path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
18137853/cell_5 | [
"text_plain_output_1.png"
] | from PIL import Image
from PIL import Image
from tqdm import tqdm, tqdm_notebook
import matplotlib.patches as patches
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os, os.path
from xml.etree import ElementTree as ET
def parse_annotation(fname):
objects = []
for child in ET.parse(fname).findall('object'):
dog = {}
dog['name'] = child.find('name').text
dog['pose'] = child.find('pose').text
dog['difficult'] = int(child.find('difficult').text)
dog['truncated'] = int(child.find('truncated').text)
bbox = child.find('bndbox')
dog['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)]
objects.append(dog)
return objects
IMAGE_DIR = '../input/all-dogs/all-dogs'
dog_imgs = pd.DataFrame(os.listdir(IMAGE_DIR), columns=['filename'])
dog_imgs['basename'] = dog_imgs['filename'].str.split('.').apply(lambda x: x[0])
dog_imgs[['class', 'id']] = dog_imgs['basename'].str.split('_', expand=True)
dog_imgs = dog_imgs.set_index('basename').sort_index()
ANNOTATION_DIR = '../input/annotation/Annotation'
dog_breeds = pd.DataFrame(os.listdir(ANNOTATION_DIR), columns=['dirname'])
dog_breeds[['class', 'breedname']] = dog_breeds['dirname'].str.split('-', 1, expand=True)
dog_breeds = dog_breeds.set_index('class').sort_index()
dog_imgs['annotation_filename'] = dog_imgs.apply(lambda x: os.path.join(ANNOTATION_DIR, dog_breeds.loc[x['class']]['dirname'], x.name), axis=1)
dog_imgs['objects'] = dog_imgs['annotation_filename'].apply(parse_annotation)
doggo = dog_imgs.sample(1).iloc[0]
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import imgaug.augmenters as iaa
pil_im = Image.open(os.path.join(IMAGE_DIR, doggo['filename']))
im = np.asarray(pil_im)
fig,ax = plt.subplots(1)
ax.imshow(im)
h,w,c = im.shape
for dog in doggo['objects']:
xmin, ymin, xmax, ymax = dog['bbox']
print(h,w,":",xmin,ymin,xmax,ymax)
bbox = patches.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(bbox)
plt.show()
fig,ax = plt.subplots(1)
dog = doggo.objects[0]
h,w,c = im.shape
xmin, ymin, xmax, ymax = dog['bbox']
#im = im[ymin:ymax,xmin:xmax]
pil_crop = pil_im.crop((xmin, ymin, xmax, ymax)).resize((64, 64))
im2 = np.asarray(pil_crop)
ax.imshow(im2)
plt.show()
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import imgaug.augmenters as iaa
from tqdm import tqdm, tqdm_notebook
def get_truth_images():
all_imgs = []
for _, doggo in tqdm_notebook(dog_imgs.iterrows(), total=len(dog_imgs)):
pil_im = Image.open(os.path.join(IMAGE_DIR, doggo['filename']))
h, w, c = im.shape
for dog in doggo['objects']:
border = 10
xmin, ymin, xmax, ymax = dog['bbox']
xmin = max(0, xmin - border)
ymin = max(0, ymin - border)
xmax = min(w, xmax + border)
ymax = min(h, ymax + border)
pil_crop = pil_im.crop((xmin, ymin, xmax, ymax)).resize((64, 64))
all_imgs.append(np.asarray(pil_crop))
return np.stack(all_imgs)
truth_imgs = get_truth_images() | code |
106213588/cell_5 | [
"text_plain_output_1.png"
] | import torch
class Var:
"""simple variable container"""
def __init__(self, value):
self.v = value
self.grad = 0
self.dag = None
def __add__(self, other):
"""Overloads + operator"""
if not isinstance(other, Var):
other = Var(other)
result = Var(self.v + other.v)
result.dag = ('+', (self, other))
return result
def __radd__(self, other):
"""Reverse addition. Needed when user tries to calculate 2 + a"""
return self + other
def __pow__(self, other):
"""Overloads power operator"""
assert not isinstance(other, Var), 'only support primitives yet'
result = Var(self.v ** other)
result.dag = ('^', (self, other))
return result
def __mul__(self, other):
"""Overloads multiplication operator"""
if not isinstance(other, Var):
other = Var(other)
result = Var(self.v * other.v)
result.dag = ('*', (self, other))
return result
def __rmul__(self, other):
return self * other
def __neg__(self):
return self * -1
def __sub__(self, other):
return self + -other
def __truediv__(self, other):
return self * other ** (-1)
def __rtruediv__(self, other):
return other * self.v ** (-1)
def __backward(self, seed):
"""this gets recursively called"""
if self.dag is None:
return
a, b = (None, None)
op, prevs = self.dag
if len(prevs) == 2:
a, b = prevs
else:
a = list(prevs)[0]
if op == '+':
a.grad += seed
b.grad += seed
elif op == '*':
a.grad += b.v * seed
b.grad += a.v * seed
elif op == '^':
a.grad += b * a.v ** (b - 1) * seed
a.__backward(a.grad)
if isinstance(b, Var):
b.__backward(b.grad)
def backward(self, seed=1.0):
"""
do the backward pass and calculate parital derivative of each parent `Var`
Parameters
----------
seed (float): normally it should be set to 1 because dy/dy = 1.
the derivatives of the child gets passed to the parents through this variable.
