content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import math
def is_mc_multiplier(multiplier, modulus):
"""
Checks if multiplier is a MC multiplier w.r.t. modulus.
:param multiplier: an integer in (0, modulus).
:param modulus: a prime number.
:return: True if multiplier is a MC multiplier w.r.t. modulus.
"""
return (modulus % multiplier) < math.floor(modulus / multiplier) | 6d210f8de081ae0a468692b2f93e5145170917e9 | 702,760 |
def readToTuple(f_path):
"""Reads in a two-col file (tab-delim) and returns a list of tuples"""
f = open(f_path)
ls = []
for l in f:
if l.startswith("#"):
continue
ls.append(tuple(l.strip().split("\t")))
return ls | 726d1b4a4682c4e11afbf59e342340e0cf5ccc63 | 702,761 |
import string
from typing import Counter
def singlebyte_xor_cipher(hex):
"""
Takes a hex string and finds the best xor key
and returns (ResultString, Confidence)
"""
common = ['n', 'i', 'o', 't', 'e', ' ']
ret = None
score = 0
key=0
if not isinstance(hex, bytearray):
hex = hex.decode('hex')
hex = bytearray(hex)
for i in range(0, 255):
data = bytearray()
myscore = 1
for let in hex:
data.append(let^i)
datastr = str(data)
#Check if all characters are printable
if not all(c in string.printable for c in datastr):
continue
counts = Counter(datastr)
for let, count in counts.most_common()[:3]:
if let in common:
myscore += 1*common.index(let)
if myscore > score:
score = myscore
ret = datastr
key = i
return (ret, score, key) | 1611372d05bfa7753d77cc389e58420a2efb0c99 | 702,762 |
def df_to_dict_single(df, curation_id=None):
"""
Purpose:
Convert a single entry pandas DataFrame into a dictionary and strip out
indexing information
:param df: pandas DataFrame with single entry (e.g., use df.loc[] to filter)
:param curation_id: integer providing the curation_id. Default: Uses most recent
:return df_dict: dict that contains single entry pandas DF
"""
df_dict = df.reset_index().to_dict(orient='records')
if isinstance(curation_id, type(None)):
# Uses most recent (reverse ordered)
df_dict0 = df_dict[0]
else:
# Use specified curation_id
df_dict0 = [sub_dict for sub_dict in df_dict if sub_dict['id'] == curation_id][0]
return df_dict0 | 5a63e4cb56f8492adfae48cfd0c54f0fa6f6e104 | 702,763 |
import re
def getSisters(tree, t="g"):
"""Some nasty regex to get pairs of sister taxa
(only at terminal branches)"""
if t == "s":
l = re.findall("\(([1-9][0-9]|\d),([1-9][0-9]|\d)\)", tree)
else:
l = re.findall(
"\(([1-9][0-9]|\d):\d\.\d\d\d,([1-9][0-9]|\d):\d\.\d\d\d\)", tree
)
return l | b5c3d26b406847bfd0858181bd3becb90fccb878 | 702,764 |
def get_train_feed_dict(model, reviews, win_reviews, batch_length, ote_labels, ts_labels, opn_labels, stm_lm_labels, lr, dropout_rate=1.0, train_flag=True):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({model.reviews: reviews})
feed_dict.update({model.win_reviews: win_reviews})
feed_dict.update({model.batch_length: batch_length})
feed_dict.update({model.asp_labels: ote_labels})
feed_dict.update({model.ts_labels: ts_labels})
feed_dict.update({model.opn_labels: opn_labels})
feed_dict.update({model.stm_lm_labels: stm_lm_labels})
# feed_dict.update({model.lmf_labels: lmf_labels})
# feed_dict.update({model.lmb_labels: lmb_labels})
feed_dict.update({model.lr: lr})
feed_dict.update({model.dropout_rate: dropout_rate})
feed_dict.update({model.train_flag: train_flag})
return feed_dict | d1abf917a6fc0db66102aebda61ce431a508988f | 702,765 |
def increment_ctr(ctr):
"""
Increments one the counter.
Parameters
----------
ctr : string
Counter
Returns
-------
incremented_counter : string
Incremented Counter
"""
ctr_inc_int = int.from_bytes(bytes.fromhex(ctr), byteorder="big") + 1
return bytes.hex(ctr_inc_int.to_bytes(length=16, byteorder="big")) | 0ef04e10283f02b6b7df46cf196493a3ad4a95c8 | 702,766 |
def get_base_required_fields_uframe():
""" Get required fields for base asset in uframe.
"""
base_required_fields = [
'assetId',
'assetType',
'@class',
'dataSource'
'deliveryDate',
'deliveryOrderNumber',
'depthRating',
'description',
'events',
'firmwareVersion',
'institutionPropertyNumber',
'institutionPurchaseOrderNumber',
'location',
'manufacturer',
'mobile',
'modelNumber',
'name',
'notes',
'owner',
'ooiPropertyNumber',
'ooiPartNumber',
'ooiSerialNumber',
'serialNumber',
'remoteResources',
'softwareVersion',
'physicalInfo',
'powerRequirements',
'purchaseDate',
'purchasePrice',
'shelfLifeExpirationDate',
'uid'
]
return base_required_fields | 233e9c8985b82335d32765daab3cc29ae5959354 | 702,769 |
def get_comparative_forms(tokens):
"""Identify, color and count comparatives and superlatives"""
# find comp. forms of adjectives
comparatives = [t for t in tokens if t.full_pos in ['ADJA', 'ADJD'] and t.mo.comp == 'Comp']
superlatives = [t for t in tokens if t.full_pos in ['ADJA', 'ADJD'] and t.mo.comp == 'Sup' ]
# color
for t in comparatives:
t.adj_color.append('Comparative adjectives')
for t in superlatives:
t.adj_color.append('Superlative adjectives')
# count
return len(comparatives), len(superlatives), len(comparatives)+len(superlatives) | 020ce0f3a4959a2525698bfac4c45ac497e5cc67 | 702,770 |
def XXX(self, s):
"""
:type s: str
:rtype: int
"""
left, right = 0, 0
while right < len(s):
right += 1
if len(set(s[left:right])) != right-left:
left += 1
return right-left | 26e08dc0b82985fef73b0b13669c74f3d9f9acef | 702,771 |
def himmelblauConstraintOne(solution):
"""First restriction
Args:
solution (Solution): Candidate solution
Returns:
bool: True if it meets the constraint, False otherwise
"""
return (26 - (solution[0] - 5) ** 2 - solution[1] ** 2) >= 0 | f5878d2573559b78fee3b434d537a380abb5e2c8 | 702,772 |
from unittest.mock import patch
def patch_try_disk(return_value):
"""
Mocks the InsightsUploadConf.try_disk method so it returns the given parsed file contents.
"""
def decorator(old_function):
patcher = patch("insights.client.collection_rules.InsightsUploadConf.try_disk", return_value=return_value)
return patcher(old_function)
return decorator | 95ed09006e0a17bc58e5f320f1ae5dfb203300dd | 702,773 |
import re
def lyric_wikia_capitalize(string, noupper = True):
"""
lyrics.wikia.com page name rules:
- Uppercase All Words
- No all-uppercase WORDS allowed in song titles (but in artist names)
- Keep StrANgeLy cased words
See http://lyrics.wikia.com/wiki/LyricWiki:Page_Names
"""
pattern = re.compile("([\w]+)", re.UNICODE)
parts = pattern.split(string)
result = u""
for part in parts:
if not pattern.match(part):
#no word, keep as it is
result += part
continue
if noupper and part.isupper():
#everything uppercase? no!
part = part.lower()
result += part[0].upper() + part[1:]
return result | b3d5aefff0715a7ff1e7298b9bdb492bd461c217 | 702,774 |
def create_ip_list(addr0, n_addrs):
"""Creates list of IP multicast subscription addresses.
