content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def convert_into_ascii(dec): """ Convert the given input into ASCII """ char = str(chr(dec)) return char
7f563deaf35f59199a4ff6467ecd8a61dd244b3a
29,677
def deepmap(func, seq): """ Apply function inside nested lists >>> inc = lambda x: x + 1 >>> deepmap(inc, [[1, 2], [3, 4]]) [[2, 3], [4, 5]] """ if isinstance(seq, list): return [deepmap(func, item) for item in seq] else: return func(seq)
43856a93e472f30b84bf842586003952649369c0
29,678
def get_endpoint(nautobot, term): """ get_endpoint(nautobot, term) nautobot: a predefined pynautobot.api() pointing to a valid instance of Nautobot term: the term passed to the lookup function upon which the api call will be identified """ endpoint_map = { "aggregates": {"endpoint": nautobot.ipam.aggregates}, "circuit-terminations": {"endpoint": nautobot.circuits.circuit_terminations}, "circuit-types": {"endpoint": nautobot.circuits.circuit_types}, "circuits": {"endpoint": nautobot.circuits.circuits}, "circuit-providers": {"endpoint": nautobot.circuits.providers}, "cables": {"endpoint": nautobot.dcim.cables}, "cluster-groups": {"endpoint": nautobot.virtualization.cluster_groups}, "cluster-types": {"endpoint": nautobot.virtualization.cluster_types}, "clusters": {"endpoint": nautobot.virtualization.clusters}, "config-contexts": {"endpoint": nautobot.extras.config_contexts}, "console-connections": {"endpoint": nautobot.dcim.console_connections}, "console-ports": {"endpoint": nautobot.dcim.console_ports}, "console-server-port-templates": { "endpoint": nautobot.dcim.console_server_port_templates }, "console-server-ports": {"endpoint": nautobot.dcim.console_server_ports}, "device-bay-templates": {"endpoint": nautobot.dcim.device_bay_templates}, "device-bays": {"endpoint": nautobot.dcim.device_bays}, "device-roles": {"endpoint": nautobot.dcim.device_roles}, "device-types": {"endpoint": nautobot.dcim.device_types}, "devices": {"endpoint": nautobot.dcim.devices}, "export-templates": {"endpoint": nautobot.dcim.export_templates}, "front-port-templates": {"endpoint": nautobot.dcim.front_port_templates}, "front-ports": {"endpoint": nautobot.dcim.front_ports}, "graphs": {"endpoint": nautobot.extras.graphs}, "image-attachments": {"endpoint": nautobot.extras.image_attachments}, "interface-connections": {"endpoint": nautobot.dcim.interface_connections}, "interface-templates": {"endpoint": nautobot.dcim.interface_templates}, "interfaces": {"endpoint": nautobot.dcim.interfaces}, "inventory-items": {"endpoint": nautobot.dcim.inventory_items}, "ip-addresses": {"endpoint": nautobot.ipam.ip_addresses}, "manufacturers": {"endpoint": nautobot.dcim.manufacturers}, "object-changes": {"endpoint": nautobot.extras.object_changes}, "platforms": {"endpoint": nautobot.dcim.platforms}, "power-connections": {"endpoint": nautobot.dcim.power_connections}, "power-outlet-templates": {"endpoint": nautobot.dcim.power_outlet_templates}, "power-outlets": {"endpoint": nautobot.dcim.power_outlets}, "power-port-templates": {"endpoint": nautobot.dcim.power_port_templates}, "power-ports": {"endpoint": nautobot.dcim.power_ports}, "prefixes": {"endpoint": nautobot.ipam.prefixes}, "rack-groups": {"endpoint": nautobot.dcim.rack_groups}, "rack-reservations": {"endpoint": nautobot.dcim.rack_reservations}, "rack-roles": {"endpoint": nautobot.dcim.rack_roles}, "racks": {"endpoint": nautobot.dcim.racks}, "rear-port-templates": {"endpoint": nautobot.dcim.rear_port_templates}, "rear-ports": {"endpoint": nautobot.dcim.rear_ports}, "regions": {"endpoint": nautobot.dcim.regions}, "reports": {"endpoint": nautobot.extras.reports}, "rirs": {"endpoint": nautobot.ipam.rirs}, "roles": {"endpoint": nautobot.ipam.roles}, "services": {"endpoint": nautobot.ipam.services}, "sites": {"endpoint": nautobot.dcim.sites}, "tags": {"endpoint": nautobot.extras.tags}, "tenant-groups": {"endpoint": nautobot.tenancy.tenant_groups}, "tenants": {"endpoint": nautobot.tenancy.tenants}, "topology-maps": {"endpoint": nautobot.extras.topology_maps}, "virtual-chassis": {"endpoint": nautobot.dcim.virtual_chassis}, "virtual-machines": {"endpoint": nautobot.virtualization.virtual_machines}, "virtualization-interfaces": {"endpoint": nautobot.virtualization.interfaces}, "vlan-groups": {"endpoint": nautobot.ipam.vlan_groups}, "vlans": {"endpoint": nautobot.ipam.vlans}, "vrfs": {"endpoint": nautobot.ipam.vrfs}, } return endpoint_map[term]["endpoint"]
f1fff2fabd66dbaa2e228ef3839a11c258423510
29,680
def center_id_from_filename(filename): """Given the name of a rollgen PDF output file, return the center_id embedded in that name""" # Fortunately all filenames are of the format NNNNN_XXXXXX.pdf where NNNNN is the center id # and everything else comes after the first underscore. return int(filename[:filename.index('_')])
d977e6acf509be011692bbf3e1fa910d16921130
29,683
def transcript(cloud_response): """Get text transcription with the highest confidence from the response from google cloud speech-to-text service. Args: cloud_response: response from speech-to-text service Returns: (transcription, confidence): string value of transcription with corresponding confidence score """ transcription = None confidence = 0.0 try: for result in cloud_response.results: for alt in result.alternatives: if confidence < alt.confidence: confidence = alt.confidence transcription = alt.transcript except: pass return (transcription, confidence)
a46b033a5baad298497a22b55550c0c9c16b7544
29,684
from typing import Any def _default_key_func(item: Any): """Key function that orders based upon timestampMs value.""" return item.get("timestampMs")
d9cc0932ca3e8469d33186100f698293322a96bb
29,689
def scalar_floordiv(x, y): """Implementation of `scalar_floordiv`.""" return x.__floordiv__(y)
32bb16afb46d645f756cb21b9d9a3e609d0d839a
29,692
