content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def listUpTo(num): """ Returns a lists of integers from 1 up to num """ return list(range(1, num + 1))
aa15d7e14912bdaf3bc8801c4b853c8b392db021
29,330
def mirror(matrix): """Mirror a matrix.""" return [reversed(_row) for _row in matrix]
778405db16d5865a555db44538e0e11d9c9258f9
29,332
def is_category_suspicious(category, reputation_params): """ determine if category is suspicious in reputation_params """ return category and category.lower() in reputation_params['suspicious_categories']
864aa520eba53c2e0ea2a6d2fbd3f0172bcab05f
29,335
from typing import Iterable def replace_symbols_with_values(list_of_lists, replacements): """ Take iteratively a list of lists (at any depth level) and replace strings with the corresponding values in the ``replacements`` dictionary, leaving other types of values (floats, ints, ...) untouched. :return: a new list_of_lists with the same shape, with strings replaced by numbers. :raise ValueError: if one of the values is not found """ if isinstance(list_of_lists, str): # Check this first, a str is also Iterable try: return replacements[list_of_lists] except KeyError: raise ValueError("Unknown replacement '{}'".format(list_of_lists)) elif isinstance(list_of_lists, Iterable): return [ replace_symbols_with_values(elem, replacements=replacements) for elem in list_of_lists ] else: return list_of_lists
d3ab32e2527ad2e29515aa727676f8cbc86c9ee0
29,336
def _return_value(resource, key): """ Return the value from the resource """ return resource[key]
80cc72be0955e1b931422288dc84ede1d2098334
29,339
def handled_float(value, default=0): """ Returns ``float(value)`` if value is parseable by ``float()``. Otherwise returns ``default``. """ ret_val = default try: ret_val = float(value) except (TypeError, ValueError): pass return ret_val
d905695486c05ed11413307d3f5877ff905654d4
29,343
def group_by_company(devices): """Group a list of devices by company.""" grouped = {} for dev in devices: try: grouped[dev['company']['name']].append(dev) except KeyError: grouped[dev['company']['name']] = [dev] return grouped
9b5b1c56a95132a8777e3206116819e528483a43
29,344
def first(items): """ Get the first item from an iterable. Warning: It consumes from a generator. :param items: an iterable :return: the first in the iterable """ for item in items: return item
2ed7fa730b1b1c1588bc98e93ac8ef02a669ae98
29,346
from typing import List import itertools def mixup_arguments(*args) -> List: """mixups given arguments [argument_1_1, argument_1_2], [argument_2_1] => [(argument_1_1, argument_2_1), (argument_1_2, argument_2_1)] Returns: List: [(arg1, arg2), ...] """ return list(itertools.product(*args))
cf21e83b2ac07834220fab4bf000f98462c33a01
29,348
def cal_words_num(lines): """ Calculate number of words in lines :param lines: lines to be calculate :return: number of words """ return sum(map(len, lines))
fc8f6022620687d21d0fa26bd51466a738eb0333
29,351
def add_delayed(df): """ Add col Delayed. 0 = punctual, 1 = delayed by more than 10 min """ _df = df.copy() delayed = [] for index, row in _df.iterrows(): if row['Timedelta'] > 10: delayed.append(1) else: delayed.append(0) _df['Delayed'] = delayed return _df
06f187dc06b934a8f9384972c2f6bfe9461607b7
29,357
from typing import Collection def key_map(data_: Collection) -> dict: """ Map all keys in a given data collection to their respective values. e.g. For the next data collection: data = [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'bar', 'age': 31, 'country': 'US' }, { 'name': 'Mr. X', 'age': 29, 'country': 'UK' } ] mapped_data = key_mep(data) mapped_data['age'][31] will return: [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'bar', 'age': 31, 'country': 'US' } ] mapped_data['country']['UK'] will return: [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'Mr. X', 'age': 29, 'country': 'UK' } ] :param data_: :return: """ mapped_data = {} for item in data_: for k, v in item.items(): if k not in mapped_data: mapped_data[k] = {} if v not in mapped_data[k]: mapped_data[k][v] = [] mapped_data[k][v].append(item) return mapped_data
f9939e79090831d140e41158e175bc61661cc740
29,359
