path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
48163903/cell_5
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import pandas as pd import re df_train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df_test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') df_sub = pd.read_csv('/kaggle/input/nlp-getting-started/sample_submission.csv') def preprocessing(df): derlem = [] for i in range(len(df.text)): text = re.sub('https?://\\S+', '', df.text[i]) text = re.sub('http?://\\S+', '', text) text = re.sub('[^a-zA-Z]', ' ', text) text = re.sub('\\n', ' ', text) text = re.sub('\\s+', ' ', text).strip() text = text.lower() text = text.split() text = [WordNetLemmatizer().lemmatize(kelime) for kelime in text if not kelime in set(stopwords.words('english'))] text = ' '.join(text) derlem.append(text) df['clean_text'] = derlem return df df_test = preprocessing(df_test) df_train = preprocessing(df_train) print(df_train.text[417]) print(df_train.clean_text[417])
code
34119268/cell_21
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes (len(data.classes), data.c) learn = cnn_learner(data, models.resnet34, metrics=error_rate) learn.fit_one_cycle(4)
code
34119268/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls()
code
34119268/cell_25
[ "image_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes (len(data.classes), data.c) learn = cnn_learner(data, models.resnet34, metrics=error_rate) learn.fit_one_cycle(4) learn.recorder.plot()
code
34119268/cell_23
[ "text_html_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes (len(data.classes), data.c) learn = cnn_learner(data, models.resnet34, metrics=error_rate) learn.fit_one_cycle(4) interp = ClassificationInterpretation.from_learner(learn) interp.plot_top_losses(9, figsize=(15, 11))
code
34119268/cell_20
[ "image_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes (len(data.classes), data.c) learn = cnn_learner(data, models.resnet34, metrics=error_rate)
code
34119268/cell_6
[ "image_output_1.png" ]
from pathlib import Path from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls()
code
34119268/cell_16
[ "text_plain_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes data.show_batch(rows=3, figsize=(7, 6))
code
34119268/cell_17
[ "text_plain_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes print(data.classes) (len(data.classes), data.c)
code
34119268/cell_14
[ "text_plain_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes
code
34119268/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path bs = 16 from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths tfms = get_transforms(do_flip=False) pat = '/([^/]*)/[^/]*.jpg$' data = ImageDataBunch.from_name_re(path, fn_paths, pat=pat, ds_tfms=tfms, size=224, bs=bs) data.classes (len(data.classes), data.c) learn = cnn_learner(data, models.resnet34, metrics=error_rate) learn.fit_one_cycle(4) interp = ClassificationInterpretation.from_learner(learn)
code
34119268/cell_10
[ "text_plain_output_1.png" ]
from pathlib import Path from pathlib import Path path = Path('../input/earphones/earphone_dataset') path.ls() mi = path / 'redmi_airdots' galaxy = path / 'galaxy_buds' airpods = path / 'iphone_airpods' mi.ls() fn_paths = [] fn_paths = fn_paths + mi.ls() + galaxy.ls() + airpods.ls() fn_paths
code
1003611/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
data = pd.read_csv('../input/DSL-StrongPasswordData.csv', header=0) data = data.reset_index() hold_cols = [x for x in data.columns if x.startswith('H.')] switch_cols = [x for x in data.columns if x.startswith('UD.')] timing_cols = [x for x in data.columns if x.startswith('H.') or x.startswith('UD.')] def get_subject_data(*subjects, include_subject=False): """ Returns the timing information for each trial of the given user The delays alternate between key hold time and delay to the next key """ cols = timing_cols + (['subject'] if include_subject else []) return data.ix[data.subject.isin(subjects), cols] s24 = get_subject_data('s002', 's004', include_subject=True) def plot_comparison(*subjects): data = get_subject_data(*subjects, include_subject=True) fig = plt.figure(figsize=(12, 12)) for i, delay in enumerate(timing_cols): ax = fig.add_subplot(5, 5, i + 1) for u in subjects: _ = data.ix[data.subject == u].hist(delay, ax=ax, alpha=0.75, label=u) return fig _ = plot_comparison('s052', 's036', 's002')
code
1003611/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
data = pd.read_csv('../input/DSL-StrongPasswordData.csv', header=0) data = data.reset_index() hold_cols = [x for x in data.columns if x.startswith('H.')] switch_cols = [x for x in data.columns if x.startswith('UD.')] timing_cols = [x for x in data.columns if x.startswith('H.') or x.startswith('UD.')] def get_subject_data(*subjects, include_subject=False): """ Returns the timing information for each trial of the given user The delays alternate between key hold time and delay to the next key """ cols = timing_cols + (['subject'] if include_subject else []) return data.ix[data.subject.isin(subjects), cols] s24 = get_subject_data('s002', 's004', include_subject=True) s24.head()
