path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
122249691/cell_14
[ "text_plain_output_1.png" ]
from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.layers import Dense, Flatten import PIL import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pathlib import tensorflow as tf import pathlib dataset_url = 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz' data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True) data_dir = pathlib.Path(data_dir) roses = list(data_dir.glob('roses/*')) PIL.Image.open(str(roses[0])) img_height, img_width = (180, 180) batch_size = 32 train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(6): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") resnet_model = Sequential() pretrained_model = tf.keras.applications.ResNet50(include_top=False, input_shape=(180, 180, 3), pooling='avg', classes=5, weights='imagenet') for layer in pretrained_model.layers: layer.trainable = False resnet_model.add(pretrained_model) resnet_model.add(Flatten()) resnet_model.add(Dense(512, activation='relu')) resnet_model.add(Dense(5, activation='softmax')) resnet_model.summary() resnet_model.compile(optimizer=Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) epochs = 10 history = resnet_model.fit(train_ds, validation_data=val_ds, epochs=epochs) fig1 = plt.gcf() plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.axis(ymin=0.4, ymax=1) plt.grid() plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epochs') plt.legend(['train', 'validation']) plt.show()
code
122249691/cell_10
[ "text_plain_output_1.png" ]
from tensorflow.keras.models import Sequential from tensorflow.python.keras.layers import Dense, Flatten import PIL import pathlib import tensorflow as tf import pathlib dataset_url = 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz' data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True) data_dir = pathlib.Path(data_dir) roses = list(data_dir.glob('roses/*')) PIL.Image.open(str(roses[0])) img_height, img_width = (180, 180) batch_size = 32 train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) resnet_model = Sequential() pretrained_model = tf.keras.applications.ResNet50(include_top=False, input_shape=(180, 180, 3), pooling='avg', classes=5, weights='imagenet') for layer in pretrained_model.layers: layer.trainable = False resnet_model.add(pretrained_model) resnet_model.add(Flatten()) resnet_model.add(Dense(512, activation='relu')) resnet_model.add(Dense(5, activation='softmax'))
code
122249691/cell_5
[ "image_output_1.png" ]
import PIL import pathlib import tensorflow as tf import pathlib dataset_url = 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz' data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True) data_dir = pathlib.Path(data_dir) roses = list(data_dir.glob('roses/*')) print(roses[0]) PIL.Image.open(str(roses[0]))
code
90142598/cell_6
[ "text_plain_output_1.png" ]
from keras.layers.core import Dense from keras.layers.core import Dense from keras.layers.core import Dense from keras.models import Sequential from keras.models import Sequential from keras.models import Sequential import numpy as np import numpy as np import numpy as np import numpy as np # linear algebra import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [1], [1], [0]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=10) scores = model.evaluate(training_data, target_data) import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [1], [1], [1]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=500) scores = model.evaluate(training_data, target_data) import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [0], [0], [1]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=250) scores = model.evaluate(training_data, target_data) print('\n%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100)) print(model.predict(training_data).round())
code
90142598/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers.core import Dense from keras.models import Sequential import numpy as np import numpy as np # linear algebra import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [1], [1], [0]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=10) scores = model.evaluate(training_data, target_data) print('\n%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100)) print(model.predict(training_data).round())
code
90142598/cell_5
[ "text_plain_output_1.png" ]
from keras.layers.core import Dense from keras.layers.core import Dense from keras.models import Sequential from keras.models import Sequential import numpy as np import numpy as np import numpy as np # linear algebra import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [1], [1], [0]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=10) scores = model.evaluate(training_data, target_data) import numpy as np from keras.models import Sequential from keras.layers.core import Dense training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32') target_data = np.array([[0], [1], [1], [1]], 'float32') model = Sequential() model.add(Dense(16, input_dim=2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) model.fit(training_data, target_data, epochs=500) scores = model.evaluate(training_data, target_data) print('\n%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100)) print(model.predict(training_data).round())
code
18116047/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy import seaborn as sns hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.kurtosis(hosp.age) hosp.isnull().sum() plt.figure(figsize=(20, 10)) sns.countplot(x='age', data=hosp, palette='bwr') plt.title('Distibution of Age') plt.xticks(rotation=90) plt.show()
code
18116047/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.describe(hosp.age)
code
18116047/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes
code
18116047/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape hosp.head(5)
code
18116047/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.info()
code
18116047/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy as scipy from scipy import stats import os print(os.listdir('../input'))
code
18116047/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape hosp['AdmitDiagnosis'].unique().shape
code
18116047/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape hosp['age'].unique().shape
code
18116047/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy import seaborn as sns hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.kurtosis(hosp.age) hosp.isnull().sum() plt.xticks(rotation=90) scipy.stats.chisquare(hosp.age)
