content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def walk_links_for_node(node, callback, direction, obj=None): """ Walks the each link from the given node. Raising a StopIteration will terminate the traversal. :type node: treestruct.Node :type callback: (treestruct.Node, treestruct.Node, object) -> () :type direction: int :type obj: Any :return: Returns `obj` (or None if no `obj` is supplied). :rtype: Any """ try: visited = set() queue = [node] while queue: node = queue.pop(0) if node in visited: continue visited.add(node) for connected_node in node.direction(direction): callback(node, connected_node, obj) queue.append(connected_node) except StopIteration: pass return obj
a92cb831945a537c55ff4c014eedcb17b26ddd96
702,873
import configparser def get_config_parser(filepath): """Create parser for config file. :param filepath: Config file path :type filepath: str :return: configparser.ConfigParser instance """ config_parser = configparser.ConfigParser(interpolation=None) # use read_file() instead of read() to catch possible OSError with open(filepath) as cfg_file: config_parser.read_file(cfg_file) return config_parser
224f524c60161bc45b1324b26eeb6d4715c43054
702,874
def load_id_map(id_file): """ Load a ids file in to a barcode -> coordinate dictionary. """ id_map = {} with open(id_file, "r") as fh: for line in fh: bc, x, y = line.split("\t") id_map[bc] = (int(x), int(y)) return id_map
cd2c0635496209c3e19597fa45ae4f486779ceac
702,875
from typing import Set from typing import Mapping from typing import Sequence def expand_related_tasks(tasks: Set[str], expand_map: Mapping[str, Sequence[str]]) -> Set[str]: """The inverse of `collapse_related_tasks`. Args: tasks: a list of tasks to expand. expand_map: map from a collapsed task name to a list of expanded task names. Returns: A list of expanded tasks. """ expanded_tasks = set() for task in tasks: if task in expand_map: for full_task in expand_map[task]: expanded_tasks.add(full_task) else: expanded_tasks.add(task) return expanded_tasks
16abd2160dc972e89ade3e5cb2b40e8451a932a7
702,876
import sympy def antal_h_coefficient(index, game_matrix): """ Returns the H_index coefficient, according to Antal et al. (2009), as given by equation 2. H_k = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{kj}-a_{jj}) Parameters ---------- index: int game_matrix: sympy.Matrix Returns ------- out: sympy.Expr Examples: -------- >>>a = Symbol('a') >>>antal_h_coefficient(0, Matrix([[a,2,3],[4,5,6],[7,8,9]])) Out[1]: (2*a - 29)/9 >>>antal_h_coefficient(0, Matrix([[1,2,3],[4,5,6],[7,8,9]])) Out[1]: -3 """ size = game_matrix.shape[0] suma = 0 for i in range(0, size): for j in range(0, size): suma = suma + (game_matrix[index, i] - game_matrix[i, j]) return sympy.together(sympy.simplify(suma / (size ** 2)), size)
0e05a6a622ef24ff63b18b9c8b80348b860a16c3
702,877
import hashlib def getcertpubhash(certobj): """ Method 1: Hash from public key :param certobj: :return: """ if certobj: pubkey = certobj.get_pubkey().as_der() pubkeyhash = hashlib.sha256(pubkey).hexdigest() return pubkeyhash else: return None
3002a8ddba6522acf7de0c1cfa225e68a1e3f141
702,878
from typing import List from typing import Dict def _cx_to_dict(list_of_dicts: List[Dict], key_tag: str = "k", value_tag: str = "v") -> Dict: """Convert a CX list of dictionaries to a flat dictionary.""" return {d[key_tag]: d[value_tag] for d in list_of_dicts}
ea80e9a50ea04536c2ed068d19220b56a9bdf3ed
702,879
import typing import pathlib import itertools def find_pyfiles() -> typing.Iterator[pathlib.Path]: """Return an iterator of the files to format.""" return itertools.chain( pathlib.Path("../gdbmongo").rglob("*.py"), pathlib.Path("../gdbmongo").rglob("*.pyi"), pathlib.Path("../stubs").rglob("*.pyi"), pathlib.Path("../tests").rglob("*.py"))
74b0c11771799fba6090569595d24e70ec68899d
702,880
def merge_args(args, cloud_args): """merge_args""" args_dict = vars(args) if isinstance(cloud_args, dict): for key in cloud_args.keys(): val = cloud_args[key] if key in args_dict and val: arg_type = type(args_dict[key]) if arg_type is not type(None): val = arg_type(val) args_dict[key] = val return args
06f84376e23535e9d291eb9bc9514fa27582faa2
702,881
def visibility_define(config): """Return the define value to use for NPY_VISIBILITY_HIDDEN (may be empty string).""" hide = '__attribute__((visibility("hidden")))' if config.check_gcc_function_attribute(hide, 'hideme'): return hide else: return ''
b08e8515440c4bf1ebec51c4100e55fe9f14b17d
702,882
def calculate_num_points_in_solution(solution): """Calculates the number of data points in the given solution.""" return sum(len(points) for points in solution.values())
c75f7cb7d9c8c2731e4698040954c559b6b5d4ec
702,883
import re def get_polygon_speed(polygon_name): """Returns speed unit within a polygon.""" result = re.search(r"\(([0-9.]+)\)", polygon_name) return float(result.group(1)) if result else None
2d2cc99f30153c4fbc9ac358ad3debc15fc3227e
702,884
def pt_in_ploy(poly, x, y): """ 判断 点(x,y) 是否 在 poly 最大和最小坐标之外,粗略 判断点是否在图形之内 """ n = len(poly) if n < 3: return False xmax = xmin = poly[0]['x'] ymax = ymin = poly[0]['y'] for i in range(1, n): if poly[i]['x'] > xmax: xmax = poly[i]['x'] elif poly[i]['x'] < xmin: xmin = poly[i]['x'] if poly[i]['y'] > ymax: ymax = poly[i]['y'] elif poly[i]['y'] < ymin: ymin = poly[i]['y'] if x < xmin or x > xmax or y < ymin or y > ymax: return False return True
2e07429edd6929a7e5747e6ba113f4186413dab8
702,885
def random_node_presence(t_windows, rep, plac, dur): """ Generate the occurrence and the presence of a node given occurrence_law(occurrence_param) and presence_law(presence_param). :param t_windows: Time window of the Stream Graph :param rep: Number of segmented nodes :param plac: Emplacement of each segmented node (sorted array) :param dur: Length of each interval corresponding to a segmented node :return: node presence """ acc = plac[0] + dur[0] if acc > t_windows[1]: # Si on dépasse la borne supérieure de temps de notre Stream Graph acc = t_windows[1] n_presence = [plac[0], acc] return n_presence n_presence = [plac[0], acc] #  Initialisation, [t0,t0+d0] for i in range(1, rep): acc = plac[i] + dur[i] if acc > t_windows[1]: # Si on dépasse la borne supérieure de temps de notre Stream Graph acc = t_windows[1] if acc <= n_presence[-1]: # Cas ou l'intervalle est inclus dans le précédent continue if plac[i] <= n_presence[-1]: # Cas de l'intersection : on fusionne n_presence[-1] = acc else: # Cas disjoint n_presence += [plac[i], acc] return n_presence
416ea50c4cdd1280dde90816ec735b8eff6f81f1
702,886