def _parse_cpmd_atoms_block(lines, line_idx, parsed): """Add to ``parsed`` ``cpmd_atom_to_line_idx``. ``cpmd_atom_to_line_idx`` is a Dict[int, int] that associates a CPMD atom index to the line number where its coordinates are stored. Parameters ---------- lines : List[str] The lines of the entire file as read by file.readlines(). line_idx : int The index of the first line after '&ATOMS'. parsed : Dict A memo dictionary where the parsed info is saved. Returns ------- line_idx : int The line index right after the '&END' directive of the '&MIMIC' block. """ parsed['cpmd_atom_to_line_idx'] = {} current_atom_idx = 0 while line_idx < len(lines): line = lines[line_idx].strip() if line.startswith('*'): # New atom type. First line is nonlocality, second is number of atoms. n_atoms = int(lines[line_idx+2]) # Add the atoms to the map. line_idx += 3 for element_atom_idx in range(n_atoms): parsed['cpmd_atom_to_line_idx'][current_atom_idx] = line_idx+element_atom_idx current_atom_idx += 1 line_idx += n_atoms elif line.startswith('&END'): break else: # Empty line. line_idx += 1 return line_idx + 1
0dd693c4ca02af2b77288fd1c7a8ce2d2ab213bd
29,363
def mndvi(b2, b4, b8): """ Modified Normalized Difference Vegetation Index \ (Main et al., 2011). .. math:: MNDVI = (b8 - b4) / (b8 + b4 - 2 * b2) :param b2: Blue. :type b2: numpy.ndarray or float :param b4: Red. :type b4: numpy.ndarray or float :param b8: NIR. :type b8: numpy.ndarray or float :returns MNDVI: Index value .. Tip:: Main, R., Cho, M. A., Mathieu, R., O’kennedy, M. M., Ramoelo, A., \ Koch, S. 2011. An investigation into robust spectral indices for \ leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and \ Remote Sensing 66, 751-761. doi:10.1016/j.isprsjprs.2011.08.001. """ MNDVI = (b8 - b4) / (b8 + b4 - 2 * b2) return MNDVI
af90990cf706ec353b1b435dc3d48a3c9801be92
29,366
def get_heading_text_lines(heading_regions): """ Given a list of TextRegion objects ``heading_regions`` (of type heading) return all of their text lines as one big list. :param heading_regions: List of TextRegion objects of type heading. :type heading_regions: List[TextRegion] :return: List of all TextLine objects belonging to the heading regions. """ text_lines = [] for heading_region in heading_regions: text_lines.extend(heading_region.text_lines) return text_lines
671d2de7ce90319307199d14805f9ac0f0bf76fd
29,367
from typing import List from typing import Dict from typing import Any def validate_cell_header( headers: List[str], cell: Dict[str, Any] ) -> List[str]: """Check that header of a cell meets project specifications.""" content = [line.rstrip('\n') for line in cell['source']] curr_header = content[0] msg = f"Cell header must be h2 (i.e. start with ##), found: {curr_header}" if not curr_header.startswith('## '): raise ValueError(msg) msg = f"Each header must appear only once, '{curr_header}' is duplicated" if curr_header in headers: raise ValueError(msg) headers.append(curr_header) return headers
c18c385792a0f04661ca3961e31d7bb7ce8e5801
29,372
def zaction(op, inv): """ Return a function f: (G, Z) -> G g, n |-> g op g op ... (n-1 times) ... op g If n is zero, it returns identity element. If n is negative, it returns |n|-1 times op on the inverse of g. """ def f(g, n): result = op(g, inv(g)) # identity if n < 0: g, n = inv(g), -n for i in range(n): result = op(result, g) return result return f
a75f061221ce28b03f3bcc4ddbbc6985f20339b2
29,376
def percentage_to_int(value): """ Scale values from 0-100 to 0-255 """ return round((255.0 / 100.0) * float(value))
b7bbc35da0fc704db0f454692b52286123cbb942
29,380
import torch def select_seeds(dist1: torch.Tensor, R1: float, scores1: torch.Tensor, fnn12: torch.Tensor, mnn: torch.Tensor): """ Select seed correspondences among the set of available matches. dist1: Precomputed distance matrix between keypoints in image I_1 R1: Base radius of neighborhoods in image I_1 scores1: Confidence scores on the putative_matches. Usually holds Lowe's ratio scores. fnn12: Matches between keypoints of I_1 and I_2. The i-th entry of fnn12 is j if and only if keypoint k_i in image I_1 is matched to keypoint k_j in image I_2 mnn: A mask indicating which putative matches are also mutual nearest neighbors. See documentation on 