code
1003611/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
data = pd.read_csv('../input/DSL-StrongPasswordData.csv', header=0) data = data.reset_index() data.head()
code
1003611/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pandas.tools.plotting import scatter_matrix data = pd.read_csv('../input/DSL-StrongPasswordData.csv', header=0) data = data.reset_index() hold_cols = [x for x in data.columns if x.startswith('H.')] switch_cols = [x for x in data.columns if x.startswith('UD.')] timing_cols = [x for x in data.columns if x.startswith('H.') or x.startswith('UD.')] def get_subject_data(*subjects, include_subject=False): """ Returns the timing information for each trial of the given user The delays alternate between key hold time and delay to the next key """ cols = timing_cols + (['subject'] if include_subject else []) return data.ix[data.subject.isin(subjects), cols] s24 = get_subject_data('s002', 's004', include_subject=True) from pandas.tools.plotting import scatter_matrix _ = scatter_matrix(get_subject_data('s052').ix[:, switch_cols], alpha=0.2, figsize=(12, 12), diagonal='kde')
code
1003611/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pandas.tools.plotting import scatter_matrix from pandas.tools.plotting import scatter_matrix data = pd.read_csv('../input/DSL-StrongPasswordData.csv', header=0) data = data.reset_index() hold_cols = [x for x in data.columns if x.startswith('H.')] switch_cols = [x for x in data.columns if x.startswith('UD.')] timing_cols = [x for x in data.columns if x.startswith('H.') or x.startswith('UD.')] def get_subject_data(*subjects, include_subject=False): """ Returns the timing information for each trial of the given user The delays alternate between key hold time and delay to the next key """ cols = timing_cols + (['subject'] if include_subject else []) return data.ix[data.subject.isin(subjects), cols] s24 = get_subject_data('s002', 's004', include_subject=True) from pandas.tools.plotting import scatter_matrix _ = scatter_matrix(get_subject_data('s052').ix[:, switch_cols], alpha=0.2, figsize=(12, 12), diagonal='kde') _ = scatter_matrix(get_subject_data('s052').ix[:, hold_cols], alpha=0.2, figsize=(12, 12), diagonal='kde')
code
72098732/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/kk30ml/train.csv', index_col=0) test = pd.read_csv('../input/kk30ml/test.csv', index_col=0) train y = train['target'] X = train.drop(['target'], axis=1) X.head()
code
72098732/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/kk30ml/train.csv', index_col=0) test = pd.read_csv('../input/kk30ml/test.csv', index_col=0) train
code
72098732/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72098732/cell_7
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error model = RandomForestRegressor() model.fit(X_train, y_train) pred = model.predict(X_valid) mse = mean_squared_error(y_valid, pred, squared=False) print(mse)
code
72098732/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/kk30ml/train.csv', index_col=0) test = pd.read_csv('../input/kk30ml/test.csv', index_col=0) train test.head()
code
72098732/cell_5
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OrdinalEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/kk30ml/train.csv', index_col=0) test = pd.read_csv('../input/kk30ml/test.csv', index_col=0) train y = train['target'] X = train.drop(['target'], axis=1) from sklearn.preprocessing import OrdinalEncoder cat = X.dtypes == 'object' cat_l = list(cat[cat].index) X_Tr = X.copy() X_test = test.copy() ordinal_encoder = OrdinalEncoder() X_Tr[cat_l] = ordinal_encoder.fit_transform(X[cat_l]) X_test[cat_l] = ordinal_encoder.transform(X_test[cat_l]) X_Tr.head()
code
2004802/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) plt.figure(figsize=(15, 8)) sns.set_style('whitegrid') ax = sns.countplot(x='Title', data=full_set) ax.set_ylabel('COUNT', size=20, color='black', alpha=0.5) ax.set_xlabel('TITLE', size=20, color='black', alpha=0.5) ax.set_title('COUNT OF TITLES IN EACH CATEGORY BEFORE COMBINATION', size=20, color='black', alpha=0.5)
code
2004802/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) plt.figure(figsize=(15,8)) sns.set_style("whitegrid") ax=sns.countplot(x="Title", data=full_set) ax.set_ylabel("COUNT",size = 20,color="black",alpha=0.5) ax.set_xlabel("TITLE",size = 20,color="black",alpha=0.5) ax.set_title("COUNT OF TITLES IN EACH CATEGORY BEFORE COMBINATION",size = 20,color="black",alpha=0.5) full_set.loc[full_set['Title'].isin(['Dona.', 'Lady.', 'Countess.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Sir.', 'Jonkheer.']), 'Title'] = 'Rare' full_set.loc[full_set['Title'].isin(['Mlle.', 'Ms.', 'Mme.']), 'Title'] = 'Miss.' plt.figure(figsize=(15,8)) sns.set_style("whitegrid") ax=sns.countplot(x="Title", data=full_set) ax.set_ylabel("COUNT",size = 20,color="black",alpha=0.5) ax.set_xlabel("TITLE",size = 20,color="black",alpha=0.5) ax.set_title("COUNT OF TITLES IN EACH CATEGORY AFTER COMBINATION",size = 20,color="black",alpha=0.5) family_size_survival = full_set[['FamilyMembers', 'Survived']].groupby(['FamilyMembers'], as_index=False).count().sort_values(by='Survived', ascending=False) plt.figure(figsize=(15, 8)) sns.set_style('whitegrid') ax = sns.barplot(x='FamilyMembers', y='Survived', data=family_size_survival) ax.set_title('SURVIVED PASSENGER COUNT BASED ON FAMILY SIZE', size=20, color='black', alpha=0.5) ax.set_ylabel('NUMBER SURVIVED', size=20, color='black', alpha=0.5) ax.set_xlabel('FAMILY SIZE', size=20, color='black', alpha=0.5)