import pdb import torch def batch_hard_triplet_loss(labels, embeddings, k, margin=0, margin_type='soft'): """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: triplet_loss: scalar tensor containing the triplet loss """ k = min(k, labels.shape[0]) # Get the pairwise distance matrix pairwise_dist = (embeddings.unsqueeze(0) - embeddings.unsqueeze(1)).pow(2).sum(2) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = torch.eq(torch.unsqueeze(labels, 0), torch.unsqueeze(labels, 1)).float() # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = mask_anchor_positive * pairwise_dist # shape (batch_size, 1) hardest_positive_dist = torch.topk(anchor_positive_dist, k=k, dim=1, largest=True)[0] # We add inf in each row to the positives anchor_negative_dist = pairwise_dist anchor_negative_dist[mask_anchor_positive.bool()] = float('inf') # shape (batch_size,) hardest_negative_dist = torch.topk(anchor_negative_dist, k=k, dim=1, largest=False)[0] mask = hardest_negative_dist != float('inf') dpos = hardest_positive_dist[mask] dneg = hardest_negative_dist[mask] if dpos.shape[0] == 0 or dneg.shape[0] == 0: return None # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss if margin_type == 'soft': loss = torch.log1p(torch.exp(dpos - dneg + float(margin))) else: loss = torch.clamp(dpos - dneg + float(margin), min=0.0) # Get thanchor_negative_diste true loss value loss = torch.mean(loss) if loss < 0: pdb.set_trace() return loss
2853124d06688eaca4f7da2a5bc19819490656c9
702,887
import sys from pathlib import Path import os def resource_path(relative_path): """ Return absolute path for provided relative item based on location of program. """ # If compiled with pyinstaller then sys._MEIPASS points to the location # of the bundle. Otherwise path of python script is used. base_path = getattr(sys, '_MEIPASS', str(Path(__file__).parent)) return os.path.join(base_path, relative_path)
303418a0d61ae2107d7ac4f8e3503c71bac090bf
702,888
def _set_default_voltage_ratio( voltage_ratio: float, subcategory_id: int, type_id: int ) -> float: """Set the default voltage ratio for semiconductors. :param voltage_ratio: the current voltage ratio. :param subcategory_id: the subcategory ID of the semiconductor with missing defaults. :param type_id: the type ID of the semiconductor with missing defaults. :return: _voltage_ratio :rtype: float """ if voltage_ratio > 0.0: return voltage_ratio try: return { 1: { 1: 0.7, 2: 0.7, 3: 0.7, 4: 0.7, 5: 0.7, }, 3: { 1: 0.5, 2: 0.8, }, 6: { 1: 0.7, 2: 0.45, }, 13: { 1: 0.5, 2: 0.5, }, }[subcategory_id][type_id] except KeyError: return 1.0
d084f157c4d105193693af722e72028129e17821
702,889
import copy def random_reset_mutation(random, candidate, args): """Return the mutants produced by randomly choosing new values. This function performs random-reset mutation. It assumes that candidate solutions are composed of discrete values. This function makes use of the bounder function as specified in the EC's ``evolve`` method, and it assumes that the bounder contains an attribute called *values* (which is true for instances of ``DiscreteBounder``). The mutation moves through a candidate solution and, with rate equal to the *mutation_rate*, randomly chooses a value from the set of allowed values to be used in that location. Note that this value may be the same as the original value. .. Arguments: random -- the random number generator object candidate -- the candidate solution args -- a dictionary of keyword arguments Optional keyword arguments in args: - *mutation_rate* -- the rate at which mutation is performed (default 0.1) The mutation rate is applied on an element by element basis. """ bounder = args['_ec'].bounder try: values = bounder.values except AttributeError: values = None if values is not None: rate = args.setdefault('mutation_rate', 0.1) mutant = copy.copy(candidate) for i, m in enumerate(mutant): if random.random() < rate: mutant[i] = random.choice(values) return mutant else: return candidate
c357237e22e34b7496f8cc17f4ad0efa2bd4621d
702,891
def is_same_data(data1, data2, precision=10**-5): """ Compare two data to be the same. :param data1: given data1 :type data1: list :param data2: given data2 :type data2: list :param precision: comparing precision :type precision: float :return: True if they are the same """ if len(data1) != len(data2): return False is_same = map(lambda x, y: abs(x - y) < precision, data1, data2) return all(is_same)
16e786a552d9190eebb44721ab75ddd45d7086cf
702,892
import re def normalise_name(raw_name): """ Normalise the name to be used in python package allowable names. conforms to PEP-423 package naming conventions :param raw_name: raw string :return: normalised string """ return re.sub(r"[-_. ]+", "_", raw_name).lower()
2c9aea4a3e83fdb52f952d2308de29d8948f6917
702,893
def timestr_mod24(timestr): """ Given a GTFS HH:MM:SS time string, return a timestring in the same format but with the hours taken modulo 24. """ try: hours, mins, seconds = [int(x) for x in timestr.split(":")] hours %= 24 result = "{:02d}:{:02d}:{:02d}".format(hours, mins, seconds) except: result = None return result
ea049f4b31861de56b04dba6f4356ed46930af44
702,894
def set_ext_api(file_path): """Smart Function to set Extension.""" ext = file_path.split('.')[-1] if ext == 'plist': return 'plist' elif ext == 'xml': return 'xml' elif ext in ['sqlitedb', 'db', 'sqlite']: return 'db' elif ext == 'm': return 'm' else: return 'txt'
816a7f33c659ff3e0089502530fb916a40982d79
702,895
def animations(): """animations() -> tuple Returns a list of animatable things the user wants to work on. If this is a command being executed from a menu item in a curve editor, a list of the names of all selected curves is returned. If this list is empty a "No curves selected" error is produced. If this is a command being executed from the pop-up list in a knob then a list of all the fields in the knob is returned. If this is a command being executed from the right-mouse-button pop-up list in a field of a knob, the name of that field is returned. Otherwise this produces an error indicating that the command requries a knob context. You can get such a context by doing "in <knob> {command}" Also see the 'selected' argument to the animation command. See also: animation, animationStart, animationEnd, animationIncrement @return: A tuple of animatable things.""" return (None,)
a30923e499824739c8a0429bdb6a8f10f42928ba
702,896
def add_solution( respy_obj, periods_rewards_systematic, states_number_period, mapping_state_idx, periods_emax, states_all, *args, ): """Add solution to class instance.""" respy_obj.unlock() respy_obj.set_attr("periods_rewards_systematic", periods_rewards_systematic) respy_obj.set_attr("states_number_period", states_number_period) respy_obj.set_attr("mapping_state_idx", mapping_state_idx) respy_obj.set_attr("periods_emax", periods_emax) respy_obj.set_attr("states_all", states_all) respy_obj.set_attr("is_solved", True) respy_obj.lock() return respy_obj
ea0660fe5956bf5e8f6706a12e766a0cc5e2f2db
702,897
def mod(source): """Create kernel module shared among multiple tests.""" return source.get_module_for_symbol("snd_request_card")
484afb203021497614ee18c7ac99200e4cb39a12
702,898