'force_seed_mnn' in the DEFAULT_CONFIG. If None, it disables the mutual nearest neighbor filtering on seed point selection. Expected a bool tensor with shape (num_keypoints_in_source_image,) Returns: Indices of seed points. im1seeds: Keypoint index of chosen seeds in image I_1 im2seeds: Keypoint index of chosen seeds in image I_2 """ im1neighmap = dist1 < R1**2 # (n1, n1) # find out who scores higher than whom im1scorescomp = scores1.unsqueeze(1) > scores1.unsqueeze(0) # (n1, n1) # find out who scores higher than all of its neighbors: seed points if mnn is not None: im1bs = (~torch.any(im1neighmap & im1scorescomp & mnn.unsqueeze(0), dim=1)) & mnn & (scores1 < 0.8**2) # (n1,) else: im1bs = (~torch.any(im1neighmap & im1scorescomp, dim=1)) & (scores1 < 0.8**2) # collect all seeds in both images and the 1NN of the seeds of the other image im1seeds = torch.where(im1bs)[0] # (n1bs) index format im2seeds = fnn12[im1bs] # (n1bs) index format return im1seeds, im2seeds
36ac7c9e9f6ccef31e487d350acfa2b4e496a7d4
29,381
def getarg(args, index): """ Helper to retrieve value from command line args """ return args[index] if index < len(args) else None
256de43dda23c9f613c61a8dca456a3d507ca332
29,384
def resize_to(img_obj, new_height, new_width): """ Resize an image to the specified dimensions """ assert isinstance(new_height, int) assert isinstance(new_width, int) assert new_height > 0 assert new_width > 0 return img_obj.resize((new_width, new_height))
38303694e840ca29f01d6cb5b80e54d6f1c29008
29,387
def label(dt): """ Setting the label for the integration timestep """ return 'dt = {} s'.format(dt)
5cf5bce8079b2a0685eab0d54f16c4e61028b279
29,393
def try_to_convert(value): """Tries to convert [value] to an int, returns the original string on fail""" try: return int(value) except: return value
a4358e0827691262469ca776af6c207e5e09f8a2
29,395
def sf_mag(a: tuple) -> int: """ Calculates the magnitude of a snailfish number :param a: a snailfish number :return: the magnitude as int >>> sf_mag((9, 1)) 29 >>> sf_mag((1, 9)) 21 >>> sf_mag(((9, 1),(1, 9))) 129 >>> sf_mag(((1,2),((3,4),5))) 143 >>> sf_mag(((((0,7),4),((7,8),(6,0))),(8,1))) 1384 >>> sf_mag(((((1,1),(2,2)),(3,3)),(4,4))) 445 >>> sf_mag(((((3,0),(5,3)),(4,4)),(5,5))) 791 >>> sf_mag(((((5,0),(7,4)),(5,5)),(6,6))) 1137 >>> sf_mag(((((8,7),(7,7)),((8,6),(7,7))),(((0,7),(6,6)),(8,7)))) 3488 >>> sf_mag(((((6,6),(7,6)),((7,7),(7,0))),(((7,7),(7,7)),((7,8),(9,9))))) 4140 """ if type(a[0]) is int: left = a[0] else: left = sf_mag(a[0]) if type(a[1]) is int: right = a[1] else: right = sf_mag(a[1]) return left * 3 + right * 2
8292494f9e8ef4fe63dbaa7aef1c0973576aba64
29,399
import time def create_datasplit(train_set, validation_set, test_set, name=None): """Create a datasplit dict from user-defined data sets Args: train_set (set): set of audio file paths valid_set (set): set of audio file paths test_set (set): set of audio file paths name (str): name of the datasplit (set to unix timestamp if not specified) Returns: a dict with train_set, validation_set and test_set, as sets of audio file paths """ if not name: name = int(time.time()) return {"id": "{}".format(name), "sets": {"train": train_set, "validation": validation_set, "test": test_set} }
a6d35205dc8c5d31662301a471e291cd578f77ee
29,408
def ndmi(b8, b11): """ Normalized Difference Moisture Index \ (Gerard et al., 2003). .. math:: NDMI = (b8 - b11) / (b8 + b11) :param b8: NIR. :type b8: numpy.ndarray or float :param b11: SWIR 1. :type b11: numpy.ndarray or float :returns NDMI: Index value .. Tip:: Gerard, F., Plummer, S., Wadsworth, R., Sanfeliu, \ A. F., Iliffe, L., Balzter, H., & Wyatt, B. 2003. \ Forest fire scar detection in the boreal forest with \ multitemporal SPOT-VEGETATION data. IEEE Transactions \ on Geoscience and Remote Sensing 41(11), 2575-2585. \ doi:10.1109/tgrs.2003.819190. """ NDMI = (b8 - b11) / (b8 + b11) return NDMI
ed60cd5bae20167a747d3df1e9a5e9aa386ce385
29,411
def chunker(df, size): """ Split dataframe *df* into chunks of size *size* """ return [df[pos:pos + size] for pos in range(0, len(df), size)]
ea96315f9963551f4870d6732570d0ae375bd3c3
29,418
