content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def find_root_visual(conn): """Find the xcffib.xproto.VISUALTYPE corresponding to the root visual""" default_screen = conn.setup.roots[conn.pref_screen] for i in default_screen.allowed_depths: for v in i.visuals: if v.visual_id == default_screen.root_visual: return v
930bb700bdcb141aba9fc4370d244b588357f8f1
703,099
import re def creole_slugify(value): """Convert the given string to a slug consistent with heading IDs used by our creole parser. >>> creole_slugify("Only 20%!") "only-20" """ if not value: return value # Only keep alphanumeric and space characters. value = re.sub(r"[^a-zA-Z0-9 ]+", "", value) # replace whitespace with underscores value = re.sub('[-\s]+', '-', value) return value.lower()
fe621981715372c4a9c03179d862b745551d87f2
703,100
def previous_line(view, sr): """sr should be a Region covering the entire hard line""" if sr.begin() == 0: return None else: return view.full_line(sr.begin() - 1)
b6c668044d57983d2b66a7ae567b59126031cf9f
703,101
def predecessor_to_forwarding(predecessor, source): """ Compute a forwarding table from a predecessor list. """ # Create variable to return (forwarding-table dictionary) FT = {} # Loop over all nodes that AREN'T the source for (key, value) in predecessor.items(): if (key != source): # Add all node pairs, where the immediate predecessor is the source if (value[0] == source): FT[key] = (value[0], key) # If immediate predecessor is not source, follow predecessors # until source is found, and isolate that link, to add to the dict else: newKey = key newValue = value[0] while (newValue != source): newKey = newValue newValue = predecessor[newKey][0] FT[key] = (newValue, newKey) return FT
af0d241fc2b8447581ea582d756a4a3735220815
703,102
def async_wraps(cls, wrapped_cls, attr_name): """Similar to wraps, but for async wrappers of non-async functions.""" def decorator(func): func.__name__ = attr_name func.__qualname__ = ".".join((cls.__qualname__, attr_name)) func.__doc__ = """Like :meth:`~{}.{}.{}`, but async. """.format( wrapped_cls.__module__, wrapped_cls.__qualname__, attr_name ) return func return decorator
c93fb2a52bfcb3edc9cbf0442138daa1ecf84dda
703,103
def _get_trigger(model, machine, trigger_name, *args, **kwargs): """Convenience function added to the model to trigger events by name. Args: model (object): Model with assigned event trigger. machine (Machine): The machine containing the evaluated events. trigger_name (str): Name of the trigger to be called. *args: Variable length argument list which is passed to the triggered event. **kwargs: Arbitrary keyword arguments which is passed to the triggered event. Returns: bool: True if a transitions has been conducted or the trigger event has been queued. """ try: return machine.events[trigger_name].trigger(model, *args, **kwargs) except KeyError: pass raise AttributeError("Do not know event named '%s'." % trigger_name)
1f16e62480f0caf661dc144d6dd92feae9426e96
703,104
import argparse def _get_parser(): """Return :class:`argparse.ArgumentParser`.""" parser = argparse.ArgumentParser( description=__doc__ ) parser.add_argument( '-f', '--force', dest='force', help='Force installation of packages.', action='store_true', ) parser.add_argument( '--settings', dest='settings', help=(""" The Python path to a settings module, e.g. "myproject.settings.main". If this isn't provided, the DJANGO_SETTINGS_MODULE environment variable will be used. """), ) return parser
d8de14332326e48f3b5afde60d133350e0ac2908
703,105
import os def os_cwd(): """Returns the pathlib object for the current working directory Examples: >>> os_cwd()\n '/home/cooluser/pyplay' """ return os.getcwd()
785477619ea629be3e7862889164471ae9e5de88
703,106
import pandas def from_timestamp_to_datetime(timestamp, unit='ms'): """ :param timestamp: timestamp in unix format. :param unit: measurement unit used in the timestamp. :return: the timestamp in date_time format. """ return pandas.to_datetime(timestamp, unit=unit)
48046c91956a9a7195203a84871241d84dd6cd10
703,107
from pathlib import Path import inspect def caller_module() -> Path: """Returns the name of the file containing the module from which this function was called. This ignores all modules located directly inside the parent directory of the current file (tsfile/*).""" this_file_parent = Path(__file__).parent for frame in inspect.stack(): if frame.filename.startswith('<'): continue path = Path(frame.filename) if path.parent == this_file_parent: continue return path raise RuntimeError("Failed to determine the caller module.")
a7c01b9b747ef838315f6c41fc01aa2c70ccb1da
703,108
def qgrams_to_char(s: list) -> str: """Converts a list of q-grams to a string. Parameters ---------- s : list List of q-grams. Returns ------- A string from q-grams. """ if len(s) == 1: return s[0] return "".join([s[0]] + [s[i][-1] for i in range(1, len(s))])
cc7dc5eb4d5c9e3e5f751cf7c2190e68c3ba11bd
703,109
def traverse(coord, np_mask, coord_str): """Edge case: if pixel value in mask is 0 at coord, then bounding box has captured the extreme points in this corner of the image """ x, y = coord if np_mask[y, x] == 0.0: return (x, y) height, width = np_mask.shape store_x, store_y = 0, 0 # Get extreme y coord. Traverse up or down until 0 is found if coord_str == "coord1" or coord_str == "coord2": for new_y in range(y, -1, -1): if np_mask[new_y, x] == 0.0: store_y = new_y break else: for new_y in range(y, height): if np_mask[new_y, x] == 0.0: store_y = new_y break # Get extreme x coord. Traverse left or right until 0 is found if coord_str == "coord1" or coord_str == "coord3": for new_x in range(x, -1, -1): if np_mask[y, new_x] == 0.0: store_x = new_x break else: for new_x in range(x, width): if np_mask[y, new_x] == 0.0: store_x = new_x break return (store_x, store_y)
e46889c358deeb2cd26fdba0a6e2eff03034d016
703,110
def iterate_module_func(m, module, func, converged): """Call function func() in specified module (if available) and use the result to adjust model convergence status. If func doesn't exist or returns None, convergence status will not be changed.""" module_converged = None iter_func = getattr(module, func, None) if iter_func is not None: module_converged = iter_func(m) if module_converged is None: # module is not taking a stand on whether the model has converged return converged else: return converged and module_converged
f7221e003dcc627f6e19a9b4961e62d7d98b87e3
703,113