Args:
addr0 (str): first IP address in the list.
n_addrs (int): number of consecutive IP addresses for subscription.
Returns:
addr_list (list): list of IP addresses for subscription.
"""
prefix, suffix0 = addr0.rsplit('.', 1)
addr_list = [addr0]
for i in range(1, n_addrs):
addr_list.append(prefix + '.{}'.format(i + int(suffix0)))
return addr_list | e29b5c4b9f9ec0dc46916977e4a54bb77a9e74a6 | 702,775 |
import decimal
def decimal_to_num(obj):
"""
Helper function to convert all decimal valued inputs to the real representation of the value (int or float.)
This function is recursive.
Parameters:
obj (obj): An object to parse for decimals.
Returns:
obj: The passed in object with any transformations made.
"""
if isinstance(obj, list):
for item in range(len(obj)): # pylint: disable=consider-using-enumerate
obj[item] = decimal_to_num(obj[item])
elif isinstance(obj, dict):
for key, value in obj.items():
obj[key] = decimal_to_num(value)
elif isinstance(obj, decimal.Decimal):
if obj % 1 == 0:
obj = int(obj)
else:
obj = float(obj)
return obj | 395bb2c1c03d2c41e552b405df4bceb4172fe7aa | 702,777 |
def count_accuracy_raw(pred_corpus, target_corpus):
"""
Test accuracy, Raw accuracy
"""
count_accu = 0
total = 0
pred_sents = pred_corpus.split('.')
target_sents = target_corpus.split('.')
for pred_sent, target_sent in zip(pred_sents, target_sents):
pred_list = pred_sent.split(' ')
targ_list = target_sent.split(' ')
for pred_token, target_token in zip(pred_list, targ_list):
total += 1
if pred_token == target_token:
count_accu += 1
return count_accu, total | 6935fd0bba49d0529be382c3c78f937618f28647 | 702,778 |
def get_callers_info(callers_file, callers_package, callers, res_dir):
"""
Tries to create a map between the top callers and its associated file, using a best effort approach, by parsing the
package declaration, in case this is need. If a file matches to a caller in the dataset, it retrieves any required
information for the caller, and stores it to a dictionary. This includes the package,class,method and file names.
:type callers: list
:param callers: a list containing the top callers of each cluster
:type res_dir: string
:param res_dir: the current session's results directory
:return a dictionary which is the map between top callers and their associated files, containing any required
information
"""
#xml_dir = os.path.join(res_dir, 'xmlFiles')
callers_info = {}
for caller_id in range(len(callers)):
caller = callers[int(caller_id)]
package_class, method = caller.rsplit('.', 1)
if callers_package[caller_id] != '':
classname = package_class.rsplit(callers_package[caller_id] + '.', 1)[1]
else:
classname = package_class
caller_info = {'id': caller_id, 'package': callers_package[caller_id], 'classname': classname, 'method': method,
'filename': callers_file[caller_id]}
#get_caller_info(caller_info, xml_dir)
callers_info[caller] = caller_info
return callers_info | 37fa8fcc47ba455e6bc47243f8334f2ab26e3962 | 702,779 |
def isNumber(n):
"""retorna true si 'n' es un numero"""
return all(n[i] in "0123456789" for i in range(len(n))) | 40541c759357fe2706fb453947e55dabab513040 | 702,780 |
def file_content_to_list(file):
"""
Append each line of the file to a theèlist
:param file: The file to transform into a theèlist
:return: The the list
"""
lst = []
with open(file) as file_alias:
for line in file_alias:
lst.append(line)
return lst | cee015f6e7121fc513c8944c61cfd225ee0dcf12 | 702,781 |
def add_slash(text: str):
"""returns the same text with slash at the end"""
return text + '/' | a87c204dfc163f5ee814fbda92ad7a8368346893 | 702,782 |
import re
def __detect_str_type(data) -> str:
"""
:column_type str
:rtype str
"""
r = re.search("[^=]+=[^&]*&*", data) # application/x-www-form-urlencoded pattern
if r:
return "application/x-www-form-urlencoded"
else:
return "plain/text" | 6dda59aa570070538b54738b83fc69ba129637f0 | 702,783 |
def diffusion_coeff(t, sigma):
"""Compute the diffusion coefficient of our SDE.
Args:
t: A vector of time steps.
sigma: The $\sigma$ in our SDE.
Returns:
The vector of diffusion coefficients.
"""
return sigma**t | e0b1e1c76f7773a85562adb327c18863c715917a | 702,785 |
from typing import OrderedDict
def get_form_errors(form):
"""
Django form errors do not obey natural field order,
this template tag returns non-field and field-specific errors
:param form: the form instance
"""
return {
'non_field': form.non_field_errors(),
'field_specific': OrderedDict(
(field, form.errors[field.name])
for field in form
if field.name in form.errors
)
} | 056597492d24dc406c9d952f5cb56c14d0a75fff | 702,786 |
import torch
def log_sum_exp(tensor, dim=-1):
""" Safe log-sum-exp operation """
return torch.logsumexp(tensor, dim) | 5b6154be4c12576941f7e8d97a26296149982e1b | 702,787 |
from typing import List
from typing import Dict
def get_vrf_group(files_list: List[str]) -> Dict[str, List[str]]:
"""
Group files by VRF name.
"""
groups = {}
for filename_path in files_list:
filename_path = filename_path.replace("\\", "/")
# print(filename_path)
if "show" in filename_path \
or "display" in filename_path:
continue
"""
Example)
"switch-001_192.168.252.201_20191028-142654_vrf_10.log"
vrf_name = "_vrf_10.log"
"""
pos1 = filename_path.rfind("_")
pos2 = filename_path[:pos1].rfind("_")
vrf_name = filename_path[pos2:]
# Group by vrf_name and store a list of file names in the list.
# print(vrf_name)
if not vrf_name in groups.keys():
groups[vrf_name] = []
groups[vrf_name].append(filename_path)
return groups | 348f1c10f4bd054ca2f45f36b5420a971b52e4cf | 702,788 |
def scr_total(
bscr,
scr_op
):
""" This function simply adds the SCR_Op to the BSCR """
return bscr + scr_op | 7d1711f75abae59b79cf62f6e64daeb7e4c556eb | 702,789 |
import re
import six
def load_tff_dat(fname, processor=None):
"""Read a tff.dat or dff.dat files generated by tff command
Parameters
----------
fname : file or str
File, or filename
processor: callable or None
A final output processor, by default a tuple of tuples is returned
Returns
-------
Whathever the processor return or a tuple of tuples
"""
processor = processor or tuple
def gen(fp):
buff = []
for line in fp:
line = re.sub(r"\*{2,}", "nan", line) # remove al ****...