def clean_advance_reservation(text): """ The advance reservation field identifies whether or not advance reservations are required to use these facilities (day use areas). If there is not recorded answer (blank) we default to 'no reservation required'. Returns 'True' if reservation required, False otherwise. """ text = text.lower() if text in ['yes']: return True if 'registration required' in text: return True if 'tour request form' in text: return True if 'call ahead' in text: return True return False
8f707074f62ff605935737e3a6fa4cf2dc492de2
29,428
def _get_question_features(conv_id, QUESTIONS): """ Given conversation id and a dictionary QUESTIONS Returns an one-hot vector of length 8, the Xth entry being 1 iff the conversation contains question type X. """ ret = {} for ind in range(8): ret['question_type%d'%(ind)] = 0 if conv_id in QUESTIONS: for pair in QUESTIONS[conv_id]: ret['question_type%d'%(pair['question_type'])] = 1 return ret
7e81b6aed3f7fdd4aae1cd9e8cafdb43ebea2586
29,433
def validate_csv(row0, required_fields): """ :param row0: :param required_fields: :return: a tuple, True if all requirements are met and a dictionary with the index for all the fields """ for field in required_fields: if field not in row0: return False, {} field_pos = {} for idx, field in enumerate(row0): field_pos[field] = idx return True, field_pos
6a126f22a86fbcfa4192ec4f9104faab7efd6b3f
29,439
from typing import Sequence from typing import Callable from typing import Any def batch_by_property( items: Sequence, property_func: Callable ) -> list[tuple[list, Any]]: """Takes in a Sequence, and returns a list of tuples, (batch, prop) such that all items in a batch have the same output when put into the Callable property_func, and such that chaining all these batches together would give the original Sequence (i.e. order is preserved). Examples -------- Normal usage:: batch_by_property([(1, 2), (3, 4), (5, 6, 7), (8, 9)], len) # returns [([(1, 2), (3, 4)], 2), ([(5, 6, 7)], 3), ([(8, 9)], 2)] """ batch_prop_pairs = [] curr_batch = [] curr_prop = None for item in items: prop = property_func(item) if prop != curr_prop: # Add current batch if len(curr_batch) > 0: batch_prop_pairs.append((curr_batch, curr_prop)) # Redefine curr curr_prop = prop curr_batch = [item] else: curr_batch.append(item) if len(curr_batch) > 0: batch_prop_pairs.append((curr_batch, curr_prop)) return batch_prop_pairs
733dae3d31219dafbe115f12263a3da735409c30
29,440
def transpose_func(classes, table): """ Transpose table. :param classes: confusion matrix classes :type classes: list :param table: input confusion matrix :type table: dict :return: transposed table as dict """ transposed_table = {k: table[k].copy() for k in classes} for i, item1 in enumerate(classes): for j, item2 in enumerate(classes): if i > j: temp = transposed_table[item1][item2] transposed_table[item1][item2] = transposed_table[item2][item1] transposed_table[item2][item1] = temp return transposed_table
6c59feef2b735076c5768e086ef2e91331b78a73
29,450
from functools import reduce def traverse_dict_children(data, *keys, fallback=None): """attempts to retrieve the config value under the given nested keys""" value = reduce(lambda d, l: d.get(l, None) or {}, keys, data) return value or fallback
2c6f28259136bd8248306b7e759540fc3877d46f
29,451
def get_idxs_in_correct_order(idx1, idx2): """First idx must be smaller than second when using upper-triangular arrays (matches, keypoints)""" if idx1 < idx2: return idx1, idx2 else: return idx2, idx1
05963c4f4b692b362980fde3cf6bb1de1b8a21e0
29,453
from typing import Dict from typing import Any def source_startswith(cell: Dict[str, Any], key: str) -> bool: """Return True if cell source start with the key.""" source = cell.get("source", []) return len(source) > 0 and source[0].startswith(key)
a3dab1e72488a5075832432f36c6fc10d9808a7f
29,455