import re def arguments_from_docstring(doc): """Parse first line of docstring for argument name. Docstring should be of the form ``min(iterable[, key=func])``. It can also parse cython docstring of the form ``Minuit.migrad(self[, int ncall_me =10000, resume=True, int nsplit=1])`` """ if doc is None: raise RuntimeError('__doc__ is None') doc = doc.lstrip() # care only the firstline # docstring can be long line = doc.split('\n', 1)[0] # get the firstline if line.startswith("('...',)"): line = doc.split('\n', 2)[1] # get the second line p = re.compile(r'^[\w|\s.]+\(([^)]*)\).*') # 'min(iterable[, key=func])\n' -> 'iterable[, key=func]' sig = p.search(line) if sig is None: return [] # iterable[, key=func]' -> ['iterable[' ,' key=func]'] sig = sig.groups()[0].split(',') ret = [] for s in sig: # get the last one after all space after = # ex: int x= True tmp = s.split('=')[0].split()[-1] # clean up non _+alphanum character tmp = ''.join([x for x in tmp if x.isalnum() or x == '_']) ret.append(tmp) # re.compile(r'[\s|\[]*(\w+)(?:\s*=\s*.*)') # ret += self.docstring_kwd_re.findall(s) ret = list(filter(lambda x: x != '', ret)) if len(ret) == 0: raise RuntimeError('Your doc is unparsable\n' + doc) return ret
4b08f36678247df6119e594ff9859f697f2e8d23
703,114
def _check_mod_11_2(numeric_string: str) -> bool: """ Validate numeric_string for its MOD-11-2 checksum. Any "-" in the numeric_string are ignored. The last digit of numeric_string is assumed to be the checksum, 0-9 or X. See ISO/IEC 7064:2003 and https://support.orcid.org/knowledgebase/articles/116780-structure-of-the-orcid-identifier """ # Strip - nums = numeric_string.replace("-", "") total = 0 # skip last (check)digit for num in nums[:-1]: digit = int(num) total = (total + digit) * 2 remainder = total % 11 result = (12 - remainder) % 11 if result == 10: checkdigit = "X" else: checkdigit = str(result) # Compare against last digit or X return nums[-1].upper() == checkdigit
685a9e8085000248290c9e482a115c99942c51d1
703,115
import json def get_stored_username(): """get stored username if available""" file_name = 'chapter_10/remember.json' try: with open(file_name) as f_o: usern = json.load(f_o) except FileNotFoundError: return None else: return usern
6abe0542a882fe01f63c5392d112514595a167d7
703,116
def drawbox(img,bbox): """ skeleton function which draws bbox on an img :param img: :param bbox: :return: """ return img
c1f56b17d3f78333f7c6e9cd5dcda0b0d792040c
703,117
import os def getFileName(prompt): """Prompts the user for a valid file which it returns. """ while True: fileName = input(prompt+" ") if os.path.exists(fileName): return fileName else: print("File not found! Make sure that the file is inside this directory.")
f1814ce49e79923a8c6e935d78b7362a2fba2f15
703,118
def gen_cookie(username, hash_password): """ Build secure cookie content as a string containing: - content length (excluding length itself) - role_name - 16 first chars of the hash password Part of hash password is there for 2 main reasons: 1/ If the cookie secret key is stolen, the attacker will be able to build a valid secure cookie, so in this situation having a non-predictibable variable - part of hash password - wich can be checked on server side will render the attack effective less, unless if the attacker knows role's password. 2/ We don't want to see the full hash password stored in a cookie. """ content = "%s:%s" % (username, hash_password[:15]) return "%s:%s" % (len(content) + 1, content)
44b0ec056bd7002aea7b63fb57901dc1180cb45c
703,119
def str_to_state(str_state): """ Reads a sequence of 9 digits and returns the corresponding state. """ assert len(str_state) == 9 and sorted(str_state) == list('012345678') return tuple(int(c) for c in str_state)
8e9e8c2b70f86aa4798f9be14d39c43404336e7a
703,120
import argparse def parse_args(): """parsing and configuration""" parser = argparse.ArgumentParser(description="Generate ImageNet10 using BigGAN") # for training generative model parser.add_argument('--gan_type', type=str, default='BigGAN', help='The type of GAN') parser.add_argument('--dataset', type=str, default='ImageNet', help='The name of dataset') parser.add_argument('--mode', type=str, default='evaluate', choices=['evaluate', 'reconstruct']) parser.add_argument('--save_dir', type=str, default='./generative/models/ImageNet/BigGAN', help='Directory name to save the model') # for calculating local lipschitz constant (would more efficient if replace partition by parallel computing) parser.add_argument('--radius', type=float, default=0.5, help='latent space ball radius') parser.add_argument('--n_samples', type=int, default=500, help='number of natural samples') parser.add_argument('--n_neighbors', type=int, default=100, help='number of neighboring points') parser.add_argument('--n_parts', type=int, default=10, help='number of partitions for neighbors') # for reconstructing dataset parser.add_argument('--seed', type=int, default=141, help='manual seed number') parser.add_argument('--train_parts', type=int, default=500, help='number of partitions for training set') parser.add_argument('--test_parts', type=int, default=100, help='number of partitions for test set') parser.add_argument('--train_size', type=int, default=100, help='number of training samples') parser.add_argument('--test_size', type=int, default=100, help='number of testing samples') return parser.parse_args()
c1255653398aa6b1f964cf8ebbb8a1583bae6431
703,121
def get_collection_table_name(node, intermine_model): """ Get the table name for this collection :param node: :param intermine_model: :return: (table-name, reference-column-name). table-name will be null if there isn't a collection table for this node """ if 'reverse-reference' in node: referenced_path = '%s.%s' % (node['referenced-type'], node['reverse-reference']) referenced_node = intermine_model.get(referenced_path) # If the referenced node is an attribute then there will be no table if referenced_node is not None and referenced_node['flavour'] != 'collection': return None, None part1 = node['name'].lower() if 'reverse-reference' in node: reverse_reference_name = node['reverse-reference'].lower() else: # reverse_reference_name = node['referenced-type'].lower() reverse_reference_name = node['class'].lower() part2 = reverse_reference_name # The first name in the alphabet is the first part of the table name if part1 > part2: part1, part2 = part2, part1 return part1 + part2, reverse_reference_name
06aff0058450263131ad27afbe136dd63eaf4320
703,122
def _readdir(DIR): """Implementation of perl readdir in scalar context""" try: result = (DIR[0])[DIR[1]] DIR[1] += 1 return result except IndexError: return None
0ebb237de9ea32fd11f7c6fc6e8a365420c65655
703,123
def compute_normalization(data): """ Write a function to take in a dataset and compute the means, and stds. Return 6 elements: mean of s_t, std of s_t, mean of (s_t+1 - s_t), std of (s_t+1 - s_t), mean of actions, std of actions """ l = [] for a in [data['observations'], (data['next_observations'] - data['observations']), data['actions']]: l.append(a.mean(axis=0)) l.append(a.std(axis=0)) return l
521995f2611f66dc11bbe5cc3d3d40e04c97ff19
703,124