"""
self.grad = 0
self.__backward(seed)
self.grad = seed
def reset(self):
"""resets the gradient"""
if self.dag is None:
return
a, b = (None, None)
if len(self.dag[1]) == 2:
a, b = self.dag[1]
else:
a = list(self.dag[1])[0]
a.grad = 0
a.reset()
if b is not None:
b.grad = 0
b.reset()
def __repr__(self):
return f'[{self.v} | {self.grad}]'
def test_sanity_check(it=None):
x = Var(-4.0)
z = 2 * x + 2 + x
y = z * x
xmg, ymg = (x, y)
x = torch.Tensor([-4.0]).double()
x.requires_grad = True
z = 2 * x + 2 + x
y = z * x
xpt, ypt = (x, y)
assert ymg.v == ypt.data.item()
ymg.backward()
ypt.backward()
assert xmg.grad == xpt.grad.item()
a = Var(-3.0)
a = -a + 20 - 2
a.backward()
b = torch.Tensor([-3.0]).double()
b.requires_grad = True
b = -b + 20 - 2
b.backward()
assert a.v == b.data.item()
x = Var(2.0)
y = x ** 3
z = torch.tensor([2.0], requires_grad=True)
f = z ** 3
assert y.v == f.data.item()
y.backward()
f.backward()
assert x.grad == z.grad.item()
test_sanity_check()
def gradTest():
"""test gradient calculations"""
a = 6.0
b = 2.2
c = 3.0
a1 = Var(a)
b1 = Var(b)
z1 = a1 * b1
z1.backward()
print(f'SG Gradients of z = ab is, a={a1.grad}, b={b1.grad}')
a2 = torch.tensor(a, requires_grad=True)
b2 = torch.tensor(b, requires_grad=True)
z2 = a2 * b2
z2.backward()
print(f'Torch Gradients of z = ab is, a={a2.grad}, b={b2.grad}')
z1.reset()
print(a1.grad, b1.grad, len(z1.dag))
c1 = Var(c)
d1 = a1 + b1
z1 = d1 * c1
z1.backward()
print(f'SG Gradients of z = (a+b)c = {z1.v} is, a={a1.grad}, b={b1.grad}, c={c1.grad}')
a2 = torch.tensor(a, requires_grad=True)
b2 = torch.tensor(b, requires_grad=True)
c2 = torch.tensor(c, requires_grad=True)
d2 = a2 + b2
z2 = d2 * c2
z2.backward()
print(f'Torch Gradients of z = (a+b)c = {z2} is, a={a2.grad}, b={b2.grad}, c={c2.grad}')
a1 = Var(a)
z1 = a1 + a1
z1.backward()
tol = 1e-06
a2 = torch.tensor([a], requires_grad=True)
a3 = a2 + a2
a3.retain_grad()
a3.backward(gradient=torch.tensor([1.0]))
assert a1.grad == a2.grad
gradTest() | code |
32068950/cell_13 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
from sklearn.linear_model import RidgeCV
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
X_train = np.vstack(list(X_train.values()))
X_test = np.vstack(list(X_test.values()))
Y_train = np.vstack(list(Y_train.values()))
Y_test = np.vstack(list(Y_test.values()))
Y_train.shape
y_train = Y_train[:, 0]
y_test = Y_test[:, 0]
ridge_cc = RidgeCV()
ridge_cc.fit(X_train, y_train)
y_train = Y_train[:, 1]
y_test = Y_test[:, 1]
ridge_f = RidgeCV()
ridge_f.fit(X_train, y_train)
print(ridge_f.score(X_train, y_train))
print(ridge_f.score(X_test, y_test)) | code |
32068950/cell_9 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
print(area)
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):] | code |
32068950/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
countries.head() | code |
32068950/cell_20 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
from sklearn.linear_model import RidgeCV
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
X_train = np.vstack(list(X_train.values()))
X_test = np.vstack(list(X_test.values()))
Y_train = np.vstack(list(Y_train.values()))
Y_test = np.vstack(list(Y_test.values()))
Y_train.shape
y_train = Y_train[:, 0]
y_test = Y_test[:, 0]
ridge_cc = RidgeCV()
ridge_cc.fit(X_train, y_train)
y_train = Y_train[:, 1]
y_test = Y_test[:, 1]
ridge_f = RidgeCV()
ridge_f.fit(X_train, y_train)
test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv').set_index('ForecastId')
test_data = transform_area(test_data)
test_data = transform_countries(test_data)
test_data['ConfirmedCases'] = np.NaN
test_data['Fatalities'] = np.NaN
last_date = train_data.Date.max()
last_date
train_dates = set(train_data.Date)
test_dates = set(test_data.Date)
for i in test_data.loc[test_data.Date <= last_date].index:
date = test_data.loc[i].Date
if date in set(train_data.Date):
slc = train_data.loc[(train_data.Date == date) & (train_data.Area == test_data.loc[i, 'Area'])]
test_data.loc[i, 'ConfirmedCases'] = slc['ConfirmedCases'].iloc[0]
test_data.loc[i, 'Fatalities'] = slc['Fatalities'].iloc[0]
for area in sorted(list(set(test_data.Area))):
print(area)
area_data = test_data.loc[test_data.Area == area].set_index('Date').sort_index()
for i in area_data.index:
if not np.isnan(area_data.loc[i, 'ConfirmedCases']) and (not np.isnan(area_data.loc[i, 'Fatalities'])):
continue
x = np.zeros(2 * N_FEATURES + 2)
for j in range(1, 1 + N_FEATURES):
x[j * 2 - 2] = area_data.shift(j).loc[i].ConfirmedCases
x[j * 2 - 1] = area_data.shift(j).loc[i].Fatalities
x[2 * N_FEATURES] = area_data.loc[i].Density
x[2 * N_FEATURES + 1] = area_data.loc[i].InfantMortality
x = x.reshape(1, -1)
test_data.loc[(test_data.Area == area) & (test_data.Date == i), 'ConfirmedCases'] = ridge_cc.predict(x)[0]
test_data.loc[(test_data.Area == area) & (test_data.Date == i), 'Fatalities'] = ridge_f.predict(x)[0]
area_data.loc[i, 'ConfirmedCases'] = ridge_cc.predict(x)[0] + area_data.shift(1).loc[i, 'ConfirmedCases']
area_data.loc[i, 'Fatalities'] = ridge_f.predict(x)[0] + area_data.shift(1).loc[i, 'Fatalities'] | code |
32068950/cell_11 | [
"text_html_output_1.png"
] | from collections import OrderedDict
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
X_train = np.vstack(list(X_train.values()))
X_test = np.vstack(list(X_test.values()))
Y_train = np.vstack(list(Y_train.values()))
Y_test = np.vstack(list(Y_test.values()))
Y_train.shape | code |
32068950/cell_19 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv').set_index('ForecastId')
test_data = transform_area(test_data)
test_data = transform_countries(test_data)
last_date = train_data.Date.max()
last_date
train_dates = set(train_data.Date)
test_dates = set(test_data.Date)
for i in test_data.loc[test_data.Date <= last_date].index:
date = test_data.loc[i].Date
if date in set(train_data.Date):
slc = train_data.loc[(train_data.Date == date) & (train_data.Area == test_data.loc[i, 'Area'])]
test_data.loc[i, 'ConfirmedCases'] = slc['ConfirmedCases'].iloc[0]
test_data.loc[i, 'Fatalities'] = slc['Fatalities'].iloc[0]
test_data.info() | code |
32068950/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
from collections import OrderedDict
from sklearn.linear_model import RidgeCV
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBRegressor | code |
32068950/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
train_data.head() | code |
32068950/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
train_data.info() | code |
32068950/cell_15 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv').set_index('ForecastId')
test_data = transform_area(test_data)
test_data = transform_countries(test_data)
test_data.head() | code |
32068950/cell_17 | [
"text_plain_output_1.png"
] | from collections import OrderedDict
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
last_date = train_data.Date.max()
last_date | code |
32068950/cell_12 | [
"text_html_output_1.png"
] | from collections import OrderedDict
from sklearn.linear_model import RidgeCV
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
N_FEATURES = 5
countries = pd.read_csv('/kaggle/input/countries-of-the-world/countries of the world.csv', decimal=',')
countries['Country'] = countries.Country.str.lower()
countries = countries.set_index('Country')
train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv').set_index('Id')
def transform_area(data):
data['Area'] = ''
data.loc[~data.Province_State.isna(), 'Area'] = data.loc[~data.Province_State.isna()].Country_Region.str.lower() + '/' + data.Province_State.str.lower()
data.loc[data.Province_State.isna(), 'Area'] = data.loc[data.Province_State.isna()].Country_Region.str.lower()
data = data.drop('Province_State', axis='columns')
return data
def transform_countries(data):
data['Density'] = countries['Pop. Density (per sq. mi.)'].mean()
data['InfantMortality'] = countries['Infant mortality (per 1000 births)'].mean()
for i in data.index:
country = data.loc[i, 'Country_Region'].lower()
if country in countries.index:
data.loc[i, 'Density'] = countries.loc[country, 'Pop. Density (per sq. mi.)']