code
2004802/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) plt.figure(figsize=(15,8)) sns.set_style("whitegrid") ax=sns.countplot(x="Title", data=full_set) ax.set_ylabel("COUNT",size = 20,color="black",alpha=0.5) ax.set_xlabel("TITLE",size = 20,color="black",alpha=0.5) ax.set_title("COUNT OF TITLES IN EACH CATEGORY BEFORE COMBINATION",size = 20,color="black",alpha=0.5) full_set.loc[full_set['Title'].isin(['Dona.', 'Lady.', 'Countess.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Sir.', 'Jonkheer.']), 'Title'] = 'Rare' full_set.loc[full_set['Title'].isin(['Mlle.', 'Ms.', 'Mme.']), 'Title'] = 'Miss.' plt.figure(figsize=(15, 8)) sns.set_style('whitegrid') ax = sns.countplot(x='Title', data=full_set) ax.set_ylabel('COUNT', size=20, color='black', alpha=0.5) ax.set_xlabel('TITLE', size=20, color='black', alpha=0.5) ax.set_title('COUNT OF TITLES IN EACH CATEGORY AFTER COMBINATION', size=20, color='black', alpha=0.5)
code
2004802/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) full_set.loc[full_set['Title'].isin(['Dona.', 'Lady.', 'Countess.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Sir.', 'Jonkheer.']), 'Title'] = 'Rare' full_set.loc[full_set['Title'].isin(['Mlle.', 'Ms.', 'Mme.']), 'Title'] = 'Miss.' print(full_set.Title.value_counts())
code
2004802/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) full_set.loc[full_set['Title'].isin(['Dona.', 'Lady.', 'Countess.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Sir.', 'Jonkheer.']), 'Title'] = 'Rare' full_set.loc[full_set['Title'].isin(['Mlle.', 'Ms.', 'Mme.']), 'Title'] = 'Miss.' """ 1 ---Family Size =1 2 ---Family Size between 2 and 4(included) 3 ---Family Size more than 4""" family_size = [] for row in full_set.FamilyMembers: if row in [1]: family_size.append(1) elif row in [2, 3, 4]: family_size.append(2) else: family_size.append(3) full_set['FamilySize'] = family_size full_set[full_set['Embarked'].isnull()]
code
2004802/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') print('\n\nInformation about Null/ empty data points in each Column of Test set\n\n') print(test_full_set.info())
code
2004802/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() print(corr) plt.figure(figsize=(20, 20)) plt.imshow(corr, cmap='GnBu') plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) plt.suptitle('Correlation Matrix', fontsize=15, fontweight='bold') plt.show()
code
2004802/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) print(full_set.head(5))
code
2004802/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) print(full_set.isnull().sum())
code
2004802/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) print(full_set.Title.value_counts())
code
2004802/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_full_set = pd.read_csv('../input/train.csv') full_set_initial = pd.get_dummies(data=train_full_set, columns=['Embarked', 'Sex', 'Survived'], drop_first=True) full_set_initial = full_set_initial.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) corr = full_set_initial.corr() plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns) test_full_set = pd.read_csv('../input/test.csv') full_set = pd.concat([train_full_set, test_full_set]) full_set = full_set.reset_index(drop=True) full_set.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) full_set.loc[full_set['Title'].isin(['Dona.', 'Lady.', 'Countess.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Sir.', 'Jonkheer.']), 'Title'] = 'Rare' full_set.loc[full_set['Title'].isin(['Mlle.', 'Ms.', 'Mme.']), 'Title'] = 'Miss.' """ 1 ---Family Size =1 2 ---Family Size between 2 and 4(included) 3 ---Family Size more than 4""" family_size = [] for row in full_set.FamilyMembers: if row in [1]: family_size.append(1) elif row in [2, 3, 4]: family_size.append(2) else: family_size.append(3) full_set['FamilySize'] = family_size print('\n\n Number of null in each column before imputing:\n') print(full_set.isnull().sum())
code
2004802/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train_full_set = pd.read_csv('../input/train.csv') print('/n/nInformation about Null/ empty data points in each Column of Training set\n\n') print(train_full_set.info())
code
128021214/cell_21
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) model = Pipeline([('scaler', StandardScaler()), ('classifier', LogisticRegression())]) model.fit(X_train, y_train) y_pred = model.predict(X_test) new_data = pd.DataFrame([[5.1, 3.5, 1.4, 0.2], [6.2, 2.8, 4.8, 1.8], [7.3, 3.0, 6.3, 2.5]]) new_data.columns = X.columns predictions = model.predict(new_data.values) print(le.inverse_transform(predictions))