def dictize(aniter, mode, initial=None): """iter must contain (key,value) pairs. mode is a string, one of: replace, keep, tally, sum, append, or a custom function that takes two arguments. replace: default dict behavior. New value overwrites old if key exists. This is essentially a pass-thru. keep: Noop if kv already exists in dict. tally: Ignore value, count how many times each key occurs. sum: Each key contains a sum of the (presumably summable) values that arrive with that key. append: each key contains a list of the items that arrived with that key. add: each key contains a set of the items that arrived with that key. Custom func: The first argument is the existing key value. This function won't be called if the key doesn't exist. The second is the newly arrived value. The return value will replace the existing value in the internal dict initial optional argument: function that gets called the first time a key occurs. It's parameter is the value. It's return is placed in the dict. Use to specify a default value.""" data = {} modes = "replace keep tally sum append add".split(' ') funcs = [lambda e, n: n, lambda e, n: e, lambda e, n=None: e+1, lambda e, n: e+n, lambda e, n: e+[n], lambda e, n: e.union([n])] inits = [lambda v: v, lambda v: v, lambda v: 1, lambda v: v, lambda v: [v], lambda v: set([v])] if mode in modes: modei = modes.index(mode) func = funcs[modei] if not initial: initial = inits[modei] else: assert hasattr(mode, '__call__'), '2nd argument must be a function or\ one of: %s' % ' '.join(modes) func = mode if not initial: initial = lambda x: x for (k, v) in aniter: if k in data: data[k] = func(data[k], v) else: data[k] = initial(v) return data
c56a2ad83ec9a45e87caa7def33c6b51f63655cb
703,125
def find_replace_line_endings(fp_readlines): """ special find and replace function to clean up line endings in the file from end or starttag characters """ clean = [] for line in fp_readlines: if line.endswith("=<\n"): line = line.replace("<\n", "lt\n") clean.append(line) return "".join(clean)
1fa3703b6d244d6b51c17c95a8cd71e48d5ebc9d
703,126
def read_txt_file(file_path, n_num=-1, code_type='utf-8'): """ read .txt files, get all text or the previous n_num lines :param file_path: string, the path of this file :param n_num: int, denote the row number decided by \n, but -1 means all text :param code_type: string, the code of this file :return: string, text """ with open(file_path, 'r', encoding=code_type) as f: if n_num <= 0: text = f.read().strip() else: # n_num > 0 text = '\n'.join([f.readline() for _ in range(n_num)]) return text
9c55d370d8e8610965e0f8c4b1bed85e6adcdc5b
703,128
import math def pow(x, y): """Return the logarithm of x with base y (default to e)""" if x <= 0 and not isinstance(y, int): raise ValueError(f"Exponent must be an integer if negative base. Received base {x} with exponent {y}.") return math.pow(x, y)
6ceb9957be3805c44db7c6b00e170db7ce27354f
703,129
def sum_while_same(xs, x): """Sum points for same date representation""" if not xs: return [x] if xs[-1][0] == x[0]: return xs[:-1] + [(xs[-1][0], xs[-1][1] + x[1])] else: return xs + [x]
646fc1873b582b3d9825cc69816e97de6f91bf3b
703,130
import torch def l1_loss(pred_traj, pred_traj_gt): """ Input: :param pred_traj: Tensor of shape (batch, seq_len)/(batch, seq_len). Predicted trajectory along one dimension. :param pred_traj_gt: Tensor of shape (batch, seq_len)/(batch, seq_len). Groud truth predictions along one dimension. :return: l1 loss |pred_traj - pred_traj_gt| """ return torch.sum(torch.abs(pred_traj - pred_traj_gt), dim=-1, keepdim=True)
3fb4dd2b7fc85e8f32610065078aa3dc98d728d5
703,131
import time def splitting_division_semi(f, group, table, sample_indices, splitting_fold): """Saving indices of each splitting group to a list that will be fed later to the deep learning model. Specific for the semi_resampling strategy, since there only training and validation need to be splitted.""" t0 = time.time() indices_train = [i for i in sample_indices if f[group][table][i][splitting_fold] == 0.0] indices_val = [i for i in sample_indices if f[group][table][i][splitting_fold] == 1.0] print(time.time() - t0) return indices_train, indices_val
5179caf3ec3205fc56f0e1c6b77687cd15842556
703,132
def get_short_description(dict, value): """Get layout class based on value.""" return dict.get(value, {}).get('short_description')
f5885f10ce009db925d552f8a0b0f40ab1ccaa2a
703,133
def _is_subexpansion_optional(query_metadata, parent_location, child_location): """Return True if child_location is the root of an optional subexpansion.""" child_optional_depth = query_metadata.get_location_info(child_location).optional_scopes_depth parent_optional_depth = query_metadata.get_location_info(parent_location).optional_scopes_depth return child_optional_depth > parent_optional_depth
29391226258e75d434e07c291fe9590c1810d85b
703,134
def _filter_labels(text, labels, allowed_labels): """Keep examples with approved labels. :param text: list of text inputs. :param labels: list of corresponding labels. :param allowed_labels: list of approved label values. :return: (final_text, final_labels). Filtered version of text and labels """ final_text, final_labels = [], [] for text, label in zip(text, labels): if label in allowed_labels: final_text.append(text) final_labels.append(label) return final_text, final_labels
e17ed7659acbdadc71a6b3f5b522af1e34d40370
703,135
import math def Q(fastev,lagev,fastrc,lagrc): """Following Wuestefeld et al. 2010""" omega = math.fabs((fastev - fastrc + 3645)%90 - 45) / 45 delta = lagrc / lagev dnull = math.sqrt(delta**2 + (omega-1)**2) * math.sqrt(2) dgood = math.sqrt((delta-1)**2 + omega**2) * math.sqrt(2) if dnull < dgood: return -(1 - dnull) else: return (1 - dgood)
fe975fb234297a6f25100bb85aa6639590a010d8
703,136
def array_check(lst): """ Function to check whether 1,2,3 exists in given array """ for i in range(len(lst)-2): if lst[i] == 1 and lst[i+1] == 2 and lst[i+2] == 3: return True return False
ef60b52a9d7300fa458b503f49996aec0f0831ad
703,139
from typing import List from typing import Any def list_difference(list_1: List[Any], list_2: List[Any]) -> List[Any]: """ This Function that takes two lists as parameters and returns a new list with the values that are in l1, but NOT in l2""" differ_list = [values for values in list_1 if values not in list_2] return differ_list
3831d799bb40080b828ee90e2929f77ff8aeb7ba
703,140
def format_feedback(feedback_row, study): """Updates the feedback dict with the new information.""" formatted_feedback_row = { "success": { study.get_single_field(field["field_id"]).field_name: field["field_value"] for field in feedback_row["success"] }, "failed": { study.get_single_field(field["field_id"]).field_name: [ field["code"], field["message"], ] for field in feedback_row["failed"] }, } return formatted_feedback_row
3d6d52d6a5340b13e81ca19ee28bff28b189cbc1
703,142