def volt2temp(volt): """ Returns the temperature in float format from float voltage Eq at: http://ww1.microchip.com/downloads/en/DeviceDoc/20001942G.pdf """ return (volt - 0.5) / 0.010
78691d6a7d02485ad2413b8d51c1ec4e7f448230
29,699
import json def read_from_file(file_name): """Read data from file""" with open(file_name, 'r') as load_file: data = json.load(load_file) return data
a83257b610ad420f7dd0fe0726d73111b020310e
29,700
def mean_photon_v(pk1,pk2,pk3,mu1,mu2,mu3): """ Calculate the mean photon number for a signal sent by Alice. This function uses individual values. Parameters ---------- pk1 : float Probability that Alice prepares a signal with intensity 1. pk2 : float Probability that Alice prepares a signal with intensity 2. pk3 : float Probability that Alice prepares a signal with intensity 3. mu1 : float Intensity 1. mu2 : float Intensity 2. mu3 : float Intensity 3. Returns ------- float Mean signal photon number. """ return pk1*mu1 + pk2*mu2 + pk3*mu3
7afbcc2fa3030611c87da00b9ac164c6c20f485f
29,701
def CsvEscape(text): """Escapes data entry for consistency with CSV format. The CSV format rules: - Fields with embedded commas must be enclosed within double-quote characters. - Fields with embedded double-quote characters must be enclosed within double-quote characters, and each of the embedded double-quote characters must be represented by a pair of double-quote characters. - Fields with embedded line breaks must be enclosed within double-quote characters. - Fields with leading or trailing spaces must be enclosed within double-quote characters. Args: text: str Data entry. Returns: str CSV encoded data entry. """ if not text: return '' if text.find('"') > -1: text = text.replace('"', '""') if (text == '' or text.find(',') > -1 or text.find('"') > -1 or text.find('\n') > -1 or text.find('\r') > -1 or text[0] == ' ' or text[-1] == ' '): text = '"%s"' % text return text
a28620e204f5433c580c00a234ea0ab5e6ac060c
29,705
from typing import Union def string_to_number(string: str) -> Union[int, float]: """Helper for converting numbers to string and keeping their original type.""" return float(string) if "." in string else int(string)
a53a6764171384ee258d38ff82014b4ac2724ab2
29,706
def fib_recursivo(n): """ Función recursiva que devuelve el término n de la secuencia de Fibonacci @param n: posición a devolver @return: El término n de la secuencia """ if n == 0: res = 0 elif n == 1: res = 1 else: res = fib_recursivo(n - 1) + fib_recursivo(n - 2) return res
6d57d8408a2e55b9f327c98b31a55f16165983f6
29,709
def avg(first_num, second_num): """computes the average of two numbers""" return (first_num + second_num) / 2.0
06277da01bdd122bad7957ed9675d00bcda16438
29,712
def list_workers(input_data, workerlimit): """ Count number of threads, either length of iterable or provided limit. :param input_data: Input data, some iterable. :type input_data: list :param workerlimit: Maximum number of workers. :type workerlimit: int """ runners = len(input_data) if len(input_data) < workerlimit else workerlimit return runners
9ea30a3a3fc3ebd67ffee7117d502caa9110de08
29,713
def upper(input_string: str) -> str: """Convert the complete string to uppercase.""" return input_string.upper()
9acbac80cf1de15a1b21f4413d75e91e171c6c3f
29,722
def auth_set(hashed_sks, auth_set_indices, height, hashfun): """Return the authentication set defined by the given indices. Keyword arguments: hashed_sks -- the hased secret key components which form the leaves of the tree auth_set_indices -- A list of tuples (h, i) defining the height and index of the nodes that should end up in the authentication set height -- the height of the binary tree hashfun -- a hash function of 2n -> n that is used to produce the parent node from its two child nodes Returns: A list containing tuples ((h, i), hash), the height, index, and hash of the node in the authentication set. The order of the nodes in the returned list is equal to the order of the nodes in auth_set_indices. """ tree = [None] * height tree[0] = hashed_sks # the leaves for current_height in range(1, height): # We don't need to compute the root, # otherwise this would be off by one num_nodes = 2**(height - current_height) tree[current_height] = [None] * num_nodes for index in range(0, num_nodes): left = tree[current_height - 1][2*index] right = tree[current_height - 1][2*index + 1] tree[current_height][index] = hashfun(left, right) return [((h, i), tree[h][i]) for h, i in auth_set_indices]
0f4565d4aa399ab534a962b6f3ec89fb3325cdb5
29,725
def read_credentials(filepath='.yelp/credentials'): """Read credential file and return dictionary of important information""" with open(filepath, 'r') as f: contents = f.readlines() credentials = {} key_items = ['client_id', 'api_key'] for line in contents: for item in key_items: if item in line: credentials[item] = line.split('=')[1].strip() return credentials
998ab1a770fb2c819757869772214fad89c7e13a
29,728
def get_ns(tag): """ Extract namespace. This function is opposite to get_local_name, in that it returns the first part of the tag: the namespace. Parameters ---------- tag : str Tag to process. """ p_open = tag.find('{') p_close = tag.find('}') if p_open != -1 and p_close != -1: return tag[p_open+1:p_close] else: return ''
d10d1e8d2a0a89d5aadd9fd4bf509a0e6e49d49e
29,729
import ast def convert_types_in_dict(xml_dict): """ Evaluates all dictionary entries into Python literal structure, as dictionary read from XML file is always string. If value can not be converted it passed as it is. :param xml_dict: Dict - Dictionary of XML entries :return: Dict - Dictionary with converted values """ out = {} for el in xml_dict: try: out[el] = ast.literal_eval(xml_dict[el]) except ValueError: out[el] = xml_dict[el] return out
88e0030c2e1612802fd13c46c4ba6d7a1a2f8885
29,730