code
128021214/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) display(df_iris.head(3)) display(df_iris.tail(3)) display(df_iris.describe())
code
128021214/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) new_data = pd.DataFrame([[5.1, 3.5, 1.4, 0.2], [6.2, 2.8, 4.8, 1.8], [7.3, 3.0, 6.3, 2.5]]) new_data.columns = X.columns display(new_data)
code
128021214/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size()
code
128021214/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd from pandas.plotting import andrews_curves from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import matplotlib.pyplot as plt import seaborn as sns
code
128021214/cell_11
[ "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
from pandas.plotting import andrews_curves from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) andrews_curves(df_iris.drop('Id', axis=1), 'Species') plt.figure() sns.pairplot(df_iris.drop('Id', axis=1), hue='Species', height=3, markers=['o', 's', 'D']) plt.show()
code
128021214/cell_18
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) model = Pipeline([('scaler', StandardScaler()), ('classifier', LogisticRegression())]) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_pred, y_test, target_names=list(le.classes_)))
code
128021214/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) display(X.head(3), y.head(3)) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) display(X_train.describe(), y_test.describe())
code
128021214/cell_15
[ "text_html_output_4.png", "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) model = Pipeline([('scaler', StandardScaler()), ('classifier', LogisticRegression())]) model.fit(X_train, y_train)
code
128021214/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pandas.plotting import andrews_curves from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) plt.figure(figsize=(15, 10)) andrews_curves(df_iris.drop('Id', axis=1), 'Species') plt.title('Andrews Curves Plot', fontsize=20, fontweight='bold') plt.legend(loc=1, prop={'size': 15}, frameon=True, facecolor='white', edgecolor='black') plt.show()
code
128021214/cell_12
[ "text_plain_output_1.png" ]
from pandas.plotting import andrews_curves from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_iris = pd.DataFrame(pd.read_csv('/kaggle/input/iris/Iris.csv')) df_iris.groupby('Species').size() X = df_iris.iloc[:, 1:5] y = pd.DataFrame(df_iris.iloc[:, 5]) le = LabelEncoder() y['Species'] = le.fit_transform(y['Species']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) andrews_curves(df_iris.drop('Id', axis=1), 'Species') plt.figure() df_iris.drop('Id', axis=1).boxplot(by='Species', figsize=(15, 10)) plt.show()
code
2010993/cell_42
[ "text_plain_output_1.png" ]
from sklearn.metrics import auc from sklearn.metrics import roc_curve from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(x_train, y_train) gnb_predict = gnb.predict(x_test) gnb_predict_prob = gnb.predict_proba(x_test) fpr, tpr, thresholds = roc_curve(y_test, gnb_predict_prob[:, 1]) gnb_auc = auc(fpr, tpr) print(gnb_auc)
code
2010993/cell_13
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] y.shape
code
2010993/cell_25
[ "image_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) x_new.shape
code
2010993/cell_34
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(x_train, y_train) lr_predict = lr.predict(x_test) lr_conf_matrix = confusion_matrix(y_test, lr_predict) lr_accuracy = accuracy_score(y_test, lr_predict) print(lr_conf_matrix) print(lr_accuracy)
code
2010993/cell_23
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=2) k_means.fit_predict(x_new)
code
2010993/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape
code
2010993/cell_39
[ "text_plain_output_1.png" ]
from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(x_train, y_train) gnb_predict = gnb.predict(x_test) gnb_predict_prob = gnb.predict_proba(x_test) print(gnb_predict) print(gnb_predict_prob)
code
2010993/cell_26
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split
code
2010993/cell_48
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(max_depth=10) dt.fit(x_train, y_train) dt_predict = dt.predict(x_test) dt_predict_prob = dt.predict_proba(x_test) dt_conf_matrix = confusion_matrix(y_test, dt_predict) dt_accuracy_score = accuracy_score(y_test, dt_predict) print(dt_conf_matrix) print(dt_accuracy_score)
code
2010993/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(x_train, y_train) gnb_predict = gnb.predict(x_test) gnb_predict_prob = gnb.predict_proba(x_test) gnb_conf_matrix = confusion_matrix(y_test, gnb_predict) gnb_accuracy_score = accuracy_score(y_test, gnb_predict) print(gnb_conf_matrix) print(gnb_accuracy_score)
code
2010993/cell_54
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import auc from sklearn.metrics import roc_curve from sklearn.metrics import roc_curve, auc from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=10) rf.fit(x_train, y_train) rf_predict = rf.predict(x_test) rf_predict_prob = rf.predict_proba(x_test) fpr, tpr, thresholds = roc_curve(y_test, rf_predict_prob[:, 1]) rf_auc = auc(fpr, tpr) print(rf_auc)