def correlation(self, column_a, column_b): """ Calculate correlation for two columns of current frame. Parameters ---------- :param column_a: (str) The name of the column from which to compute the correlation. :param column_b: (str) The name of the column from which to compute the correlation. :return: (float) Pearson correlation coefficient of the two columns. Notes ----- This method applies only to columns containing numerical data. Examples -------- Consider Frame *my_frame*, which contains the data <hide> >>> s = [("idnum", int), ("x1", float), ("x2", float), ("x3", float), ("x4", float)] >>> rows = [ [0, 1.0, 4.0, 0.0, -1.0], [1, 2.0, 3.0, 0.0, -1.0], [2, 3.0, 2.0, 1.0, -1.0], [3, 4.0, 1.0, 2.0, -1.0], [4, 5.0, 0.0, 2.0, -1.0]] >>> my_frame = tc.frame.create(rows, s) -etc- </hide> >>> my_frame.inspect() [#] idnum x1 x2 x3 x4 =============================== [0] 0 1.0 4.0 0.0 -1.0 [1] 1 2.0 3.0 0.0 -1.0 [2] 2 3.0 2.0 1.0 -1.0 [3] 3 4.0 1.0 2.0 -1.0 [4] 4 5.0 0.0 2.0 -1.0 my_frame.correlation computes the common correlation coefficient (Pearson's) on the pair of columns provided. In this example, the *idnum* and most of the columns have trivial correlations: -1, 0, or +1. Column *x3* provides a contrasting coefficient of 3 / sqrt(3) = 0.948683298051 . >>> my_frame.correlation("x1", "x2") -0.9999999999999998 >>> my_frame.correlation("x1", "x4") nan >>> my_frame.correlation("x2", "x3") -0.9486832980505138 """ return self._scala.correlation(column_a, column_b)
b8f1600e0b2968ca4013418b2fbfda0b13f5911a
703,143
import numpy as np def uv2spd_dir(u,v): """ converts u, v meteorological wind components to speed/direction where u is velocity from N and v is velocity from E (90 deg) usage spd, dir = uv2spd_dir(u, v) """ spd = np.zeros_like(u) dir = np.zeros_like(u) spd = np.sqrt(u**2 + v**2) dir = np.arctan2(v, u)*180.0/np.pi return (spd, dir)
21525616f97974ba7463fe137f07ef7e7a728fe1
703,145
from typing import List from typing import Dict def parse_idf(content: str) -> dict: """Parse an IDF file into a dictionary.""" sections = content.rstrip().split(';') sub_sections: List[List[str]] = [] obj_dict: Dict[str, List[List[str]]] = {} for sec in sections: sec_lines = sec.splitlines() _lines = [] for sl in sec_lines: content = sl.split('!')[0] if content != '': _lines.append(content) _lines = ' '.join(_lines).split(',') clean_lines = [i.strip() for i in _lines] sub_sections.append(clean_lines) for ssec in sub_sections: obj_dict[ssec[0].lower()] = [] for ssec in sub_sections: obj_dict[ssec[0].lower()].append(ssec[1:]) return obj_dict
9232964d590745482bb0552520b7ad42ebce8d94
703,146
import pkg_resources def get_version(): """Returns version""" return pkg_resources.get_distribution("rosetta-cipher").version
4a9e67434e8a1884e44dafaa30ffaf8c5ec5025d
703,148
def good_fft_number(goal): """pick a number >= goal that has only factors of 2,3,5. FFT will be much faster if I use such a number""" assert goal < 1e5 choices = [2**a * 3**b * 5**c for a in range(17) for b in range(11) for c in range(8)] return min(x for x in choices if x >= goal)
e469a37f28869dca520aea3520fa0d763e9bb8ae
703,149
def connect_to_ecs(env): """ Return boto connection to the ecs in the specified environment's region. """ rh = env.resource_handler.cast() wrapper = rh.get_api_wrapper() client = wrapper.get_boto3_client( 'ecs', rh.serviceaccount, rh.servicepasswd, env.aws_region ) return client
e4c0b7ad80c18fd6d2a90df6670ca9bfa6f1cbe3
703,150
def infotodict(seqinfo): """Heuristic evaluator for determining which runs belong where allowed template fields - follow python string module: item: index within category subject: participant id seqitem: run number during scanning subindex: sub index within group """ info = {'test':[]} return info
ea5c334452cbc3e5fd700c38f258578b26f9cf56
703,151
def rotated_array_search(input_list, number): """ Find the index by searching in a rotated sorted array """ high = len(input_list) - 1 low = 0 while low <= high: mid = (low + high) // 2 if input_list[mid] == number: return mid elif input_list[mid] < number <= input_list[high]: low = mid + 1 else: if input_list[low] <= number: high = mid - 1 else: low = mid + 1 return -1
c3deb50e608c58e5e11665d949a602cc661305ae
703,152
from typing import Optional def has_at_least_one_share_class(filing_json, filing_type) -> Optional[str]: # pylint: disable=too-many-branches """Ensure that share structure contain at least 1 class by the end of the alteration or IA Correction filing.""" if filing_type in filing_json['filing'] and 'shareStructure' in filing_json['filing'][filing_type]: share_classes = filing_json['filing'][filing_type] \ .get('shareStructure', {}).get('shareClasses', []) if len(share_classes) == 0: return 'A company must have a minimum of one share class.' return None
ce0e324edd1fb4e427aafdedcdecafc736fdb8d0
703,153
import builtins def no_matplotlib(monkeypatch): """ Mock an import error for matplotlib""" import_orig = builtins.__import__ def mocked_import(name, globals, locals, fromlist, level): """ """ if name == 'matplotlib.pyplot': raise ImportError("This is a mocked import error") return import_orig(name, globals, locals, fromlist, level) monkeypatch.setattr(builtins, '__import__', mocked_import)
681ba8c0e70387e46ad7ed42ffb11ce8aa7f23bc
703,154
import tqdm def create_tqdm_reader(reader, max_reads=None): """Wrap an iterable in a tqdm progress bar. Args: reader: The iterable to wrap. max_reads: Max number of items, if known in advance. Returns: The wrapped iterable. """ return tqdm.tqdm(reader, total=max_reads)
29bd93b85ace167f5586ac275510e82f7bbe8223
703,155
def calc_U_slip_quasisteady(eps, E, x, mu): """ Slip velocity (quasi-steady limit) """ u_slip_quasisteady = -eps*E**2*x/(2*mu) return u_slip_quasisteady
0b5eebc9333b36cbd4b8179731e5998f7cb2739a
703,156
import math def get_sequence_of_considered_visits(max_num_considered_actions, num_simulations): """Returns a sequence of visit counts considered by Sequential Halving. Sequential Halving is a "pure exploration" algorithm for bandits, introduced in "Almost Optimal Exploration in Multi-Armed Bandits": http://proceedings.mlr.press/v28/karnin13.pdf The visit counts allows to implement Sequential Halving by selecting the best action from the actions with the currently considered visit count. Args: max_num_considered_actions: The maximum number of considered actions. The `max_num_considered_actions` can be smaller than the number of actions. num_simulations: The total simulation budget. Returns: A tuple with visit counts. Length `num_simulations`. """ if max_num_considered_actions <= 1: return tuple(range(num_simulations)) log2max = int(math.ceil(math.log2(max_num_considered_actions))) sequence = [] visits = [0] * max_num_considered_actions num_considered = max_num_considered_actions while len(sequence) < num_simulations: num_extra_visits = max(1, int(num_simulations / (log2max * num_considered))) for _ in range(num_extra_visits): sequence.extend(visits[:num_considered]) for i in range(num_considered): visits[i] += 1 # Halving the number of considered actions. num_considered = max(2, num_considered // 2) return tuple(sequence[:num_simulations])