def _sabr_implied_vol_hagan_A4( underlying, strike, maturity, alpha, beta, rho, nu): """_sabr_implied_vol_hagan_A4 One of factor in hagan formua. See :py:func:`sabr_implied_vol_hagan`. A_{4}(K, S; T) & := & 1 + \left( \\frac{(1 - \\beta)^{2}}{24} \\frac{\alpha^{2}}{(SK)^{1-\\beta}} + \\frac{1}{4} \\frac{\\rho\\beta\nu\alpha}{(SK)^{(1-\\beta)/2}} + \\frac{2 - 3\\rho^{2}}{24}\nu^{2} \\right) T :param float underlying: :param float strike: :param float maturity: :param float alpha: :param float beta: :param float rho: :param float nu: :return: value of factor. :rtype: float. """ one_minus_beta = 1.0 - beta one_minus_beta_half = one_minus_beta / 2.0 one_minus_beta2 = one_minus_beta ** 2 numerator1 = one_minus_beta2 * alpha * alpha denominator1 = 24.0 * ((underlying * strike) ** one_minus_beta) term1 = numerator1 / denominator1 numerator2 = rho * beta * nu * alpha denominator2 = 4.0 * ((underlying * strike) ** one_minus_beta_half) term2 = numerator2 / denominator2 term3 = (2.0 - 3.0 * rho * rho) * nu * nu / 24.0 return 1.0 + (term1 + term2 + term3) * maturity
704f4db60570cc18ad16b17d9b6ba93747d373d4
29,466
import glob def get_sorted_files(files): """Given a Unix-style pathname pattern, returns a sorted list of files matching that pattern""" files = glob.glob(files) files.sort() return files
9bed6be4c57846c39290d4b72dba1577f9d76396
29,474
from typing import Dict from typing import Any def modify_namelist_template( namelist_template: str, placeholder_dict: Dict[str, Any] ): """ Placeholders in the form of %PLACEHOLDER_NAME% are replaced within the given namelist template. Parameters ---------- namelist_template : str Placeholders within this template are replaced by the given value. placeholder_dict : Dict[str, Any] This is the directory with the placeholder values. A placeholder is skipped if it is not found within given namelist template. The values have to be castable to string type. Returns ------- namelist_template : str The namelist where the placeholders are replaced with given values. """ for placeholder, value in placeholder_dict.items(): namelist_template = namelist_template.replace(placeholder, str(value)) return namelist_template
2a872b20caf871ff6406e04a91d69ee2f33ba66c
29,479
import pickle def load_results(path, filename): """ load result from pickle files. args: path: path to directory in which file is located filename: name of the file (without pickle extention) """ with open(path+filename+'.pickle', 'rb') as handle: return pickle.load(handle)
6f76914cdbb25c4c5f81bc2bd61b61da5b34777a
29,481
from pathlib import Path def create_target_absolute_file_path(file_path, source_absolute_root, target_path_root, target_suffix): """ Create an absolute path to a file. Create an absolute path to a file replacing the source_absolute_root part of the path with the target_path_root path if file_path is on the source_absolute_root path and replace the extension with target_suffix. If file_path is not on source_absolute_root return file_path with the target_suffix Parameters ---------- file_path : str or Path Path to a file source_absolute_root : str or Path a path that may be the start of file_path target_path_root : str or Path A path that will become the start of the path to the returned target path target_suffix : str The suffix to use on the returned target path Returns ------- Path The new absolute path to the file that was on file_path """ if Path(file_path).is_relative_to(source_absolute_root): target_relative_path_to_source_root = Path(file_path).relative_to(source_absolute_root) # target_relative_path_to_source_root is the relative path that will be added onto the export folder path return Path(target_path_root, target_relative_path_to_source_root).with_suffix(target_suffix) if not Path(file_path).is_absolute(): # path is relative add target path_root and new suffix return Path(target_path_root, file_path).with_suffix(target_suffix) # file is not in the source path return the file path with the new suffix return Path(file_path).with_suffix(target_suffix)
0d24f8544752967815bd8ddceea15b371076c500
29,485
def query_prefix_transform(query_term): """str -> (str, bool) return (query-term, is-prefix) tuple """ is_prefix = query_term.endswith('*') query_term = query_term[:-1] if is_prefix else query_term return (query_term, is_prefix)
d33dd4222f53cba471be349b61e969838f6188d5
29,486
def consolidate_conversion(x): """ Collapses the conversion status to Yes or No. """ xl = x.str.lower() if any(xl.str.startswith('purchase')) or any(xl.str.startswith('converted')) or \ any(xl.str.startswith('y')) or any(xl.str.startswith('processed')) or \ any(xl.str.startswith('payment_completed')) or any(xl.str.startswith('initiated')) \ or any(xl.str.startswith('pdf_error')) or any(xl.str.startswith('toprocess')) \ or any(xl.str.startswith('delivered')): return 'Y' else: return 'N'