code
2010993/cell_19
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) from sklearn.decomposition import PCA pca = PCA() x_pca = pca.fit_transform(x) plt.figure(figsize=(16, 11)) plt.plot(np.cumsum(pca.explained_variance_ratio_), 'ro-') plt.grid()
code
2010993/cell_50
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import auc from sklearn.metrics import roc_curve from sklearn.metrics import roc_curve, auc from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) from sklearn.decomposition import PCA pca = PCA() x_pca = pca.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=2) k_means.fit_predict(x_new) colors = ['r', 'g'] from sklearn.metrics import auc lr_auc = auc(fpr, tpr) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(x_train, y_train) gnb_predict = gnb.predict(x_test) gnb_predict_prob = gnb.predict_proba(x_test) fpr, tpr, thresholds = roc_curve(y_test, gnb_predict_prob[:, 1]) gnb_auc = auc(fpr, tpr) from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(max_depth=10) dt.fit(x_train, y_train) dt_predict = dt.predict(x_test) dt_predict_prob = dt.predict_proba(x_test) from sklearn.metrics import roc_curve, auc fpr, tpr, thresholds = roc_curve(y_test, dt_predict_prob[:, 1]) dt_auc = auc(fpr, tpr) plt.figure(figsize=(10, 9)) plt.plot(fpr, tpr, label='AUC %0.2f' % dt_auc) plt.plot([0, 1], [0, 1], linestyle='--') plt.xlabel('False Positive rate') plt.ylabel('True Positive rate') plt.legend() plt.grid()
code
2010993/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape data.head()
code
2010993/cell_49
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import auc from sklearn.metrics import roc_curve from sklearn.metrics import roc_curve, auc from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(max_depth=10) dt.fit(x_train, y_train) dt_predict = dt.predict(x_test) dt_predict_prob = dt.predict_proba(x_test) from sklearn.metrics import roc_curve, auc fpr, tpr, thresholds = roc_curve(y_test, dt_predict_prob[:, 1]) dt_auc = auc(fpr, tpr) print(dt_auc)
code
2010993/cell_28
[ "image_output_1.png" ]
print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape)
code
2010993/cell_15
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] y.shape y.head
code
2010993/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2010993/cell_17
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) print(x)
code
2010993/cell_43
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import auc from sklearn.metrics import roc_curve from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) from sklearn.decomposition import PCA pca = PCA() x_pca = pca.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=2) k_means.fit_predict(x_new) colors = ['r', 'g'] from sklearn.metrics import auc lr_auc = auc(fpr, tpr) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(x_train, y_train) gnb_predict = gnb.predict(x_test) gnb_predict_prob = gnb.predict_proba(x_test) fpr, tpr, thresholds = roc_curve(y_test, gnb_predict_prob[:, 1]) gnb_auc = auc(fpr, tpr) plt.figure(figsize=(10, 9)) plt.plot(fpr, tpr, label='AUC %0.2f' % gnb_auc) plt.plot([0, 1], [0, 1], linestyle='--') plt.legend()
code
2010993/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(x_train, y_train) lr_predict = lr.predict(x_test) lr_predict_prob = lr.predict_proba(x_test) print(lr_predict) print(lr_predict_prob[:, 1])
code
2010993/cell_24
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) from sklearn.decomposition import PCA pca = PCA() x_pca = pca.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=2) k_means.fit_predict(x_new) colors = ['r', 'g'] for i in range(len(x_new)): plt.scatter(x_new[i][0], x_new[i][1], c=colors[k_means.labels_[i]], s=10) plt.show()
code
2010993/cell_14
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head
code
2010993/cell_53
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=10) rf.fit(x_train, y_train) rf_predict = rf.predict(x_test) rf_predict_prob = rf.predict_proba(x_test) rf_conf_matrix = confusion_matrix(y_test, rf_predict) rf_accuracy_score = accuracy_score(y_test, rf_predict) print(rf_conf_matrix) print(rf_accuracy_score)
code
2010993/cell_10
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) data.head()
code
2010993/cell_37
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import auc from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape x.head from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) from sklearn.decomposition import PCA pca = PCA() x_pca = pca.fit_transform(x) new_pca = PCA(n_components=17) x_new = new_pca.fit_transform(x) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=2) k_means.fit_predict(x_new) colors = ['r', 'g'] from sklearn.metrics import auc lr_auc = auc(fpr, tpr) plt.figure(figsize=(10, 9)) plt.plot(fpr, tpr, label='AUC= %0.2f' % lr_auc) plt.plot([0, 1], [0, 1], linestyle='--') plt.legend()
code
2010993/cell_12