f0081ae5bfe25d6a3eaad9f032cfb88a403fbb45
703,157
def two_node_diff(a): """Calculate and return diffs over two nodes instead of one.""" N = len(a) return a[2:] - a[:(N-2)]
a38abe787ef87c37104373b402fc020f85f8e3aa
703,158
import datetime import os def make_savedir(parent_dir='./'): """ make directory to save results Params ---------- parent_dir : str parent directory to save results """ if parent_dir[-1] != '/': parent_dir += '/' orig_dirname = datetime.datetime.now().strftime('%y%m%d_%H%M') orig_dirname = parent_dir + orig_dirname dirname = orig_dirname count = 1 while os.path.exists(dirname): dirname = orig_dirname + str(count) count += 1 os.mkdir(dirname) return dirname
583e45b184e7cbeee39f2371ab649a8921c19f6f
703,159
def _get_timeout(payload_len): """Conservatively assume min 5 seconds or 3 seconds per 1MB.""" return max(3 * payload_len / 1024 / 1024, 5)
70ef10f9c4630afafa0019057bdaa005eb39e7ad
703,160
def _validate_int( setting, value, option_parser, config_parser=None, config_section=None ) -> int: """Validate an integer setting.""" return int(value)
9036b1b043bd2463cad4f26780d47e80aa404f73
703,161
def get_best_name(phenomena): """ Create a best_name field which takes the best name as defined by the preference order :param phenomena: phenomena attributes in form [{"name":"standard_name","value":"time"},{"name":"---","value":"---"},{}...] :return: best_name(string) """ preference_order = ["long_name","standard_name","title","name","short_name","var_id"] attributes = phenomena["attributes"] for name in preference_order: best_name = [d['value'] for d in attributes if d['name'] == name] if best_name: return best_name[0] return None
cd5f1153a22e161e96f48fdcc02f4c4dbbfdbc34
703,162
def get_global_evidence(a): """ PyMultiNest's Analyzer has a get_stats() method, but it's a bit too sluggish if all we want is to get the global evidence out. This is a hack around the issue. """ stats_file = open(a.stats_file) lines = stats_file.readlines() stats = {} a._read_error_into_dict(lines[1], stats) Z_str = 'Nested Importance Sampling Global Log-Evidence' Z = stats[Z_str.lower()] Zerr = stats[(Z_str + ' error').lower()] stats['global evidence'] = Z stats['global evidence error'] = Zerr return stats
8677908c4537927f168cd16ab1ddbfaf959f4546
703,163
def buildRecorderDicts(energyInterval, powerInterval, voltageInterval, energyPowerMeter, triplexGroup, recordMode, query_buffer_limit): """Helper function to construct dictionaries to be used by individuals to add recorders to their own models. Note that the returned dictionary will more or less be directly passed to a genetic.individual object, and subsequently passed to the appropriate method in glm.modGLM. We could add custom table definitions in the future, but why? """ recorders = { 'energy': {'objType': 'recorder', 'properties': {'parent': energyPowerMeter, 'table': 'energy', 'interval': energyInterval, 'propList': ['measured_real_energy', ], 'limit': -1, 'mode': recordMode, 'query_buffer_limit': query_buffer_limit } }, 'power': {'objType': 'recorder', 'properties': {'parent': energyPowerMeter, 'table': 'power', 'interval': powerInterval, 'propList': ['measured_real_power', 'measured_reactive_power'], 'limit': -1, 'mode': recordMode, 'query_buffer_limit': query_buffer_limit } }, 'triplexVoltage': {'objType': 'recorder', 'properties': {'group': triplexGroup, 'propList': [ 'measured_voltage_1.mag', 'measured_voltage_2.mag'], 'interval': voltageInterval, 'table': 'triplexVoltage', 'limit': -1, 'mode': recordMode, 'query_buffer_limit': query_buffer_limit } } } return recorders
def51273b940ef97d61228cfd54277a9ac053aea
703,164
def sub(arg1, arg2): """ Function that subtracts two arguments. """ return arg1 - arg2
fb3694bc0827f62befe67cb58c1edb9de1adb808
703,165
def query_for_data(driver): """Grab all relevant data on a jobs page. Return: ------ job_titles: list job_locations: list posting_companies: list dates: list hrefs: list """ job_titles = driver.find_elements_by_xpath( "//span[@itemprop='title']") job_locations = driver.find_elements_by_xpath( "//div[@itemprop='jobLocation']") posting_companies = driver.find_elements_by_xpath( "//span[@itemprop='name']") dates = driver.find_elements_by_xpath( "//time[@itemprop='datePosted']") hrefs = driver.find_elements_by_xpath("//div//article//div//h2//a") return job_titles, job_locations, posting_companies, dates, hrefs
d3a44ec2e66f9c8ba09dac45dc253c2dd67303c4
703,166
import typing def split_line(line: str) -> typing.Tuple[str, str]: """ Separates the raw line string into two strings: (1) the command and (2) the argument(s) string :param line: :return: """ index = line.find(' ') if index == -1: return line.lower(), '' return line[:index].lower(), line[index:].strip()
964877ebe0e63161f449a1d60542fbcab451de28
703,167
from typing import List def matrix_transpose(mat: List[List]) -> List[List]: """ >>> matrix_transpose([[1, 2], [3, 4], [5, 6]]) [[1, 3, 5], [2, 4, 6]] """ if len(mat) == 0: raise ValueError("Matrix is empty") return [[mat[j][i] for j in range(len(mat))] for i in range(len(mat[0]))]
34cf049779408f0b74a1e29cbd1f0a18a6d5dd23
703,168
def split_nvr_epoch(nvre: str): """Split nvre to N-V-R and E. This function is backported from `kobo.rpmlib.split_nvr_epoch`. @param nvre: E:N-V-R or N-V-R:E string @type nvre: str @return: (N-V-R, E) @rtype: (str, str) """ if ":" in nvre: if nvre.count(":") != 1: raise ValueError("Invalid NVRE: %s" % nvre) nvr, epoch = nvre.rsplit(":", 1) if "-" in epoch: if "-" not in nvr: # switch nvr with epoch nvr, epoch = epoch, nvr else: # it's probably N-E:V-R format, handle it after the split nvr, epoch = nvre, "" else: nvr, epoch = nvre, "" return (nvr, epoch)
6b65a5dd4655b8d0d961952be41ab6a939cc24c8
703,171
def findMergeNode(head1, head2): """ Go forward the lists every time till the end, and then jumps to the beginning of the opposite list, and so on. Advance each of the pointers by 1 every time, until they meet. The number of nodes traveled from head1 -> tail1 -> head2 -> intersection point and head2 -> tail2-> head1 -> intersection point will be equal. """ node1 = head1 node2 = head2 while node1 != node2: if node1.next: node1 = node1.next else: node1 = head2 if node2.next: node2 = node2.next else: node2 = head1 return node2.data
01c24a3eda17a8063c94c92cff6d558025c03726
703,172
import functools import os def cached(producer): """Calls to a function wrapped with this decorator are cached using ``self.cache.lookup``""" @functools.wraps(producer) def wrapper(self): return self.cache.lookup(data_path=os.path.join(self.category_name, producer.__name__), plot=self, producer=lambda: producer(self)) return wrapper
5d42bdba56d19cd9040becb8eb1acfe847752d98
703,173