code
18116047/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.describe()
code
18116047/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy import seaborn as sns hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.kurtosis(hosp.age) hosp.isnull().sum() plt.xticks(rotation=90) plt.figure(figsize=(20, 20)) sns.heatmap(cbar=False, annot=True, data=hosp.corr() * 100, cmap='coolwarm') plt.title('% Corelation Matrix') plt.show()
code
18116047/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.kurtosis(hosp.age)
code
18116047/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as scipy hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape scipy.stats.kurtosis(hosp.age) hosp.isnull().sum()
code
18116047/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hosp = pd.read_csv('../input/mimic3d.csv') hosp.dtypes hosp.shape
code
1005822/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) """ binning_range: [(95.786, 106.7] < (106.7, 117.4] < (117.4, 128.1] < (128.1, 138.8] < ... < (267.2, 277.9] < (277.9, 288.6] < (288.6, 299.3] < (299.3, 310]] """ sns.pointplot(x=df['number_project'], y=df['satisfaction_level'])
code
1005822/cell_13
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) plt.scatter(df['satisfaction_level'], df['average_montly_hours']) plt.ylabel('average_montly_hours') plt.xlabel('satisfaction_level')
code
1005822/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any()
code
1005822/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) sns.pointplot(df1['average_montly_hours'], df1['satisfaction_level']) '\nbinning_range:\n[(95.786, 106.7] < (106.7, 117.4] < (117.4, 128.1] < (128.1, 138.8] < ... <\n (267.2, 277.9] < (277.9, 288.6] < (288.6, 299.3] < (299.3, 310]]\n'
code
1005822/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) sns.heatmap(df.corr(), vmax=0.8, square=True, annot=True, fmt='.2f')
code
1005822/cell_11
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) print(results.mean())
code
1005822/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) sns.pointplot(df1['last_evaluation'], df['average_montly_hours'])
code
1005822/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) sns.pointplot(df['number_project'], df['last_evaluation'])
code
1005822/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
1005822/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.pointplot(x=df['number_project'], y=df['average_montly_hours'])
code
1005822/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) df1['average_montly_hours'].head()
code
1005822/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.describe()
code
1005822/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) plt.scatter(df['satisfaction_level'], df['last_evaluation']) plt.xlabel('satisfaction_level') plt.ylabel('last_evaluation')
code
1005822/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20) projects = df['number_project'].unique() projects = sorted(projects) for i in projects: mean_satisfaction_level = df['satisfaction_level'][df['number_project'] == i].mean() print('project_total', i, ':', mean_satisfaction_level)
code
1005822/cell_10
[ "text_html_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.barplot(df['left'], df['satisfaction_level'])
code
1005822/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' result_list = [] for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
128000273/cell_42
[ "text_html_output_1.png" ]
from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.model_selection import train_test_split import pandas as pd import pickle dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelGB = train_model(GradientBoostingClassifier(n_estimators=175))
code
128000273/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() dtrain.describe()
code
128000273/cell_9
[ "image_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum()
code
128000273/cell_34
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.model_selection import train_test_split import pandas as pd import pickle dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelRF = train_model(RandomForestClassifier(bootstrap=True, random_state=0, n_estimators=20, criterion='entropy'))
code
128000273/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] dtrain.head()
code
128000273/cell_44
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.model_selection import train_test_split import pandas as pd import pickle dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() dtest.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] le = preprocessing.LabelEncoder() dtest['VIP'] = le.fit_transform(dtest['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtest[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtest[['Destination']]).toarray()) dtest['Earth'] = encoder_home[0] dtest['Europa'] = encoder_home[1] dtest['Mars'] = encoder_home[2] dtest['CANCRI'] = encoder_dest[0] dtest['PSO'] = encoder_dest[1] dtest['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelGB = train_model(GradientBoostingClassifier(n_estimators=175)) pd.Series(modelGB.feature_importances_, index=X.columns).sort_values().plot.barh()
code
128000273/cell_20
[ "text_html_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() print(dtrain['Destination'].unique())
code
128000273/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtest.head()
code
128000273/cell_11
[ "text_html_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() dtrain.info()
code
128000273/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() def func(pct, allvals): absolute = int(np.round(pct / 100.0 * np.sum(allvals))) return f'{pct:.1f}%\n({absolute:d})' transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('VIP').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('VIP').Transported.count() plt.pie(transported_count, autopct=lambda pct: func(pct, transported_count), textprops=dict(color='w')) plt.title('VIP that were transported', fontsize=16) print(transported_count)
code
128000273/cell_45