from functools import reduce def constant_time_compare(x, y): """ Compares two byte strings in a way such that execution time is constant regardless of how much alike the input values are, provided that they are of the same length. Comparisons between user input and secret data such as calculated HMAC values needs to be executed in constant time to avoid leaking information to the caller via the timing side channel. Params: x: the first byte string to compare y: the second byte string to compare Return: True if x and y are equal, else False """ if len(x) != len(y): return False n = reduce(lambda a, b: a | b, (ord(x) ^ ord(y) for x, y in zip(x, y))) return n == 0
fe7fc348d367907eee2c9df3b7d0fbe232072714
702,900
def _str2bool(string): """Converts either 'true' or 'false' (not case-sensitively) into a boolean.""" if string is None: return False else: string = string.lower() if string == 'true': return True elif string == 'false': return False else: raise ValueError( 'String should either be `true` or `false`: got {}'.format(string))
97755d1901a836bb1e3ce062afdbffc8b5b92de1
702,901
import math def _get_alpha_bar_from_time(t): """ Noise scheduling method proposed by Nichol et. al to avoid too noisy image especially for smaller resolution. This strategy creates beta as follows: alpha_bar(t) = f(t) / f(0) f(t) = cos((t / T + s) / (1 + s) * PI / 2) ** 2 beta(t) = 1 - alpha_bar(t) / alpha_bar(t-1) where s = 0.008 (~= 1 / 127.5), which ensures sqrt(beta_0) is slightly smaller than the pixel bin size. """ assert 0 <= t <= 1, "t must be normalized by max diffusion timestep (T)." return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
ecb79239e2181d6e17db0b30885ec68d48b0a2d3
702,902
def decrementAny(tup): """ the closest tuples to tup: decrementing by 1 along any dimension. Never go into negatives though. """ res = [] for i, x in enumerate(tup): if x > 0: res.append(tuple(list(tup[:i]) + [x - 1] + list(tup[i + 1:]))) return res
44d5c968231cfb761c641892883a85c6a168c338
702,903
def ExtractModuleIdIfValidBreakpad(file_path): """Extracts breakpad file's module id if the file is valid. A breakpad file is valid for extracting its module id if it has a valid MODULE record, formatted like so: MODULE operatingsystem architecture id name For example: MODULE mac x86_64 1240DF90E9AC39038EF400 Chrome Name See this for more information: https://chromium.googlesource.com/breakpad/breakpad/+/HEAD/docs/symbol_files.md#records-1 Args: file_path: Path to breakpad file to extract module id from. Returns: Module id if file is a valid breakpad file; None, otherwise. """ module_id = None with open(file_path, 'r') as file_handle: # Reads a maximum of 200 bytes/characters. Malformed file or binary will # not have '\n' character. first_line = file_handle.readline(200) fragments = first_line.rstrip().split() if fragments and fragments[0] == 'MODULE' and len(fragments) >= 5: # Symbolization script's input file format requires module id hexadecimal # to be upper case. module_id = fragments[3].upper() return module_id
e846cf05976c2c1622160d1a2a639d605e072417
702,904
from datetime import datetime import pytz def _timestamp_to_iso_str(timestamp): """ Converts the timestamp value into a iso str Args: timestamp(float): the timestamp to convert Returns: str: converted timestamp """ return datetime.fromtimestamp(timestamp).replace(tzinfo=pytz.utc).isoformat()
89257c74a96c5335bc25ef617e41c0eeeb31021e
702,905
def subtract_mean_vector(frame): """ Re-center the vectors in a DataFrame by subtracting the mean vector from each row. """ return frame.sub(frame.mean(axis='rows'), axis='columns')
4a6207889b958aebd608c349ad889e109ab3f4a9
702,906
def reduce_level(ast): """ The function removes from the abstract syntax tree a declaration current level (pointer or array). For instance it makes from AST of 'int *a' it makes AST for 'int a'. :param ast: Current abstract syntax tree. :return: Abstract syntax tree for the pointer or an array element type. """ if len(ast['declarator']) > 1 and \ ('pointer' not in ast['declarator'][-1] or ast['declarator'][-1]['pointer'] == 0) and \ ('arrays' not in ast['declarator'][-1] or len(ast['declarator'][-1]['arrays']) == 0) and \ 'function arguments' not in ast['declarator'][-1]: ast['declarator'].pop() return ast
6d7e61265555106efe9f0733ec5f40b51bdaedf8
702,907
def to_location(maiden: str, center: bool = False) -> tuple[float, float]: """ convert Maidenhead grid to latitude, longitude Parameters ---------- maiden : str Maidenhead grid locator of length 2 to 8 center : bool If true, return the center of provided maidenhead grid square, instead of default south-west corner Default value = False needed to maidenhead full backward compatibility of this module. Returns ------- latLon : tuple of float Geographic latitude, longitude """ maiden = maiden.strip().upper() N = len(maiden) if not 8 >= N >= 2 and N % 2 == 0: raise ValueError("Maidenhead locator requires 2-8 characters, even number of characters") Oa = ord("A") lon = -180.0 lat = -90.0 # %% first pair lon += (ord(maiden[0]) - Oa) * 20 lat += (ord(maiden[1]) - Oa) * 10 # %% second pair if N >= 4: lon += int(maiden[2]) * 2 lat += int(maiden[3]) * 1 # %% if N >= 6: lon += (ord(maiden[4]) - Oa) * 5.0 / 60 lat += (ord(maiden[5]) - Oa) * 2.5 / 60 # %% if N >= 8: lon += int(maiden[6]) * 5.0 / 600 lat += int(maiden[7]) * 2.5 / 600 # %% move lat lon to the center (if requested) if center: if N == 2: lon += 20 / 2 lat += 10 / 2 elif N == 4: lon += 2 / 2 lat += 1.0 / 2 elif N == 6: lon += 5.0 / 60 / 2 lat += 2.5 / 60 / 2 elif N >= 8: lon += 5.0 / 600 / 2 lat += 2.5 / 600 / 2 return lat, lon
fddcbdab4f3e0f812dd7fac3509e66bc63f8fb84
702,908
def flipDP(directionPointer: int) -> int: """ Cycles the directionpointer 0 -> 1, 1 -> 2, 2 -> 3, 3 -> 0 :param directionPointer: unflipped directionPointer :return: new DirectionPointer """ if directionPointer != 3: return directionPointer + 1 return 0
928347a5c1934c822c77434ca9a91d913ef7f3b5
702,909
def get_datatype(data): """ rules defining the sidtype, based on the data dict of the sid. The keys are always given. The values can be empty. :param data: :return: """ subtype = "project" if "entity" in data.keys(): subtype = "entity" if data.get("type"): subtype = "shot_type" if "cat" in data.keys(): subtype = "asset" if data.get("cat"): subtype = "asset_cat" if data.get("name"): subtype = "asset_name" if data.get("type"): subtype = "asset_type" if data.get("task"): subtype = "asset_task" if data.get("subtask"): subtype = "asset_subtask" if data.get("version"): subtype = "asset_version" if data.get("state"): subtype = "asset_state" if data.get("ext"): subtype = "asset_file" elif "seq" in data.keys(): subtype = "shot" if data.get("seq"): subtype = "shot_seq" if data.get("shot"): subtype = "shot_shot" if data.get("task"): subtype = "shot_task" if data.get("subtask"): subtype = "shot_subtask" if data.get("version"): subtype = "shot_version" if data.get("state"): subtype = "shot_state" if data.get("ext"): subtype = "shot_file" return subtype
a7677db6d6aa9a9ccdcbdd9f6fd9d87032fcd18f
702,911