from dateutil.parser import parse def is_datetime_string(string: str) -> bool: """ Check if the string is date-like. Parameters ---------- string : str Returns ------- is_date: bool """ try: parse(string) return True except ValueError: return False
ec26eab5d25c2b130efbf32304b2b79f8292a6e1
703,174
def is_valid_perioddata(data): """Check that a dictionary of period data has enough information (based on key names) to set up stress periods. Perlen must be explicitly input, or 3 of start_date_time, end_date_time, nper and/or freq must be specified. This is analogous to the input requirements for the pandas.date_range method for generating time discretization (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html) """ perlen = data.get('perlen') is not None steady = data.get('steady', False) if isinstance(steady, dict): steady = steady.get(0) if not steady: included = [k for k in ['nper', 'start_date_time', 'end_date_time', 'freq'] if data.get(k) is not None] has3 = len(included) >= 3 return perlen or has3 else: nper = data.get('nper') is not None return nper or perlen
d8c8f4646757177b7504181029cd39b5aa46d124
703,176
def get_instance_ips(): """ Function to get instance IPs of your servers. Sometimes you'd want to do this, if your IPs are allocated dynamically, e.g. an auto-scaling group within AWS. if you have only one system. you can simpley use localhost or its ip for that. Returns: None """ return [ # 'ip-172-31-22-63.ap-south-1.compute.internal', # master # 'ip-172-31-21-222.ap-south-1.compute.internal', # replica_01 "ec2-3-111-120-49.ap-south-1.compute.amazonaws.com", # master "ec2-13-232-208-97.ap-south-1.compute.amazonaws.com", # replica_01 ]
92b0cc79022d60b5cd11a050b14237fb397bda86
703,178
from typing import List from typing import Union def __parse_db(db_exp: str) -> List[Union[str, int]]: """ Parse a DB directive returning its contents as a list. :param db_exp: DB directive command. :return: Contents of the db as the directive. """ db_exp_ = db_exp.split(" ", 1)[1] db_params = [eval(param) for param in db_exp_] params: List[Union[str, int]] = [] for param_ in db_params: if isinstance(param_, str): params.extend(char for char in param_) else: params.append(param_) # TO-DO: Error regarding number overflows in DB. return params
26337261033d9f59238c727842b8c3cbe5be2d88
703,179
def _fspath(path): """Return the path representation of a path-like object. If str or bytes is passed in, it is returned unchanged. Otherwise the os.PathLike interface is used to get the path representation. If the path representation is not str or bytes, TypeError is raised. If the provided path is not str, bytes, or os.PathLike, TypeError is raised. """ if isinstance(path, (str, bytes)): return path # Work from the object's type to match method resolution of other magic # methods. path_type = type(path) try: path_repr = path_type.__fspath__(path) except AttributeError: if hasattr(path_type, '__fspath__'): raise else: raise TypeError("expected str, bytes or os.PathLike object, " "not " + path_type.__name__) if isinstance(path_repr, (str, bytes)): return path_repr else: raise TypeError("expected {}.__fspath__() to return str or bytes, " "not {}".format(path_type.__name__, type(path_repr).__name__))
dfffc592e8e03095c91653327d673e424480dfcf
703,180
def hcolor(data, thresholds): """ Multicolor a graph according to thresholds :param data: the data :type data: list of tuples (info, value) :param thresholds: dict of thresholds, format {<threshold>: <color>,} :type thresholds: dict :return: the colored graph :rtype: list of arrays """ ret = [] for info, value in data: newval = [] minover = None maxt = 0 for t in thresholds: if maxt < t: maxt = t if value > t: newval.append((t, thresholds[t])) else: if minover is None or minover > t: minover = t if minover is None: minover = maxt newval.append((value, thresholds[minover])) ret.append((info, newval)) return ret
00b18c204ea97a7f5d919122b08488c42a25e9da
703,181
def euler_problem_6(n=100): """ The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ # looks like brute force gives you O(n) or O(n logn), which is not bad... # but we can do better with mathematical insight. def sum_of_integer_squares(k): """ Use the formula 1^2 + 2^2 + ... + n^2 = (n * (n+1) * (2n+1)) / 6. """ return (k * (k + 1) * (2 * k + 1)) / 6 def square_of_integer_sums(k): """ Use the formula 1 + 2 + ... + n = n (n+1) / 2. """ return (k * (k + 1) / 2) ** 2 # O(logn) basic operations sqsum = square_of_integer_sums(n) sumsq = sum_of_integer_squares(n) return int(sqsum - sumsq)
550d29deea17b3047bc869a134837d4f5c1baf95
703,182
def _parse_http_429_5xx_retry_after(result=None, **ignored): """Return seconds to throttle""" assert result is not None, """ The signature defines it with a default value None, only because the its shape is already decided by the IndividualCache's.__call__(). In actual code path, the result parameter here won't be None. """ response = result lowercase_headers = {k.lower(): v for k, v in getattr( # Historically, MSAL's HttpResponse does not always have headers response, "headers", {}).items()} if not (response.status_code == 429 or response.status_code >= 500 or "retry-after" in lowercase_headers): return 0 # Quick exit default = 60 # Recommended at the end of # https://identitydivision.visualstudio.com/devex/_git/AuthLibrariesApiReview?version=GBdev&path=%2FService%20protection%2FIntial%20set%20of%20protection%20measures.md&_a=preview retry_after = int(lowercase_headers.get("retry-after", default)) try: # AAD's retry_after uses integer format only # https://stackoverflow.microsoft.com/questions/264931/264932 delay_seconds = int(retry_after) except ValueError: delay_seconds = default return min(3600, delay_seconds)
041a334af8b79e33f875251e189a4a60862f519a
703,183
def inject_local_assets(): """only ever run from forge-generate""" return [ {'when': {'platform_is': 'ios'}, 'do': {'inject_local_assets': ()}}, {'when': {'platform_is': 'android'}, 'do': {'inject_local_assets': ()}}, ]
71d8df6950f4cd3e51f31fb660297916f0fa1ecc
703,184
def freedom(L=5): """ DOES NOT DO ANYTHING """ return -1
e612245ec6023f3710da63baedf9997c92f4e279
703,185
def get_num_classes(dataset_name: str) -> int: """ Get the number of supervised loss given a dataset name. :param dataset_name: dataset name :return: number of supervised class. """ if dataset_name == "cifar10": return 10 elif "cifar100" in dataset_name: return 100 else: raise ValueError("Supported datasets are only original CIFAR10/100")
dc699aeaef87b1763c9986cda596b920156e2478
703,187