fa9e8c93705d9d1941c12aeae293dc32750853d2
29,489
def fix_msg(msg, name): """Return msg with name inserted in square brackets""" b1 = msg.index('[')+1 b2 = msg.index(']') return msg[:b1] + name + msg[b2:]
66544f811a9cead0a40b6685f60a7de8f219e254
29,491
def reshape_as_vectors(tensor): """Reshape from (b, c, h, w) to (b, h*w, c).""" b, c = tensor.shape[:2] return tensor.reshape(b, c, -1).permute(0, 2, 1)
79044cc2061d0a4368922c3dc6c1324eb5fe315b
29,493
def get_common_items(list1, list2): """ Compares two lists and returns the common items in a new list. Used internally. Example ------- >>> list1 = [1, 2, 3, 4] >>> list2 = [2, 3, 4, 5] >>> common = get_common_items(list1, list2) list1: list list2: list returns: list """ common = [value for value in list1 if value in list2] return common
4978429d7d255270b4e4e52e44159e934cbd5ba5
29,497
def Powerlaw(x, amp, index, xp): """ Differential spectrum of simple Powerlaw normlized at xp :param x: Energies where to calculate differential spectrum :param amp: Amplitude of pl :param index: Index of pl :param xp: Normalization energy :return: differential spectrum of a Powerlaw at energies x """ return amp*(x/xp)**index
6e31d7a85998f762ff27305a38535487db6592fb
29,501
def get_by_tag_name(element, tag): """ Get elements by tag name. :param element: element :param tag: tag string :return: list of elements that matches tag """ results = [] for child in element.findall('.//'): if tag in child.tag: results.append(child) return results
d1e2d196cae5c3a0de00c624f5df28c988eaa088
29,504
def clamp(value, min=0, max=255): """ Clamps a value to be within the specified range Since led shop uses bytes for most data, the defaults are 0-255 """ if value > max: return max elif value < min: return min else: return value
2d6e01daddc3603527021e4dbab261f82b3f8862
29,505
def clamp_value(value, minimum, maximum): """Clamp a value to fit within a range. * If `value` is less than `minimum`, return `minimum`. * If `value` is greater than `maximum`, return `maximum` * Otherwise, return `value` Args: value (number or Unit): The value to clamp minimum (number or Unit): The lower bound maximum (number or Unit): The upper bound Returns: int or float: The clamped value Example: >>> clamp_value(-1, 2, 10) 2 >>> clamp_value(4.0, 2, 10) 4.0 >>> clamp_value(12, 2, 10) 10 """ if value < minimum: return minimum elif value > maximum: return maximum else: return value
1224b7ed098781d66721dceef5c837470f1195a6
29,507
def make_signatures_with_minhash(family, seqs): """Construct a signature using MinHash for each sequence. Args: family: lsh.MinHashFamily object seqs: dict mapping sequence header to sequences Returns: dict mapping sequence header to signature """ # Construct a single hash function; use the same for all sequences h = family.make_h() signatures = {} for name, seq in seqs.items(): signatures[name] = h(seq) return signatures
c6366811536f1e32c29e3a00c91267bde85969fa
29,510
import socket def resolve_fqdn_ip(fqdn): """Attempt to retrieve the IPv4 or IPv6 address to a given hostname.""" try: return socket.inet_ntop(socket.AF_INET, socket.inet_pton(socket.AF_INET, socket.gethostbyname(fqdn))) except Exception: # Probably using ipv6 pass try: return socket.inet_ntop(socket.AF_INET6, socket.inet_pton(socket.AF_INET6, socket.getaddrinfo(fqdn, None, socket.AF_INET6)[0][4][0])) except Exception: return ''
2e7680fe3a4ea174f3f7b22e4991a3a65e5e4995
29,516
from pathlib import Path def field_name_from_path(path): """Extract field name from file path.""" parts = Path(path).stem.split('.') field_name = parts[-1] if len(parts) > 1: if parts[-1] in ('bam', 'sam', 'cram'): field_name = parts[-2] return field_name
9d21b760bccb6557f5450921482d76917ba13981
29,519