import os import subprocess def build(env_meta_path): """ Builds the package for `env_meta_path`. Parameters ---------- env_meta_path : str path pointing to a 'meta.yaml' file. Returns ------- success : the path to the build package failure : None """ if not os.path.exists(env_meta_path): raise Exception(f"'{env_meta_path}' does not exist!") env_meta_root = os.path.dirname(env_meta_path) if not os.path.exists(env_meta_root): raise Exception(f"'{env_meta_root}' does not exist!") env_meta_path = os.path.normpath(env_meta_path) environment = env_meta_path.split(os.sep)[-2] PY = env_meta_path.split(os.sep)[-3] OS_CPU = env_meta_path.split(os.sep)[-4] NUMPY_VER = None PYTHON_VER = None with open(env_meta_path) as fd: for line in fd: if "- numpy " in line: NUMPY_VER = line.split("=")[1].strip() if "- python " in line and PYTHON_VER is None: PYTHON_VER = line.split("=")[1].strip() cmd = ["mamba", "build", ".", "--python", PYTHON_VER] # cmd = ["conda-build", ".", "--python", PYTHON_VER] if NUMPY_VER: cmd.extend(["--numpy", NUMPY_VER]) # cmd.extend([f"-c", "conda-forge", "-c", "Semi-ATE"]) cmd.extend([f"-c", "conda-forge"]) print(f" running '{' '.join(cmd)}' in '{env_meta_root}' ... ", end="", flush=True) p = subprocess.Popen(cmd, cwd=env_meta_root, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, error = p.communicate() retval = None if b"anaconda upload" in output: print("success.") retval = output.split(b'anaconda upload \\')[1].replace(b"\r",b"").split(b'\n')[1].decode("utf-8").strip() print(f" package location = '{retval}'") else: print("Failure.") output_lines = output.decode("utf-8").split("\n") error_lines = error.decode("utf-8").split("\n") for line in output_lines: print(line) for line in error_lines: print(line) return retval
b4802347c3e22ff7b6ae0e8b77ebd31815ebcc7b
702,912
def process_link(link): """ Get text and link from an anchor """ return link.text_content(), link.get('href')
34429289076c8518b076fdf0f228eb6948109c6c
702,913
from numpy import interp def linear(x, y, xref): """ Linear interpolation. :param x: :param y: :param xref: :return: """ return interp(xref, x, y, left=None, right=None, period=None)
16ffc3dd0d73b8bdb395a067bb1962e70d9a255b
702,914
def merge_unique(list1, list2): """ Merge two list and keep unique values """ for item in list2: if item not in list1: list1.append(item) return list1
ecfd32178541dcb5956d4c1c74dc9cea2ab1fa45
702,916
def increment(number: int) -> int: """Increment a number. Args: number (int): The number to increment. Returns: int: The incremented number. """ return number + 1
27f4becd9afb747b22de991ab4cf030b14d3dac5
702,917
def CPP(record): """ "Channel Process if Passive": a CP input link will be treated as a channel access link and if the linking record is passive, the linking passive record will be processed any time the linked record is updated. Example (Python source) ----------------------- `my_record.INP = CPP(other_record)` Example (Generated DB) ---------------------- `field(INP, "other CPP")` """ return record('CPP')
047f19b90e3eb89c8b6f298e1d4ecbf9b035040a
702,918
import re def normalize_name(name: str) -> str: """Replace hyphen (-) and slash (/) with underscore (_) to generate valid C++ and Python symbols. """ name = name.replace('+', '_PLUS_') return re.sub('[^a-zA-Z0-9_]', '_', name)
46624c7180b1303e715d73aefe75cdd8e49b4a22
702,919
def sample(f1, f2, f3, f4): """ @see: field 1 @note : is it a field? has space before colon @param f1: field 3 with an arg @type f1: integer @param f2 : is it a field? has space before colon @return: some value @param f3: another one """ return 1
20326992b0a03916b37360edc2a306df706075b3
702,920
def test_preprocessor_visit_one_children(patch, magic, preprocessor): """ Check that a single inline_expression is found """ tree = magic() c1 = magic() replace = magic() c1.children = [magic()] tree.children = [c1] def is_inline(n): return n == c1 preprocessor.visit(tree, '.block.', '.entity.', is_inline, replace) preprocessor.fake_tree.assert_called_with('.block.') replace.assert_called_with(c1, preprocessor.fake_tree(), '.entity.') assert replace.call_count == 1
4e450c7dbeff77069281fb63d495f0e4770f5fd3
702,922
def ris_defaultValue_get(fieldsTuple): """ params: fieldsTuple, () return: fieldVaule_dict, {} """ # ris_element = fieldsTuple[0] if len(fieldsTuple[1]) != 0: default_value = fieldsTuple[1][0] else: default_value = [] fieldValue_dict = {} fieldValue_dict[ris_element] = default_value # return fieldValue_dict
0551462066eb984c796ef7ee08d640e9bc4373e5
702,923
import torch def project_to_2d(X, camera_params): """ Project 3D points to 2D using the Human3.6M camera projection function. This is a differentiable and batched reimplementation of the original MATLAB script. Arguments: X -- 3D points in *camera space* to transform (N, *, 3) camera_params -- intrinsic parameteres (N, 2+2+3+2=9) """ assert X.shape[-1] == 3 assert len(camera_params.shape) == 2 assert camera_params.shape[-1] == 9 assert X.shape[0] == camera_params.shape[0] while len(camera_params.shape) < len(X.shape): camera_params = camera_params.unsqueeze(1) f = camera_params[..., :2] c = camera_params[..., 2:4] k = camera_params[..., 4:7] p = camera_params[..., 7:] XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) r2 = torch.sum(XX[..., :2]**2, dim=len(XX.shape)-1, keepdim=True) radial = 1 + torch.sum(k * torch.cat((r2, r2**2, r2**3), dim=len(r2.shape)-1), dim=len(r2.shape)-1, keepdim=True) tan = torch.sum(p*XX, dim=len(XX.shape)-1, keepdim=True) XXX = XX*(radial + tan) + p*r2 return f*XXX + c
0727efaeecfa48540590461f7d9222c8e6071f6d
702,924
def n_coeffs_to_degree(n_coeffs): """what is degree if 2d polynomial has n_coeffs coefficients""" delta_sqrt = int((8 * n_coeffs + 1.)**.5 + 0.5) if delta_sqrt**2 != (8*n_coeffs+1.): raise ValueError('Wrong input in n_coeffs_to_degree(): {:}'.format(n_coeffs)) return int((delta_sqrt - 3.) / 2. + 0.5)
29a767668579d7a9d7c9c871cdb3168c7db3c6c1
702,926
import hashlib def checksum_md5(filename, blocksize=8192): """Calculate md5sum. Parameters ---------- filename : str or pathlib.Path input filename. blocksize : int MD5 has 128-byte digest blocks (default: 8192 is 128x64). Returns ------- md5 : str calculated md5sum. """ filename = str(filename) hash_factory = hashlib.md5() with open(filename, 'rb') as f: for chunk in iter(lambda: f.read(blocksize), b''): hash_factory.update(chunk) return hash_factory.hexdigest()
759c0c5cbc37ebe0cc85eb8156127308eff354bc
702,927
def normalize_volume_and_number(volume, number): """ Padroniza os valores de `volume` e `number` Args: volume (None or str): volume se aplicável number (None or str): número se aplicável Notas: - se `number` é igual a `ahead`, equivale a `None` - se `00`, equivale a `None` - se `01`, equivale a `1` - se `""`, equivale a `None` Returns: tuple (str or None, str or None) """ if number == "ahead": return None, None if volume and volume.isdigit(): value = int(volume) volume = str(value) if value > 0 else None if number and number.isdigit(): value = int(number) number = str(value) if value > 0 else None volume = volume or None number = number or None return volume, number
1ec42912b942f6c1b7e22d2e64c4d842af100877
702,928