def get_parameters(parameters): """ Gives confidence and support, also if not given in parameters """ confidence = parameters.get("min_confidence", 0.75) support = parameters.get("min_support", 2) return confidence, support
e619fca63833651b1625a45ae2cfda806d227cd1
29,735
import math def ZScore_GeneGo(n, N, n1, n2): """Each subnetwork is associated with a Z-score which ranks the subnetworks according to saturation with the objects from the initial gene list. The Z-score ranks the subnetworks of the analyze network algorithm with regard to their saturation with genes from the experiment. A high Z-score means the network is highly saturated with genes from the experiment. The formula for the Z-score is: n (white in picked), N (total), n1 (white), n2 (picked, my gene list) Z = (n-n1*n2/N)/Sqrt(n1*n2/N*(1-n2/N)(1-(n1-1)/(N-1))) Z = (n*N-n1*n2)/Sqrt(n1*n2*(N-n1)*(N-n2)/(N-1)) notice this formula is symmetrical for n1 and n2""" r=math.sqrt(n1*n2*(N-n1)*(N-n2)/(N-1)) if r<1e-100: return 0.0 return (n*N*1.0-n1*n2)/r
92c8a46ffad5a3e218c45826423fa3ee31e4fee5
29,737
def read_acl_file(filename): """Read contents of given acl file. Args: filename: name of file to be read for acl information Returns: list: list containing ACL entries """ f = open(filename, 'r') content = f.readlines() f.close() # Parse acl = [] for entry in content: if not entry.startswith("#"): acl.append(entry.strip()) return acl
9fb3e08bc35db72f90ee586f26de2fca04e4a66b
29,745
def countDigits(n): """Count the number of digits in a given number "n". """ num = len(str(abs(n))) return num
b8ecf5117f45a425b1bb0ced8b01f209cfdaca20
29,763
def safe_issubclass(cls, classinfo): """As the builtin issubclass, but returns False instead of a TypeError if the first argument is not a class.""" try: return issubclass(cls, classinfo) except TypeError: # cls is not actually a class return False
4e4218b51824d68a58f7aeca360845bbb12ba40a
29,764
from typing import Optional def doc_to_doc_string(doc: Optional[str], indent_level: int = 0) -> str: """Generate a documentation string from a schema salad doc field.""" lead = " " + " " * indent_level + "* " if doc: doc_str = "\n".join([f"{lead}{line}" for line in doc.split("\n")]) else: doc_str = "" return doc_str
efd0237f5d39660459e8b736e74ec24bc665ef77
29,770
def unzip(zipped): """ Unzip a zipped list :param list-of-tuple zipped: list of tuples to be disaggregated :returns: list of tuples Example _______ >>> unzip([(1, 2, 3), (4, 5, 6), (7, 8, 9)]) [(1, 4, 7), (2, 5, 8), (3, 6, 9)] """ return list(zip(*zipped))
0ac5d80574eaeb5e84417dbfed9e617cde60d101
29,777
def can_manage_content(user, content): """ Returns True if user is staff or instructor(owner). """ if user.is_authenticated(): owner = user == content.course.owner if user.is_staff or owner: return True return False
bb4d2209155b5df1458f3194737d25a4a9b1a7c3
29,779
from typing import List from typing import Tuple def extract_node_waypt(way_field: List[Tuple[str, str]]) -> int: """ Given a list with a reference node such as [('ref', '0')], extract out the lane ID. Args: way_field: key and node id pair to extract Returns: node_id: unique ID for a node waypoint """ key = way_field[0][0] node_id = way_field[0][1] assert key == "ref" return int(node_id)
564a738d0fdecb5230b9bb757764f4463dee85e0
29,780
from typing import List def create_subdict(data: List): """ Return data in List form as dictionary, Start, to which model parameters is appended. Parameters ----------- data: List Data (potentially pca component output in 2d form). Return ------- Dict: Dictionary with 'data' key. """ return {'data' : data}
6850588d1b1eeae69265aa1a63377ee2fa759b80
29,782
def get_suggestion_string(sugg): """Return the suggestion list as a string.""" sugg = list(sugg) return ". Did you mean " + ", ".join(sugg) + "?" if sugg else ""
7eb93d747818b66f5996241c993fbbe2ab638dd7
29,783
def get_key(text): """return keyword: first word of text, isolating keywords followed by '(' and ':' """ t = text.replace('(', ' (').replace(':', ' :').strip() return t.split(' ', 1)[0].strip()
e27e76b97e6b9247f24bd62c074787f6d140f688
29,788
from typing import Union from typing import List def read_file(file_path: str, split: bool = False) -> Union[str, List[str]]: """ Reads a text file. >>> from snakypy import helpers >>> file = '/tmp/my_file.txt' >>> helpers.files.create_file('My content file', file, force=True) True >>> helpers.files.read_file(file) 'My content file' Args: file_path (str): You must receive the full/absolute file path. split (bool): If this option is True, a list will be returned where the breaks will be made using line skips. (default: {False}) Returns: [str|list]: By default it returns a string. If the option split=True, a list of line breaks will be returned. """ try: with open(file_path) as f: if split: return f.read().split("\n") return f.read() except FileNotFoundError as err: raise FileNotFoundError(f'>>> File "{file_path}" does not exist. {err}')
af2429f9d696a693b89c0fa33200e453906ee0c8
29,791
def max_sublist(a_list): """ Kadane's Algorithm >>> max_sublist([-2, 1, -3, 4, -1, 2, 1, -5, 4]) (6, 3, 6) >>> max_sublist([0, -1, 2,- 3, 5, 9, -5, 10]) (19, 4, 7) :param a_list: The list to get the maximum sub-list for. :return: The sum from the sublist, the start index, and the end index. The last two are for testing. """ max_ending_here = max_so_far = a_list[0] current_index = 0 start_index = 0 end_index = 0 for num in a_list: max_ending_here = max(0, max_ending_here + num) if max_ending_here >= max_so_far: end_index = current_index if max_ending_here == 0: start_index = current_index + 1 max_so_far = max(max_so_far, max_ending_here) current_index += 1 return max_so_far, start_index, end_index
e535a182e0a0118395dfd6f6e130a42d3c4b051f
29,795