return data
train_data = transform_area(train_data)
train_data = transform_countries(train_data)
X_train = {}
X_test = {}
Y_train = {}
Y_test = {}
for area in list(set(train_data.Area)):
area_data = train_data.loc[train_data.Area == area].set_index('Date').sort_index()
Y = area_data[['ConfirmedCases', 'Fatalities']] - area_data.shift(1)[['ConfirmedCases', 'Fatalities']]
dic = OrderedDict()
for i in range(1, 1 + N_FEATURES):
dic['CC_{}'.format(i)] = area_data.shift(i)['ConfirmedCases']
dic['F_{}'.format(i)] = area_data.shift(i)['Fatalities']
dic['Density'] = area_data['Density']
dic['InfantMortality'] = area_data['InfantMortality']
X = pd.DataFrame(dic, index=area_data.index)
X = X.dropna(axis='index')
Y = Y.loc[X.index]
X_train[area] = X.iloc[:int(len(X) * 0.8)]
X_test[area] = X.iloc[int(len(X) * 0.8):]
Y_train[area] = Y.iloc[:int(len(X) * 0.8)]
Y_test[area] = Y.iloc[int(len(X) * 0.8):]
X_train = np.vstack(list(X_train.values()))
X_test = np.vstack(list(X_test.values()))
Y_train = np.vstack(list(Y_train.values()))
Y_test = np.vstack(list(Y_test.values()))
Y_train.shape
y_train = Y_train[:, 0]
y_test = Y_test[:, 0]
ridge_cc = RidgeCV()
ridge_cc.fit(X_train, y_train)
print(ridge_cc.score(X_train, y_train))
print(ridge_cc.score(X_test, y_test)) | code |
105180497/cell_25 | [
"image_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape
train_data[non_numerical_label[i]].values | code |
105180497/cell_29 | [
"text_plain_output_1.png"
] | from statsmodels.formula.api import ols
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape
plt.rcParams['figure.figsize'] = [25, 25]
panels=int(np.ceil(np.sqrt(len(numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_numical_features=[]
for i in range(0,len(numerical_label)):
x=list(train_data[numerical_label[i]])
y=list(train_data['SalePrice'])
r=np.corrcoef(x, y)
r=r[0,1]
axs[i//panels,i%panels].scatter(x,y)
axs[i//panels,i%panels].title.set_text(numerical_label[i]+": "+str(r))
if r>0.5 or r<-0.5:
selected_numical_features.append(numerical_label[i])
plt.rcParams['figure.figsize'] = [30, 40]
panels=int(np.ceil(np.sqrt(len(non_numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_non_numerical_features=[]
for i in range(0,len(non_numerical_label)):
dataset=[]
unique_cats=np.unique(train_data[non_numerical_label[i]].values)
tbl_temp=train_data[[non_numerical_label[i],'SalePrice']]
for catg in unique_cats:
dataset.append(tbl_temp.loc[tbl_temp[non_numerical_label[i]]==catg,'SalePrice'].values)
p=-1
if len(unique_cats)>=2:
model = ols('SalePrice ~ C('+non_numerical_label[i]+')', data=tbl_temp).fit()
aov_table = sm.stats.anova_lm(model, typ=2)
p=aov_table['PR(>F)'][0]
axs[i//panels,i%panels].violinplot(dataset)
axs[i//panels,i%panels].title.set_text(non_numerical_label[i]+'\n'+' Anova p: '+str(float("{:.5f}".format(p))))
axs[i//panels,i%panels].set_xticks(np.arange(1, len(unique_cats) + 1))
axs[i//panels,i%panels].set_xticklabels(unique_cats)
if p!=-1 and p<0.05: # at least one cat is significantly different than others
selected_non_numerical_features.append(non_numerical_label[i])
selected_non_numerical_features | code |
105180497/cell_26 | [
"text_plain_output_1.png"
] | from statsmodels.formula.api import ols
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape
plt.rcParams['figure.figsize'] = [25, 25]
panels=int(np.ceil(np.sqrt(len(numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_numical_features=[]
for i in range(0,len(numerical_label)):
x=list(train_data[numerical_label[i]])
y=list(train_data['SalePrice'])
r=np.corrcoef(x, y)
r=r[0,1]
axs[i//panels,i%panels].scatter(x,y)
axs[i//panels,i%panels].title.set_text(numerical_label[i]+": "+str(r))
if r>0.5 or r<-0.5:
selected_numical_features.append(numerical_label[i])
plt.rcParams['figure.figsize'] = [30, 40]
panels = int(np.ceil(np.sqrt(len(non_numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_non_numerical_features = []
for i in range(0, len(non_numerical_label)):
dataset = []
unique_cats = np.unique(train_data[non_numerical_label[i]].values)
tbl_temp = train_data[[non_numerical_label[i], 'SalePrice']]
for catg in unique_cats:
dataset.append(tbl_temp.loc[tbl_temp[non_numerical_label[i]] == catg, 'SalePrice'].values)
p = -1
if len(unique_cats) >= 2:
model = ols('SalePrice ~ C(' + non_numerical_label[i] + ')', data=tbl_temp).fit()
aov_table = sm.stats.anova_lm(model, typ=2)
p = aov_table['PR(>F)'][0]
axs[i // panels, i % panels].violinplot(dataset)
axs[i // panels, i % panels].title.set_text(non_numerical_label[i] + '\n' + ' Anova p: ' + str(float('{:.5f}'.format(p))))
axs[i // panels, i % panels].set_xticks(np.arange(1, len(unique_cats) + 1))
axs[i // panels, i % panels].set_xticklabels(unique_cats)
if p != -1 and p < 0.05:
selected_non_numerical_features.append(non_numerical_label[i]) | code |
105180497/cell_19 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
test_data.shape | code |
105180497/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
105180497/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
train_data.head() | code |
105180497/cell_18 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape | code |
105180497/cell_28 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape
plt.rcParams['figure.figsize'] = [25, 25]
panels=int(np.ceil(np.sqrt(len(numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_numical_features=[]
for i in range(0,len(numerical_label)):
x=list(train_data[numerical_label[i]])
y=list(train_data['SalePrice'])
r=np.corrcoef(x, y)
r=r[0,1]
axs[i//panels,i%panels].scatter(x,y)
axs[i//panels,i%panels].title.set_text(numerical_label[i]+": "+str(r))
if r>0.5 or r<-0.5:
selected_numical_features.append(numerical_label[i])
selected_numical_features | code |
105180497/cell_15 | [
"text_html_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
print('dropped rows by SalePrice:' + ' '.join(list([str(row2drop[i]) for i in range(0, len(row2drop))]))) | code |
105180497/cell_17 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
print('# of duplicated rows in training data: ' + str(sum(dup_rows_train == True)))
dup_rows_train = test_data.duplicated()
print('# of duplicated rows in test data: ' + str(sum(dup_rows_train == True))) | code |
105180497/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data | code |
105180497/cell_22 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
train_data[numerical_label] = train_data[numerical_label].fillna(0)
train_data[non_numerical_label] = train_data[non_numerical_label].fillna('n')
test_data[numerical_label] = test_data[numerical_label].fillna(0)
test_data[non_numerical_label] = test_data[non_numerical_label].fillna('n')
na_per_row = train_data.isna().sum(axis=1)
row2drop = list(train_data.index[na_per_row > 0])
train_data = train_data.drop(row2drop, axis=0)
dup_rows_train = train_data.duplicated()
dup_rows_train = test_data.duplicated()