from typing import List from typing import Tuple def style_close(style: List[Tuple[str, str]]) -> str: """ HTML tags to close a style. >>> style = [ ... ("font", 'color="red" size="32"'), ... ("b", ""), ... ("i", ""), ... ("u", ""), ... ] >>> style_close(style) '</u></i></b></font>' Tags will always be in reverse (of open) order, so open - close will look like:: <b><i><u>text</u></i></b> """ return "".join("</{}>".format(x) for x, _ in reversed(style))
2043803e50230f139a6a60599b40c53461ed6ed8
702,929
def get_theta_hat_bw_imd_cm1(theta_star_bw_std): """制御モードcmの中間条件におけるM1スタンダードモード沸き上げ温度(℃)(27b-1) Args: theta_star_bw_std(float): 標準条件の沸き上げ温度( Returns: float: 制御モードcmの中間条件におけるM1スタンダードモード沸き上げ温度( """ # 制御モードがファーストモードの場合 return theta_star_bw_std
caf43cc7c9e17417e3b0096fe89e4a02d41dc0e6
702,930
import re def CreateKwargHandler(endpoints, f): """ Create methods which contains kwargs and return the remaining endpoints to handle """ index = 0 # endpoints = ["/v2/users", "/v2/users/:id"] remainEndpoints = [] while index < len(endpoints) - 1: firstMatches = re.findall("(\/v2[\/\w+]+)", endpoints[index]) secondMatches = re.findall("(\/v2[\/\w+]+)(\/:\w+)(\/\w+)*", endpoints[index + 1]) print(firstMatches, secondMatches) if len(firstMatches) == len(secondMatches) \ and len(secondMatches[0]) == 3 and secondMatches[0][2] == '' \ and firstMatches[0] == secondMatches[0][0]: variable = re.findall("(\/:\w+)", endpoints[index + 1])[0] url = endpoints[index] #params = ", {}=None".format(variable[2:]) # params = ", *args, {}=None, **kwargs".format(variable[2:]) params = ", {}=None, **kwargs".format(variable[2:]) endpoints[index] = endpoints[index].replace(variable, "") url = url.replace(variable, "/{}") splitedValue = endpoints[index][4:].split("/") funcName = "".join((elem.capitalize() for elem in splitedValue)) payload = """ def {}(self{}): {} More details: "https://api.intra.42.fr/apidoc/2.0/{}.html" {} extension = "{}/{}".format({}) if {} is not None else "{}" return HttpMethod(extension, self.session, **kwargs) """ # print(payload.format(funcName, params, url, "{}", variables[0][2:], variables[0][2:], url)) f.write(payload.format(funcName, params, '"""', endpoints[index].replace("/v2/", ""), '"""', url, "{}", variable[2:], variable[2:], url)) index += 2 else: remainEndpoints.append(endpoints[index]) index += 1 return remainEndpoints
a805b8c2b1c1593e973fa0ac781fa780fa4a6d1a
702,931
def pow_many(power, *args): """ Функция складывает любое количество цифр и возводит результат в степень power (примеры использования ниже) :param power: степень :param args: любое количество цифр :return: результат вычисления # True -> (1 + 2)**1 """ rs = 0 for v in args: rs += v rp=rs for i in range(1,power): rp *= rs return rp
da0404f24045f5818ffb2219153fccd9b864965b
702,933
import shutil def gunzip_merge(outfile, list_files): """ Merge gunzip files into final file :param outfile: String for output file :param list_files: List of files to merge :type outfile: string :type list_files: list """ list_files = list(list_files) list_files.sort() print ("\tMerging files into: ", outfile) #print ("\tFiles: ", list_files) with open(outfile, 'wb') as wfp: for fn in list_files: with open(fn, 'rb') as rfp: shutil.copyfileobj(rfp, wfp) return()
ae37753cc1f16d9fc4cb4cf50587e99ef045a938
702,934
import subprocess def _doSysExec(command: str, errorAsOut: bool = True) -> tuple[int, str]: """Execute a command and check for errors. Args: command (str): commands as a string errorAsOut (bool, optional): redirect errors to stdout Raises: RuntimeWarning: throw a warning should there be a non exit code Returns: tuple[int, str]: tuple of return code (int) and stdout (str) """ with subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT if errorAsOut else subprocess.PIPE, encoding="utf-8", errors="ignore", ) as process: out = process.communicate()[0] exitCode = process.returncode return exitCode, out
4f6ae92628090c1f00be3268599dcef07c3818ac
702,935
def get_media_pool_clip_list_and_clip_name_list(project): """ Parametes --------- project : Project a Project instance Returns ------- clip_return_list : list clip list clip_name_list : list clip name list Examples -------- >>> resolve, project_manager = init_davinci17( ... close_current_project=close_current_project) >>> get_media_pool_clip_dict_list(project) [<PyRemoteObject object at 0x000001BB29001630>, <PyRemoteObject object at 0x000001BB290016D8>, <PyRemoteObject object at 0x000001BB29001720>] ['dst_grad_tp_1920x1080_b-size_64_[0001-0024].png', 'src_grad_tp_1920x1080_b-size_64_[0000-0023].png', 'dst_grad_tp_1920x1080_b-size_64_resolve_[0000-0023].tif'] """ media_pool = project.GetMediaPool() root_folder = media_pool.GetRootFolder() clip_list = root_folder.GetClipList() clip_name_list = [] clip_return_list = [] for clip in clip_list: clip_name_list.append(clip.GetName()) clip_return_list.append(clip) return clip_return_list, clip_name_list
f69a67d1ae29e714bf8c153519b515238a93875d
702,936
def get_payment_request_with_payment_method(business_identifier: str = 'CP0001234', payment_method: str = 'CC'): """Return a payment request object.""" return { 'paymentInfo': { 'methodOfPayment': payment_method }, 'businessInfo': { 'businessIdentifier': business_identifier, 'corpType': 'CP', 'businessName': 'ABC Corp', 'contactInfo': { 'city': 'Victoria', 'postalCode': 'V8P2P2', 'province': 'BC', 'addressLine1': '100 Douglas Street', 'country': 'CA' } }, 'filingInfo': { 'filingTypes': [ { 'filingTypeCode': 'OTADD', 'filingDescription': 'TEST' }, { 'filingTypeCode': 'OTANN' } ] } }
c506f2750e0ffe5d1852116eab241e7e022d3b84
702,937
import os def _coffea_fn_as_file_wrapper(tmpdir): """ Writes a wrapper script to run dilled python functions and arguments. The wrapper takes as arguments the name of three files: function, argument, and output. The files function and argument have the dilled function and argument, respectively. The file output is created (or overwritten), with the dilled result of the function call. The wrapper created is created/deleted according to the lifetime of the work_queue_executor.""" name = os.path.join(tmpdir, 'fn_as_file') with open(name, mode='w') as f: f.write(""" #!/usr/bin/env python3 import os import sys import dill import coffea (fn, arg, out) = sys.argv[1], sys.argv[2], sys.argv[3] with open(fn, "rb") as f: exec_function = dill.load(f) with open(arg, "rb") as f: exec_item = dill.load(f) pickle_out = exec_function(exec_item) with open(out, "wb") as f: dill.dump(pickle_out, f) """) return name
d8beac710f818bdc01cd794c586c0f101ea26b9b
702,939
def process_categories(cat_path): """ Returns the mapping between the identifier of a category in Places365 and its corresponding name Args: cat_path: Path containing the information about the Places365 categories """ result = {} with open(cat_path) as f: lines = f.readlines() # Map each position to the corresponding category for l in lines: parts = l.split(' ') raw_cat, num_cat = parts[0].rstrip(), int(parts[1].rstrip()) category = raw_cat[3:] # Erase prefix related to first letter result[num_cat] = category return result
f87741b990ee9ab9c8216112df73c7aa5bab8d49
702,940