def get_fold(dict_actors_per_fold, actor_id): """ Get the fold that the actor belongs to. :param dict_actors_per_fold[dict] Map with the fold number as key (ranging from 1 to 5) and the list of actors in that test fold as the value of the dict. :param actor_id:[int] Id of the actor. We want to obtain the fold where it belongs """ for fold_key in list(dict_actors_per_fold.keys()): if(actor_id in dict_actors_per_fold[fold_key]): return fold_key
0b5543ed37cd4fc8bed84a7f269fca04a5d71d01
29,797
def intToBinaryString(integer : int) -> str: """Convert an integer to a string representing a big endian binary number Parameters ---------- integer : int A positive integer Returns ------- str A string representing a big endian binary number """ rtn = "" while integer > 0: rtn += str(integer % 2) integer = integer // 2 return rtn[::-1]
5f0d3aba71c7fffaa14725fef0576b72ae17b461
29,803
def expanding_mean(new_value, old_value, time): """ Args: new_value: this time step's value old_value: aggregate from last time step time: current time, zero-indexed Returns: mean from t = 0 : time """ time_1plus = time + 1 return (1. / time_1plus) * new_value + (time_1plus - 1.) / time_1plus * old_value
9f701473a9904e48ec042983a8bedc2e27a464ba
29,813
from typing import Callable from typing import Iterable def sort_by_reversed(key: Callable): """Return a new list containing all items from the iterable in descending order, sorted by a key. >>> sort_by_reversed(lambda x: x % 10)([2231, 47, 19, 100]) [19, 47, 2231, 100] """ def sort_by_reversed(seq: Iterable): return sorted(seq, key=key, reverse=True) return sort_by_reversed
711df771751590a6315deefb075d9a436743cacb
29,816
import itertools def is_sorted(iterable, *, key=None, reverse=False, strict=False): """Returns true if iterable is sorted Parameters ---------- iterable : iterable The iterable to check for sorted-ness. key : x -> y, optional Apply mapping function key to iterable prior to checking. This can be done before calling, but this ensures identical calls as sorted. reverse : bool, optional `key` and `reverse` function as they for `sorted`""" if key is not None: iterable = map(key, iterable) ait, bit = itertools.tee(iterable) next(bit, None) # Don't throw error if empty if strict and reverse: # pylint: disable=no-else-return return all(a > b for a, b in zip(ait, bit)) elif reverse: return all(a >= b for a, b in zip(ait, bit)) elif strict: return all(a < b for a, b in zip(ait, bit)) else: return all(a <= b for a, b in zip(ait, bit))
682d0026193a3189bcee7e693f8ed28d5c18d10b
29,819
from typing import Dict from typing import Tuple def _has_all_valid_descriptors(peak_descriptors: Dict[str, float], filters: Dict[str, Tuple[float, float]]) -> bool: """ Check that the descriptors of a peak are in a valid range. aux function of get_peak_descriptors. Parameters ---------- peak_descriptors : dict Dictionary from descriptors names to values. filters : dict Dictionary from descriptors names to minimum and maximum acceptable values. Returns ------- is_valid : bool True if all descriptors are inside the valid ranges. """ res = True for descriptor, (lb, ub) in filters.items(): d = peak_descriptors[descriptor] is_valid = (d >= lb) and (d <= ub) if not is_valid: res = False break return res
c797949c6faa5f401abfaf020c64b55e2e41c544
29,820
import re def rlist_to_int(string): """Takes an rlist string as input, and outputs a corresponding integer""" rlist = 0 string = re.sub(r"r|R", "", string) for m in re.finditer(r"[^,]+", string): args = m.group().split("-") if len(args) == 1: lo,hi = args*2 else: lo,hi = args rlist |= 2**(int(hi) + 1) - 2**int(lo) return rlist
782f01cdaee0e2c51ff6dfcd281c5d83e1a3e98b
29,825
def interpolate_template(template, context): """Interpolate context into a template. (i.e. replace things in strings without % replacement). Args: template (str) : String to fill with context context (dict) : Dictionary of variables Returns: str : Populated template """ populated = template for key, value in context.items(): _key = '{%s}' % key populated = populated.replace(_key, str(value)) return populated
6c9151075c9fa836b340ee163452de47eec8fe2c
29,826
def make_enum_pair(ele, till, delimiter=", "): """ Create list of pair of strings with consecutive numbering as follows: make_enumerated_pair('P%d p%d', 3) -> 'P1 p1, P2 p2, P3 p3' """ return delimiter.join(ele % (i + 1, i + 1) for i in range(till))
66b9410f307027ef151dd81edb7b29998ef65628
29,829
def average(keyword, values): """ calculate average of all values at values[+].keyword and return :param keyword: the key of the value you care about :param values: [{key: value},...] array of dicts, values assumed numeric :return: single averaged value """ average = 0.0 for val in values: average += float(val[keyword]) if len(values) > 0: average = average / len(values) return average
aed36e90a485e4f433de7330f920167dd0e558d5
29,831
def get_count(inputStr): """ Return the number (count) of vowels in the given string. We will consider a, e, i, o, and u as vowels for this Kata. The input string will only consist of lower case letters and/or spaces. :param inputStr: input string value. :return: the number (count) of vowels in the given string. """ return sum(1 for i in inputStr if i in ["a", "e", "i", "o", "u"])
f4700b0c93175b4b3553f16e27384a3ee3481c60
29,838
def subDict(somedict, somekeys, default=None): """ Returns subset of a dictionary with keys from somekeys """ return dict([ (k, somedict.get(k, default)) for k in somekeys ])
17b95ee28986ca2c2f02e3405fc71c76a14fbbc9
29,842
def qset_cmb_box(cmb_box, string, data=False): """ Set combobox to the index corresponding to `string` in a text field (data = False) or in a data field (data=True). When `string` is not found in the combobox entries, select the first entry. Signals are blocked during the update of the combobox. Returns: the index of the found entry """ if data: idx = cmb_box.findData(str(string)) # find index for data = string else: idx = cmb_box.findText(str(string)) # find index for text = string ret = idx if idx == -1: # data does not exist, use first entry instead idx = 0 cmb_box.blockSignals(True) cmb_box.setCurrentIndex(idx) # set index cmb_box.blockSignals(False) return ret