train_data.shape
plt.rcParams['figure.figsize'] = [25, 25]
panels = int(np.ceil(np.sqrt(len(numerical_label))))
fig, axs = plt.subplots(panels, panels)
selected_numical_features = []
for i in range(0, len(numerical_label)):
x = list(train_data[numerical_label[i]])
y = list(train_data['SalePrice'])
r = np.corrcoef(x, y)
r = r[0, 1]
axs[i // panels, i % panels].scatter(x, y)
axs[i // panels, i % panels].title.set_text(numerical_label[i] + ': ' + str(r))
if r > 0.5 or r < -0.5:
selected_numical_features.append(numerical_label[i]) | code |
105180497/cell_12 | [
"text_html_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
numerical_label = list(train_data.dtypes[train_data.dtypes != 'object'].index)
non_numerical_label = list(train_data.dtypes[train_data.dtypes == 'object'].index)
numerical_label.remove('Id')
numerical_label.remove('SalePrice')
na_per_col_train = train_data.isna().sum(axis=0)
na_per_col_test = test_data.isna().sum(axis=0)
na_per_col = np.array(na_per_col_train[0:80]) + np.array(na_per_col_test)
col2drop_train = list(train_data.columns[na_per_col_train >= train_data.shape[0] * 0.2])
col2drop_test = list(test_data.columns[na_per_col_test >= test_data.shape[0] * 0.2])
col2drop_train.extend(col2drop_test)
col2drop = np.unique(col2drop_train)
train_data = train_data.drop(col2drop, axis=1)
test_data = test_data.drop(col2drop, axis=1)
numerical_label = list(set(numerical_label).difference(set(col2drop)))
non_numerical_label = list(set(non_numerical_label).difference(set(col2drop)))
print('dropped columns: ' + ' '.join(col2drop)) | code |
90137984/cell_9 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from numpy import linspace
from pandas import read_csv
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.pipeline import make_pipeline, make_union
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder, StandardScaler
from pandas import read_csv
train = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/train.csv')
train = train.drop(['id', 'circle_id'], axis=1)
test = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/test.csv')
sample = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/sample.csv')
metadata = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/data_dictionary.csv')
mask = train.isna().sum() / len(train) > 0.5
train = train.loc[:, ~mask]
from sklearn.impute import SimpleImputer
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline, make_union
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import accuracy_score
from numpy import linspace
X_train, y_train = (train.drop('churn_probability', axis=1), train['churn_probability'])
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, stratify=y_train)
impute_onehot = make_column_transformer((SimpleImputer(), X_train.select_dtypes(include='number').columns), (OneHotEncoder(handle_unknown='ignore'), X_train.select_dtypes(include='object').columns))
base = make_pipeline(impute_onehot, StandardScaler(), SGDClassifier(n_jobs=-1))
base.fit(X_train, y_train)
accuracy_score(y_test, base.predict(X_test))
model = make_pipeline(impute_onehot, StandardScaler(), SGDClassifier(class_weight='balanced'))
model = RandomizedSearchCV(model, {'sgdclassifier__alpha': linspace(0.0001, 2), 'sgdclassifier__loss': ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron']}, cv=10, n_iter=30, verbose=True, scoting='accuracy', n_jobs=-1)
model.fit(X_train, y_train)
accuracy_score(y_test, model.predict(X_test)) | code |
90137984/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from pandas import read_csv
from pandas import read_csv
train = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/train.csv')
train = train.drop(['id', 'circle_id'], axis=1)
test = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/test.csv')
sample = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/sample.csv')
metadata = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/data_dictionary.csv')
(train.isna().sum() / len(train) * 100).plot(ylim=(0, 100), figsize=(15, 5)) | code |
90137984/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from pandas import read_csv
from pandas import read_csv
train = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/train.csv')
train = train.drop(['id', 'circle_id'], axis=1)
test = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/test.csv')
sample = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/sample.csv')
metadata = read_csv('/kaggle/input/telecom-churn-case-study-hackathon-gc1/data_dictionary.csv')
mask = train.isna().sum() / len(train) > 0.5
train = train.loc[:, ~mask]
(train.isna().sum() / len(train) * 100).plot(ylim=(0, 100), figsize=(15, 5)) | code |
105175580/cell_13 | [
"text_plain_output_1.png"
] | from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
import graphviz
import graphviz
train.dtypes
pred = clf.predict(test)
pred
predict = clf.predict_proba(test)
predict
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x, y)
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf = clf.fit(x, y)
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import graphviz
clf = DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf.fit(x, y)
clf_feature_names = list(x.columns)
dot_data = tree.export_graphviz(clf, feature_names=clf_feature_names, class_names=['0', '1'], filled=True, rounded=True, special_characters=True, out_file=None)
graph = graphviz.Source(dot_data)
graph
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=3, random_state=1, splitter='best', min_samples_leaf=2)
clf = clf.fit(x, y)
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import graphviz
clf = tree.DecisionTreeClassifier(max_depth=3, random_state=1, splitter='best', min_samples_leaf=2)
clf.fit(x, y)
clf_feature_names = list(x.columns)
dot_data = tree.export_graphviz(clf, feature_names=clf_feature_names, class_names=['0', '1'], filled=True, rounded=True, special_characters=True, out_file=None)
graph = graphviz.Source(dot_data)
graph | code |
105175580/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | train.describe() | code |
105175580/cell_11 | [
"text_html_output_1.png"
] | from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
import graphviz
train.dtypes
pred = clf.predict(test)
pred
predict = clf.predict_proba(test)
predict
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x, y)
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf = clf.fit(x, y)
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import graphviz
clf = DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf.fit(x, y)
clf_feature_names = list(x.columns)
dot_data = tree.export_graphviz(clf, feature_names=clf_feature_names, class_names=['0', '1'], filled=True, rounded=True, special_characters=True, out_file=None)
graph = graphviz.Source(dot_data)
graph | code |
105175580/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | pred = clf.predict(test)
pred