import struct def fread(f,byteLocation,structFormat=None,nBytes=1): """ Given an already-open (rb mode) file object, return a certain number of bytes at a specific location. If a struct format is given, calculate the number of bytes required and return the object it represents. """ f.seek(byteLocation) if structFormat: val = struct.unpack(structFormat, f.read(struct.calcsize(structFormat))) val = val[0] if len(val)==1 else list(val) return val else: return f.read(nBytes)
ae86bb1f3bc839053ca34c8bf2b4beb0af04aaee
702,942
def _cast_types(args): """ This method performs casting to all types of inputs passed via cmd. :param args: argparse.ArgumentParser object. :return: argparse.ArgumentParser object. """ args.x_val = int(args.x_val) if args.x_val != 'None' else None args.test_size = float(args.test_size) # criterion (string) # splitter (string) args.max_depth = None if args.max_depth == 'None' else float(args.max_depth) args.min_samples_split = int(args.min_samples_split) args.min_samples_leaf = int(args.min_samples_leaf) args.min_weight_fraction_leaf = float(args.min_weight_fraction_leaf) args.max_features = None if args.max_features == 'None' else float(args.max_features) args.random_state = None if args.random_state == 'None' else float(args.random_state) args.max_leaf_nodes = None if args.max_leaf_nodes == 'None' else float(args.max_leaf_nodes) args.min_impurity_decrease = float(args.min_impurity_decrease) args.class_weight = None if args.class_weight == 'None' else float(args.class_weight) args.presort = (args.presort in ['True', 'true'] ) return args
61438940cdc572b08ebd7ee0efe56cae65c1ddd7
702,943
def _get_year(obj): """ Get the year of the entry. :param obj: year string object :return: entry year or none if not valid value """ year = obj[0:4] try: year = int(year) except ValueError: year = None return year
6d3cbcc8759096ec3e798e90dc3a307b4a34b6ae
702,945
import argparse def _parse_arguments(): """Return a parser context result.""" parser = argparse.ArgumentParser(description="CMake AST Dumper") parser.add_argument("filename", nargs=1, metavar=("FILE"), help="read FILE") return parser.parse_args()
a811308be0fdb28294f8a0a0af80bf3a2cceae51
702,946
def epochPoints(abf): """Return a list of time points where each epoch starts and ends.""" if abf.abfVersion["major"] == 1: return [] position = int(abf.sweepPointCount/64) epochPoints = [position] for epochNumber, epochType in enumerate(abf._epochPerDacSection.nEpochType): pointCount = abf._epochPerDacSection.lEpochInitDuration[epochNumber] epochPoints.append(position + pointCount) position += pointCount return epochPoints
1eafc6a6cd7a3e68a5136ef6b92a4e7defae0648
702,948
import math def lat_meters(lat: float) -> float: """ Transform latitude degree to meters. Parameters ---------- lat : float This represent latitude value. Returns ------- float Represents the corresponding latitude value in meters. Examples -------- Latitude in Fortaleza: -3.71839 >>> from pymove.utils.conversions import lat_meters >>> lat_meters(-3.71839) 110832.75545918777 """ rlat = float(lat) * math.pi / 180 # meter per degree Latitude meters_lat = ( 111132.92 - 559.82 * math.cos(2 * rlat) + 1.175 * math.cos(4 * rlat) ) # meter per degree Longitude meters_lgn = 111412.84 * math.cos(rlat) - 93.5 * math.cos(3 * rlat) meters = (meters_lat + meters_lgn) / 2 return meters
c31025552778b0039079d33e134e0b19077b83d4
702,949
def getFilteredLexicon(lexicondict, allwords): """ Returns a lexicon with just the necessary words. Assumes all wanted keys exist in the given lexicon """ return { word: lexicondict[word] for word in allwords }
db3c58b71df848ef5b1d49ebdd4670a552481c64
702,951
import unittest def filter_suite(condition, suite): """Return tests for which ``condition`` is True in ``suite``. :param condition: A callable receiving a test and returning True if the test should be kept. :param suite: A test suite that can be iterated. It contains either tests or suite inheriting from ``unittest.TestSuite``. ``suite`` is a tree of tests and suites, the returned suite respect the received suite layout, only removing empty suites. """ filtered_suite = suite.__class__() for test in suite: if issubclass(test.__class__, unittest.TestSuite): # We received a suite, we'll filter a suite filtered = filter_suite(condition, test) if filtered.countTestCases(): # Keep only non-empty suites filtered_suite.addTest(filtered) elif condition(test): # The test is kept filtered_suite.addTest(test) return filtered_suite
9131d49d3f87a117d2b9625d521e932db2666860
702,952
import torch def collate_fn(batch): """Creates mini-batch tensors from the list of tuples (images, triplets_local_indexes, triplets_global_indexes). triplets_local_indexes are the indexes referring to each triplet within images. triplets_global_indexes are the global indexes of each image. Args: batch: list of tuple (images, triplets_local_indexes, triplets_global_indexes). considering each query to have 10 negatives (negs_num_per_query=10): - images: torch tensor of shape (12, 3, h, w). - triplets_local_indexes: torch tensor of shape (10, 3). - triplets_global_indexes: torch tensor of shape (12). Returns: images: torch tensor of shape (batch_size*12, 3, h, w). triplets_local_indexes: torch tensor of shape (batch_size*10, 3). triplets_global_indexes: torch tensor of shape (batch_size, 12). """ images = torch.cat([e[0] for e in batch]) triplets_local_indexes = torch.cat([e[1][None] for e in batch]) triplets_global_indexes = torch.cat([e[2][None] for e in batch]) for i, (local_indexes, global_indexes) in enumerate(zip(triplets_local_indexes, triplets_global_indexes)): local_indexes += len(global_indexes) * i # Increment local indexes by offset (len(global_indexes) is 12) return images, torch.cat(tuple(triplets_local_indexes)), triplets_global_indexes
c7267579e6e7f4fa54cca951b5cad15e4ce5283a
702,953
def bytes_to_long(in_bytes): """Converts a byte string into a long""" hexstr = ''.join(["%0.2x" % ord(byte) for byte in in_bytes]) return int(hexstr, 16)
89d82a72226457c3a1ac1438cab1071d3cbcd62d
702,955
def func(): """Return a new matrix of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int Shape of the empty matrix. dtype : data-type, optional Desired output data-type. order : {'C', 'F'}, optional Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. See Also -------- empty_like, zeros Notes ----- `empty`, unlike `zeros`, does not set the matrix values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution. Examples -------- >>> import numpy.matlib >>> np.matlib.empty((2, 2)) # filled with random data matrix([[ 6.76425276e-320, 9.79033856e-307], [ 7.39337286e-309, 3.22135945e-309]]) #random >>> np.matlib.empty((2, 2), dtype=int) matrix([[ 6600475, 0], [ 6586976, 22740995]]) #random """ return 0
c48914045c296b25fbfef0f1e409b7bc40b1a677
702,956
def cli(ctx, library_id, access_in="", modify_in="", add_in="", manage_in=""): """Set the permissions for a library. Note: it will override all security for this library even if you leave out a permission type. Output: General information about the library """ return ctx.gi.libraries.set_library_permissions(library_id, access_in=access_in, modify_in=modify_in, add_in=add_in, manage_in=manage_in)