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle import seaborn as sns dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() dtest.isna().sum() def func(pct, allvals): absolute = int(np.round(pct / 100.0 * np.sum(allvals))) return f'{pct:.1f}%\n({absolute:d})' transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('VIP').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('VIP').Transported.count() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] le = preprocessing.LabelEncoder() dtest['VIP'] = le.fit_transform(dtest['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtest[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtest[['Destination']]).toarray()) dtest['Earth'] = encoder_home[0] dtest['Europa'] = encoder_home[1] dtest['Mars'] = encoder_home[2] dtest['CANCRI'] = encoder_dest[0] dtest['PSO'] = encoder_dest[1] dtest['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelGB = train_model(GradientBoostingClassifier(n_estimators=175)) pd.Series(modelGB.feature_importances_, index=X.columns).sort_values().plot.barh() list = zip(dtrain['Age'], dtrain['Earth'], dtrain['Europa'], dtrain['Mars'], dtrain['ShoppingMall'], dtrain['Spa'], dtrain['VRDeck'], dtrain['FoodCourt'], dtrain['RoomService'], dtrain['CANCRI'], dtrain['PSO'], dtrain['TRAPPIST'], dtrain['Transported']) data = pd.DataFrame(list) corrmat = data.corr() plt.figure(figsize=(10, 10)) sns.heatmap(data=corrmat, annot=True, cmap='RdYlGn', xticklabels=['Age', 'Earth', 'Europa', 'Mars', 'ShoppingMall', 'Spa', 'VRDeck', 'FoodCourt', 'RoomService', 'CANCRI', 'PSO', 'TRAPPIST', 'Transported'], yticklabels=['Age', 'Earth', 'Europa', 'Mars', 'ShoppingMall', 'Spa', 'VRDeck', 'FoodCourt', 'RoomService', 'CANCRI', 'PSO', 'TRAPPIST', 'Transported']) plt.show()
code
128000273/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() def func(pct, allvals): absolute = int(np.round(pct / 100.0 * np.sum(allvals))) return f'{pct:.1f}%\n({absolute:d})' transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('VIP').Transported.count() plt.pie(transported_count, autopct=lambda pct: func(pct, transported_count), textprops=dict(color='w')) plt.title('VIP that were not transported', fontsize=16) print(transported_count)
code
128000273/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import pandas as pd import pickle dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelDT = train_model(DecisionTreeClassifier(criterion='entropy', random_state=0))
code
128000273/cell_8
[ "image_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') print('Shape of train data: ', dtrain.shape) print('Shape of test data: ', dtest.shape)
code
128000273/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() def func(pct, allvals): absolute = int(np.round(pct / 100.0 * np.sum(allvals))) return f'{pct:.1f}%\n({absolute:d})' transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('HomePlanet').Transported.count() plt.pie(transported_count, autopct=lambda pct: func(pct, transported_count), textprops=dict(color='w')) plt.title('Home planet of the ones that were not transported', fontsize=16) print(transported_count)
code
128000273/cell_38
[ "text_html_output_1.png" ]
from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import pandas as pd import pickle dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] median_age = dtrain.Age.median() dtrain['Age'].fillna(median_age, inplace=True) median_mall = dtrain.ShoppingMall.median() dtrain['ShoppingMall'].fillna(median_mall, inplace=True) median_spa = dtrain.Spa.median() dtrain['Spa'].fillna(median_spa, inplace=True) median_vr = dtrain.VRDeck.median() dtrain['VRDeck'].fillna(median_vr, inplace=True) median_room = dtrain.RoomService.median() dtrain['RoomService'].fillna(median_room, inplace=True) median_vip = dtrain.VIP.median() dtrain['VIP'].fillna(median_vip, inplace=True) median_food = dtrain.FoodCourt.median() dtrain['FoodCourt'].fillna(median_food, inplace=True) predict = dtrain['Transported'] X = dtrain[['Age', 'Earth', 'Mars', 'Europa', 'ShoppingMall', 'Spa', 'RoomService', 'VRDeck', 'FoodCourt', 'CANCRI', 'TRAPPIST', 'PSO']] y = predict def train_model(model_used): best = 0 sum = 0 counter = 0 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) for i in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = model_used model.fit(x_train, y_train) acc = model.score(x_test, y_test) sum += acc counter += 1 if acc > best: best = acc with open('titanic.pickle', 'wb') as file: pickle.dump(model, file) with open('titanic.pickle', 'rb') as file: model_trained = pickle.load(file) return model_trained modelKNN = train_model(KNeighborsClassifier(n_neighbors=25))
code
128000273/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128000273/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() def func(pct, allvals): absolute = int(np.round(pct / 100.0 * np.sum(allvals))) return f'{pct:.1f}%\n({absolute:d})' transported = dtrain[dtrain['Transported'] == False] transported_count = transported.groupby('HomePlanet').Transported.count() transported = dtrain[dtrain['Transported'] == True] transported_count = transported.groupby('HomePlanet').Transported.count() plt.pie(transported_count, autopct=lambda pct: func(pct, transported_count), textprops=dict(color='w')) plt.title('Home planet of the ones that were transported', fontsize=16) print(transported_count)
code
128000273/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtrain.isna().sum() dtest.isna().sum() le = preprocessing.LabelEncoder() dtrain['VIP'] = le.fit_transform(dtrain['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtrain[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtrain[['Destination']]).toarray()) dtrain['Earth'] = encoder_home[0] dtrain['Europa'] = encoder_home[1] dtrain['Mars'] = encoder_home[2] dtrain['CANCRI'] = encoder_dest[0] dtrain['PSO'] = encoder_dest[1] dtrain['TRAPPIST'] = encoder_dest[2] le = preprocessing.LabelEncoder() dtest['VIP'] = le.fit_transform(dtest['VIP']) oe = preprocessing.OneHotEncoder(handle_unknown='ignore') encoder_home = pd.DataFrame(oe.fit_transform(dtest[['HomePlanet']]).toarray()) encoder_dest = pd.DataFrame(oe.fit_transform(dtest[['Destination']]).toarray()) dtest['Earth'] = encoder_home[0] dtest['Europa'] = encoder_home[1] dtest['Mars'] = encoder_home[2] dtest['CANCRI'] = encoder_dest[0] dtest['PSO'] = encoder_dest[1] dtest['TRAPPIST'] = encoder_dest[2] dtest.head()
code
128000273/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtest.isna().sum() dtest.describe()
code
128000273/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtest.isna().sum()
code
128000273/cell_12
[ "text_html_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtest = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') dtest.isna().sum() dtest.info()
code
128000273/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd dtrain = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') dtrain.head()
code
1007003/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
TRAIN_PATH = '../input/train.csv' TEST_PATH = '../input/test.csv' train = pandas.read_csv(TRAIN_PATH) test = pandas.read_csv(TEST_PATH)
