavaObject. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param obj: the object for that cell :type obj: object
4.242689
4.065327
1.043628
if inst is None: return javabridge.call( self.jobject, "getElement", "(II)D", row, col) else: return javabridge.call( self.jobject, "getElement", "(IILweka/core/Instance;)D", row, col, inst.jobject)
def get_element(self, row, col, inst=None)
Returns the value at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param inst: the Instace :type inst: Instance :return: the value in that cell :rtype: float
3.133723
2.867018
1.093025
javabridge.call( self.jobject, "setElement", "(IID)V", row, col, value)
def set_element(self, row, col, value)
Sets the float value at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param value: the float value for that cell :type value: float
8.56471
8.109188
1.056174
if inst is None: return javabridge.call( self.jobject, "getMaxCost", "(I)D", class_value) else: return javabridge.call( self.jobject, "getElement", "(ILweka/core/Instance;)D", class_value, inst.jobject)
def get_max_cost(self, class_value, inst=None)
Gets the maximum cost for a particular class value. :param class_value: the class value to get the maximum cost for :type class_value: int :param inst: the Instance :type inst: Instance :return: the cost :rtype: float
3.550163
3.226193
1.100419
if output is None: generator = [] else: generator = [output.jobject] javabridge.call( self.jobject, "crossValidateModel", "(Lweka/classifiers/Classifier;Lweka/core/Instances;ILjava/util/Random;[Ljava/lang/Object;)V", classifier.jobject, data.jobject, num_folds, rnd.jobject, generator)
def crossvalidate_model(self, classifier, data, num_folds, rnd, output=None)
Crossvalidates the model using the specified data, number of folds and random number generator wrapper. :param classifier: the classifier to cross-validate :type classifier: Classifier :param data: the data to evaluate on :type data: Instances :param num_folds: the number of folds :type num_folds: int :param rnd: the random number generator to use :type rnd: Random :param output: the output generator to use :type output: PredictionOutput
2.843779
2.779538
1.023112
if title is None: return javabridge.call( self.jobject, "toSummaryString", "()Ljava/lang/String;") else: return javabridge.call( self.jobject, "toSummaryString", "(Ljava/lang/String;Z)Ljava/lang/String;", title, complexity)
def summary(self, title=None, complexity=False)
Generates a summary. :param title: optional title :type title: str :param complexity: whether to print the complexity information as well :type complexity: bool :return: the summary :rtype: str
2.538503
2.559868
0.991654
if title is None: return javabridge.call( self.jobject, "toClassDetailsString", "()Ljava/lang/String;") else: return javabridge.call( self.jobject, "toClassDetailsString", "(Ljava/lang/String;)Ljava/lang/String;", title)
def class_details(self, title=None)
Generates the class details. :param title: optional title :type title: str :return: the details :rtype: str
2.634666
2.622409
1.004674
if title is None: return javabridge.call(self.jobject, "toMatrixString", "()Ljava/lang/String;") else: return javabridge.call(self.jobject, "toMatrixString", "(Ljava/lang/String;)Ljava/lang/String;", title)
def matrix(self, title=None)
Generates the confusion matrix. :param title: optional title :type title: str :return: the matrix :rtype: str
2.349232
2.192837
1.071321
preds = javabridge.get_collection_wrapper( javabridge.call(self.jobject, "predictions", "()Ljava/util/ArrayList;")) if self.discard_predictions: result = None else: result = [] for pred in preds: if is_instance_of(pred, "weka.classifiers.evaluation.NominalPrediction"): result.append(NominalPrediction(pred)) elif is_instance_of(pred, "weka.classifiers.evaluation.NumericPrediction"): result.append(NumericPrediction(pred)) else: result.append(Prediction(pred)) return result
def predictions(self)
Returns the predictions. :return: the predictions. None if not available :rtype: list
2.76897
2.752521
1.005976
javabridge.call( self.jobject, "print", "(Lweka/classifiers/Classifier;Lweka/core/Instances;)V", cls.jobject, data.jobject)
def print_all(self, cls, data)