833f828b5405b29d577a8859da8a895791da22bc
702,958
def get_users(): """Retrieve information about users""" return "get users"
40e2c1e8046beaa6d1b6f7875c2a3e3f7bad8e69
702,959
import grp def import_sam_group(samldb, sid, gid, sid_name_use, nt_name, comment, domaindn): """Upgrade a SAM group. :param samldb: SAM database. :param gid: Group GID :param sid_name_use: SID name use :param nt_name: NT Group Name :param comment: NT Group Comment :param domaindn: Domain DN """ if sid_name_use == 5: # Well-known group return None if nt_name in ("Domain Guests", "Domain Users", "Domain Admins"): return None if gid == -1: gr = grp.getgrnam(nt_name) else: gr = grp.getgrgid(gid) if gr is None: unixname = "UNKNOWN" else: unixname = gr.gr_name assert unixname is not None samldb.add({ "dn": "cn=%s,%s" % (nt_name, domaindn), "objectClass": ["top", "group"], "description": comment, "cn": nt_name, "objectSid": sid, "unixName": unixname, "samba3SidNameUse": str(sid_name_use) })
05c005c01131684bad78fd45af0b82d4b1b2fedc
702,960
def get_postgres_curie_prefix(curie): """The representation in postgres moves things to lowercase, and replaces . with _""" if ':' not in curie: raise ValueError(f'Curies ought to contain a colon: {curie}') prefix = curie.lower().split(':') prefix = '_'.join(prefix[0].split('.')) return prefix
314d59205fffd7e3dcdfb3a5ca7a81a12baffa76
702,961
import json def parse_stations(html): """ Strips JS code, loads JSON """ html = html.replace('SLs.sls=', '').replace(';SLs.showSuggestion();', '') html = json.loads(html) return html['suggestions']
f9fb64d21c0b206b4c034e0f8a5c560eccb9b9e4
702,962
import json def json_to_str(json_obj): """JSONをstr型へ変換""" return json.dumps(json_obj, separators=(",", ":"), ensure_ascii=False)
1ef38962b264991287f5b468489b20bd85be30ff
702,963
def get_color(orig_label=None, gt_label=None, target_label=None, adv_label=None, targeted_attack=False): """Get color according to different possible correctness combinations.""" if ((gt_label is None or orig_label == gt_label) and (adv_label is None or adv_label == gt_label)): color = '#4d8021' # 'green': correct prediction elif adv_label is None: color = '#b81e26' # 'red': not adversarial, incorrect prediction elif adv_label == gt_label: color = '#a8db78' # 'lightgreen': adv_label correct, but orig_label wrong elif adv_label == orig_label: color = '#b09b3e' # 'yellow': incorrect, but no change to prediction elif not targeted_attack and adv_label is not None and adv_label != gt_label: color = '#b81e26' # 'red': untargeted attack, adv_label changed, success elif targeted_attack and adv_label == target_label: color = '#b81e26' # 'red': targeted attack, success elif targeted_attack and adv_label != target_label: color = '#d064a6' # 'pink': targeted attack, changed prediction but failed else: color = '#6780d8' # 'blue': unaccounted-for result return color
8a05dde4c60582bc2559f182423e795d2ecc1c1d
702,964
import re def read_cpr(path): """Read and parse a CPR file. Return masks, which are (id, RLE data). Note: Python 3.6.4 docs say its XML module is not secure, se we use regexp. """ # Example: <Mask id="123">[12 34 56]</Mask> mask_pattern = r'<Mask\s.*?id="(.*?)".*?>.*?\[(.*?)\].*?</Mask>' text = path.read_text() matches = re.finditer(mask_pattern, text, flags=re.DOTALL) def parse_match(m): number, mask = m.groups() number = int(number) mask = [int(x) for x in mask.split()] return number, mask masks = [parse_match(x) for x in matches] return masks
b5781607c150d0521d816c9027660e2b5e4b0fe0
702,965
import math def schaffer6(phenome): """The bare-bones Schaffer function 6.""" sum_of_squares = phenome[0] ** 2 + phenome[1] ** 2 result = math.sin(math.sqrt(sum_of_squares)) ** 2 - 0.5 result /= (1.0 + 0.001 * sum_of_squares) ** 2 result += 0.5 return result
80f19b28ebf4511a0670dfa622ffd3c55e8ec670
702,966
def take_before_exclusive(iterable, predicate): """Yield items up to but excluding including the first match. If no matching item is present, the result is empty. Args: iterable: An iterable series of items. predicate: A function of one argument used to select the last item. Returns: A sequence of items finishing with the first match. """ items = [] for item in iterable: if predicate(item): return items items.append(item) return []
3f62a1575541dfcd071424fca4b290f3f50cc518
702,967
def build_filters(tbinfogolden): """ Build for each tb in tbinfo a filter """ filter_return = [] """Each assembler string""" for tb in tbinfogolden["assembler"]: tb_filter = [] """remove first split, as it is empty""" split = tb.split("[ ") """For each line""" for sp in split[1:]: """select address""" s = sp.split("]") """Add to filter""" tb_filter.append(int("0x" + s[0].strip(), 0)) """Sort addresses""" tb_filter.sort() """Reverse list so that last element is first""" tb_filter.reverse() """Append to filter list""" filter_return.append(tb_filter) """Filter list for length of filter, so that the longest one is tested first""" filter_return.sort(key=len) filter_return.reverse() return filter_return
fdbf2c0b64c9582a00acb38c8395d249dfeb6f56
702,968
from pathlib import Path def data_root_directory(): """Get a path to the top level data directory. Checks whether you have created the local store of data at the expected location and returns that as default if found, otherwise returns the location on the shared folder Returns: (pathlib Path): A path """ return Path(__file__).parents[1] / "extra_data" / "data"
f687ffcf05aa74c521624467c3be7ec108de6a46
702,969
import re import socket def get_host_name() -> str: """Get the host name. :return: A string value. """ return re.sub(r"\.(?:local|lan)", "", socket.gethostname())
225889a0bf40943ef962903551bde85fd2729ac8
702,970
def fix_hyphen_commands(raw_cli_arguments): """Update options to match their module names with underscores.""" for i in ['gen-sample', 'run-python', 'run-stacker']: raw_cli_arguments[i.replace('-', '_')] = raw_cli_arguments[i] raw_cli_arguments.pop(i) return raw_cli_arguments
cbc420547f1d3a04787d059aa09eb0199df82dba
702,971
def get_data_types(nb_sensors): """ What should be the data type for each sensor (1 - integer, 2 - float) Input nb_sensors -> how many sensors (int) Output data_type_per_sensor -> list of data types for each sensor """ print("Choose data type for each sensor: 1-integer / 2-float") print("Enter 1 or 2 for each sensor, use space as a separator") nb_type = input("Data Types: ") print("") print("****************************************************************") # split string data_types = nb_type.split(" ") allowed_data_types = (1, 2) data_nbr = len(data_types) if (nb_sensors == data_nbr): try: for idx in range(data_nbr): if int(data_types[idx]) in allowed_data_types: continue else: raise ValueError # put splitted data into a list data_type_per_sensor = [int(data_types[i]) for i in range(data_nbr)] return data_type_per_sensor except ValueError: print("Invalid input. Please try again.") return get_data_types(nb_sensors) else: print("Invalid input. Please try again.") return get_data_types(nb_sensors)