f2a53bca106fe160d04142ebf0fdfb2de966a98d
29,843
from typing import Iterator import itertools def decimal(start: int = 1) -> Iterator[int]: """ Increments from `start`. e.g. 1, 2, 3, .. 9, 10, 11, etc. Args: start: The first value to start with. """ return itertools.count(start)
5c0a4b75b45c391597091e83c4b3991ba64d6626
29,847
def get_rendered(font, text, color, cache): """Simple font renderer that caches render.""" if text in cache: image = cache[text] else: image = font.render(text, 0, color) cache[text] = image return image
13557f705882da5865812a0be86cf8b46b95e202
29,849
import math def angle_to(tup1,tup2): """The angle to tup2 from tup1, measured against 'straight up' clockwise, in radians. Tuples are given in a coordinate system with (0,0) top left, (1,0) is one step right, (0,1) is one step down, and (1,1) is down right. >>> angle_to((1,1),(1,0))/math.pi 0.0 >>> angle_to((1,1),(2,0))/math.pi 0.25 >>> angle_to((1,1),(1,2))/math.pi 1.0 >>> angle_to((1,1),(-1,-1))/math.pi 1.75 """ x = tup2[0] - tup1[0] y = tup1[1] - tup2[1] angle_to_positive_x_axis = math.atan2(y,x) angle_to_straight_up = (math.pi/2) -angle_to_positive_x_axis positive_angle_to_straight_up = angle_to_straight_up % (2*math.pi) return positive_angle_to_straight_up
edece575727f69d716ffd217807b4b794a6b7a1c
29,851
def OkErrMiss(o): """ compute Ok, errors, missed from the ResultStructure object return a triple (ok, err, miss) """ ok = o.truePos err = o.resTotal - ok miss = o.gtTotal - ok return ok, err, miss
11f3958272d1fdbb34621c5d0ad7700193b9a2f9
29,852
import logging def featurize_data(model, array): """ Given a model and an array, perform error checking and return the prediction of the full feature array. Parameters: ---------- model : keras.models.Model The featurizer model performing predictions array : np.ndarray The vectorized array of images being converted into features Returns: -------- full_feature_array : np.ndarray A numpy array containing the featurized images """ # Raise error if the array has the wrong shape if len(array.shape) != 4: raise ValueError('Image array must be a 4D tensor, with dimensions: ' '[batch, height, width, channel]') # Perform predictions logging.info('Creating feature array.') # NOTE: No clue why this is here, it's to make the models note break due to # Keras update: https://github.com/keras-team/keras/issues/9394 model.compile('sgd', 'mse') full_feature_array = model.predict(array, verbose=1) # Return features logging.info('Feature array created successfully.') return full_feature_array
1b8796ace6f3a72a288b6621f01e62c90a06a769
29,856
def column2list(matrix: list, column_idx: int) -> list: """ Convert column from features 2D matrix to 1D list of that feature. :param matrix: 2D square array of number :param column_idx: column index in the matrix :return: """ if len(matrix) <= 1: return matrix if matrix else [] if column_idx >= len(matrix[0]): return [-1] new_column = [] for line in matrix: new_column.append(line[column_idx]) return new_column
841baf8f6cf6b78c9f41dc90a9ff1759a8285cc8
29,860
def __join_with_or(times): """Returns 'a', 'a or b', or 'a, b, or c'.""" if not times: return "" if len(times) == 1: return times[0] if len(times) == 2: return " or ".join(times) return ", or ".join([", ".join(times[:-1]), times[-1]])
eec8adc3bf0b013cda315ed81c0ddf1a0a7511c6
29,861
def parseBool(txt): """ Parser for boolean options :param str txt: String from config file to parse. :returns: ``True`` if the string is 'True', ``False`` otherwise. :rtype: boolean """ return txt == 'True'
267c6c09c665735ac3ae766a9fd5259768ff3d40
29,862
def seq_to_subset(seq_sol, m, n): """Convert sequence solution (e.g.: ['r2','c3']) into subset solution (e.g.: [[0,1],[0,0,1]])""" assert isinstance(seq_sol, list) subset_sol = [[0]*m,[0]*n] for e in seq_sol: if e[0] == 'r': subset_sol[0][int(e[1:])-1] = (1-subset_sol[0][int(e[1:])-1]) elif e[0] == 'c': subset_sol[1][int(e[1:])-1] = (1-subset_sol[1][int(e[1:])-1]) else: raise RuntimeError(f'This seq_sol is bad written: {seq_sol}') return subset_sol
345e3fab339edbdb059611b2b542917bc43bd6ef
29,863
def fit_FC(model, data): """ Convenience function to fit a flow curve Args: model: rheology model (e.g. HB_model) data: pandas DataFrame with column 'Shear rate' and 'Stress' Returns: lmfit.fitresult """ return model.fit(data["Stress"], x=data["Shear rate"], weights=1 / data["Stress"])
6fca8cf3d2ea965e55b667be27aeaf4bb4fbc402
29,864
def GenerateWIUpdateMsgString(membership, issuer_url, resource_name, cluster_name): """Generates user message with information about enabling/disabling Workload Identity. We do not allow updating issuer url from one non-empty value to another. Args: membership: membership resource. issuer_url: The discovery URL for the cluster's service account token issuer. resource_name: The full membership resource name. cluster_name: User supplied cluster_name. Returns: A string, the message string for user to display information about enabling/disabling WI on a membership, if the issuer url is changed from empty to non-empty value or vice versa. An empty string is returned for other cases """ if membership.authority and not issuer_url: # Since the issuer is being set to an empty value from a non-empty value # the user is trying to disable WI on the associated membership resource. return ('A membership [{}] for the cluster [{}] already exists. The cluster' ' was previously registered with Workload Identity' ' enabled. Continuing will disable Workload Identity on your' ' membership, and will reinstall the Connect agent deployment.' .format(resource_name, cluster_name)) if not membership.authority and issuer_url: # Since the issuer is being set to a non-empty value from an empty value # the user is trying to enable WI on the associated membership resource. return ('A membership [{}] for the cluster [{}] already exists. The cluster' ' was previously registered without Workload Identity.' ' Continuing will enable Workload Identity on your' ' membership, and will reinstall the Connect agent deployment.' .format(resource_name, cluster_name)) return ''