# new source?
if buff and not line.startswith(" "):
yield tuple(buff)
buff = []
buff.extend(line.strip().split())
if buff:
yield tuple(buff)
if isinstance(fname, six.string_types):
with open(fname) as fp:
generator = gen(fp)
return processor(generator)
generator = gen(fname)
return processor(generator) | 55f9ba3915c2d31cb83b8ea26de996f8f29e5e43 | 702,790 |
from typing import List
def is_luhn(string: str) -> bool:
"""
Perform Luhn validation on input string
Algorithm:
* Double every other digit starting from 2nd last digit.
* Subtract 9 if number is greater than 9.
* Sum the numbers
*
>>> test_cases = [79927398710, 79927398711, 79927398712, 79927398713,
... 79927398714, 79927398715, 79927398716, 79927398717, 79927398718,
... 79927398719]
>>> test_cases = list(map(str, test_cases))
>>> list(map(is_luhn, test_cases))
[False, False, False, True, False, False, False, False, False, False]
"""
check_digit: int
_vector: List[str] = list(string)
__vector, check_digit = _vector[:-1], int(_vector[-1])
vector: List[int] = [*map(int, __vector)]
vector.reverse()
for idx, i in enumerate(vector):
if idx & 1 == 0:
doubled: int = vector[idx] * 2
if doubled > 9:
doubled -= 9
check_digit += doubled
else:
check_digit += i
if (check_digit) % 10 == 0:
return True
return False | 92253489a18efc902198d5eb3fb93a06a74a3246 | 702,791 |
import sqlite3
def handle_artist(command):
"""
Process the artist command
"""
conn = sqlite3.connect('myjazzalbums.sqlite')
cur = conn.cursor()
if command [-1] == "?":
artist_name = command[6:-1].strip().title()
else:
artist_name = command[6:].strip().title()
if artist_name == "Kenny G":
response = "Why the f$ck would Ian have Kenny G in his collection?"
else:
cur.execute (" SELECT Album.title FROM Album JOIN Artist ON Artist.id = Album.artist_id WHERE Artist.name =?" , (artist_name,) )
count = 0
response = 'Albums for *' + artist_name + '*:\n'
for row in cur :
response += row[0]+ '\n'
count = count + 1
response = "I have "+ str (count) +" " + response
return response
cur.close() | 4395b4d3a25f3ea5e10accd938a51df342913e17 | 702,792 |
import glob
def patternMatch(pattern, dir='./'):
"""
:pattern: A file pattern to match the desired output. Input to a glob, so use traditional unix wildcarding.
:dir: The directory to search.
:returns: list of matching files in the target directory
"""
files = []
files = glob.glob(dir+pattern)
return files | d5e9b1d531cdfa3ebca3baea2b8e273621df3357 | 702,793 |
def removeBottomMargin(image, padding):
"""Remove the bottom margin of width = padding from an image
Args:
image (PIL.Image.Image): A PIL Image
padding (int): The padding in pixels
Returns:
PIL.Image.Image: A PIL Image
"""
return image.crop((0, 0, image.width, image.height - padding)) | 69cd12d6c3ed0b857bae3f42c34e9754fa3620f3 | 702,794 |
def num(val):
"""Return val as an int, float, or bool, depending on what it most
closely resembles."""
if isinstance(val, (float, int)):
return val
elif val in ('True', 'False'):
return val == 'True'
elif isinstance(val, str):
try:
return int(val)
except ValueError:
pass
try:
return float(val)
except ValueError:
raise ValueError("Could not convert '{}' to either "
"int or float.")
raise RuntimeError("Invalid value '{}' given to num.".format(val)) | 552219ed6e97013c0b367542f68ae2e5e9f98300 | 702,795 |
def fib(id):
"""
id: index (zero-based)
returns: Fibonacci number for the given index
id: 0 1 2 3 4 5 6 7
Fib: 0 1 1 2 3 5 8 13
"""
if id < 0:
return 0
if id == 0:
return 0
if id == 1:
return 1
first = 0
second = 1
counter = 2
fib_num = 0
while counter <= id:
fib_num = first + second
first = second
second = fib_num
counter = counter + 1
print(counter, fib_num)
return fib_num | fc5c58c364417cdfd6c5276da644d259258af613 | 702,796 |
def flatten_list(unflattened_list):
"""
Take list of iterables/non-iterables and outputs a list of non-iterables.
"""
flattened_list = []
for item in unflattened_list:
if hasattr(item, '__iter__') and not isinstance(item, str):
flattened_list.extend(item)
else:
flattened_list.append(item)
return flattened_list | cbf7297bd10312a47487fd814575323881940ef5 | 702,797 |
def sector_code_map(industry_code):
"""
国证行业分类映射为部门行业分类
国证一级行业分10类,转换为sector共11组,单列出房地产。
"""
if industry_code[:3] == 'C01':
return 309
if industry_code[:3] == 'C02':
return 101
if industry_code[:3] == 'C03':
return 310
if industry_code[:3] == 'C04':
return 205
if industry_code[:3] == 'C05':
return 102
if industry_code[:3] == 'C06':
return 206
if industry_code.startswith('C07'):
if industry_code[:5] == 'C0703':
return 104
else:
return 103
if industry_code[:3] == 'C08':
return 311
if industry_code[:3] == 'C09':
return 308
if industry_code[:3] == 'C10':
return 207
return -1 | 73d55282c0e6228747d91b09b5ee733aecf4766c | 702,798 |
def aten_transpose(mapper, graph, node):
""" 构造矩阵转置的PaddleLayer。
TorchScript示例:
%715 : Tensor = aten::transpose(%x.21, %704, %705)
参数含义:
%715 (Tensor): 输出,转置后的矩阵。
%x.21 (Tensor): 需要转置的Tensor。
%704 (int): 转置的维度1。
%705 (int): 转置的维度2。
"""
scope_name = mapper.normalize_scope_name(node)
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.21
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%704
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
dim1 = inputs_name[1]
# 处理输入2,即%705
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
dim2 = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.shape",
inputs={"input": inputs_name[0]},
outputs=[output_name + "_shape"],
scope_name=scope_name)
current_outputs.append(output_name + "_shape")
graph.add_layer(
"prim.len",
inputs={"input": output_name + "_shape"},
outputs=[output_name + "_len"],
scope_name=scope_name)
current_outputs.append(output_name + "_len")
current_inputs.append(output_name + "_shape")
graph.add_layer(
"prim.len2list",
inputs={"len": output_name + "_len"},
outputs=[output_name + "_list"],
scope_name=scope_name)
current_outputs.append(output_name + "_list")
current_inputs.append(output_name + "_len")
graph.add_layer(
"prim.check_dim",
inputs={"len": output_name + "_len",
"dim": dim1},
outputs=[dim1 + "_new"],
scope_name=scope_name)
graph.add_layer(
"prim.check_dim",
inputs={"len": output_name + "_len",
"dim": dim2},
outputs=[dim2 + "_new"],
scope_name=scope_name)
graph.add_layer(
"prim.replaceitem",
inputs={
"list": output_name + "_list",
"index": dim1 + "_new",
"item": dim2 + "_new"
},
outputs=[],
scope_name=scope_name)
graph.add_layer(
"prim.replaceitem",
inputs={
"list": output_name + "_list",
"index": dim2 + "_new",
"item": dim1 + "_new"
},
outputs=[],
scope_name=scope_name)
graph.add_layer(
"paddle.transpose",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name,
perm=output_name + "_list")
return current_inputs, current_outputs | 3922de1a23ce0725b4a8fa6d1f748ad1ad3bcf81 | 702,799 |
def get_syst ( syst , *index ) :
"""Helper function to decode the systematic uncertainties
Systematic could be
- just a string
- an object with index: obj [ibin]
- a kind of function: func (ibin)
"""
if isinstance ( syst , str ) : return syst
elif syst and hasattr ( syst , '__getitem__' ) : return str ( syst [ index ] )
elif syst and callable ( syst ) : return str ( syst ( *index ) )
elif syst : raise AttributeError("Invalid systematic %s/%s" % ( syst , type( syst ) ) )
return '' | 37b2b39245587da16345752e02759d2c94c93415 | 702,800 |
import weakref
def weak_arg(arg):
""" Create a weak reference to arg and wrap the function so that the dereferenced
weakref is passed as the first argument. If arg has been deleted then the
funcion is not called.