predict = clf.predict_proba(test)
predict | code |
105175580/cell_3 | [
"text_plain_output_1.png"
] | train.info() | code |
105175580/cell_10 | [
"text_plain_output_1.png"
] | from sklearn import tree
from sklearn import tree
from sklearn import tree
train.dtypes
pred = clf.predict(test)
pred
predict = clf.predict_proba(test)
predict
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x, y)
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf = clf.fit(x, y)
tree.plot_tree(clf) | code |
105175580/cell_12 | [
"text_plain_output_1.png"
] | from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
import graphviz
train.dtypes
pred = clf.predict(test)
pred
predict = clf.predict_proba(test)
predict
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x, y)
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf = clf.fit(x, y)
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import graphviz
clf = DecisionTreeClassifier(max_depth=2, random_state=0, splitter='best')
clf.fit(x, y)
clf_feature_names = list(x.columns)
dot_data = tree.export_graphviz(clf, feature_names=clf_feature_names, class_names=['0', '1'], filled=True, rounded=True, special_characters=True, out_file=None)
graph = graphviz.Source(dot_data)
graph
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
x = train.drop('TARGET', axis=1)
y = train.TARGET
clf = tree.DecisionTreeClassifier(max_depth=3, random_state=1, splitter='best', min_samples_leaf=2)
clf = clf.fit(x, y)
tree.plot_tree(clf) | code |
105175580/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | train.dtypes | code |
73078742/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
df.head() | code |
73078742/cell_4 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16, 10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show() | code |
73078742/cell_20 | [
"image_output_1.png"
] | from sklearn import preprocessing
from sklearn.feature_selection import RFE
from sklearn.metrics import explained_variance_score
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show()
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
X, y = (df_le.iloc[:, :-1], df_le.iloc[:, -1])
estimator = SVR(kernel='linear')
selector = RFE(estimator, n_features_to_select=4)
selector = selector.fit(X, y)
selected_cols = [c for i, c in enumerate(X.columns) if selector.support_[i]]
from sklearn.model_selection import train_test_split
from sklearn.metrics import explained_variance_score
X = df_le[selected_cols]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
explained_variance_score(y_test, y_pred)
x_sorted = X_test.sort_values(by=['pretest'])
fig, ax = plt.subplots(figsize=(16,7))
x_predictions = pd.Series(clf.predict(x_sorted))
y_actuals = pd.Series(y_test[x_sorted.index])
y_actuals.reset_index().posttest.plot(ax=ax, linewidth=4)
x_predictions.plot(ax=ax, linewidth=.8)
ax.legend(['actual', 'predicted'])
X = df_le.drop(['test_diff', 'pretest', 'posttest'], axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
explained_variance_score(y_test, y_pred) | code |
73078742/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16, 7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16, 5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout() | code |
73078742/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df | code |
73078742/cell_11 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
df_le.head() | code |
73078742/cell_7 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15, 5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show() | code |
73078742/cell_15 | [
"image_output_2.png",
"image_output_1.png"
] | from sklearn import preprocessing
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show()
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
X, y = (df_le.iloc[:, :-1], df_le.iloc[:, -1])
estimator = SVR(kernel='linear')
selector = RFE(estimator, n_features_to_select=4)
selector = selector.fit(X, y)
selected_cols = [c for i, c in enumerate(X.columns) if selector.support_[i]]
print(f'Used recursive feature elimination to select the following columns for our training:\n\n{selected_cols}') | code |
73078742/cell_16 | [
"image_output_1.png"
] | from sklearn import preprocessing
from sklearn.feature_selection import RFE
from sklearn.metrics import explained_variance_score
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show()
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
X, y = (df_le.iloc[:, :-1], df_le.iloc[:, -1])
estimator = SVR(kernel='linear')
selector = RFE(estimator, n_features_to_select=4)
selector = selector.fit(X, y)
selected_cols = [c for i, c in enumerate(X.columns) if selector.support_[i]]
from sklearn.model_selection import train_test_split
from sklearn.metrics import explained_variance_score
X = df_le[selected_cols]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
explained_variance_score(y_test, y_pred) | code |
73078742/cell_17 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
from sklearn.feature_selection import RFE
from sklearn.metrics import explained_variance_score
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show()
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
X, y = (df_le.iloc[:, :-1], df_le.iloc[:, -1])
estimator = SVR(kernel='linear')
selector = RFE(estimator, n_features_to_select=4)
selector = selector.fit(X, y)
selected_cols = [c for i, c in enumerate(X.columns) if selector.support_[i]]
from sklearn.model_selection import train_test_split
from sklearn.metrics import explained_variance_score
X = df_le[selected_cols]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
explained_variance_score(y_test, y_pred)
x_sorted = X_test.sort_values(by=['pretest'])
fig, ax = plt.subplots(figsize=(16, 7))
x_predictions = pd.Series(clf.predict(x_sorted))
y_actuals = pd.Series(y_test[x_sorted.index])
y_actuals.reset_index().posttest.plot(ax=ax, linewidth=4)
x_predictions.plot(ax=ax, linewidth=0.8)
ax.legend(['actual', 'predicted']) | code |
73078742/cell_14 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show()
df_le | code |
73078742/cell_12 | [
"image_output_1.png"
] | from sklearn import preprocessing
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(figsize=(16,7))
ax1 = df.school.value_counts()[::-1].plot(kind='bar', ax=axes)
ax1.set_title('School distribution')
fig, axes = plt.subplots(ncols=2, figsize=(16,5))
ax2 = df.school_setting.value_counts().plot(kind='bar', ax=axes[0])
ax3 = df.school_type.value_counts().plot(kind='bar', ax=axes[1])
ax2.set_title('School setting')
ax3.set_title('School type')
plt.tight_layout()
fig, ax = plt.subplots(figsize=(15,5))
df.groupby('school').pretest.mean().sort_values().plot(kind='bar', ax=ax)
ax.set_title('Comparison of average scores by school')
plt.show()
from sklearn import preprocessing
label_decoder = dict()
for col in ['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']:
le = preprocessing.LabelEncoder()