def get_bsse_section(natoms_a, natoms_b, mult_a=1, mult_b=1, charge_a=0, charge_b=0): """Get the &FORCE_EVAL/&BSSE section.""" bsse_section = { 'FORCE_EVAL': { 'BSSE' : { 'FRAGMENT': [{ 'LIST': '1..{}'.format(natoms_a) }, { 'LIST': '{}..{}'.format(natoms_a + 1, natoms_a + natoms_b) }], 'CONFIGURATION': [ { # A fragment with basis set A 'MULTIPLICITY': mult_a, 'CHARGE': charge_a, 'GLB_CONF': '1 0', 'SUB_CONF': '1 0', }, { # B fragment with basis set B 'MULTIPLICITY': mult_b, 'CHARGE': charge_b, 'GLB_CONF': '0 1', 'SUB_CONF': '0 1', }, { # A fragment with basis set A+B 'MULTIPLICITY': mult_a, 'CHARGE': charge_a, 'GLB_CONF': '1 1', 'SUB_CONF': '1 0', }, { # B fragment with basis set A+B 'MULTIPLICITY': mult_b, 'CHARGE': charge_b, 'GLB_CONF': '1 1', 'SUB_CONF': '0 1', }, { # A+B fragments with basis set A+B 'MULTIPLICITY': mult_a + mult_b - 1, 'CHARGE': charge_a + charge_b, 'GLB_CONF': '1 1', 'SUB_CONF': '1 1', } ] } } } return bsse_section
61c9398ed35eaaf2212c2c1a66e2cf43b9bbe029
703,189
import re def load_placement(placement_file): """ Loads VPR placement file. Returns a tuple with the grid size and a dict indexed by locations that contains top-level block names. """ RE_PLACEMENT = re.compile( r"^\s*(?P<net>\S+)\s+(?P<x>[0-9]+)\s+(?P<y>[0-9]+)\s+(?P<z>[0-9]+)" ) RE_GRID_SIZE = re.compile( r"Array size:\s+(?P<x>[0-9]+)\s+x\s+(?P<y>[0-9]+)\s+logic blocks" ) # Load the file with open(placement_file, "r") as fp: lines = fp.readlines() # Parse grid_size = None placement = {} for line in lines: line = line.strip() if line.startswith("#"): continue # Placement match = RE_PLACEMENT.match(line) if match is not None: loc = (int(match.group("x")), int(match.group("y"))) placement[loc] = match.group("net") # Grid size match = RE_GRID_SIZE.match(line) if match is not None: grid_size = (int(match.group("x")), int(match.group("y"))) return grid_size, placement
72b534b5c8597f4a42d02e041c69a8fc3c92e8f7
703,190
import os import glob def find_matching_geoloc_file(radiance_filename, myd03_dir): """ :param radiance_filename: the filename for the radiance .hdf, demarcated with "MYD02". :param myd03_dir: root directory of MYD03 geolocational files :return geoloc_filename: the path to the corresponding geolocational file, demarcated with "MYD03" The radiance (MYD02) geolocational (MYD03) files share the same capture date (saved in the filename itself), yet can have different processing dates (also seen within the filename). A regex search on a partial match in the same directory provides the second filename and path. """ tail = os.path.basename(radiance_filename) identifier = tail.split('A')[1].split('.')[1] geoloc_filename = glob.glob(os.path.join(myd03_dir, '*D03*.{}.*.hdf'.format(identifier)))[0] return geoloc_filename
622a0c8c8900d86d97355c8f44c90f583a858b3d
703,191
def license_path(licenses): """Get license path.""" # return license if there is exactly one license return licenses[0] if len(licenses) == 1 else None
b8194e099c4516627edab6c4538e5dfcdc6600a3
703,192
import glob import os def get_next_run(exp_dir): """ get run id by looking at current exp_dir """ next_run = 0 files = glob.glob(os.path.join(exp_dir, "*.log")) for file in files: filename = os.path.basename(file) run = filename.split('.')[0] id = int(run[3:]) if id >= next_run: next_run = id next_run += 1 return 'Run{:03d}'.format(next_run)
e00f19adbca5c64dddf2b9ccbe6447d4356fa7a4
703,193
from datetime import datetime def complete_month(year, month): """ Return a string with the month number padded with zero if the month has only one digit. It is also necessary to provide a year. :param year: :param month: :return: Month number padded with zero. :rtype: str """ return datetime(year, month, 1).strftime("%m")
03915be101c0f418caa78ae6bc423273ad3af24c
703,194
import glob import os def list_api(file_pattern): """ return list according to file_pattern """ file_list = [f for f in glob.glob(file_pattern)] targets = [] for file in file_list: targets.append(os.path.basename(file).split(".")[0]) return targets
6984eeeddfffd124bd0b962d7e7d2ab955c09fcc
703,195
import sys import os def get_lib_dir(): """ Anaconda specific """ dirname = 'DLLs' if sys.platform == 'win32' else 'lib' libdir = os.path.join(sys.prefix, dirname) return libdir
c13277f73b35d64e37854872e6869a4cf36a9dc7
703,196
def scrub_email(address): """ Remove the local-part from an email address for the sake of anonymity :param address: <str> :return: <str> """ if '@' in address: domain = address.split('@')[1] return 'user@{}'.format(domain) else: return address
90b54f3a06f3fe50b354138113c27e980c01c59c
703,197
def modify_res(res, cur): """ Преобразует список-результат запроса в свисок словарей""" result = list() for ll in res: temp_dict = dict() for k, v in zip(cur.description, ll): temp_dict[k[0]] = bytes(v) if type(v) is memoryview else v result.append(temp_dict) return result
20654a49ab0980fc5d6539f7079818f1a89bab9b
703,198
import argparse def params_args(args=None): """ Parse command line arguments :param args: command line arguments or None (default) :return: dictionary of parameters """ # parameters of model and files params = argparse.ArgumentParser(description='Run distribute model simnet bow.') params.add_argument("--name", type=str, default="simnet_bow", help="The name of current model") params.add_argument("--train_files_path", type=str, default="train_data", help="Data file(s) for training.") params.add_argument("--test_files_path", type=str, default="test_data", help="Data file(s) for validation or evaluation.") params.add_argument("--log_path", type=str, default="result") params.add_argument("--model_path", type=str, default="model") # parameters of training params.add_argument("-l", "--learning_rate", type=float, default=0.2, help="Initial learning rate for training.") params.add_argument("-b", "--batch_size", type=int, default=128, help="Mini batch size for training.") params.add_argument("-e", "--epochs", type=int, default=1, help="Number of epochs for training.") # customized parameters params.add_argument('--dict_dim', type=int, default=1451594) params.add_argument('--emb_dim', type=int, default=128) params.add_argument('--hid_dim', type=int, default=128) params.add_argument('--margin', type=float, default=0.1) params.add_argument('--sample_rate', type=float, default=0.02) # parameters of train method params.add_argument("--is_pyreader_train", type=bool, default=False) params.add_argument("--is_dataset_train", type=bool, default=False) # parameters of distribute params.add_argument("--is_local_cluster", type=bool, default=False) params.add_argument("--is_sparse", type=bool, default=False) params.add_argument('-r', "--role", type=str, required=False, choices=['TRAINER', 'PSERVER']) params.add_argument("--endpoints", type=str, default="", help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001') params.add_argument('--current_endpoint', type=str, default='', help='The path for model to store (default: 127.0.0.1:6000)') params.add_argument('-i', "--current_id", type=int, default=0, help="Specifies the number of the current role") params.add_argument("--trainers", type=int, default=1, help="Specify the number of nodes participating in the training") params.add_argument("--is_first_trainer", type=bool, default=False) params.add_argument("--pserver_ip", type=str, default="127.0.0.1") params.add_argument("--pserver_endpoints", type=list, default=[]) params.add_argument("--pserver_ports", type=str, default="36001") params.add_argument("--sync_mode", type=str,required=False,choices=['sync','half_async','async']) params.add_argument("--cpu_num", type=int, default=2) params = params.parse_args() return params