f3133d415f1d6c8448fec57a1f14fb88d697107d
702,972
def read_line_offset(file, offset): """ Seek to offset in file, read a line and return the line and new offset """ fp = open(file, "r") fp.seek(offset, 0) line = fp.readline() offset = fp.tell() fp.close() return (line, offset)
429d592cf44e1f287eea5a67302a78473eb2362f
702,973
def calculate_bmi(weight, height): """ Calculates BMI given the weight and height as float """ bmi = (weight / (height * height)) * 703.0 return bmi
8495b11598e50516dca80965d5063df92aa78f40
702,974
import re def get_task_factor(task_name, overrides, override_type, factor): """Check for task override and return factor.""" for task_override in overrides.get(override_type, []): if re.compile(task_override["task"]).match(task_name): return task_override["factor"] return factor
eb58f291c5a21a9974b9f7d4bce739bdc99d5f89
702,975
def argstr(arg): # pragma: no cover """ Return string representation of a function argument. :param object arg: Argument object. Differs between Python versions. :return: String name of argument. """ if isinstance(arg, str): return arg if 'id' in arg._fields: return arg.id return arg.arg
565349fc4a1fb9b28e8333a44893925cea9e72d9
702,976
def getDistance(sensor): """Return the distance of an obstacle for a sensor.""" # Special case, when the sensor doesn't detect anything, we use an # infinite distance. if sensor.getValue() == 0: return float("inf") return 5.0 * (1.0 - sensor.getValue() / 1024.0)
68ff9e0c8c4dd7687e328d3b9c4634677cfe25cd
702,978
def test_path_and_query_parameters( arg1, arg2, ): """ Use same arg name as the one in path for receiving path args For those args which names not matched path arg names, will be parsed as query parameter ```python from django_mini_fastapi import Path @api.get('/test_path_and_query_parameters/{arg1}') def test_path_and_query_parameters(arg1, arg2): return dict(arg1=arg1, arg2=arg2) ``` """ return dict(arg1=arg1, arg2=arg2)
72823f5fa66065171c36329f6b05e61a710fa065
702,979
import re def GENERIC_MAX(segment_pattern, lenv=None, renv=None): """Takes the regex pattern for segments being examined for deletion, and a pair of lists indicating their deletion environment,, and returns a function that will count how many times a segment of that class is deleted from an input to an output string.""" # Determine the search parameter first # If it's a context-free constraint, just use the segment pattern if lenv == None and renv == None: inp_parameter = segment_pattern out_parameter = segment_pattern # If there is a preceding context (if you need to scan left) elif lenv != None and renv == None: inp_parameter = "({0})(\s|\d)*({1})".format(lenv, segment_pattern) out_parameter = "({0})(\s|[CV])*({1})".format(lenv, segment_pattern) elif lenv == None and renv != None: inp_parameter = "({0})(\s|\d)*({1})".format(segment_pattern, renv) out_parameter = "({0})(\s|[CV])*({1})".format(segment_pattern, renv) else: inp_parameter = "({0})(\s|\d)*({1})(\s|\d)*({2})".format(lenv, segment_pattern, renv) out_parameter = "({0})(\s|[CV])*({1})(\s|[CV])*({2})".format(lenv, segment_pattern, renv) def F(inp, outp): # Define default behaviour for empty candidates if outp == "": return 1 # First, check to see if the search parameter is present in the input i_matches = re.findall(inp_parameter, inp) if len(i_matches) != 0: # See if you can find all of them in the output o_matches = re.findall(out_parameter, outp) if len(o_matches) == len(i_matches): return 0 else: return len(re.findall(segment_pattern, inp)) - len(re.findall(segment_pattern, outp)) # Define default behaviour return 0 return F
d729cb96850397a36b687d2b43c487b3670f7c56
702,980
import logging import time def check_subs(client): """ Checks that all Subscriptions have been received""" wcount = 0 while wcount < 10: for t in client.topic_ack: wcount += 1 if t[2] == 0: logging.info("subscription to " + str(t[0]) + " not acknowledged") break print("All subs acknowledged") return True time.sleep(1) if not client.running_loop: client.loop(.01) # check for messages manually return False
95892066b9da2a530a28f06a7e5804fdee7e65d0
702,982
def Get_Items(filename): """Convert plain text to class string""" L = [] with open(filename, 'r') as file: items = file.readlines() for line in items: L.append(line[:-1]) return L
8b579dcfb8df21de68a05a8dad4d7aff06951f64
702,983
import math def circles_intersection(x_a, y_a, r_a, x_b, y_b, r_b): """ Returns the point of intersection of two circkes :param x_a: x coordinate of the center of first circle :param y_a: y coordinate of the center of first circle :param r_a: radius of first circle :param x_b: x coordinate of the center of second circle :param y_b: y coordinate of the center of second circle :param r_b: radius of second circle :return: Array of coordinates of one of the intersection points """ k = x_a*x_a - x_b*x_b + y_a*y_a - y_b*y_b - r_a*r_a + r_b*r_b c = 0.5 * k / (y_a - y_b) m = (x_a - x_b) / (y_b - y_a) g = c - y_a aa = 1 + m*m bb = 2*m*g - 2*x_a cc = x_a*x_a + g*g - r_a*r_a xi = 0.5 * (-bb + math.sqrt(bb*bb - 4*aa*cc)) / aa yi = m*xi + c return [xi, yi]
dc504bbe970c83bf1caf7727613ecaa44c1c818e
702,985
def get_grade_map(): """ Defines a mapping of Fontainebleau grades to integer values """ grade_map = { '6B': 0, # V4 '6B+': 0, # V4 '6C': 1, # V5 '6C+': 1, # V5 '7A': 2, # V6 '7A+': 3, # V7 '7B': 4, # V8 '7B+': 4, # V8 '7C': 5, # V9 '7C+': 6, # V10 '8A': 7, # V11 '8A+': 8, # V12 '8B': 9, # V13 } return grade_map
1137d7c21b18556ce69db635314c968024b3394b
702,986
import os def which(cmd): """ Returns full path to a executable. Args: cmd (str): Executable command to search for. Returns: (str) Full path to command. None if it is not found. Example:: full_path_to_python = which("python") """ def is_exe(fp): return os.path.isfile(fp) and os.access(fp, os.X_OK) fpath, fname = os.path.split(cmd) if fpath: if is_exe(cmd): return cmd else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, cmd) if is_exe(exe_file): return exe_file return None
db7d9f79d0a7d7f9673d181fb4fb1f0d00aa6fab
702,987
def get_class_mapping(super_mode: str): """ Mapping mode into integer :param super_mode: before, after & both :return: """ class_mapping = ['none', 'replace'] if super_mode == 'both': class_mapping.extend(['before', 'after']) else: class_mapping.append(super_mode) return {k: v for v, k in enumerate(class_mapping)}
33e1f40c600f68b6ea760ec9340d04555ecae463
702,989
import socket def get_banner(): """Get the ``banner`` that will be signed in :meth:`adb_shell.adb_device.AdbDevice.connect` / :meth:`adb_shell.adb_device_async.AdbDeviceAsync.connect`. Returns ------- bytearray The hostname, or "unknown" if it could not be determined """ try: return bytearray(socket.gethostname(), 'utf-8') except: # noqa pylint: disable=bare-except return bytearray('unknown', 'utf-8')
9babf7db8d4177b427f46c0785b899c79ba2691c
702,990