le.fit_transform(df[col])
label_decoder[col] = le
df_le = df[['school', 'school_setting', 'school_type', 'classroom', 'teaching_method', 'gender', 'lunch']].apply(le.fit_transform, axis='index')
df_le[['n_student', 'pretest', 'posttest']] = df[['n_student', 'pretest', 'posttest']]
df_le.insert(8, 'test_diff', df_le.posttest - df_le.pretest)
x = df_le.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_norm = pd.DataFrame(x_scaled)
df_norm.columns = df_le.columns
corr = df_norm.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style('white'):
fig, ax = plt.subplots(figsize=(15, 10))
sns.heatmap(corr, ax=ax, cmap=sns.color_palette('light:#e24a33', as_cmap=True), xticklabels=True, mask=mask, linewidths=0.5)
ax.set_title('Heatmap showing correlation of variables')
plt.show() | code |
73078742/cell_5 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv')
df
plt.style.use('ggplot')
fig, axes = plt.subplots(nrows=2)
ax1 = df.pretest.plot.kde(figsize=(16,10), ax=axes[0])
ax1 = df.posttest.plot.kde(ax=axes[0])
ax1.legend(['Pretest', 'Posttest'])
ax1.set_title('Density plot of pre/post test scores')
ax2 = df.n_student.plot.kde(ax=axes[1])
ax2.set_title('Density plot of number of students in class')
plt.tight_layout()
plt.show()
print(f'The median moved {df.posttest.median() - df.pretest.median()} points from pretest to posttest') | code |
18159704/cell_4 | [
"text_plain_output_1.png"
] | from glob import glob
import cv2
import numpy as np
train_data1 = glob('../input/fruits-360_dataset/fruits-360/Training/Raspberry/*')
train_data2 = glob('../input/fruits-360_dataset/fruits-360/Training/Pomelo Sweetie/*')
test_data1 = glob('../input/fruits-360_dataset/fruits-360/Test/Raspberry/*')
test_data2 = glob('../input/fruits-360_dataset/fruits-360/Test/Pomelo Sweetie/*')
x_train = []
x_test = []
def create_data(data, values):
for i in values:
im = cv2.imread(i, 0)
data.append(im)
return len(values)
train_Rasberry_size = create_data(x_train, train_data1)
train_Pomelo_size = create_data(x_train, train_data2)
test_Rasberry_size = create_data(x_test, test_data1)
test_Pomelo_size = create_data(x_test, test_data2)
x_train = np.asarray(x_train, dtype=np.float64)
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2])
z = np.zeros(train_Rasberry_size)
o = np.ones(train_Pomelo_size)
y_train = np.concatenate((z, o), axis=0)
x_test = np.asarray(x_test, dtype=np.float64)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1] * x_test.shape[2])
z = np.zeros(test_Rasberry_size)
o = np.ones(test_Pomelo_size)
y_test = np.concatenate((z, o), axis=0)
print('x_test:', x_test.shape)
print('y_test:', y_test.shape) | code |
18159704/cell_2 | [
"text_plain_output_1.png"
] | from glob import glob
import cv2
train_data1 = glob('../input/fruits-360_dataset/fruits-360/Training/Raspberry/*')
train_data2 = glob('../input/fruits-360_dataset/fruits-360/Training/Pomelo Sweetie/*')
test_data1 = glob('../input/fruits-360_dataset/fruits-360/Test/Raspberry/*')
test_data2 = glob('../input/fruits-360_dataset/fruits-360/Test/Pomelo Sweetie/*')
x_train = []
x_test = []
def create_data(data, values):
for i in values:
im = cv2.imread(i, 0)
data.append(im)
return len(values)
train_Rasberry_size = create_data(x_train, train_data1)
train_Pomelo_size = create_data(x_train, train_data2)
print('train_Raspberry_size:{} || train_Pomelo_size:{}'.format(train_Rasberry_size, train_Pomelo_size))
test_Rasberry_size = create_data(x_test, test_data1)
test_Pomelo_size = create_data(x_test, test_data2)
print('test_Raspberry_size:{} || test_Pomelo_size:{}'.format(test_Rasberry_size, test_Pomelo_size)) | code |
18159704/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import os
import cv2
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import minmax_scale
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from keras.layers import Dense
from glob import glob
import os | code |
18159704/cell_3 | [
"text_plain_output_1.png"
] | from glob import glob
import cv2
import numpy as np
train_data1 = glob('../input/fruits-360_dataset/fruits-360/Training/Raspberry/*')
train_data2 = glob('../input/fruits-360_dataset/fruits-360/Training/Pomelo Sweetie/*')
test_data1 = glob('../input/fruits-360_dataset/fruits-360/Test/Raspberry/*')
test_data2 = glob('../input/fruits-360_dataset/fruits-360/Test/Pomelo Sweetie/*')
x_train = []
x_test = []
def create_data(data, values):
for i in values:
im = cv2.imread(i, 0)
data.append(im)
return len(values)
train_Rasberry_size = create_data(x_train, train_data1)
train_Pomelo_size = create_data(x_train, train_data2)
test_Rasberry_size = create_data(x_test, test_data1)
test_Pomelo_size = create_data(x_test, test_data2)
x_train = np.asarray(x_train, dtype=np.float64)
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2])
z = np.zeros(train_Rasberry_size)
o = np.ones(train_Pomelo_size)
y_train = np.concatenate((z, o), axis=0)
print('x_train:', x_train.shape)
print('y_train:', y_train.shape) | code |
18159704/cell_5 | [
"text_plain_output_1.png"
] | from glob import glob
from keras.layers import Dense
from keras.models import Sequential
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
import cv2
import numpy as np
train_data1 = glob('../input/fruits-360_dataset/fruits-360/Training/Raspberry/*')
train_data2 = glob('../input/fruits-360_dataset/fruits-360/Training/Pomelo Sweetie/*')
test_data1 = glob('../input/fruits-360_dataset/fruits-360/Test/Raspberry/*')
test_data2 = glob('../input/fruits-360_dataset/fruits-360/Test/Pomelo Sweetie/*')
x_train = []
x_test = []
def create_data(data, values):
for i in values:
im = cv2.imread(i, 0)
data.append(im)
return len(values)
train_Rasberry_size = create_data(x_train, train_data1)
train_Pomelo_size = create_data(x_train, train_data2)
test_Rasberry_size = create_data(x_test, test_data1)
test_Pomelo_size = create_data(x_test, test_data2)
x_train = np.asarray(x_train, dtype=np.float64)
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2])
z = np.zeros(train_Rasberry_size)
o = np.ones(train_Pomelo_size)
y_train = np.concatenate((z, o), axis=0)
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units=16, kernel_initializer='uniform', activation='relu', input_dim=x_train.shape[1]))
classifier.add(Dense(units=8, kernel_initializer='uniform', activation='relu'))
classifier.add(Dense(units=8, kernel_initializer='uniform', activation='relu'))
classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return classifier
model = KerasClassifier(build_fn=build_classifier, epochs=5, verbose=2)
results = cross_val_score(estimator=model, X=x_train, y=y_train, cv=3)
print('Accuracy mean:', results.mean())
print('Accuracy variance:', results.std()) | code |
18135845/cell_21 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
tsplot(AMZN.AdjClose, lags=30) | code |
18135845/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