"""
# Create the weak reference
weak_arg = weakref.ref(arg)
def decorator(function):
# We need multiple wrappers to traits can find the number of arguments.
# The all just deref the weak referene and the call the function if it
# is not None
def wrapper0():
arg = weak_arg()
if arg is not None:
return function(arg)
def wrapper1(arg1):
arg = weak_arg()
if arg is not None:
return function(arg, arg1)
def wrapper2(arg1, arg2):
arg = weak_arg()
if arg is not None:
return function(arg, arg1, arg2)
def wrapper3(arg1, arg2, arg3):
arg = weak_arg()
if arg is not None:
return function(arg, arg1, arg2, arg3)
def wrapper4(arg1, arg2, arg3, arg4):
arg = weak_arg()
if arg is not None:
return function(arg, arg1, arg2, arg3, arg4)
def wrappern(*args):
arg = weak_arg()
if arg is not None:
function(arg, *args)
# Return the correct wrapper depending on the arg count
args = function.func_code.co_argcount-1
if args == 0:
return wrapper0
elif args == 1:
return wrapper1
elif args == 2:
return wrapper2
elif args == 3:
return wrapper3
elif args == 4:
return wrapper4
else:
return wrappern
return decorator | 90da143dada896fe7988b4f3003110a3b678b5ab | 702,801 |
def dya(series, n=1):
"""Difference over n years, annualized"""
return (series-series.shift(n*series.index.freq.periodicity)) / n | 4f414beec19d9d6b5acfc87890b7ea2681f8d251 | 702,802 |
def find_projects(company_name, project_list):
"""returns list of projects associated with company_name
:param company_name: name of company to return projects for
:type company_name: str
:param project_list: list of projects as dictionaries
:type project_list: list
:return: list
"""
result = []
for project in project_list:
if project['company'] == company_name:
result.append(project)
return result | e2e193aa103bec6620fb17679ff02de92c3f299e | 702,803 |
import logging
def log_to_stdout(level=15):
"""
Adds the stdout to the logging stream and sets the level to 15 by default
"""
logger = logging.getLogger("fetch_data")
# remove existing file handlers
for handler in logger.handlers:
if isinstance(handler, logging.StreamHandler):
logger.handlers.remove(handler)
# add the new logger with the formatting
logFormatter = logging.Formatter(
"%(asctime)s [%(name)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(logFormatter)
logger.addHandler(streamHandler)
logger.setLevel(level)
return logger | ec5f18ca6349664687621f298c17122b6733c8be | 702,804 |
def join_lines(lines):
"""Joins `lines` with newlines and returns a single string.
You would think you could do that with
| join("\n")
but you can't — see https://github.com/debops/ansible-sshkeys/issues/4
"""
return ''.join("%s\n" % l for l in lines) | e0041b302e662e02b153bc7b0ff8b3cb558bb7a5 | 702,805 |
import shutil
import sys
def withprogressbar(func):
"""Decorates ``func`` to display a progress bar while running.
The decorated function can yield values from 0 to 100 to
display the progress.
"""
def _func_with_progress(*args, **kwargs):
max_width, _ = shutil.get_terminal_size()
gen = func(*args, **kwargs)
while True:
try:
progress = next(gen)
except StopIteration as exc:
sys.stdout.write('\n')
return exc.value
else:
# Build the displayed message so we can compute
# how much space is left for the progress bar itself.
message = '[%s] {}%%'.format(progress)
bar_width = max_width - len(message) + 3 # Add 3 characters to cope for the %s and %%
filled = int(round(bar_width / 100.0 * progress))
spaceleft = bar_width - filled
bar = '=' * filled + ' ' * spaceleft
sys.stdout.write((message+'\r') % bar)
sys.stdout.flush()
return _func_with_progress | 143fed7cbb36d6d1f01525967ed825d5fa0c6346 | 702,806 |
def health():
""" Serve React App """
return "Hello World!" | ef7938daeadd74361d954153c723dd136590962b | 702,807 |
import math
import re
import sys
def validate_name(string, name_type):
"""
Validates the node & property names
"""
if type(string) != str and math.isnan(string):
return None
match = None
if name_type == 'node':
match = re.search('''[^a-zA-Z_]''', string)
elif name_type == 'property':
match = re.search('''[^a-zA-Z_0-9]''', string)
if match:
sys.exit('Illegal character {0} found in node/property name {1}. Only lowercase letters and underscore allowed.'.format(match, string))
return string.lower() | 122ac61657d088a5dccbacc3bae8fc80183ce3d2 | 702,808 |
import sys
def is_indy_sdk_module_installed():
"""Check whether indy (indy-sdk) module is installed.
Returns:
bool: Whether indy (indy-sdk) is installed.
"""
try:
# Check if already imported
if "indy" in sys.modules:
return True
# Try to import
return True
except ModuleNotFoundError:
# Not installed if import went wrong
return False | 8dc17e302c7a07482fdc43853d6a535a1ef2d847 | 702,809 |
def test_retrieve_and_encode_simple(test_client, test_collection_name):
"""Test retrieving documents and encoding them with vectors.
"""
VECTOR_LENGTH = 100
def fake_encode(x):
return test_client.generate_vector(VECTOR_LENGTH)
# with TempClientWithDocs(test_client, test_collection_name, 100) as client:
test_client.insert_documents(test_collection_name, test_client.create_sample_documents(100))
results = test_client.retrieve_and_encode(test_collection_name,
models={'country': fake_encode})
assert list(test_client.collection_schema(test_collection_name)['country_vector_'].keys())[0] == 'vector'
assert len(results['failed_document_ids']) == 0
assert 'country_vector_' in test_client.collection_schema(test_collection_name)
docs = test_client.retrieve_documents(test_collection_name)['documents']
assert len(docs[0]['country_vector_']) == VECTOR_LENGTH | 4fb6b1ea0278575ff53778dbefe8fb4f12a9abc2 | 702,810 |
import os
import json
def load_model_data(root_dir, model_name):
"""
Used for models split in several files.
Loads subscripts_dic, namespace and modules dictionaries
Parameters
----------
root_dir: str
Path to the model file.
model_name: str
Name of the model without file type extension (e.g. "my_model").
Returns
-------
namespace: dict
Translation from original model element names (keys) to python safe
function identifiers (values).
subscripts: dict
Dictionary describing the possible dimensions of the stock's
subscripts.
modules: dict
Dictionary containing view (module) names as keys and a list of the
corresponding variables as values.