code
33115465/cell_5
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "image_output_23.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "image_output_18.png", "image_output_21.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "image_output_27.png", "image_output_6.png", "image_output_12.png", "image_output_22.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
from matplotlib.ticker import MaxNLocator from scipy.stats import gaussian_kde from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import matplotlib.cm as cm import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as st def normalize(X, x_min=0, x_max=1): nom = (X - X.min(axis=0)) * (x_max - x_min) denom = X.max(axis=0) - X.min(axis=0) denom[denom == 0] = 1 return x_min + nom / denom class BilinearMap: def __init__(self, target_n): self.target_cols = target_n def compute_coeff(self, X, y): try: Xt = np.transpose(X) Xp = np.dot(Xt, X) Xpi = np.linalg.inv(Xp) XpiXt = np.dot(Xpi, Xt) coeff = np.dot(XpiXt, y) except Exception as e: regressor = LinearRegression(fit_intercept=False) regressor.fit(X, y) coeff = regressor.coef_ return coeff def fit_transform(self, X, y): target_rows = X.shape[1] actual_rows = X.shape[0] required_rows = target_rows * self.target_cols if actual_rows < required_rows: assert False, f'{required_rows} rows are required, {actual_rows} are provided' Y = [] for i in range(self.target_cols): start = i * target_rows end = start + target_rows coeff = self.compute_coeff(X[start:end, :], y[start:end]) Y.extend(coeff.tolist()) Y = np.array(Y) Y = Y.reshape(target_rows, self.target_cols) Z = np.dot(X, Y) return Z def print_input_files(): pass def dump_text_file(fname): pass def dump_csv_file(fname, count=5): df = pd.read_csv(fname) if count < 0: count = df.shape[0] return ds_nbaiot = '/kaggle/input/nbaiot-dataset' dn_nbaiot = ['Danmini_Doorbell', 'Ecobee_Thermostat', 'Ennio_Doorbell', 'Philips_B120N10_Baby_Monitor', 'Provision_PT_737E_Security_Camera', 'Provision_PT_838_Security_Camera', 'Samsung_SNH_1011_N_Webcam', 'SimpleHome_XCS7_1002_WHT_Security_Camera', 'SimpleHome_XCS7_1003_WHT_Security_Camera'] def fname(ds, f): if '.csv' not in f: f = f'{f}.csv' return os.path.join(ds, f) def fname_nbaiot(f): return fname(ds_nbaiot, f) def get_nbaiot_device_files(): nbaiot_all_files = dump_csv_file(fname_nbaiot('data_summary'), -1) nbaiot_all_files = nbaiot_all_files.iloc[:, 0:1].values device_id = 1 indices = [] for j in range(len(nbaiot_all_files)): if str(device_id) not in str(nbaiot_all_files[j]): indices.append(j) device_id += 1 nbaiot_device_files = np.split(nbaiot_all_files, indices) return nbaiot_device_files def get_nbaiot_device_data(device_id, count_norm=-1, count_anom=-1): if device_id < 1 or device_id > 9: assert False, 'Please provide a valid device ID 1-9, both inclusive' if count_anom == -1: count_anom = count_norm device_index = device_id - 1 device_files = get_nbaiot_device_files() device_file = device_files[device_index] df = pd.DataFrame() y = [] for i in range(len(device_file)): fname = str(device_file[i][0]) df_c = pd.read_csv(fname_nbaiot(fname)) count = count_anom if 'benign' in fname: count = count_norm rows = count if count >= 0 else df_c.shape[0] y_np = np.ones(rows) if 'benign' in fname else np.zeros(rows) y.extend(y_np.tolist()) df = pd.concat([df.iloc[:, :].reset_index(drop=True), df_c.iloc[:rows, :].reset_index(drop=True)], axis=0) X = df.iloc[:, :].values y = np.array(y) return (X, y) def get_nbaiot_devices_data(): devices_data = [] for i in range(9): device_id = i + 1 X, y = get_nbaiot_device_data(device_id) devices_data.append((X, y)) return devices_data # Visualization Functions def plot_scatter_nbaiot_device(device_data, device_id, dim3=True): if device_id < 1 or device_id > 9: assert False, "Please provide a valid device ID 1-9, both inclusive" device_index = device_id-1 print("scatter plot for", dn_nbaiot[device_index]) (X, y) = device_data X_std = StandardScaler().fit_transform(X) #bmap = BilinearMap(target_n = 2) #X_bmap = bmap.fit_transform(X_std, y) bmap = PCA(n_components=2) X_bmap = bmap.fit_transform(X_std) print("X_bmap.shape:", X_bmap.shape, "X_std.shape:", X_std.shape) data_X = X_bmap[:,0] data_Y = X_bmap[:,1] data_Z = y data = np.column_stack((data_X, data_Y, data_Z)) #if dim3: plot_3d_scatter(data, dn_nbaiot[device_index], 'PCA1', 'PCA2', 'Normal or Anomalous') #else: normal = mpatches.Patch(color='green', label='N') anomalous = mpatches.Patch(color='red', label='A') handles = [normal, anomalous] plot_2d_scatter(data, dn_nbaiot[device_index], 'PCA1', 'PCA2', handles) def plot_surface_nbaiot_device(device_data, device_id): if device_id < 1 or device_id > 9: assert False, "Please provide a valid device ID 1-9, both inclusive" device_index = device_id-1 print("scatter plot for", dn_nbaiot[device_index]) (X, y) = device_data X_std = StandardScaler().fit_transform(X) #bmap = BilinearMap(target_n = 3) #X_bmap = bmap.fit_transform(X_std, y) bmap = PCA(n_components=2) X_bmap = bmap.fit_transform(X_std) print("X_bmap.shape:", X_bmap.shape, "X_std.shape:", X_std.shape) plot_3d_scatter_surface(X_bmap, dn_nbaiot[device_index], 'PCA1', 'PCA2', 'PCA3') ######################################################################## # Visualization related functions def plot_3d_histogram(data): cols = data.shape[1] if cols < 2: assert False, 'The number of columns should be 2' fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X = data[:,0] Y = data[:,1] bins = 10 hist, xedges, yedges = np.histogram2d(X, Y, bins=bins, range=[[0, bins*0.6], [0, bins*0.6]]) # Construct arrays for the anchor positions of the bars. xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25, indexing="ij") xpos = xpos.ravel() ypos = ypos.ravel() zpos = 0 # Construct arrays with the dimensions for the 16 bars. dx = dy = 0.5 * np.ones_like(zpos) dz = hist.ravel() cmap = cm.get_cmap('cool') max_height = np.max(dz) min_height = np.min(dz) rgba = [cmap((k-min_height)/max_height) for k in dz] ax.bar3d(xpos, ypos, zpos, dx, dy, dz, zsort='average', color=rgba) plt.show() def plot_3d_surface(data, func): cols = data.shape[1] if cols < 2: assert False, 'The number of columns should be 2' X = data[:,0] Y = data[:,1] X, Y = np.meshgrid(X, Y) Z = func(X, Y) #print(Z.shape) ax = plt.axes(projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('surface'); def plot_3d_scatter(data, title=None, xlabel=None, ylabel=None, zlabel=None): cols = data.shape[1] if cols < 3: assert False, 'The number of columns