p('Outputs\n-------------\nMean: {:.3f}\nVariance: {:.3f}\nStandard Deviation: {:.3f}'.format(whnoise.mean(), whnoise.var(), whnoise.std())) | code |
18135845/cell_23 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
np.random.seed(1)
n_samples = 1000
x = w = np.random.normal(size=n_samples)
for t in range(n_samples):
x[t] = x[t - 1] + w[t]
tsplot(np.diff(AMZN.AdjClose), lags=30) | code |
18135845/cell_11 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
np.random.seed(1)
n_samples = 1000
x = w = np.random.normal(size=n_samples)
for t in range(n_samples):
x[t] = x[t - 1] + w[t]
tsplot(x, lags=30) | code |
18135845/cell_19 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
np.random.seed(1)
n_samples = 1000
x = w = np.random.normal(size=n_samples)
for t in range(n_samples):
x[t] = x[t - 1] + w[t]
tsplot(np.diff(MSFT.AdjClose), lags=30) | code |
18135845/cell_8 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
tsplot(whnoise, lags=30) | code |
18135845/cell_17 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
tsplot(MSFT.AdjClose, lags=30) | code |
18135845/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.tsa.api as smt
MSFT = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN = pd.read_csv('../input/Amazon.csv', header=None)
MSFT['AdjClose'] = pd.read_csv('../input/Microsoft.csv', header=None)
AMZN['AdjClose'] = pd.read_csv('../input/Amazon.csv', header=None)
def tsplot(y, lags=None, figsize=(15, 15), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style):
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Analysis Plots')
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.7)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.7)
plt.tight_layout()
return
np.random.seed(1)
whnoise = np.random.normal(size=1000)
np.random.seed(1)
n_samples = 1000
x = w = np.random.normal(size=n_samples)
for t in range(n_samples):
x[t] = x[t - 1] + w[t]
tsplot(np.diff(x), lags=30) | code |
17122172/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from gensim.models import KeyedVectors, Word2Vec
from matplotlib import pyplot
from nltk.tokenize import RegexpTokenizer
from sklearn.decomposition import PCA
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
forum_posts = pd.read_csv('../input/meta-kaggle/ForumMessages.csv')['Message'].astype('str')
tokenizer = RegexpTokenizer('\\w+')
data_tokenized = [w.lower() for w in forum_posts.tolist()]
data_tokenized = [tokenizer.tokenize(i) for i in data_tokenized]
model_2 = Word2Vec(size=300, min_count=1)
model_2.build_vocab(data_tokenized)
total_examples = model_2.corpus_count
model_2.train(data_tokenized, total_examples=total_examples, epochs=1)
X = model_2[list(model_2.wv.vocab.keys())[:100]]
pca = PCA(n_components=2)
result = pca.fit_transform(X)
pyplot.scatter(result[:, 0], result[:, 1])
words = list(model_2.wv.vocab.keys())[:100]
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show() | code |
17122172/cell_5 | [
"text_plain_output_1.png"
] | from gensim.models import KeyedVectors, Word2Vec
from nltk.tokenize import RegexpTokenizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
forum_posts = pd.read_csv('../input/meta-kaggle/ForumMessages.csv')['Message'].astype('str')
tokenizer = RegexpTokenizer('\\w+')
data_tokenized = [w.lower() for w in forum_posts.tolist()]
data_tokenized = [tokenizer.tokenize(i) for i in data_tokenized]
model_2 = Word2Vec(size=300, min_count=1)
model_2.build_vocab(data_tokenized)
total_examples = model_2.corpus_count
model_2.train(data_tokenized, total_examples=total_examples, epochs=1) | code |
72106102/cell_13 | [
"text_plain_output_1.png"
] | missing_values = X_train_full.isnull().sum()
cat_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() < 10]
print('Number of unique category for each categorical Feature')
for cols in cat_cols:
print(f'{cols}: {X_train_full[cols].nunique()}') | code |
72106102/cell_9 | [
"text_plain_output_1.png"
] | X_train_full.head() | code |
72106102/cell_11 | [
"text_html_output_1.png"
] | print(f'Shape of training data: {X_train_full.shape}')
missing_values = X_train_full.isnull().sum()
print(missing_values[missing_values > 0]) | code |
72106102/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.compose import ColumnTransformer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from xgboost import XGBRegressor
import pandas as pd
X_full = pd.read_csv('../input/30-days-of-ml/train.csv', index_col='id')
X_test_full = pd.read_csv('../input/30-days-of-ml/test.csv', index_col='id')
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
X_full.dropna(axis=0, subset=['target'], inplace=True)
y = X_full['target']
X_full.drop(['target'], axis=1, inplace=True)
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2)
missing_values = X_train_full.isnull().sum()
cat_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() < 10]
cat_transformer = OneHotEncoder(handle_unknown='ignore')
preprocessor = ColumnTransformer(transformers=[('cat', cat_transformer, cat_cols)])
model = XGBRegressor()
clf = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
clf.fit(X_full, y)
prediction = clf.predict(X_valid_full)
score = mean_absolute_error(prediction, y_valid)
print(f'Loss:{score}') | code |
72106102/cell_10 | [
"text_html_output_1.png"
] | X_train_full.describe() | code |
128016720/cell_30 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import random
import random
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
import random
classes = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'A-boot']
samples_per_class = 10
num_classes = len(classes)
fig, axs = plt.subplots(samples_per_class, num_classes, figsize=(10, 10))
fig.subplots_adjust(hspace=0.5)
for i in range(samples_per_class):
for j in range(num_classes):
cls = classes[j]
ind = random.choice((y_train == j).nonzero()[0])
img = X_train[ind].reshape((28, 28))
axs[i, j].imshow(img, cmap=plt.cm.gray)
axs[i, j].axis('off')
if i == 0:
axs[i, j].set_title(cls)
plt.show()
pipe = make_pipeline(StandardScaler(), KNeighborsClassifier())
param_grid = {'kneighborsclassifier__n_neighbors': range(1, 30)}
cv = GridSearchCV(pipe, param_grid=param_grid, cv=5)
cv.fit(X_train, y_train)
mean_scores = cv.cv_results_['mean_test_score']
sns.lineplot(x=range(1, 30), y=mean_scores)
plt.xlabel('K value')
plt.ylabel('Mean test score')
plt.show() | code |
128016720/cell_26 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
pipe = make_pipeline(StandardScaler(), KNeighborsClassifier())
param_grid = {'kneighborsclassifier__n_neighbors': range(1, 30)}
cv = GridSearchCV(pipe, param_grid=param_grid, cv=5)
cv.fit(X_train, y_train) | code |
128016720/cell_11 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
data['label'].sort_values() | code |
128016720/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
128016720/cell_32 | [
"text_plain_output_1.png"
] | from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import random