4d114f3249da104ce10d51b4bf8b84b70df98833
703,199
def symm_area(col, n): """ returns n + (n - 1) + ... + (n - col + 1) i.e., the number of matrix elements below and including the diagonal and from column 0 to column `col` """ return col * (2 * n - col + 1) // 2
e5c7970ee2b612f4678952056be0358c968e06b3
703,200
import os def finder(scenario, multiplier, conserve_total): """yield what we can find.""" res = [] for dirname, _dirpath, filenames in os.walk("/i/0/cli"): for fn in filenames: res.append( [f"{dirname}/{fn}", scenario, multiplier, conserve_total] ) return res
d6d712e435140b94baca30ef9318a625efee7cc0
703,201
def find_device(p, tags): """ Find an audio device to read input from """ device_index = None for i in range(p.get_device_count()): devinfo = p.get_device_info_by_index(i) print("Device %d: %s" % (i, devinfo["name"])) for keyword in tags: if keyword in devinfo["name"].lower(): print("Found an input: device %d - %s"%(i, devinfo["name"])) device_index = i return device_index if device_index is None: print("No preferred sound input found; using default input device.") return device_index
41428447dc39be8fa06ede59816a7aca9d5bffee
703,202
def normalize_lons(l1, l2): """ An international date line safe way of returning a range of longitudes. >>> normalize_lons(20, 30) # no IDL within the range [(20, 30)] >>> normalize_lons(-17, +17) # no IDL within the range [(-17, 17)] >>> normalize_lons(-178, +179) [(-180, -178), (179, 180)] >>> normalize_lons(178, -179) [(-180, -179), (178, 180)] >>> normalize_lons(179, -179) [(-180, -179), (179, 180)] >>> normalize_lons(177, -176) [(-180, -176), (177, 180)] """ if l1 > l2: # exchange lons l1, l2 = l2, l1 delta = l2 - l1 if l1 < 0 and l2 > 0 and delta > 180: return [(-180, l1), (l2, 180)] elif l1 > 0 and l2 > 180 and delta < 180: return [(l1, 180), (-180, l2 - 360)] elif l1 < -180 and l2 < 0 and delta < 180: return [(l1 + 360, 180), (l2, -180)] return [(l1, l2)]
c0d58aa7be8409d6337f0fa8b753f5ef30f531e5
703,203
def extract_list(p): """Check if there is a list after p""" for sibling in p.next_siblings: if sibling.name == 'ul': return [li.text for li in sibling.find_all('li')] if sibling.name == 'p': return None
b78a2fb9c5d6eee6a11bb0a9317cdc872f8ff92c
703,204
def find_true_link(s): """ Sometimes Google wraps our links inside sneaky tracking links, which often fail and slow us down so remove them. """ # Convert "/url?q=<real_url>" to "<real_url>". if s and s.startswith('/') and 'http' in s: s = s[s.find('http'):] return s
4d9824f0f67c5e463833f40e7db8365d5312fe46
703,205
from typing import Tuple def _unmerge_points( board_points: Tuple[int, ...] ) -> Tuple[Tuple[int, ...], Tuple[int, ...]]: """Return player and opponent board positions starting from their respective ace points.""" player: Tuple[int, ...] = tuple( map( lambda n: 0 if n < 0 else n, board_points, ) ) opponent: Tuple[int, ...] = tuple( map( lambda n: 0 if n > 0 else -n, board_points[::-1], ) ) return player, opponent
25965e023030266cc92e6b1456483204ad2c863a
703,206
import json def from_json_string(my_str): """Returns an object (Python data structure) represented by a JSON string: Arguments: my_str (obj) -- json str Returns: obj -- object """ return json.loads(my_str)
cb013514b62456d6c628cf4ebea475b54851dfa4
703,208
from typing import Any def to_str(object_: Any) -> str: """ >>> to_str(b"ass") 'ass' >>> to_str("ass") 'ass' >>> to_str(None) '' >>> to_str({"op": "oppa"}) "{'op': 'oppa'}" """ if object_ is None: return "" if isinstance(object_, bytes): return object_.decode("utf-8") return str(object_)
1e6606db7ad2f4dee219d84703cae49c2c6566fc
703,209
def get_bse(da, da_peak_times): """ Takes an xarray DataArray containing veg_index values and calculates the vegetation value base (bse) for each timeseries per-pixel. The base is calculated as the mean value of two minimum values; the min of the slope to the left of peak of season, and the min of the slope to the right of the peak of season. Users must provide an existing peak of season (pos) data array, which can either be the max of the timeseries, or the middle of season (mos) values. Parameters ---------- da: xarray DataArray A two-dimensional or multi-dimensional DataArray containing an array of veg_index values. da_peak_times: xarray DataArray An xarray DataArray type with an x and y dimension (no time). Each pixel must be the time (day of year) value calculated at either at peak of season (pos) or middle of season (mos) prior. Returns ------- da_bse_values : xarray DataArray An xarray DataArray type with an x and y dimension (no time). Each pixel is the base (bse) veg_index value detected at across the timeseries at each pixel. """ # notify user print('Beginning calculation of base (bse) values (times not possible).') # get vos values (min val in each pixel timeseries) print('> Calculating base (bse) values.') # split timeseries into left and right slopes via provided peak/middle values slope_l = da.where(da['time.dayofyear'] <= da_peak_times).min('time') slope_r = da.where(da['time.dayofyear'] >= da_peak_times).min('time') # get per pixel mean of both left and right slope min values da_bse_values = (slope_l + slope_r) / 2 # convert type da_bse_values = da_bse_values.astype('float32') # rename da_bse_values = da_bse_values.rename('bse_values') # notify user print('> Success!\n') return da_bse_values
3edaf6156bd9fdae15c3bf845eb3deb293489cfb
703,210
def approx_2rd_deriv(f_x0,f_x0_minus_1h,f_x0_minus_2h,h): """Backwards numerical approximation of the second derivative of a function. Args: f_x0: Function evaluation at current timestep. f_x0_minus_1h: Previous function evaluation. f_x0_minus_2h: Function evaluations two timesteps ago. h: Time inbetween function evaluations. Returns: The approximated value of the second derivative of f evaluated at x0 """ return (-1*f_x0+2*f_x0_minus_1h-1*f_x0_minus_2h)/(h**2)
b5c93902bf39d32bf84db38476f8fab4772f5fc9
703,211
def get_dict_key_by_value(val, dic): """ Return the first appeared key of a dictionary by given value. Args: val (Any): Value of the key. dic (dict): Dictionary to be checked. Returns: Any, key of the given value. """ for d_key, d_val in dic.items(): if d_val == val: return d_key return None
d01522a61d7a0549ed54bfcb620da10857d67ae7
703,212
import json def isJson(var=''): """ Check json >>> isJson(var='') False >>> isJson('') False >>> isJson('{}') True """ result = True try: json.loads(var) except Exception as e: result = False return result
dc146fff1449df844ce0ac00607d77b5e2dc4370
703,213