75a54be804d5012e94587c4d5094936dc1f770da
29,874
import random def choice_optional(lst): """" Returns random.choice if there are elements, None otherwise """ if len(lst) > 0: return random.choice(lst) return None
778561f1a42952d9f2af9692adeadd57917a4ea3
29,875
import json def read_json_file(path=r'web_crawler\scrapped_data\all_scraped_data.json'): """reads Json file Args: path: the path to the json file """ with open(path, 'r') as data_file: return json.load(data_file)
1f82ae07906d554a227aa653a2fe1bffc6a46a9b
29,884
def grep(*matches): """Returns a generator function that operates on an iterable: filters items in the iterable that match any of the patterns. match: a callable returning a True value if it matches the item >>> import re >>> input = ["alpha\n", "beta\n", "gamma\n", "delta\n"] >>> list(grep(re.compile('b').match)(input)) ['beta\n'] """ def _do_grep_wrapper(*matches): def _do_grep(lines): for line in lines: for match in matches: if match(line): yield line break return _do_grep return _do_grep_wrapper(*matches)
9a28efd6416c0f8e02532072d9c366747dc52291
29,885
from unicodedata import normalize def unicodify(s, encoding='utf-8', norm=None): """Ensure string is Unicode. .. versionadded:: 1.31 Decode encoded strings using ``encoding`` and normalise Unicode to form ``norm`` if specified. Args: s (str): String to decode. May also be Unicode. encoding (str, optional): Encoding to use on bytestrings. norm (None, optional): Normalisation form to apply to Unicode string. Returns: unicode: Decoded, optionally normalised, Unicode string. """ if not isinstance(s, str): s = str(s, encoding) if norm: s = normalize(norm, s) return s
ee4882dd7450ba0b146e3fb9ddabf9deaf0e7903
29,888
import collections def eval_step(test_batch, snlds_model, num_samples, temperature): """Runs evaluation of model on the test set and returns evaluation metrics. Args: test_batch: a batch of the test data. snlds_model: tf.keras.Model, SNLDS model to be evaluated. num_samples: int, number of samples per trajectories to use at eval time. temperature: float, annealing temperature to use on the model. Returns: Dictionary of metrics, str -> list[tf.Tensor], aggregates the result dictionaries returned by the model. """ test_values = collections.defaultdict(list) for _ in range(10): result_dict = snlds_model( test_batch, temperature, num_samples=num_samples) for k, v in result_dict.items(): test_values[k].append(v) return test_values
2a7ec12f43925aecf266048c6eaa0b331641a4fe
29,890
def exception_to_dict(error): """Takes in an exception and outputs its details, excluding the stacktrace, to a dict Args: error (Exception): The exception to serialize Returns: dict: The serialized exception """ return {"type": str(type(error).__name__), "message": str(error)}
a677e151079a7b0005a7da1065f08b49cbf559be
29,891
def transform_play_to_column(play): """Return position of the column where the play was made. Parameters: play (int): bit board representation of a piece Returns: int : column position""" return [2 ** i for i in range(49)].index(play) // 7
aa0e0298ead19d9f1375092f6b06f95ff2829f0f
29,897
import binascii def get_internal_name(cache_key): """Converts a cache key into an internal space module name.""" package, version = cache_key return 'multiversion.space.%s___%s' % (package, binascii.hexlify(version))
a34c3c746135f3913f9577238f8a8d6b13398d5d
29,899
def counting_sort(a, k, reverse=False): """ 计数排序 基本思想:对每一条记录,计算小于这条记录的记录个数。利用这一信息,就可以直接确定该记录的位置。 当有几条记录相同时,则需要调整一下位置。 记录值分布在0-k之间,建立C[0...k],根据记录值找到在C中的位置,该位置计数器+1。 数组C中某个位置Ci,C[0...i-1]的所有值相加,即为小于i的记录的个数。依次计算C[1...k]的值,即C[i]=C[i]+C[i-1]。 根据C中数据重新确定待排序列中记录的位置。 :param a: :param k: :param reverse: :return: """ b = [0] * len(a) # 有序序列输出辅助 c = [0] * (k + 1) # 计数辅助 # 计数 for v in a: c[v] += 1 if reverse: # 计算比记录i大的记录的个数 for i in range(len(c) - 2, -1, -1): c[i] += c[i + 1] else: # 计算比记录i小的记录的个数 for i in range(1, len(c)): c[i] += c[i - 1] for v in a: # 根据C数据,定位记录到输出序列 b[c[v] - 1] = v # 如果有多条相同的记录,调整位置 c[v] -= 1 return b
20d4a26d9541a397645890ce22a384efe6fe8427
29,901
def build_index(data: list) -> tuple: """ Create an index with items and shops for faster lookup. Format - { 'product1': 'shops': set([1, 3, 5]), ... } { shop1: [ (price1, [item1, item2, ...]), ... ], ... } :param data: List of tuples containg data about products and shops :return: An index based on products and shops """ item_index = {} # Create an empty item_index shop_index = {} for item in data: for product in item[2]: if product not in item_index: # New, initialize item_index[product] = set() item_index[product].add(item[0]) # Add to shop set if item[0] not in shop_index: shop_index[item[0]] = [] shop_index[item[0]].append((item[1], item[2:])) return item_index, shop_index
64b8f75553bf1968e922dd06a2cc3c75e44e9bf6
29,911
def bst_contains(node, value): """ Return whether tree rooted at node contains value. Assume node is the root of a Binary Search Tree @param BinaryTree|None node: node of a Binary Search Tree @param object value: value to search for @rtype: bool >>> bst_contains(None, 5) False >>> bst_contains(BinaryTree(7, BinaryTree(5), BinaryTree(9)), 5) True """ if node is None: return False elif node.data == value: return True elif value < node.data: return bst_contains(node.left, value) elif value > node.data: return bst_contains(node.right, value) else: assert False, "WTF!"