should be 3' X = data[:,0] Y = data[:,1] Z = data[:,2] ax = plt.axes(projection='3d') ax.scatter(X, Y, Z, c = Z, cmap='RdYlGn') ax.set_title(title); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel) plt.show() def plot_3d_scatter_trisurf(data, title=None, xlabel=None, ylabel=None, zlabel=None): cols = data.shape[1] if cols < 3: assert False, 'The number of columns should be 3' X = data[:,0] Y = data[:,1] Z = data[:,2] '''Xmin = int(np.floor(np.amin(X))) Xmax = int(np.ceil(np.amax(X))) Ymin = int(np.floor(np.amin(Y))) Ymax = int(np.ceil(np.amax(Y))) print("extrems:", Xmin, Xmax, Ymin, Ymax) sqmin = min(Xmin, Ymin) sqmax = max(Xmax, Ymax) print("sq min/max:", sqmin, sqmax) x = range(sqmin, sqmax) y = range(sqmin, sqmax) XX, YY = np.meshgrid(x, y) ZZ = np.zeros_like(XX) dim = X.shape[0] print('dim:', dim) Xi = X.astype(int) Yi = Y.astype(int) #print('Xi', Xi, 'Yi', Yi, 'X', X, 'Y', Y) for i in range(dim): row = Xi[i] col = Yi[i] val = 50 #Z[i] #print("row, col, val:", row, col, val) ZZ[row][col] += val ''' # Plot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_title(title); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel) #ax.plot_surface(XX, YY, ZZ) surf = ax.plot_trisurf(X - X.mean(), Y - Y.mean(), Z - Z.mean(), cmap=cm.jet, linewidth=0.1) fig.colorbar(surf) ax.xaxis.set_major_locator(MaxNLocator(6)) ax.yaxis.set_major_locator(MaxNLocator(6)) ax.zaxis.set_major_locator(MaxNLocator(6)) fig.tight_layout() plt.show() def plot_3d_scatter_surface(data, title=None, xlabel=None, ylabel=None, zlabel=None): #plot_3d_scatter_trisurf(data, title, xlabel, ylabel, zlabel) #plot_3d_scatter_fxy(data, title, xlabel, ylabel, zlabel) plot_3d_scatter_kde(data, title, xlabel, ylabel, zlabel) def plot_3d_scatter_fxy(data, title=None, xlabel=None, ylabel=None, zlabel=None): cols = data.shape[1] if cols < 2: assert False, 'The number of columns should be 2' X = data[:,0] Y = data[:,1] #Z = data[:,2] #XX, YY = np.meshgrid(X, Y) #ZZ = np.sinc((XX-20)/100*3.14) + np.sinc((YY-50)/100*3.14) #np.square(XX) + np.square(YY) XY = np.vstack([X,Y]) Z = gaussian_kde(XY)(XY) # Sort the points by density, so that the densest points are plotted last idx = Z.argsort() x, y, z = X[idx], Y[idx], Z[idx] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #ax.scatter(x, y, z, c = z, cmap='jet') #surf = ax.plot_trisurf(x - x.mean(), y - y.mean(), z, cmap=cm.jet, linewidth=0.1) surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.1) ax.scatter(x,y,z, marker='.', s=10, c="black", alpha=0.5) #ax.view_init(elev=60, azim=-45) fig.colorbar(surf) ax.xaxis.set_major_locator(MaxNLocator(6)) ax.yaxis.set_major_locator(MaxNLocator(6)) ax.zaxis.set_major_locator(MaxNLocator(6)) fig.tight_layout() ax.set_title(title); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel) plt.show() return # Plot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_title(title); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel) ax.plot_surface(XX, YY, ZZ) plt.show() def plot_3d_scatter_kde(data, title=None, xlabel=None, ylabel=None, zlabel=None): cols = data.shape[1] if cols < 2: assert False, 'The number of columns should be 2' X = data[:,0] Y = data[:,1] Xmin = int(np.floor(np.amin(X))) Xmax = int(np.ceil(np.amax(X))) Ymin = int(np.floor(np.amin(Y))) Ymax = int(np.ceil(np.amax(Y))) xmin = min(Xmin, Ymin) ymin = min(Xmin, Ymin) xmax = max(Xmax, Ymax) ymax = max(Xmax, Ymax) # Peform the kernel density estimate xx, yy = np.mgrid[Xmin:Xmax:100j, Ymin:Ymax:100j] #xx, yy = np.meshgrid(X, Y) positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([X, Y]) kernel = st.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) fig = plt.figure() #ax = fig.gca() ax = fig.add_subplot(111, projection='3d') #ax.set_xlim(xmin, xmax) #ax.set_ylim(ymin, ymax) # Contourf plot #cfset = ax.contourf(xx, yy, f, cmap='Blues') ax.plot_surface(xx, yy, f - f.mean(), rstride=1, cstride=1, cmap='jet', edgecolor='none') ## Or kernel density estimate plot instead of the contourf plot #ax.imshow(np.rot90(f), cmap='Blues', extent=[xmin, xmax, ymin, ymax]) # Contour plot cset = ax.contour(xx, yy, f, colors='k') # Label plot ax.clabel(cset, inline=1, fontsize=10) ax.set_xlabel('PCA1') ax.set_ylabel('PCA2') ax.set_title(title) plt.show() def plot_2d_scatter(data, title=None, xlabel=None, ylabel=None, handles=None): cols = data.shape[1] if cols < 3: assert False, 'The number of columns should be 3' X = data[:,0] Y = data[:,1] Z = data[:,2] ax = plt.axes() scatter = ax.scatter(X, Y, c = ['green' if z > 0.5 else 'red' for z in Z], cmap='RdYlGn') ax.set_title(title); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.legend(handles=handles) plt.show() for i in range(9): device_index = i device_id = device_index + 1 device_data = get_nbaiot_device_data(device_id) plot_surface_nbaiot_device(device_data, device_id) plot_scatter_nbaiot_device(device_data, device_id, False)
code
129033410/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset['isFraud'].value_counts()
code
129033410/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.head()
code
129033410/cell_33
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(x_train, y_train)
code
129033410/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape
code
129033410/cell_40
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) x = dataset.drop(columns=['isFraud']) y = dataset['isFraud'] y.value_counts() y.value_counts() from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() x = scaler.fit_transform(x) log_reg = LogisticRegression() log_reg.fit(x_train, y_train) y_pred = log_reg.predict(x_test) cvs = cross_val_score(log_reg, x, y, cv=3) print(cvs)
code
129033410/cell_26
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) x = dataset.drop(columns=['isFraud']) y = dataset['isFraud'] y.value_counts() y.value_counts()
code
129033410/cell_41
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) x = dataset.drop(columns=['isFraud']) y = dataset['isFraud'] y.value_counts() y.value_counts() from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() x = scaler.fit_transform(x) log_reg = LogisticRegression() log_reg.fit(x_train, y_train) y_pred = log_reg.predict(x_test) cvs = cross_val_score(log_reg, x, y, cv=3) cvs.mean()
code
129033410/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.describe()
code
129033410/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129033410/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.info()
code
129033410/cell_45
[ "text_plain_output_1.png" ]