import random
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
import random
classes = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'A-boot']
samples_per_class = 10
num_classes = len(classes)
fig, axs = plt.subplots(samples_per_class, num_classes, figsize=(10, 10))
fig.subplots_adjust(hspace=0.5)
for i in range(samples_per_class):
for j in range(num_classes):
cls = classes[j]
ind = random.choice((y_train == j).nonzero()[0])
img = X_train[ind].reshape((28, 28))
axs[i, j].imshow(img, cmap=plt.cm.gray)
axs[i, j].axis('off')
if i == 0:
axs[i, j].set_title(cls)
plt.show()
pipe = make_pipeline(StandardScaler(), KNeighborsClassifier())
param_grid = {'kneighborsclassifier__n_neighbors': range(1, 30)}
cv = GridSearchCV(pipe, param_grid=param_grid, cv=5)
cv.fit(X_train, y_train)
mean_scores = cv.cv_results_['mean_test_score']
y_pred = cv.predict(X_test)
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred)) | code |
128016720/cell_28 | [
"image_output_1.png"
] | from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
pipe = make_pipeline(StandardScaler(), KNeighborsClassifier())
param_grid = {'kneighborsclassifier__n_neighbors': range(1, 30)}
cv = GridSearchCV(pipe, param_grid=param_grid, cv=5)
cv.fit(X_train, y_train)
print('Best hyperparameters: ', cv.best_params_) | code |
128016720/cell_8 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
plt.figure(figsize=(8, 6))
sns.heatmap(data.corr(), cmap='coolwarm') | code |
128016720/cell_15 | [
"text_plain_output_1.png"
] | print(f'Training data shape: {X_train.shape}')
print(f'Training labels shape: {y_train.shape}')
print(f'Test data shape: {X_test.shape}')
print(f'Test labels shape: {y_test.shape}') | code |
128016720/cell_17 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import random
import random
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
import random
classes = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'A-boot']
samples_per_class = 10
num_classes = len(classes)
fig, axs = plt.subplots(samples_per_class, num_classes, figsize=(10, 10))
fig.subplots_adjust(hspace=0.5)
for i in range(samples_per_class):
for j in range(num_classes):
cls = classes[j]
ind = random.choice((y_train == j).nonzero()[0])
img = X_train[ind].reshape((28, 28))
axs[i, j].imshow(img, cmap=plt.cm.gray)
axs[i, j].axis('off')
if i == 0:
axs[i, j].set_title(cls)
plt.show() | code |
128016720/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
if data.isnull().values.any():
print('There is something missing in the data')
else:
print('Data is complete') | code |
128016720/cell_5 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv')
data.head() | code |
50244608/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
employees.describe() | code |
50244608/cell_9 | [
"image_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape | code |
50244608/cell_25 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees['Attrition'].value_counts() | code |
50244608/cell_4 | [
"text_plain_output_1.png"
] | pip install -U plotly | code |
50244608/cell_34 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
correlations = employees.corr()
f, ax = plt.subplots(figsize=(20, 20))
sns.heatmap(correlations, annot=True) | code |
50244608/cell_30 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
left = employees[employees['Attrition'] == 1]
stayed = employees[employees['Attrition'] == 0]
left.describe() | code |
50244608/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import os
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
from sklearn.ensemble import RandomForestClassifier
import tensorflow as tf
import pickle | code |
50244608/cell_40 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
left = employees[employees['Attrition'] == 1]
stayed = employees[employees['Attrition'] == 0]
correlations = employees.corr()
f, ax = plt.subplots(figsize = (20,20))
sns.heatmap(correlations, annot=True);
sns.set_palette('seismic_r')
pd.options.plotting.backend = 'plotly'
plt.figure(figsize=(12, 7))
sns.kdeplot(left['TotalWorkingYears'], label='Employees that left', shade=True, color='red')
sns.kdeplot(stayed['TotalWorkingYears'], label='Employees that stayed', shade=True, color='c') | code |
50244608/cell_29 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
left = employees[employees['Attrition'] == 1]
stayed = employees[employees['Attrition'] == 0]
print('Total = ', len(employees))
print('Number of employees that left the company = ', len(left))
print('% of employees that left the company = ', len(left) / len(employees) * 100)
print('Employees that stayed in the company = ', len(stayed))
print('% of employees that stayed in the company = ', len(stayed) / len(employees) * 100) | code |
50244608/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum() | code |
50244608/cell_7 | [
"image_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.head() | code |
50244608/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
employees['EducationField'].unique() | code |
50244608/cell_8 | [
"image_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.info() | code |
50244608/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
employees['Attrition'].unique() | code |
50244608/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
employees['OverTime'].unique() | code |
50244608/cell_38 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
correlations = employees.corr()
f, ax = plt.subplots(figsize = (20,20))
sns.heatmap(correlations, annot=True);
sns.set_palette('seismic_r')
plt.figure(figsize=[20, 20])
plt.subplot(411)
sns.countplot(x='JobRole', hue='Attrition', data=employees)
plt.subplot(412)
sns.countplot(x='MaritalStatus', hue='Attrition', data=employees)
plt.subplot(413)
sns.countplot(x='JobInvolvement', hue='Attrition', data=employees)
plt.subplot(414)
sns.countplot(x='JobLevel', hue='Attrition', data=employees) | code |
50244608/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
employees['Over18'].unique() | code |
50244608/cell_43 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
employees = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
employees.shape
employees.dtypes
employees.isnull().sum()
employees.duplicated().sum()
sns.set_style('darkgrid')
employees.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
left = employees[employees['Attrition'] == 1]
stayed = employees[employees['Attrition'] == 0]
correlations = employees.corr()
f, ax = plt.subplots(figsize = (20,20))
sns.heatmap(correlations, annot=True);
sns.set_palette('seismic_r')
pd.options.plotting.backend = 'plotly'
plt.figure(figsize=(12, 7))
sns.kdeplot(left['DistanceFromHome'], label='Employees that left', shade=True, color='k')
sns.kdeplot(stayed['DistanceFromHome'], label='Employees that stayed', shade=True, color='b') | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.