"""
with open(os.path.join(root_dir, "_subscripts_" + model_name + ".json")
) as subs:
subscripts = json.load(subs)
with open(os.path.join(root_dir, "_namespace_" + model_name + ".json")
) as names:
namespace = json.load(names)
# the _modules.json in the sketch_var folder shows to which module each
# variable belongs
with open(os.path.join(root_dir, "modules_" + model_name, "_modules.json")
) as mods:
modules = json.load(mods)
return namespace, subscripts, modules | f26a491003c43224e08daf361bf95a6be3756f36 | 702,811 |
def run():
"""Run example"""
return 'running...' | 702a6af69b98326b8a557929e06d2e8bc4308660 | 702,813 |
import os
def validate(args):
"""
Check that the CLI arguments are valid.
"""
if not args.source_path:
print("Error: You need to specify a source path.")
return False
else:
if not os.path.isdir(args.source_path):
print("Error: Source path is not a folder.you can run autosub direct.")
return False
return True | 5d140178fd803f882e273f36bdf59e73135550ef | 702,814 |
def freq_correctionbis(cpt_matrice, beta) :
"""
Corrige les counts avec equiprobabilites
"""
for i in range(cpt_matrice.shape[0]) :
for j in range(cpt_matrice.shape[1]) :
cpt_matrice[i,j] = ((cpt_matrice[i,j] + (1/20) )/(1+beta))
return(cpt_matrice) | 570393b8df2a3a8bf675d7ce47950d8290680779 | 702,815 |
def scale_from_internal(vec, scaling_factor, scaling_offset):
"""Scale a parameter vector from internal scale to external one.
Args:
vec (np.ndarray): Internal parameter vector with external scale.
scaling_factor (np.ndarray or None): If None, no scaling factor is used.
scaling_offset (np.ndarray or None): If None, no scaling offset is used.
Returns:
np.ndarray: vec with external scale
"""
if scaling_factor is not None:
vec = vec * scaling_factor
if scaling_offset is not None:
vec = vec + scaling_offset
return vec | c7f2471d2a7776f8756d709d0288163aab3594ae | 702,816 |
def filter_pre_string(_string: str, lines_to_cut: int) -> str:
"""
Filter the xml out of html
:param str _string:
:param int lines_to_cut:
"""
filtered_array = _string.splitlines()[lines_to_cut:]
filtered_string = "".join(filtered_array)
filtered_string = filtered_string.strip()
return filtered_string | 1bde68fbfa3f87360b47ece45b64782dcc3bcde6 | 702,818 |
def ssum(self, **kwargs):
"""Calculates and prints the sum of element table items.
APDL Command: SSUM
Notes
-----
Calculates and prints the tabular sum of each existing labeled result
item [ETABLE] for the selected elements. If absolute values are
requested [SABS,1], absolute values are used.
"""
command = f"SSUM,"
return self.run(command, **kwargs) | 299a14a2e21454a304d6d023d2b3a3709b24eb18 | 702,819 |
def get_nth_combination(
iterable,
*,
items: int,
index: int,
):
"""
Credit to:
https://docs.python.org/3/library/itertools.html#itertools-recipes
Examples:
>>> wallet = [1] * 5 + [5] * 2 + [10] * 5 + [20] * 3
>>> get_nth_combination(wallet, items=3, index=454)
(20, 20, 20)
>>> get_nth_combination(wallet, items=3, index=-1)
(20, 20, 20)
>>> get_nth_combination(wallet, items=3, index=455)
Traceback (most recent call last):
...
IndexError: Index 455 out of bounds
>>> get_nth_combination(wallet, items=3, index=-454)
(1, 1, 1)
>>> get_nth_combination(wallet, items=len(wallet), index=0)
(1, 1, 1, 1, 1, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20)
>>> get_nth_combination(wallet, items=len(wallet), index=1)
Traceback (most recent call last):
...
IndexError: Index 1 out of bounds
"""
space = tuple(iterable)
n = len(space)
if items < 1:
msg = f'Argument must be positive'
raise ValueError(msg)
if items > n:
msg = f'Sample space has {n} items; Argument items cannot exceed that'
raise ValueError(msg)
c = 1
k = min(items, n - items)
for i in range(1, k + 1):
c = c * (n - k + i) // i
orig_index = index
if index < 0:
index += c
if index < 0 or index >= c:
msg = f'Index {orig_index} out of bounds'
raise IndexError(msg)
result = []
while items:
c, n, items = c * items // n, n - 1, items - 1
while index >= c:
index -= c
c, n = c * (n - items) // n, n - 1
result.append(space[-(n + 1)])
return tuple(result) | 6ed186d260ca86c0f16d383576e69402d079ed9b | 702,820 |
def produce_columns(df):
"""Reports columns for use in model."""
columnsNames = []
for i in df.columns:
if i == 'Survived' or i == 'PassengerId':
pass
else:
columnsNames.append(i)
return columnsNames | ce527118fc099ac05d20dbb981f5f3231e9070fa | 702,821 |
def fixture_ref_6_2_3_5():
"""Reference for (load, bins) of 6, [2, 3, 5]."""
ref = {
"load": 6,
"bins": [2, 3, 5],
"solutions": {
key: [(3, 3)] for key in ["length", "capacity", "combo"]
}
}
return ref | 7b7121e404b4daf3277a4ab6f33eb955cd6d47e7 | 702,822 |
def recreate_knob_from_optimizer_values(variables, opti_values):
""" recreates knob values from a variable """
knob_object = {}
# create the knobObject based on the position of the opti_values and variables in their array
for idx, val in enumerate(variables):
knob_object[val] = opti_values[idx]
return knob_object | 8c253ea75f1dbb8c27cde21b2208b5386d75930e | 702,824 |
import typing
import sys
import argparse
import multiprocessing
def parse_args(args:typing.Sequence[str]=sys.argv[1:]):
"""
Parse the command-line arguments
:param args: argument strings
:return: the options dictionary
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--input",
required=True,
help="The directory of the input precomputed volume"
)
parser.add_argument(
"--input-format",
default="blockfs",
help="The precomputed volume input format. Default is blockfs"
)
parser.add_argument(
"--output",
required=True,
help="The output directory for the blockfs precomputed volume"
)
parser.add_argument(
"--power",
type=float,
default=0.09,
help="The power of the exponent in the kernel, e**(-<power>*x)"
)
parser.add_argument(
"--kernel-size",
type=int,
help="The kernel length. This must be an odd number. The default is "
"the nearest odd integer where the kernel value is less than .01"
)
parser.add_argument(
"--iterations",
type=int,
help="The number of iterations for the Richardson-Lucy loop",
default=10
)
parser.add_argument(
"--levels",
type=int,
default=5,
help="# of levels in the resulting precomputed volume"
)
parser.add_argument(
"--voxel-size",
default="1.8,1.8,2.0",
help="The voxel size in microns: three comma-separated numbers. "
"Default is 1.8,1.8,2.0"
)
parser.add_argument(
"--n-cores",
type=int,
default=multiprocessing.cpu_count(),
help="# of processes used to perform the deconvolution"
)
parser.add_argument(
"--n-writers",
type=int,
default=min(13, multiprocessing.cpu_count()),
help="# of processes used when writing the blockfs volume"
)
parser.add_argument(
"--use-gpu",
action="store_true",
help="Use GPU for deconvolution."
)
parser.add_argument(
"--n-blocks-per-process",
type=int,
default=2,
help="# of blockfs blocks on a side to process at the same time. "
"A larger number amortizes the padding while a smaller number "
"conserves memory."
)
return parser.parse_args(args) | 6088425154379e77752ff4dfa52b86fbba8df429 | 702,825 |
def _create_validate(cls, validators):
"""
Create a new validate method with extra validator functions.