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mushrooms.csv') data.shape from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() for col in data.columns: data[col] = lbl.fit_transform(data[col]) y = data['class'] x = data.iloc[:, 1:23] x.shape
code
2010993/cell_36
[ "text_plain_output_1.png" ]
from sklearn.metrics import auc from sklearn.metrics import auc lr_auc = auc(fpr, tpr) print(lr_auc)
code
333589/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys()
code
333589/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] print(len(set(fanboy_handles)), len(set(about_handles)))
code
333589/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import seaborn as sns import matplotlib from matplotlib import * from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
333589/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() print(len(set(fanboy_data['username'])), len(set(about_data['username'])))
code
333589/cell_15
[ "text_plain_output_1.png" ]
import matplotlib import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) bet_cen = nx.betweenness_centrality([i for i in fanboy_cc][0]) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) clo_cen = nx.closeness_centrality([i for i in fanboy_cc][0]) fig, ax = matplotlib.pyplot.subplots() ax.scatter(list(clo_cen.values()), list(bet_cen.values())) ax.set_ylim(0.05, 0.35) for i, txt in enumerate(list(clo_cen.keys())): ax.annotate(txt, (list(clo_cen.values())[i], list(bet_cen.values())[i]))
code
333589/cell_12
[ "text_plain_output_1.png" ]
import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) print(1 / (float(fanboy_graph.order()) / float(fanboy_graph.size()))) print(1 / (float(about_graph.order()) / float(about_graph.size())))
code
327075/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/Indicators.csv') Indicator_array = df[['IndicatorName', 'IndicatorCode']].drop_duplicates().values modified_indicators = [] unique_indicator_codes = [] for ele in Indicator_array: indicator = ele[0] indicator_code = ele[1].strip() if indicator_code not in unique_indicator_codes: new_indicator = re.sub('[,()]', '', indicator).lower() new_indicator = re.sub('-', ' to ', new_indicator).lower() modified_indicators.append([new_indicator, indicator_code]) unique_indicator_codes.append(indicator_code) Indicators = pd.DataFrame(modified_indicators, columns=['IndicatorName', 'IndicatorCode']) Indicators = Indicators.drop_duplicates() print(Indicators.shape)
code
327075/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/Indicators.csv') Indicator_array = df[['IndicatorName', 'IndicatorCode']].drop_duplicates().values modified_indicators = [] unique_indicator_codes = [] for ele in Indicator_array: indicator = ele[0] indicator_code = ele[1].strip() if indicator_code not in unique_indicator_codes: new_indicator = re.sub('[,()]', '', indicator).lower() new_indicator = re.sub('-', ' to ', new_indicator).lower() modified_indicators.append([new_indicator, indicator_code]) unique_indicator_codes.append(indicator_code) Indicators = pd.DataFrame(modified_indicators, columns=['IndicatorName', 'IndicatorCode']) Indicators = Indicators.drop_duplicates() key_word_dict = {} key_word_dict['Demography'] = ['population', 'birth', 'death', 'fertility', 'mortality', 'expectancy'] key_word_dict['Food'] = ['food', 'grain', 'nutrition', 'calories'] key_word_dict['Trade'] = ['trade', 'import', 'export', 'good', 'shipping', 'shipment'] key_word_dict['Health'] = ['health', 'desease', 'hospital', 'mortality', 'doctor'] key_word_dict['Economy'] = ['income', 'gdp', 'gni', 'deficit', 'budget', 'market', 'stock', 'bond', 'infrastructure'] key_word_dict['Energy'] = ['fuel', 'energy', 'power', 'emission', 'electric', 'electricity'] key_word_dict['Education'] = ['education', 'literacy'] key_word_dict['Employment'] = ['employed', 'employment', 'umemployed', 'unemployment'] key_word_dict['Rural'] = ['rural', 'village'] key_word_dict['Urban'] = ['urban', 'city'] feature = 'Health' for indicator_ele in Indicators.values: for ele in key_word_dict[feature]: word_list = indicator_ele[0].split() if ele in word_list or ele + 's' in word_list: print(indicator_ele) break
code
104115416/cell_9
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout from keras.layers import Dense, Dropout from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator import os DATA_DIR = '../input/catsvsdogstest/cats-vs-dogs-1000/dogs_cats_sample_1000/dogs_cats_sample_1000/' train_dir = os.path.join(DATA_DIR, 'train') valid_dir = os.path.join(DATA_DIR, 'valid') test_dir = os.path.join(DATA_DIR, 'test') model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') valid_generator = test_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break hist = model.fit_generator(train_generator, steps_per_epoch=100, epochs=10, validation_data=valid_generator, validation_steps=50) model.save('cats_and_dogs_test')
code
104115416/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import os print(os.listdir('../input/catsvsdogstest'))
code