from sklearn.feature_selection import chi2, SelectKBest from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) x = dataset.drop(columns=['isFraud']) y = dataset['isFraud'] y.value_counts() y.value_counts() from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() x = scaler.fit_transform(x) best_feat = SelectKBest(chi2, k=8) kbest = best_feat.fit_transform(x, y) np.array(dataset.drop(columns=['isFraud']).columns)[best_feat.get_support()]
code
129033410/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) plt.figure(figsize=(10, 5)) sns.heatmap(dataset.corr(), annot=True)
code
129033410/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True)
code
129033410/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum()
code
129033410/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) dataset.describe()
code
129033410/cell_38
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report log_reg = LogisticRegression() log_reg.fit(x_train, y_train) y_pred = log_reg.predict(x_test) print(classification_report(y_test, y_pred))
code
129033410/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) dataset.describe(include='object')
code
129033410/cell_35
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report log_reg = LogisticRegression() log_reg.fit(x_train, y_train) y_pred = log_reg.predict(x_test) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report confusion_matrix(y_test, y_pred)
code
129033410/cell_24
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) x = dataset.drop(columns=['isFraud']) y = dataset['isFraud'] y.value_counts()
code
129033410/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] plt.pie(dataset['isFraud'].value_counts(), autopct='%.2f%%')
code
129033410/cell_22
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.isna().sum() pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.preprocessing import LabelEncoder encoder = {} for i in dataset.select_dtypes('object').columns: encoder[i] = LabelEncoder() dataset[i] = encoder[i].fit_transform(dataset[i]) dataset.head()
code
129033410/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/financial-dataset-for-fraud-detection-in-a-comapny/Fraud.csv') dataset.shape dataset.nunique().sort_values(ascending=True) target = 'isFraud' features = [feature for feature in dataset.columns if feature not in [target]] dataset.head()
code
129033410/cell_12
[ "text_plain_output_1.png" ]
import seaborn as sns
code
129033410/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report log_reg = LogisticRegression() log_reg.fit(x_train, y_train) y_pred = log_reg.predict(x_test) accuracy_score(y_test, y_pred)
code
104120688/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2)
code
104120688/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df
code
104120688/cell_29
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data.drop(['Age'], axis=1, inplace=True) x = data.drop(['Survived'], axis=1, inplace=True) y = data['Survived']
code
104120688/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data.drop(['Age'], axis=1, inplace=True) data
code
104120688/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2)
code
104120688/cell_19
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col df
code
104120688/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104120688/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col
code
104120688/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col df['Sex'].unique()
code
104120688/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum()
code
104120688/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df
code
18137853/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os, os.path from xml.etree import ElementTree as ET def parse_annotation(fname): objects = [] for child in ET.parse(fname).findall('object'): dog = {} dog['name'] = child.find('name').text dog['pose'] = child.find('pose').text dog['difficult'] = int(child.find('difficult').text) dog['truncated'] = int(child.find('truncated').text) bbox = child.find('bndbox') dog['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(dog) return objects IMAGE_DIR = '../input/all-dogs/all-dogs' dog_imgs = pd.DataFrame(os.listdir(IMAGE_DIR), columns=['filename']) dog_imgs['basename'] = dog_imgs['filename'].str.split('.').apply(lambda x: x[0]) dog_imgs[['class', 'id']] = dog_imgs['basename'].str.split('_', expand=True) dog_imgs = dog_imgs.set_index('basename').sort_index() ANNOTATION_DIR = '../input/annotation/Annotation' dog_breeds = pd.DataFrame(os.listdir(ANNOTATION_DIR), columns=['dirname']) dog_breeds[['class', 'breedname']] = dog_breeds['dirname'].str.split('-', 1, expand=True) dog_breeds = dog_breeds.set_index('class').sort_index() dog_imgs['annotation_filename'] = dog_imgs.apply(lambda x: os.path.join(ANNOTATION_DIR, dog_breeds.loc[x['class']]['dirname'], x.name), axis=1) dog_imgs['objects'] = dog_imgs['annotation_filename'].apply(parse_annotation) doggo = dog_imgs.sample(1).iloc[0] import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.patches as patches from PIL import Image import imgaug.augmenters as iaa pil_im = Image.open(os.path.join(IMAGE_DIR, doggo['filename'])) im = np.asarray(pil_im) fig, ax = plt.subplots(1) ax.imshow(im) h, w, c = im.shape for dog in doggo['objects']: xmin, ymin, xmax, ymax = dog['bbox'] print(h, w, ':', xmin, ymin, xmax, ymax) bbox = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(bbox) plt.show() fig, ax = plt.subplots(1) dog = doggo.objects[0] h, w, c = im.shape xmin, ymin, xmax, ymax = dog['bbox'] pil_crop = pil_im.crop((xmin, ymin, xmax, ymax)).resize((64, 64)) im2 = np.asarray(pil_crop) ax.imshow(im2) plt.show()
code
18137853/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, os.path print(os.listdir('../input'))
code
18137853/cell_7
[ "image_output_2.png", "image_output_1.png" ]