Prints the header, classifications and footer to the buffer. :param cls: the classifier :type cls: Classifier :param data: the test data :type data: Instances
4.667285
3.610682
1.292633
javabridge.call( self.jobject, "printClassifications", "(Lweka/classifiers/Classifier;Lweka/core/Instances;)V", cls.jobject, data.jobject)
def print_classifications(self, cls, data)
Prints the classifications to the buffer. :param cls: the classifier :type cls: Classifier :param data: the test data :type data: Instances
3.788831
3.078274
1.23083
javabridge.call( self.jobject, "printClassification", "(Lweka/classifiers/Classifier;Lweka/core/Instance;I)V", cls.jobject, inst.jobject, index)
def print_classification(self, cls, inst, index)
Prints the classification to the buffer. :param cls: the classifier :type cls: Classifier :param inst: the test instance :type inst: Instance :param index: the 0-based index of the test instance :type index: int
3.153171
2.810025
1.122115
javabridge.call(self.jobject, "tokenize", "(Ljava/lang/String;)V", s) return TokenIterator(self)
def tokenize(self, s)
Tokenizes the string. :param s: the string to tokenize :type s: str :return: the iterator :rtype: TokenIterator
5.553123
5.123833
1.083783
parser = argparse.ArgumentParser( description='Executes a data generator from the command-line. Calls JVM start/stop automatically.') parser.add_argument("-j", metavar="classpath", dest="classpath", help="additional classpath, jars/directories") parser.add_argument("-X", metavar="heap", dest="heap", help="max heap size for jvm, e.g., 512m") parser.add_argument("datagenerator", help="data generator classname, e.g., " + "weka.datagenerators.classifiers.classification.LED24") parser.add_argument("option", nargs=argparse.REMAINDER, help="additional data generator options") parsed = parser.parse_args() jars = [] if parsed.classpath is not None: jars = parsed.classpath.split(os.pathsep) jvm.start(jars, max_heap_size=parsed.heap, packages=True) logger.debug("Commandline: " + join_options(sys.argv[1:])) try: generator = DataGenerator(classname=parsed.datagenerator) if len(parsed.option) > 0: generator.options = parsed.option DataGenerator.make_data(generator, parsed.option) except Exception as e: print(e) finally: jvm.stop()
def main()
Runs a datagenerator from the command-line. Calls JVM start/stop automatically. Use -h to see all options.
3.856717
3.25036
1.186551
data = javabridge.call(self.jobject, "defineDataFormat", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
def define_data_format(self)
Returns the data format. :return: the data format :rtype: Instances
4.287526
4.594821
0.933121
data = javabridge.call(self.jobject, "getDatasetFormat", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
def dataset_format(self)
Returns the dataset format. :return: the format :rtype: Instances
4.017037
3.814374
1.053131
data = javabridge.call(self.jobject, "generateExample", "()Lweka/core/Instance;") if data is None: return None else: return Instance(data)
def generate_example(self)
Returns a single Instance. :return: the next example :rtype: Instance
4.123404
3.782936
1.090001
data = javabridge.call(self.jobject, "generateExamples", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
def generate_examples(self)
Returns complete dataset. :return: the generated dataset :rtype: Instances
4.425352
4.225058
1.047406
return from_commandline( to_commandline(generator), classname=classes.get_classname(DataGenerator()))
def make_copy(cls, generator)
Creates a copy of the generator. :param generator: the generator to copy :type generator: DataGenerator :return: the copy of the generator :rtype: DataGenerator
35.117493
34.649239
1.013514
options = super(FileSupplier, self).fix_config(options) opt = "files" if opt not in options: options[opt] = [] if opt not in self.help: self.help[opt] = "The files to output (list of string)." return options
def fix_config(self, options)
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
5.024352
5.742596
0.874927
for f in self.resolve_option("files"): self._output.append(Token(f)) return None
def do_execute(self)
The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str
24.938322
27.995625
0.890794