def binaryStringDigitDiff(binstr1, binstr2): """ Count the number of digits that differ between two same-length binary strings Parameters ---------- binstr1 : string A binary (base-2) numeric string. binstr2 : string A binary (base-2) numeric string. Returns ------- An integer, the number of digits that differ between the two strings. """ digitDiff = 0 if not len(binstr1) == len(binstr2): raise Exception("binaryStringDigitDiff requires arguments to have same length") for n in range(0, len(binstr1)): if binstr1[n] != binstr2[n]: digitDiff += 1 return digitDiff
be39c7dbc30f6e49263a880254a021ff6873d240
29,521
from datetime import datetime def timestamp_to_datetime(timestamp): """Generate datetime string formatted for the ontology timeseries Args: timestamp (float, timemstamp): Timestamp value as float Returns: str: Returns the timestamp with the format necessary to insert in the Ontology """ return datetime.fromtimestamp(timestamp).strftime("%Y-%m-%dT%H:%M:%SZ")
b894c3610842bf62387cbed77047fe4cc4d577a5
29,524
def setdiag(G, val): """ Sets the diagonal elements of a matrix to a specified value. Parameters ---------- G: A 2D matrix or array. The matrix to modify. val: Int or float The value to which the diagonal of 'G' will be set. """ n = G.shape[0] for i in range(0,n): G[i,i] = val return G
74a1e2899a8575f04692f74ad01e122b3639d2b1
29,526
def get_operation_full_job_id(op): """Returns the job-id or job-id.task-id for the operation.""" job_id = op.get_field('job-id') task_id = op.get_field('task-id') if task_id: return '%s.%s' % (job_id, task_id) else: return job_id
6c0258d5c2053a5320d78340979fe60c8ea88980
29,530
def get_conditions(worksheet): """ Get the conditions displayed on a worksheet. args: worksheet (seeq.spy.workbooks._worksheet.AnalysisWorksheet): Worksheet returns: conditions (pandas.DataFrame): Displayed Conditions """ display_items = worksheet.display_items if len(display_items) == 0: raise ValueError('No items (signals, conditions, etc) are displayed in this worksheet.') return display_items.query("Type == 'Condition'")
f3fe0bd58f9a0344f047e3ae6eef6bdefa325c21
29,534
def TailFile(fname, lines=20): """Return the last lines from a file. @note: this function will only read and parse the last 4KB of the file; if the lines are very long, it could be that less than the requested number of lines are returned @param fname: the file name @type lines: int @param lines: the (maximum) number of lines to return """ fd = open(fname, "r") try: fd.seek(0, 2) pos = fd.tell() pos = max(0, pos - 4096) fd.seek(pos, 0) raw_data = fd.read() finally: fd.close() rows = raw_data.splitlines() return rows[-lines:]
39f2f07421f150df16061219790e49f222f284e7
29,535
def get_df_subset(df, column_one, value_one, column_two, value_two): """ Takes a dataframe and filters it based on two columns and their matching values """ return df.loc[(df[column_one] == value_one) & (df[column_two] == value_two), :]
4971af24f33b12d00a2385b7c5ee295630f385de
29,538
def zoom_to_roi(zoom, resolution): """Gets region of interest coordinates from x,y,w,h zoom parameters""" x1 = int(zoom[0] * resolution[0]) x2 = int((zoom[0]+zoom[2]) * resolution[0]) y1 = int(zoom[1] * resolution[1]) y2 = int((zoom[1]+zoom[3]) * resolution[1]) return ((x1,y1),(x2,y2))
cd77da9a67713ed7f76f4d41a7b7bee7e2f54a78
29,540
def get_ext(path): """Get file extension. Finds a file's extension and returns it. Parameters ---------- path : str The path to a file. Returns ------- str The file extension including leading "." """ return path[path.rfind(".") :]
80ba4fb8686b2a7454240a56aa0c3a7d41636f27
29,541
def _engprop(l): # {{{1 """Print the engineering properties as a HTML table.""" lines = [ "</tbody>", "<tbody>", '<tr><td colspan="6" align="center"><strong>Engineering properties</strong></td></tr>', '<tr><td colspan="3" align="center"><strong>In-plane</strong></td>', '<td colspan="3" align="center"><strong>3D stiffness tensor</strong></td></tr>', "<tr>", f'<td>E<sub>x</sub></td><td>{l.Ex:.0f}</td><td align="left">MPa</td>', f'<td>E<sub>x</sub></td><td>{l.tEx:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>E<sub>y</sub></td><td>{l.Ey:.0f}</td><td align="left">MPa</td>', f'<td>E<sub>y</sub></td><td>{l.tEy:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>E<sub>z</sub></td><td>{l.Ez:.0f}</td><td align="left">MPa</td>', f'<td>E<sub>z</sub></td><td>{l.tEz:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>G<sub>xy</sub></td><td>{l.Gxy:.0f}</td><td align="left">MPa</td>', f'<td>G<sub>xy</sub></td><td>{l.tGxy:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>G<sub>xz</sub></td><td>{l.Gxz:.0f}</td><td align="left">MPa</td>', f'<td>G<sub>xz</sub></td><td>{l.tGxz:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>G<sub>yz</sub></td><td>{l.Gyz:.0f}</td><td align="left">MPa</td>', f'<td>G<sub>yz</sub></td><td>{l.tGyz:.0f}</td><td align="left">MPa</td>', "</tr>", "<tr>", f'<td>&nu;<sub>xy</sub></td><td>{l.