from keras.optimizers import Adam import tensorflow as tf from keras.optimizers import Adam from keras import backend as K class AdamWithWeightnorm(Adam): def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= 1.0 / (1.0 + self.decay * K.cast(self.iterations, K.floatx())) t = K.cast(self.iterations + 1, K.floatx()) lr_t = lr * K.sqrt(1.0 - K.pow(self.beta_2, t)) / (1.0 - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): ps = K.get_variable_shape(p) if len(ps) > 1: V, V_norm, V_scaler, g_param, grad_g, grad_V = get_weightnorm_params_and_grads(p, g) V_scaler_shape = K.get_variable_shape(V_scaler) m_g = K.zeros(V_scaler_shape) v_g = K.zeros(V_scaler_shape) m_g_t = self.beta_1 * m_g + (1.0 - self.beta_1) * grad_g v_g_t = self.beta_2 * v_g + (1.0 - self.beta_2) * K.square(grad_g) new_g_param = g_param - lr_t * m_g_t / (K.sqrt(v_g_t) + self.epsilon) self.updates.append(K.update(m_g, m_g_t)) self.updates.append(K.update(v_g, v_g_t)) m_t = self.beta_1 * m + (1.0 - self.beta_1) * grad_V v_t = self.beta_2 * v + (1.0 - self.beta_2) * K.square(grad_V) new_V_param = V - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) if getattr(p, 'constraint', None) is not None: new_V_param = p.constraint(new_V_param) add_weightnorm_param_updates(self.updates, new_V_param, new_g_param, p, V_scaler) else: m_t = self.beta_1 * m + (1.0 - self.beta_1) * g v_t = self.beta_2 * v + (1.0 - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates import tensorflow as tf def get_weightnorm_params_and_grads(p, g): ps = K.get_variable_shape(p) V_scaler_shape = (ps[-1],) V_scaler = K.ones(V_scaler_shape) norm_axes = [i for i in range(len(ps) - 1)] V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes)) g_param = V_scaler * V_norm grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V) return (V, V_norm, V_scaler, g_param, grad_g, grad_V) def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler): ps = K.get_variable_shape(new_V_param) norm_axes = [i for i in range(len(ps) - 1)] new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes)) new_V_scaler = new_g_param / new_V_norm new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param updates.append(K.update(W, new_W)) updates.append(K.update(V_scaler, new_V_scaler)) def data_based_init(model, input): if type(input) is dict: feed_dict = input elif type(input) is list: feed_dict = {tf_inp: np_inp for tf_inp, np_inp in zip(model.inputs, input)} else: feed_dict = {model.inputs[0]: input} if model.uses_learning_phase and K.learning_phase() not in feed_dict: feed_dict.update({K.learning_phase(): 1}) layer_output_weight_bias = [] for l in model.layers: trainable_weights = l.trainable_weights if len(trainable_weights) == 2: W, b = trainable_weights assert l.built layer_output_weight_bias.append((l.name, l.get_output_at(0), W, b)) sess = K.get_session() for l, o, W, b in layer_output_weight_bias: print('Performing data dependent initialization for layer ' + l) m, v = tf.nn.moments(o, [i for i in range(len(o.get_shape()) - 1)]) s = tf.sqrt(v + 1e-10) updates = tf.group(W.assign(W / tf.reshape(s, [1] * (len(W.get_shape()) - 1) + [-1])), b.assign((b - m) / s)) sess.run(updates, feed_dict)
code
18137853/cell_12
[ "text_html_output_2.png", "text_html_output_1.png" ]
from PIL import Image from PIL import Image from keras.initializers import RandomNormal from keras.models import Model, Sequential from keras.optimizers import Adam from tqdm import tqdm, tqdm_notebook import matplotlib.patches as patches import matplotlib.patches as patches import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf import numpy as np import pandas as pd import os, os.path from xml.etree import ElementTree as ET def parse_annotation(fname): objects = [] for child in ET.parse(fname).findall('object'): dog = {} dog['name'] = child.find('name').text dog['pose'] = child.find('pose').text dog['difficult'] = int(child.find('difficult').text) dog['truncated'] = int(child.find('truncated').text) bbox = child.find('bndbox') dog['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(dog) return objects IMAGE_DIR = '../input/all-dogs/all-dogs' dog_imgs = pd.DataFrame(os.listdir(IMAGE_DIR), columns=['filename']) dog_imgs['basename'] = dog_imgs['filename'].str.split('.').apply(lambda x: x[0]) dog_imgs[['class', 'id']] = dog_imgs['basename'].str.split('_', expand=True) dog_imgs = dog_imgs.set_index('basename').sort_index() ANNOTATION_DIR = '../input/annotation/Annotation' dog_breeds = pd.DataFrame(os.listdir(ANNOTATION_DIR), columns=['dirname']) dog_breeds[['class', 'breedname']] = dog_breeds['dirname'].str.split('-', 1, expand=True) dog_breeds = dog_breeds.set_index('class').sort_index() dog_imgs['annotation_filename'] = dog_imgs.apply(lambda x: os.path.join(ANNOTATION_DIR, dog_breeds.loc[x['class']]['dirname'], x.name), axis=1) dog_imgs['objects'] = dog_imgs['annotation_filename'].apply(parse_annotation) doggo = dog_imgs.sample(1).iloc[0] import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.patches as patches from PIL import Image import imgaug.augmenters as iaa pil_im = Image.open(os.path.join(IMAGE_DIR, doggo['filename'])) im = np.asarray(pil_im) fig,ax = plt.subplots(1) ax.imshow(im) h,w,c = im.shape for dog in doggo['objects']: xmin, ymin, xmax, ymax = dog['bbox'] print(h,w,":",xmin,ymin,xmax,ymax) bbox = patches.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(bbox) plt.show() fig,ax = plt.subplots(1) dog = doggo.objects[0] h,w,c = im.shape xmin, ymin, xmax, ymax = dog['bbox'] #im = im[ymin:ymax,xmin:xmax] pil_crop = pil_im.crop((xmin, ymin, xmax, ymax)).resize((64, 64)) im2 = np.asarray(pil_crop) ax.imshow(im2) plt.show() import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.patches as patches from PIL import Image import imgaug.augmenters as iaa from tqdm import tqdm, tqdm_notebook def get_truth_images(): all_imgs = [] for _, doggo in tqdm_notebook(dog_imgs.iterrows(), total=len(dog_imgs)): pil_im = Image.open(os.path.join(IMAGE_DIR, doggo['filename'])) h, w, c = im.shape for dog in doggo['objects']: border = 10 xmin, ymin, xmax, ymax = dog['bbox'] xmin = max(0, xmin - border) ymin = max(0, ymin - border) xmax = min(w, xmax + border) ymax = min(h, ymax + border) pil_crop = pil_im.crop((xmin, ymin, xmax, ymax)).resize((64, 64)) all_imgs.append(np.asarray(pil_crop)) return np.stack(all_imgs) truth_imgs = get_truth_images() truth_nrm_imgs = (truth_imgs - 127.5) / 127.5 from keras.optimizers import Adam from keras import backend as K class AdamWithWeightnorm(Adam): def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= 1.0 / (1.0 + self.decay * K.cast(self.iterations, K.floatx())) t = K.cast(self.iterations + 1, K.floatx()) lr_t = lr * K.sqrt(1.0 - K.pow(self.beta_2, t)) / (1.0 - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): ps = K.get_variable_shape(p) if len(ps) > 1: V, V_norm, V_scaler, g_param, grad_g, grad_V = get_weightnorm_params_and_grads(p, g) V_scaler_shape = K.get_variable_shape(V_scaler) m_g = K.zeros(V_scaler_shape) v_g = K.zeros(V_scaler_shape) m_g_t = self.beta_1 * m_g + (1.0 - self.beta_1) * grad_g v_g_t = self.beta_2 * v_g + (1.0 - self.beta_2) * K.square(grad_g) new_g_param = g_param - lr_t * m_g_t / (K.sqrt(v_g_t) + self.epsilon) self.updates.append(K.update(m_g, m_g_t)) self.updates.append(K.update(v_g, v_g_t)) m_t = self.beta_1 * m + (1.0 - self.beta_1) * grad_V v_t = self.beta_2 * v + (1.0 - self.beta_2) * K.square(grad_V) new_V_param = V - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) if getattr(p, 'constraint', None) is not None: new_V_param = p.constraint(new_V_param) add_weightnorm_param_updates(self.updates, new_V_param, new_g_param, p, V_scaler) else: m_t = self.beta_1 * m + (1.0 - self.beta_1) * g v_t = self.beta_2 * v + (1.0 - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates import tensorflow as tf def get_weightnorm_params_and_grads(p, g): ps = K.get_variable_shape(p) V_scaler_shape = (ps[-1],) V_scaler = K.ones(V_scaler_shape) norm_axes = [i for i in range(len(ps) - 1)] V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes)) g_param = V_scaler * V_norm grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V) return (V, V_norm, V_scaler, g_param, grad_g, grad_V) def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler): ps = K.get_variable_shape(new_V_param) norm_axes = [i for i in range(len(ps) - 1)] new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes)) new_V_scaler = new_g_param / new_V_norm new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param updates.append(K.update(W, new_W)) updates.append(K.update(V_scaler, new_V_scaler)) def data_based_init(model, input): if type(input) is dict: feed_dict = input elif type(input) is list: feed_dict = {tf_inp: np_inp for tf_inp, np_inp in zip(model.inputs, input)} else: feed_dict = {model.inputs[0]: input} if model.uses_learning_phase and K.learning_phase() not in feed_dict: feed_dict.update({K.learning_phase(): 1}) layer_output_weight_bias = [] for l in model.layers: trainable_weights = l.trainable_weights if len(trainable_weights) == 2: W, b = trainable_weights assert l.built layer_output_weight_bias.append((l.name, l.get_output_at(0), W, b)) sess = K.get_session() for l, o, W, b in layer_output_weight_bias: m, v = tf.nn.moments(o, [i for i in range(len(o.get_shape()) - 1)]) s = tf.sqrt(v + 1e-10) updates = tf.group(W.assign(W / tf.reshape(s, [1] * (len(W.get_shape()) - 1) + [-1])), b.assign((b - m) / s)) sess.run(updates, feed_dict) from keras.models import Model, Sequential from keras.layers import Dense, Conv2D, Flatten, Concatenate, UpSampling2D, Dropout, LeakyReLU, ReLU, Reshape, Input, Conv2DTranspose from keras.initializers import RandomNormal from keras import backend as K import tensorflow as tf def make_discriminator_model(input_shape=(64, 64, 3)): init = RandomNormal(mean=0.0, stddev=0.02) model = Sequential() model.add(Conv2D(32, kernel_size=4, strides=2, padding='same', kernel_initializer=init, input_shape=input_shape)) model.add(LeakyReLU(0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', kernel_initializer=init)) model.add(LeakyReLU(0.2)) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=4, strides=2, padding='same', kernel_initializer=init)) model.add(LeakyReLU(0.2)) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=4, strides=2, padding='same', kernel_initializer=init)) model.add(LeakyReLU(0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='linear', kernel_initializer=init)) return model def make_generator_model(random_dim=128, start_shape=(4, 4, 64)): init = RandomNormal(mean=0.0, stddev=0.02) model = Sequential() a, b, c = start_shape start_dim = a * b * c model.add(Dense(start_dim, kernel_initializer=init, input_dim=random_dim)) model.add(Reshape(start_shape)) model.add(UpSampling2D(interpolation='bilinear')) model.add(Conv2D(512, kernel_size=4, padding='same', kernel_initializer=init)) model.add(ReLU()) model.add(UpSampling2D(interpolation='bilinear')) model.add(Conv2D(256, kernel_size=4, padding='same', kernel_initializer=init)) model.add(ReLU()) model.add(UpSampling2D(interpolation='bilinear')) model.add(Conv2D(128, kernel_size=4, padding='same', kernel_initializer=init)) model.add(ReLU()) model.add(UpSampling2D(interpolation='bilinear')) model.add(Conv2D(64, kernel_size=4, padding='same', kernel_initializer=init)) model.add(ReLU()) model.add(Conv2D(3, kernel_size=3, activation='tanh', padding='same', kernel_initializer=init)) model.summary() return model def make_gan_model(dis_model, gen_model, random_dim=128): dis_model.trainable = False gan_input = Input(shape=(random_dim,)) gen_output = gen_model(gan_input) gan_output = dis_model(gen_output) gan_model = Model(inputs=gan_input, outputs=gan_output) return gan_model def gen_input(random_dim, n_samples): noise = np.random.randn(random_dim * n_samples) noise = noise.reshape((n_samples, random_dim)) return noise def plot_gen_noise(gen_model, random_dim=128, examples=25, dim=(5, 5)): gen_imgs = gen_model.predict(gen_input(128, 25)) gen_imgs = ((gen_imgs + 1) * 127.5).astype('uint8') for i, img in enumerate(gen_imgs): plt.axis('off') plt.tight_layout() RANDOM_DIM = 128 RAW_BATCH_SIZE = 32 DIS_TRAIN_RATIO = 2 MINI_BATCH_SIZE = RAW_BATCH_SIZE // DIS_TRAIN_RATIO dis_model = make_discriminator_model() gen_model = make_generator_model() batch_count = truth_nrm_imgs.shape[0] // RAW_BATCH_SIZE adam_nrm_op = AdamWithWeightnorm(lr=0.0002, beta_1=0.5, beta_2=0.999) real_inp = Input(shape=truth_nrm_imgs.shape[1:]) nois_inp = Input(shape=(RANDOM_DIM,)) fake_inp = gen_model(nois_inp) disc_r = dis_model(real_inp) disc_f = dis_model(fake_inp) def rel_dis_loss(_y_real, _y_pred): epsilon = K.epsilon() return -(K.mean(K.log(K.sigmoid(disc_r - K.mean(disc_f, axis=0)) + epsilon), axis=0) + K.mean(K.log(1 - K.sigmoid(disc_f - K.mean(disc_r, axis=0)) + epsilon), axis=0)) def rel_gen_loss(_y_real, _y_pred): epsilon = K.epsilon() return -(K.mean(K.log(K.sigmoid(disc_f - K.mean(disc_r, axis=0)) + epsilon), axis=0) + K.mean(K.log(1 - K.sigmoid(disc_r - K.mean(disc_f, axis=0)) + epsilon), axis=0)) def rals_dis_loss(_y_real, _y_pred): return K.mean(K.pow(disc_r - K.mean(disc_f, axis=0) - 1, 2) + K.pow(disc_f - K.mean(disc_r, axis=0) + 1, 2)) def rals_gen_loss(_y_real, _y_pred): return K.mean(K.pow(disc_r - K.mean(disc_f, axis=0) + 1, 2) + K.pow(disc_f - K.mean(disc_r, axis=0) - 1, 2)) gen_train = Model([nois_inp, real_inp], [disc_r, disc_f]) dis_model.trainable = False gen_train.compile(adam_nrm_op, loss=[rals_gen_loss, None]) gen_train.summary() dis_train = Model([nois_inp, real_inp], [disc_r, disc_f]) gen_model.trainable = False dis_model.trainable = True dis_train.compile(adam_nrm_op, loss=[rals_dis_loss, None]) dis_train.summary() gen_loss = [] dis_loss = [] dummy_y = np.zeros((RAW_BATCH_SIZE, 1), dtype=np.float32) dummy_mini_y = np.zeros((MINI_BATCH_SIZE, 1), dtype=np.float32)
code