"""
def validate(self, value):
super(cls, self).validate(value)
for validator in validators:
validator(value)
validate.__doc__ = validators[0].__doc__
return validate | a3f8b1ef5255f1c2f359b82539aa911b6d136514 | 702,826 |
def _status(self):
"""status -> Returns the Shot status. None if no Status is set."""
status = None
tags = self.tags()
for tag in tags:
if tag.metadata().hasKey('tag.status'):
status = tag.metadata().value('tag.status')
return status | eb8fd85218f6e745f09e4984db8b6c74ba464dcb | 702,827 |
def capped(value, minimum=None, maximum=None, key=None, none_ok=False):
"""
Args:
value: Value to cap
minimum: If specified, value should not be lower than this minimum
maximum: If specified, value should not be higher than this maximum
key (str | None): Text identifying 'value' (ValueError is raised if provided and `value` is not within bounds)
none_ok (bool): True if `None` value is considered OK
Returns:
`value` capped to `minimum` and `maximum` (if it is outside of those bounds)
"""
if value is None:
if none_ok:
return None
if key and not none_ok:
raise ValueError("'None' is not acceptable for '%s'" % key)
return minimum if minimum is not None else maximum
if minimum is not None and value < minimum:
if key:
raise ValueError("'%s' value %s is lower than minimum %s" % (key, value, minimum))
return minimum
if maximum is not None and value > maximum:
if key:
raise ValueError("'%s' value %s is greater than maximum %s" % (key, value, maximum))
return maximum
return value | 663a63041699f4e4f52886adbd49423bf52c0282 | 702,828 |
def row(ctx):
"""Get this cell's row."""
return ctx["cell"].row | 4cfc89daa3ca771359acd762d716316209ca0eb4 | 702,829 |
def above_the_line(x_array, x1, x2):
"""
Return states above a specified line defined by (x1, x2).
We assume that a state has only two coordinates.
Parameters
----------
x_array: `np.array`
A 2-d matrix. Usually, an embedding for data points.
x1: `np.array`
A list or array of two entries.
x2: `np.array`
A list or array of two entries.
Returns
-------
A boolean array.
"""
return (x_array[:, 1] - x1[1]) > ((x2[1] - x1[1]) / (x2[0] - x1[0])) * (
x_array[:, 0] - x1[0]
) | d20b5d462b7254a93f7896b592ae25eae26075a7 | 702,831 |
import typing
import os
import re
def guess_track_title(fname: str) -> typing.Tuple[int, str]:
""" Get the track number and title from a filename """
basename, _ = os.path.splitext(fname)
if match := re.match(r'([0-9]+)([^0-9]*)$', basename):
return int(match.group(1)), match.group(2).strip().title()
return 0, basename.title() | 7a45243b33239cfc137318e7118f32e8b114a492 | 702,832 |
import torch
def _add_embedding_layer(model_1, model_2):
"""
Returns an embedding layer with a weight matrix
of the follwing structure:
[MODEL_1 EMBEDDING MATRIX ; MODEL_2 EMBEDDING MATRIX]
"""
result_layer = torch.nn.Embedding(
model_1.num_embeddings, model_1.embedding_dim + model_2.embedding_dim
)
result_layer.weight = torch.nn.Parameter(
torch.cat((model_1.weight.data, model_2.weight.data), dim=1)
)
return result_layer | 2b4f4f3e36d56c57302cdcbf07c6cbbdb5165e11 | 702,833 |
def generate_key_lu_dict(
dict_tuple_keys,
unique_identifier,
enduses,
sectors,
technologies
):
"""Generate look_up keys to position in 'load_profiles'
Arguments
----------
dict_tuple_keys : dict
Already existing lu keys
unique_identifier : string
Unique identifier of load shape object
enduses : list
List with enduses
sectors : list
List with sectors
technologies : list
List with technologies
Returns
-------
dict_tuple_keys : str
Lookup position in dict
"""
for enduse in enduses:
for sector in sectors:
for technology in technologies:
dict_tuple_keys[(enduse, sector, technology)] = unique_identifier
return dict_tuple_keys | adc2fd7357d16b3026ae7d0d8f363919b61f8525 | 702,834 |
def rdns_domain(network):
"""Transform :py:class:`netaddr.IPNetwork` object to rDNS zone name"""
if network.prefixlen == 0:
return "ip6.arpa" if network.version == 6 else "in-addr.arpa"
if network.version == 4:
return ".".join(map(str, reversed(
network.ip.words[:network.prefixlen // 8]))) + ".in-addr.arpa"
elif network.version == 6:
return ".".join(map(str, reversed(list("".join(hex(n)[2:].rjust(
4, "0") for n in network.ip.words))[:network.prefixlen // 4]))) + ".ip6.arpa" | b94656f270d39ac175efb8bc8a99af0d29dad7df | 702,835 |
def to_undirected(graph):
"""Returns an undirected view of the graph `graph`.
Identical to graph.to_undirected(as_view=True)
Note that graph.to_undirected defaults to `as_view=False`
while this function always provides a view.
"""
return graph.to_undirected(as_view=True) | 96ceb4e2d7dbe2a9c120b8e1ac7cad0ef2b2c6ae | 702,836 |
import ctypes
import sys
def c_str(string : str) -> ctypes.c_char_p:
"""Create ctypes char * from a Python string."""
if sys.version_info[0] > 2:
py_str = lambda x: x.encode('utf-8')
else:
py_str = lambda x: x
return ctypes.c_char_p(py_str(string)) | e2c783d5d72eece66aef14245e2770bc8a43588b | 702,837 |
def getText(rng):
"""
Get the pure text that is included in a js range
@param range js range to get the text of
@return string of the range's text
"""
return rng.toString() | 71c7c2eccb850ab1d807496d8033bb426b467492 | 702,838 |
def _chain_validator(*funcs):
"""Chain a series of validators."""
def chained(value):
for func in funcs:
value = func(value)
return value
return chained | 40082602f92a28160306bfff4d7b61703ea2e962 | 702,840 |
from typing import MutableMapping
from typing import Any
def remove_keys(
_dict: MutableMapping[str, Any] | None, keys: list[str]
) -> MutableMapping[str, Any]:
"""Remove keys from a dictionary."""
if not _dict:
return {}
new = dict(_dict)
for key in keys:
new.pop(key, None)
return new | 7a0ee8482eea69b0be7f7ecfd41355206adcf01c | 702,841 |
import struct
def read64(f):
"""Read 8 bytes from a file and return as an 64-bit unsigned int (little endian).
"""
return struct.unpack("<Q", f.read(8))[0] | 4a055188bd9db074ca3807771d779eccb25e5484 | 702,843 |
import re
def contain_static(val):
"""
Check if URL is a static resource file
- If URL pattern ends with
"""
if re.match(r'^.*\.(jpg|jpeg|gif|png|css|js|ico|xml|rss|txt).*$', val, re.M|re.I):
# Static file, return True
return True
else:
# Not a static file, return False
return False | 9b69c0e8c69f9a97abbea82855d0c387de2a381a | 702,844 |
def make_univariate(F, T):
"""
Given a homogeneous bivariate polynomial `F(xi,xj)`,
sitting inside a ring `K[x0,x1,x2]`, dehomogenise it
into ring T (univariate), for later factoring.