bf1c875d9a3b4c5b8af42fb63465aa0f10039b49
29,912
def invert_dict(d): """Return an 'inverted' dictionary, swapping keys against values. Parameters ---------- d : dict-like The dictionary to invert Returns -------- inv_d : dict() The inverted dictionary. Notes ------ If the key-mapping is not one-to-one, then the dictionary is not invertible and a ValueError is thrown. """ inv_d = dict((d[key], key) for key in d) if len(d) != len(inv_d): raise ValueError('Key-value mapping is not one-to-one.') return inv_d
4a5d56cbf7ac4dc8c787635f7fbc8b4608b6532e
29,913
def c_uchar(i): """ Convert arbitrary integer to c unsigned char type range as if casted in c. >>> c_uchar(0x12345678) 120 >>> (c_uchar(-123), c_uchar(-1), c_uchar(255), c_uchar(256)) (133, 255, 255, 0) """ return i & 0xFF
937b683505282eb8577affb14236515ecdda20be
29,919
def is_same_shape(T1, T2): """ Two partial latin squares T1, T2 have the same shape if T1[r, c] = 0 if and only if T2[r, c] = 0. EXAMPLES:: sage: from sage.combinat.matrices.latin import * sage: is_same_shape(elementary_abelian_2group(2), back_circulant(4)) True sage: is_same_shape(LatinSquare(5), LatinSquare(5)) True sage: is_same_shape(forward_circulant(5), LatinSquare(5)) False """ for i in range(T1.nrows()): for j in range(T1.ncols()): if T1[i, j] < 0 and T2[i, j] < 0: continue if T1[i, j] >= 0 and T2[i, j] >= 0: continue return False return True
4602f7cb2a093393445f7e23f2d9f539021d2f7a
29,921
def condition_str(condition, phase, component): """ Returns a string representation of a condition for a specific phase and component. """ if phase!=None: return condition + '(' + phase + ',' + component + ')' else: return condition + '(' + component + ')'
ef7432bf1a7ca25ffb6bf7a9c1dc033dd53918af
29,922
def list_to_string(l: list, s: str = "\n") -> str: """Transforms a list into a string. The entries of the list are seperated by a seperator. Args: l (list): the list s (str, optional): the seperator. Defaults to "\\n". Returns: str: the list representation with seperator """ r = "" for e in l: r += e + s return r
ca04ba59c2edf740aa29b7e2ef79b8562c7d071c
29,926
def _parse_idd_type(epbunch, name): """Parse the fieldvalue type into a python type. Possible types are: - integer -> int - real -> float - alpha -> str (arbitrary string), - choice -> str (alpha with specific list of choices, see \key) - object-list -> str (link to a list of objects defined elsewhere, see \object-list and \reference) - external-list -> str (uses a special list from an external source, see \external-list) - node -> str (name used in connecting HVAC components) """ _type = next(iter(epbunch.getfieldidd_item(name, "type")), "").lower() if _type == "real": return float elif _type == "alpha": return str elif _type == "integer": return int else: return str
bbf86c41ad685c2fb44f24671d22cf6601794cc1
29,929
def dot_in_stripe(dot, stripe): """True if dot.y is in horizontal stripe.""" return stripe[0] < dot.y <= stripe[1]
a742ea3dd7d4dc9ed32d6df3bf2cb358fda2fda7
29,935
def parse_agents(args): """ Each element is a class name like "Peer", with an optional count appended after a comma. So either "Peer", or "Peer,3". Returns an array with a list of class names, each repeated the specified number of times. """ ans = [] for c in args: s = c.split(',') if len(s) == 1: ans.extend(s) elif len(s) == 2: name, count = s ans.extend([name]*int(count)) else: raise ValueError("Bad argument: %s\n" % c) return ans
e62aef22c20a449ae670bd517e3cb6f64375d792
29,939
import math def A000010(n: int) -> int: """Euler totient function phi(n): count numbers <= n and prime to n.""" numbers = [] i = 0 for i in range(n): if math.gcd(i, n) == 1: numbers.append(i) return len(numbers)
46b28b077f78965666eb34e0f4e7892e95b4162b
29,946
import math def CalcDistance(p1, p2): """ Function to calculate distance in space between two points (p) p1, p2: (f) lists of coordinates for point1 and point2 """ dist = math.sqrt((p2[0]-p1[0])**2 + (p2[1]-p1[1])**2 + (p2[2]-p2[2])**2) return(dist)
099512d41acafa7832a425cb8fbe60a6c4be8ecf
29,951
def getlambda(pixel, lo, hi): #----------------------------------------------------------------------------- """ Small utility to calculate lambda on a line for given position in pixels """ #----------------------------------------------------------------------------- if pixel is None: return 0.5 delta = hi - lo if delta == 0.0: return 0.5 return (pixel-lo)/(delta)
6245ff3ec09db39d913175e58b9cec08888aa66e
29,957
def sort_by_name(dicts): """ Sorting of a list of dicts. The sorting is based on the name field. Args: list: The list of dicts to sort. Returns: Sorted list. """ return sorted(dicts, key=lambda k: k.get("name", "").lower())
3364995d2cbc55e87a6f60d054861eadec9e0dda
29,959
import re def alphanum_string(input_string): """ Removes all non-alphanumeric characters from the given string. """ pattern = re.compile(r'[\W_]+') return pattern.sub('', input_string)
3e27c52b02d85c3374a82d5cc909b8a305a8c67a
29,961
def preprocess_doi(line): """ Removes doi.org prefix if full URL was pasted, then strips unnecessary slashes """ (_, _, doi) = line.rpartition('doi.org') return doi.strip('/')
55badcf6fb55d19dcdcaba0d6ece706978001d7f
29,965
def point_in_rectangle(point, rect_top_left, rect_sides): """ Checks if point is in rectangle Parameters ---------- point : (float, float) (x,y) coordinates of point rect_top_left : (float, float) (x,y) coordinates of rectangle top left corner rect_sides : (float, float) (x,y) lengths of rectangle sides Returns ------- bool True if point is in rectangle, otherwise False. """ return rect_top_left[0] < point[0] < rect_top_left[0] + rect_sides[0] and \ rect_top_left[1] < point[1] < rect_top_left[1] + rect_sides[1]
49fe7980f32d4716e38b2591bbfe8d1d8910c11e
29,968
def prefix_dash_dash(params): """ Add -- for keys in gdmix tfjob params. """ if isinstance(params, dict): newParams = {} for k, v in params.items(): newParams["--{}".format(k)] = v return newParams else: raise ValueError("job params can only be dict")
85170ccf0adeb83718394c572949a420108d0e03
29,972
import importlib def get_from_module(module, attr_name): """ Return a reference from a module. The attribute name must exist in the module, it could be a variable, a callable or a class. If reference name doesn't exists in the module it will return None. Example: >>> get_from_module("my.module", "my_object") >>> get_from_module("my.module", "my_function") >>> get_from_module("my.module", "MyClass") :param basestring module: The module name. :param basestring attr_name: What should be returned from the module. :return: The value resolved by the module and attr name provided or None. """ module = importlib.import_module(module) try: return getattr(module, attr_name) except AttributeError: return None