104115416/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import os DATA_DIR = '../input/catsvsdogstest/cats-vs-dogs-1000/dogs_cats_sample_1000/dogs_cats_sample_1000/' train_dir = os.path.join(DATA_DIR, 'train') valid_dir = os.path.join(DATA_DIR, 'valid') test_dir = os.path.join(DATA_DIR, 'test') train_cats_dir = os.path.join(train_dir, 'cats') train_dogs_dir = os.path.join(train_dir, 'dogs') valid_cats_dir = os.path.join(valid_dir, 'cats') valid_dogs_dir = os.path.join(valid_dir, 'dogs') print('total train cat image:', len(os.listdir(train_cats_dir))) print('total train dog image:', len(os.listdir(train_dogs_dir))) print('total validation cat image:', len(os.listdir(valid_cats_dir))) print('total validation dog image:', len(os.listdir(valid_dogs_dir)))
code
104115416/cell_8
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout from keras.layers import Dense, Dropout from keras.models import Sequential model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
code
104115416/cell_10
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout from keras.layers import Dense, Dropout from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import os DATA_DIR = '../input/catsvsdogstest/cats-vs-dogs-1000/dogs_cats_sample_1000/dogs_cats_sample_1000/' train_dir = os.path.join(DATA_DIR, 'train') valid_dir = os.path.join(DATA_DIR, 'valid') test_dir = os.path.join(DATA_DIR, 'test') model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') valid_generator = test_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') for data_batch, labels_batch in train_generator: break hist = model.fit_generator(train_generator, steps_per_epoch=100, epochs=10, validation_data=valid_generator, validation_steps=50) model.save('cats_and_dogs_test') acc = hist.history['accuracy'] val_acc = hist.history['val_accuracy'] loss = hist.history['loss'] val_loss = hist.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='training acc') plt.plot(epochs, val_acc, 'b', label='valid acc') plt.title('Training & valid accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='training loss') plt.plot(epochs, val_loss, 'b', label='valid loss') plt.legend() plt.figure() plt.show()
code
104115416/cell_12
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout from keras.layers import Dense, Dropout from keras.models import Sequential from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator import numpy as np import os DATA_DIR = '../input/catsvsdogstest/cats-vs-dogs-1000/dogs_cats_sample_1000/dogs_cats_sample_1000/' train_dir = os.path.join(DATA_DIR, 'train') valid_dir = os.path.join(DATA_DIR, 'valid') test_dir = os.path.join(DATA_DIR, 'test') model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') valid_generator = test_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary') for data_batch, labels_batch in train_generator: break hist = model.fit_generator(train_generator, steps_per_epoch=100, epochs=10, validation_data=valid_generator, validation_steps=50) model.save('cats_and_dogs_test') imagename = '../input/test-picture/training_picture/21.jpg' test_image = image.load_img(imagename, target_size=(150, 150)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) result = model.predict(test_image) if result[0][0] == 1: prediction = 'dog' else: prediction = 'cat' print(imagename) print(prediction)
code
16144426/cell_13
[ "text_plain_output_1.png" ]
from nltk.stem import PorterStemmer import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape
code
16144426/cell_9
[ "text_plain_output_1.png" ]
import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: print(word, embeddings[word][:5]) temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: print(word, 'is not there')
code
16144426/cell_25
[ "text_html_output_1.png" ]
from nltk.stem import PorterStemmer import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape docs_vectors = pd.DataFrame() for doc in docs_clean: words = nltk.word_tokenize(doc) temp = pd.DataFrame() for word in words: try: word_vec = embeddings[word] temp = temp.append(pd.Series(word_vec), ignore_index=True) except: pass docs_vectors = docs_vectors.append(temp.mean(), ignore_index=True) docs_vectors.shape pd.isnull(docs_vectors).sum(axis=1).sort_values(ascending=False).head() X = docs_vectors.drop([64, 590]) Y = data['sentiment'].drop([64, 590]) url = 'https://bit.ly/2W21FY7' data = pd.read_csv(url) data.shape docs = data.loc[:, 'Lower_Case_Reviews'] Y = data['Sentiment_Manual'] Y.head()
code
16144426/cell_4
[ "text_plain_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5])
code
16144426/cell_34
[ "text_plain_output_1.png" ]