"""
assert(F.is_homogeneous() and len(F.variables())<3)
R = F.base_ring()
S = F.parent()
x0,x1,x2 = S.gens()
eta = T.gen()
if F.degree(x0)>0:
Fa = F(eta,1,1)
elif F.degree(x1)>0:
Fa = F(1,eta,1)
else:
Fa = F(1,1,eta)
return Fa | 0f2c230e9e19bcb61b687bcd7aff5ec6d5069347 | 702,845 |
import json
import re
def unsubChange(doc, API, session):
""" Calculate a mailing list unsub request """
diff = ""
mls = {}
with open("private/json/ml-modsubs.json") as f:
mls = json.load(f)
f.close()
li = doc['listname']
l,d = li.split('@', 2)
d = d.replace(".apache.org", "")
# Check that we can edit/add lists here
if d not in session.user['canAdmin'].values():
raise API.exception(403, "You cannot edit mailing lists for this sub-domain!")
# Validate method
if doc.get('action', '') not in ['unsub', 'ban']:
raise API.exception(400, "Invalid action specified")
# Validate target
target = doc.get('target')
if not re.match(r"^[^<>\"\s|\\&:;,]+@[^<>\"\s|\\&:;,]+$", target):
raise API.exception(400, "Invalid email address supplied!")
if li in mls:
if not target in mls[li]['subscribers']:
raise API.exception(404, "Email address not found in subscriber list!")
else:
raise API.exception(404, "Mailing list not found!")
diff = "- Modify subscribers on %s\n" % li
diff += "- Remove %s from the mailing list\n" % target
if doc.get('action') == 'ban':
diff += "- Prevent %s from subscribing to the list\n" % target
return diff, doc | 72b1e1d0886222b43ff0df4deccfbce5e4f55332 | 702,846 |
def get_min(statistical_series):
"""
Get minimum value for each group
:param statistical_series: Multiindex series
:return: A series with minimum value for each group
"""
return statistical_series.groupby(level=0).agg('min') | c032f2f834cfe298a6c9f98c9116aaf354db0960 | 702,847 |
import time
def now():
"""
Get the current time function.
:return: Time function.
:rtype: function
"""
if hasattr(time, 'monotonic'):
return time.monotonic
return time.time | a50542697bbf4fa78d942fb564749e4e26b37ff4 | 702,848 |
def to_roman(value: int, make_upper: bool = True) -> str:
""" The presence of 500 (D) and 50 (L), coupled with the special handling of 400, 900, 40, 90, 4
and 9, make table lookup seem like the best approach.
"""
if value == 0:
return 'Zero'
if value > 3999:
return f'{value:,}'
thousands, value = divmod(value, 1000)
hundreds, value = divmod(value, 100)
tens, ones = divmod(value, 10)
return_str = thousands * 'm'
return_str += ['', 'c', 'cc', 'ccc', 'cd', 'd', 'dc', 'dcc', 'dccc', 'cm'][hundreds]
return_str += ['', 'x', 'xx', 'xxx', 'xl', 'l', 'lx', 'lxx', 'lxxx', 'xc'][tens]
return_str += ['', 'i', 'ii', 'iii', 'iv', 'v', 'vi', 'vii', 'viii', 'ix'][ones]
return_str = return_str.upper() if make_upper else return_str.lower()
return return_str | d74982f73848b2d64c421a10a2b3bed6c89a7c54 | 702,849 |
def get_daily_returns(port_val):
"""Get daily returns of a portfolio value dataframe.
Args:
port_val (dataframe): daily portfolio value
Returns:
daily_ret (dataframe): daily returns
"""
daily_ret = port_val.copy()
daily_ret[1:] = (port_val[1:] / port_val[:-1].values)-1
daily_ret = daily_ret.ix[1:]
return daily_ret | 8d1a2dd03c2a5992b97b5d8d4b00cc65ebe4caba | 702,850 |
def add_sppc_args(parser):
"""Add args of SPP Container to app."""
parser.add_argument(
'--dist-name',
type=str,
default='ubuntu',
help="Name of Linux distribution")
parser.add_argument(
'--dist-ver',
type=str,
default='latest',
help="Version of Linux distribution")
parser.add_argument(
'--workdir',
type=str,
help="Path of directory in which the command is launched")
parser.add_argument(
'--name',
type=str,
help='Name of container')
parser.add_argument(
'-ci', '--container-image',
type=str,
help="Name of container image")
parser.add_argument(
'-fg', '--foreground',
action='store_true',
help="Run container as foreground mode")
parser.add_argument(
'--dry-run',
action='store_true',
help="Only print matrix, do not run, and exit")
return parser | 9458603e0ce6717858c2d844db85b159bff8714e | 702,851 |
from typing import Any
from pathlib import Path
def get_object_filepath(object: Any) -> str:
"""
Get object's filepath.
"""
path = Path(object.__code__.co_filename).absolute()
try:
filepath = "./" + path.relative_to(Path.cwd()).as_posix()
except ValueError:
filepath = path.as_posix()
return filepath | de30939b8699e812e712b4e5eea32cf6fe80eb4d | 702,853 |
def _depgrep_rel_disjunction_action(_s, _l, tokens):
"""
Builds a lambda function representing a predicate on a tree node
from the disjunction of several other such lambda functions.
"""
# filter out the pipe
tokens = [x for x in tokens if x != "|"]
# print 'relation disjunction tokens: ', tokens
if len(tokens) == 1:
return tokens[0]
elif len(tokens) == 2:
return (lambda a, b: lambda n, m=None, el=None: a(n, m, el) or b(n, m, el))(
tokens[0], tokens[1]
) | 1daad27c573ff7e36083d422aacd9d232ecef32c | 702,854 |
def merge(batch, results):
"""
Merge clumped results files together
"""
merger = batch.new_job(name='merge-results')
merger.image('ubuntu:18.04')
if results:
merger.command(f'''
head -n 1 {results[0]} > {merger.ofile}
for result in {" ".join(results)}
do
tail -n +2 "$result" >> {merger.ofile}
done
sed -i '/^$/d' {merger.ofile}
''')
return merger | 92037b34ff8db44381789f15518b5f44949b26a2 | 702,856 |
import torch
from typing import OrderedDict
def torch_load_state_dict_without_module(ckp_file):
"""
this function using for load a model without module
"""
checkpoint = torch.load(ckp_file)
state_dict =checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'module.' in k:
k = k[7:] # remove 'module.' of dataparallel
new_state_dict[k]=v
return new_state_dict | 72f265b2087bd40d328d8760cc9668c9e6ccacf6 | 702,857 |
def code_list_lengthener(code_list, parameter):
"""Ensures that code_list is long enough to accept an item in its parameter-th location"""
while len(code_list) < parameter+1:
code_list.append(0)
return code_list | fd9a2d498ca1c679f44b0937a902bd95a7a882c8 | 702,858 |
import unicodedata
import re
def unaccented_letters(s: str) -> str:
"""Return the letters of `s` with accents removed."""