b4e95ee167d71035241bc0df2ab87c25bb45b4ac
29,973
import torch def get_nmse(x_hat, x): """ Calculate ||x_hat - x|| / ||x|| """ sse = torch.sum((x_hat - x)**2, dim=[1,2,3]) #shape [N] - sse per image denom = torch.sum(x**2, dim=[1,2,3]) #shape [N] - squared l2 norm per ground truth image nmse_val = sse / denom return nmse_val.cpu().numpy().flatten()
edda096ebc8d8932cde975a07e579c2cfca8051f
29,979
def convert_to_table(header, rows): """ Create an HTML table out of the sample data. Args: header (str): The table header rows (List[str]): A list of rows as strings Returns: A dataset sample in the form of an HTML <table> """ header_html = '<tr><th>{}</th></tr>'.format('</th><th>'.join(header)) rows_html = ['<tr><td>{}</td></tr>'.format('</td><td>'.join(row)) for row in rows] if rows: table = '<table>{header}\n{rows}</table>'.format( header=header_html, rows='\n'.join(rows_html)) else: table = None return table
cf7c861015135b940d2a011da106f40d0aa31ba5
29,982
def looksLikeVestLutFile(path): """Returns ``True`` if the given ``path`` looks like a VEST LUT file, ``False`` otherwise. """ with open(path, 'rt') as f: lines = [] for i in range(10): line = f.readline() if line is None: break else: lines.append(line.strip()) validHeaders = ('%!VEST-LUT', '%BeginInstance', '%%BeginInstance') return len(lines) > 0 and lines[0] in validHeaders
c1e8006b6b81d949d353f773d2a41164c26eec98
29,984
from typing import Dict import csv def load_subjects(csvfile: str) -> Dict: """Load a list of subjects from a csv file along with metadata Subject,Age,Gender,Acquisition,Release 195041,31-35,F,Q07,S500 ... Return a dictionary with Subjects as keys and Age as the value """ result: Dict = {} with open(csvfile, 'r', encoding='utf-8-sig') as fd: reader: csv.DictReader = csv.DictReader(fd) for row in reader: if 'Age' in row: result[row['Subject']] = {'age': row['Age'], 'gender': row['Gender']} else: result[row['Subject']] = {} return result
e9249ce7a04869e6b565238aa06c65063becb361
29,985
def _mai(a: int, n: int) -> int: """ Modular Additive Inverse (MAI) of a mod n. """ return (n - a) % n
634af47425e9bd3afec12742782755a3f0f4ac1f
29,987
import re def get_model_presets(config, model): """Collect all the parameters model from the UI and return them as a dict. Args: config (dict): Recipe config dictionary obtained with dataiku.customrecipe.get_recipe_config(). model (str): Model name found in the UI. Returns: Dictionary of model parameters to be used as kwargs in gluonts Predictor. """ model_presets = {} matching_key = f"{model}_model_(.*)" for key in config: key_search = re.match(matching_key, key, re.IGNORECASE) if key_search: key_type = key_search.group(1) model_presets.update({key_type: config[key]}) return model_presets
492079ef55f7d1c3a621f2228f1e22b14765575d
29,992
def _get_name(index, hdf5_data): """Retrieves the image file name from hdf5 data for a specific index. Args: index (int): Index of image. hdf5_data (obj): h5py file containing bounding box information. Returns: (str): Image file name. """ ref = hdf5_data['/digitStruct/name'][index, 0] file_name = ''.join([chr(item) for item in hdf5_data[ref][:]]) return file_name
7b65d6f6aede25265865734dae6a94def8b3524f
29,995
import re from datetime import datetime import time def extract_date(str_date): """Find the first %Y-%m-%d string and return the datetime and the remainder of the string """ rgx = re.compile('\d{4}-\d{2}-\d{2}') o_match = rgx.search(str_date) if o_match is not None: i_start = o_match.start() i_end = i_start+10 return (datetime( *(time.strptime(str_date[i_start:i_end], "%Y-%m-%d")[0:6])), str_date[0:i_start] + str_date[i_end:]) else: return (None, str_date)
3f3407490eec4e3d65e289b5e2ebef3246c9c63f
29,996
import operator def freeze_dict(dict_): """Freezes ``dict`` into ``tuple``. A typical usage is packing ``dict`` into hashable. e.g.:: >>> freeze_dict({'a': 1, 'b': 2}) (('a', 1), ('b', 2)) """ pairs = dict_.items() key_getter = operator.itemgetter(0) return tuple(sorted(pairs, key=key_getter))
0694f264419bb426597bc1fe6a4d0a7d3ae89fc5
29,997
def pyx_is_cplus(path): """ Inspect a Cython source file (.pyx) and look for comment line like: # distutils: language = c++ Returns True if such a file is present in the file, else False. """ for line in open(path, 'rt'): if line.startswith('#') and '=' in line: splitted = line.split('=') if len(splitted) != 2: continue lhs, rhs = splitted if lhs.strip().split()[-1].lower() == 'language' and \ rhs.strip().split()[0].lower() == 'c++': return True return False
d8ad5c7884453a5dc3cec6b340d8fa5ac3094cb3
30,006
from typing import Dict from typing import Union from typing import List import json def load_connections() -> Dict[str, Dict[str, Union[int, str, List[str]]]]: """Loads the static set of connections.""" with open('data/connections.json') as f: return json.load(f)
cee39b0cb7d34b6c71de9d625fe2202c1a8d3a6b
30,008
def is_float(num): """ given a string variable, returns True if the string can be directly converted to a float, otherwise returns False :param num: string to check whether or not it can be converted to a float :type num: string :return: True: the string can be converted to a float (via the float(<string>) function). False: it cannot. :rtype: boolean """ try: float(num) return True except ValueError: return False
57de4de786f711f609499de337cfc33994ee0a3d
30,009
def get_descendant_ids(node): """ This filter returns the ids of all the node's descendants. :param node: The requested node :type node: ~integreat_cms.cms.models.abstract_tree_node.AbstractTreeNode :return: The list of all the node's descendants' ids :rtype: list [ int ] """ return [ descendant.id for descendant in node.get_cached_descendants(include_self=True) ]
eef8b9c0e26c2dccf061bdd402b809b9eff51b83
30,010
def kinetic_energy(momentum, mass): """Compute the kinetic energy of moving particles Arguments: momentum (array-like of float): momentum of the particles mass (array-like of float): mass of the particles """ if momentum.ndim == 3: mass = mass[None, :] return 0.5 * (momentum / mass[..., None]).sum(axis=(-2, -1))
4361c1497d1107def2ae4e74f8cb7ec7f1312b8d
30,013