from nltk.stem import PorterStemmer from nltk.stem import PorterStemmer from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape docs_vectors = pd.DataFrame() for doc in docs_clean: words = nltk.word_tokenize(doc) temp = pd.DataFrame() for word in words: try: word_vec = embeddings[word] temp = temp.append(pd.Series(word_vec), ignore_index=True) except: pass docs_vectors = docs_vectors.append(temp.mean(), ignore_index=True) docs_vectors.shape pd.isnull(docs_vectors).sum(axis=1).sort_values(ascending=False).head() X = docs_vectors.drop([64, 590]) Y = data['sentiment'].drop([64, 590]) from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.metrics import accuracy_score model = RandomForestClassifier(n_estimators=800) model.fit(xtrain, ytrain) test_pred = model.predict(xtest) accuracy_score(ytest, test_pred) model = AdaBoostClassifier(n_estimators=800) model.fit(xtrain, ytrain) test_pred = model.predict(xtest) accuracy_score(ytest, test_pred) url = 'https://bit.ly/2W21FY7' data = pd.read_csv(url) data.shape docs = data.loc[:, 'Lower_Case_Reviews'] Y = data['Sentiment_Manual'] Y.value_counts() docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [stemmer.stem(word) for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) X = docs_clean (X.shape, Y.shape) from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(min_df=5) cv.fit(X) XTRAIN = cv.transform(xtrain) XTEST = cv.transform(xtest) XTRAIN = XTRAIN.toarray() XTEST = XTEST.toarray() from sklearn.tree import DecisionTreeClassifier as dtc from sklearn.metrics import accuracy_score model = dtc(max_depth=10) model.fit(XTRAIN, ytrain) yp = model.predict(XTEST) accuracy_score(ytest, yp)
code
16144426/cell_23
[ "text_plain_output_1.png" ]
from nltk.stem import PorterStemmer import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape docs_vectors = pd.DataFrame() for doc in docs_clean: words = nltk.word_tokenize(doc) temp = pd.DataFrame() for word in words: try: word_vec = embeddings[word] temp = temp.append(pd.Series(word_vec), ignore_index=True) except: pass docs_vectors = docs_vectors.append(temp.mean(), ignore_index=True) docs_vectors.shape pd.isnull(docs_vectors).sum(axis=1).sort_values(ascending=False).head() url = 'https://bit.ly/2W21FY7' data = pd.read_csv(url) data.shape data.head()
code
16144426/cell_20
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.metrics import accuracy_score model = RandomForestClassifier(n_estimators=800) model.fit(xtrain, ytrain) test_pred = model.predict(xtest) accuracy_score(ytest, test_pred) model = AdaBoostClassifier(n_estimators=800) model.fit(xtrain, ytrain) test_pred = model.predict(xtest) accuracy_score(ytest, test_pred)
code
16144426/cell_6
[ "text_plain_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) data.head()
code
16144426/cell_29
[ "text_plain_output_1.png" ]
from nltk.stem import PorterStemmer from nltk.stem import PorterStemmer import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape docs_vectors = pd.DataFrame() for doc in docs_clean: words = nltk.word_tokenize(doc) temp = pd.DataFrame() for word in words: try: word_vec = embeddings[word] temp = temp.append(pd.Series(word_vec), ignore_index=True) except: pass docs_vectors = docs_vectors.append(temp.mean(), ignore_index=True) docs_vectors.shape pd.isnull(docs_vectors).sum(axis=1).sort_values(ascending=False).head() X = docs_vectors.drop([64, 590]) Y = data['sentiment'].drop([64, 590]) url = 'https://bit.ly/2W21FY7' data = pd.read_csv(url) data.shape docs = data.loc[:, 'Lower_Case_Reviews'] Y = data['Sentiment_Manual'] Y.value_counts() docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [stemmer.stem(word) for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) X = docs_clean (X.shape, Y.shape)
code
16144426/cell_26
[ "text_plain_output_1.png" ]
from nltk.stem import PorterStemmer import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) embeddings.most_similar('modi', topn=10) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] words = nltk.word_tokenize(doc1.lower()) temp = pd.DataFrame() for word in words: try: temp = temp.append(pd.Series(embeddings[word][:5]), ignore_index=True) except: docs = docs.str.lower().str.replace('[^a-z ]', '') from nltk.stem import PorterStemmer stemmer = PorterStemmer() stopwords = nltk.corpus.stopwords.words('english') def clean_doc(doc): words = doc.split(' ') words_clean = [word for word in words if word not in stopwords] doc_clean = ' '.join(words_clean) return doc_clean docs_clean = docs.apply(clean_doc) docs_clean.shape docs_vectors = pd.DataFrame() for doc in docs_clean: words = nltk.word_tokenize(doc) temp = pd.DataFrame() for word in words: try: word_vec = embeddings[word] temp = temp.append(pd.Series(word_vec), ignore_index=True) except: pass docs_vectors = docs_vectors.append(temp.mean(), ignore_index=True) docs_vectors.shape pd.isnull(docs_vectors).sum(axis=1).sort_values(ascending=False).head() X = docs_vectors.drop([64, 590]) Y = data['sentiment'].drop([64, 590]) url = 'https://bit.ly/2W21FY7' data = pd.read_csv(url) data.shape docs = data.loc[:, 'Lower_Case_Reviews'] Y = data['Sentiment_Manual'] Y.value_counts()
code
16144426/cell_2
[ "text_html_output_1.png" ]
import gensim path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True)
code
16144426/cell_11
[ "text_plain_output_1.png" ]
import gensim import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin' embeddings = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) pd.Series(embeddings['modi'][:5]) url = 'https://bit.ly/2S2yXEd' data = pd.read_csv(url) doc1 = data.iloc[0, 0] docs = data['review'] docs = docs.str.lower().str.replace('[^a-z ]', '') docs.head()
code