s = unicodedata.normalize('NFKD', s)
s = re.sub(r'[^\w -]', '', s)
return s | e75b8929f8bd800ad4c79ae5688dea1067c351c5 | 702,859 |
import os
import re
from collections import defaultdict
def load_ud_english(fpath):
"""Load a file from the UD English corpus
Parameters
----------
fpath : str
Path to UD corpus file ending in .conllu
Output: Returns a list equal to length of total num of docs
with each item contaiing the first index of sentence
in that doc
"""
n = 1
fname = os.path.split(fpath)[1]
parses = defaultdict(list)
sent_ids = []
newdoc_ids = []
for l in open(fpath):
ident = fname+' '+str(n)
if re.match(r'\# newdoc id', l):
newdoc_ids.append(n)
#newdoc_ids.append(l.split("=")[-1].strip())
if re.match(r'^\d', l):
l_split = l.strip().split()
parses[ident].append(l_split)
elif parses[ident]:
sent_ids.append(ident)
n += 1
return newdoc_ids, len(sent_ids) | b2e6d83a3e1a5cbb806c30915287cd2717510019 | 702,860 |
def parse_mapping_file(fp):
"""
"""
ensp_to_hgnc = {}
with open(fp, "r") as fh:
for line in fh:
line = line.rstrip()
words = line.split()
if(len(words) >= 4):
ensp_to_hgnc[words[3]] = words[0]
return ensp_to_hgnc | e3c47d9a73cf19eddd9efc8b4fb7840f5bda156b | 702,861 |
def sort_group(indx, column1, column2):
"""
Parameters
----------
indx : integer
column1 : list data type (contains strings of SOC NAMES / WORK STATES which need to be ordered.)
column2 : list data type (contains integers which denote numbers of of certified applications.)
Returns
-------
sort_group : list
Returns a list where the entry at index 'indx' of column1 has been put in its proper
place as per alphabetical ordering.
Examples
--------
>>> t1 = ['aaa', 'a', 'az', 'ay', 'ab', 'aa', 'ac', 'd', 'b', 'c']
>>> t2 = [7,6,5,5,5,5,5,4,3,3]
>>> Bu = sort_group(2, t1, t2)
>>> Bu
['aaa', 'a', 'aa', 'az', 'ay', 'ab', 'ac', 'd', 'b', 'c']
The returned result is always a list of the same length as column1.
"""
j = indx+1
check = True
while ( (check) and (j<len(column2)) ):
if ( column2[indx] == column2[j] ):
if ( column1[indx] > column1[j] ):
dum = column1[indx]
column1[indx] = column1[j]
column1[j] = dum
if ( column2[indx] > column2[j] ):
check = False
j += 1
return column1 | 6bc153d78be6c40a1c3b7324784f45fb9f01fbd4 | 702,862 |
import argparse
def make_argument_parser() -> argparse.ArgumentParser:
"""Generic experiment parser.
Generic parser takes the experiment yaml as the main argument, but has some
options for reloading, etc. This parser can be easily extended using a
wrapper method.
Returns:
argparse.parser
"""
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=50, width=100))
parser.add_argument("-o", "--out_path", default=None, help=("Output path directory. All model results will go" " here. If a new directory, a new one will be " "created, as long as parent exists."))
parser.add_argument("-n", "--name", default=None, help=("Name of the experiment. If given, base name of " "output directory will be `--name`. If not given," " name will be the base name of the `--out_path`"))
parser.add_argument("-r", "--reload", type=str, default=None, help=("Path to model to reload."))
parser.add_argument("-a", "--autoreload", default=False, action="store_true")
parser.add_argument("-R", "--networks_to_reload", type=str, nargs="+", default=None)
parser.add_argument("-L", "--load_networks", type=str, default=None, help=("Path to model to reload. Does not load args," " info, etc"))
parser.add_argument("-m", "--meta", type=str, default=None)
parser.add_argument("-c", "--config_file", default=None, help=("Configuration yaml file. " "See `exps/` for examples"))
parser.add_argument("-k", "--clean", action="store_true", default=False, help=("Cleans the output directory. " "This cannot be undone!"))
parser.add_argument("-v", "--verbosity", type=int, default=1, help="Verbosity of the logging. (0, 1, 2)")
parser.add_argument("-d", "--device", type=int, default=0)
return parser | 2b532e06bf86e827fc52838b33fe350aaa0aaeeb | 702,863 |
def iter_items(rows):
""" """
member_load = {}
for row in rows:
try:
member_load[row[0]].extend(list(row[2:]))
except KeyError:
member_load[row[0]] = list(row[2:])
return member_load | 16ee5bca38a66dd9c2ba8b3428f169d2c624af85 | 702,864 |
def waber(lumin, lambdaValue):
"""
Weber's law nspired by Physhilogy experiment.
"""
# lambdaValue normally select 0.6
w = lumin**lambdaValue
#w = (255*np.clip(w,0,1)).astype('uint8')
return(w) | d9c495dd656161a67120f1e15e447021617180ab | 702,865 |
import os
def valid_engine_path(path):
"""
Check if the engine path is valid
"""
path = os.path.normcase(path)
# Check that path is actually there
if not os.path.exists(path):
return False
# Check that is has an engine folder
if not os.path.exists(os.path.join(path,'engine')):
return False
# Check some specific engine folders
if not os.path.exists(os.path.join(path,'engine','Binaries')):
return False
if not os.path.exists(os.path.join(path,'engine','Build')):
return False
if not os.path.exists(os.path.join(path,'engine','Config')):
return False
if not os.path.exists(os.path.join(path,'engine','Content')):
return False
return True | 3a722675f244f2a88fdf33d7223e5dceccfeea54 | 702,866 |
def children(nodes):
"""
Search and list all the nodes childs.
:param nodes: a list with tree nodes
:return: a list with nodes childs
"""
child = []
for node in nodes:
if node.left:
child.append(node.left)
if node.right:
child.append(node.right)
return child | 19e60bbdceb60f85ffa9806e5ff61fd00030b368 | 702,867 |
def tensor_prod(a, b):
""" Returns the tensor product using lists
"""
product = []
# loop through first tensor/vector
for a_ in a:
row = []
# multiply with each element of second tensor and add to row list
for b_ in b:
row.append(a_ * b_)
# add row list to final product
product.append(row)
return product | c13ec6e0d3292d1124c567420d2b50b8d3a5501a | 702,868 |
def _convert_version(value):
"""Extract 3 version numbers from 2 bytes"""
# subversion bits 0.3, versin bits 4-7, type bits 8-15
type_ = value // 256
value = value % 256
version = value // 16
subversion = value % 16
return '{}.{}.{}'.format(type_, version, subversion) | 2850b4729da445f2ee7007c469aaa91c2370e4dd | 702,869 |
import argparse
def parse_args():
"""
Parse command-line arguments.
"""
parser = argparse.ArgumentParser('Extract user sessions from log.')
parser.add_argument('input', help='an input file')
parser.add_argument('output', help='an output file')
parser.add_argument('-p', '--protocol', default='6', type=str,
help='extract sessions with a specified protocol')
parser.add_argument('-t', '--maxtime', default=0.01, type=float,
help='largest time within a session allowed')
parser.add_argument('-d', '--duration', default=0.01, type=float,
help='maximum session duration allowed')
parser.add_argument('-n', '--ipnum', default=0, type=int,
help='number of destination IPs for which sessions will be extracted')
return parser.parse_args() | b07bc1fc60a73ac4f2089d12ae8ad34e106c1360 | 702,871 |
import glob
def get_lists_in_dir(dir_path):
"""
Function to obtain a list of .jpg files in a directory.
Parameters:
- dir_path: directory for the training images (from camera output)
"""
image_list = []
for filename in glob.glob(dir_path + '/*.jpg'):
image_list.append(filename)
return image_list | c59701c5c8327569a5efe68c2751b0568de0498e | 702,872 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.