νxy:.3f}</td><td align="left">-</td>', f'<td>&nu;<sub>xy</sub></td><td>{l.tνxy:.3f}</td><td align="left">-</td>', "</tr>", "<tr>", f'<td>&nu;<sub>yx</sub></td><td>{l.νyx:.3f}</td><td align="left">-</td>', f'<td>&nu;<sub>xz</sub></td><td>{l.tνxz:.3f}</td><td align="left">-</td>', "</tr>", "<tr>", f'<td>&alpha;<sub>x</sub></td><td>{l.αx:.3f}</td><td align="left">K<sup>-1</sup></td>', f'<td>&nu;<sub>yz</sub></td><td>{l.tνyz:.3f}</td><td align="left">-</td>', "</tr>", "<tr>", f'<td>&alpha;<sub>y</sub></td><td>{l.αy:.3f}</td><td align="left">K<sup>-1</sup></td>', "</tr>", ] return lines
e6bbaa4a39265b2703aa623a99a73f5b4e471023
29,544
import typing import hashlib def create_sf_instance(entity_name: str, property_label: str) -> typing.Tuple[str, str]: """Creates a slot filling instance by combining a name and a relation. Arguments: entity_name: ``str`` The name of the AmbER set to fill into the template. property_label: ``str`` The property name of the AmbER set tuple. Returns: query: ``str`` The template with the name slotted in. query_hashlib: ``str`` A MD5 hash of the query. """ sf_input = entity_name + " [SEP] " + property_label sf_hashlib = hashlib.md5(sf_input.encode("utf-8")).hexdigest() return sf_input, sf_hashlib
02e69115261b148c7fdb270864095c63bbdb2278
29,549
def ensure_keys(dict_obj, *keys): """ Ensure ``dict_obj`` has the hierarchy ``{keys[0]: {keys[1]: {...}}}`` The innermost key will have ``{}`` has value if didn't exist already. """ if len(keys) == 0: return dict_obj else: first, rest = keys[0], keys[1:] if first not in dict_obj: dict_obj[first] = {} dict_obj[first] = ensure_keys(dict_obj[first], *rest) return dict_obj
e8d87444ed8961d8d650b49c8670dca1496623b1
29,550
import re def middle_coord(text): """Get the middle coordinate from a coordinate range. The input is in the form <start> to <end> with both extents being in degrees and minutes as N/S/W/E. S and W thus need to be negated as we only care about N/E. """ def numbers_from_string(s): """Find all numbers in a string.""" return [float(n) for n in re.findall(r'[\d.]*\d[\d.]*', s)] def tuple_to_float(numbers): divisor = 1 result = 0 for num in numbers: result += float(num) / divisor divisor = divisor * 60 return result if text is None: return None pieces = text.split(' to ', 1) start, end = map(numbers_from_string, pieces) start = tuple_to_float(start) end = tuple_to_float(end) if pieces[0][-1] in ('S', 'W'): start = -start if pieces[1][-1] in ('S', 'W'): end = -end return (start + end) / 2
4e8148102ff04969279690922ddce5bd767fed55
29,554
def convert_webaccess_datestamp(entry): """Set date and time attributes based on an iso date stamp""" attrlist = entry['date_stamp'].split('/') timelist = attrlist[-1].split(':') entry['year'] = timelist[0] months = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'} entry['month'] = months[attrlist[1]] entry['day'] = attrlist[0] entry['tstamp'] = ''.join(timelist[1:]) entry['numeric_date_stamp'] = entry['year'] + entry['month'] + \ entry['day'] + entry['tstamp'] return entry
795c889f93f6d87cced5f9aa9293e6491f6b2678
29,561
def multipart_content_type(boundary, subtype='mixed'): """Creates a MIME multipart header with the given configuration. Returns a dict containing a MIME multipart header with the given boundary. .. code-block:: python >>> multipart_content_type('8K5rNKlLQVyreRNncxOTeg') {'Content-Type': 'multipart/mixed; boundary="8K5rNKlLQVyreRNncxOTeg"'} >>> multipart_content_type('8K5rNKlLQVyreRNncxOTeg', 'alt') {'Content-Type': 'multipart/alt; boundary="8K5rNKlLQVyreRNncxOTeg"'} Parameters ---------- boundry : str The content delimiter to put into the header subtype : str The subtype in :mimetype:`multipart/*`-domain to put into the header """ ctype = 'multipart/%s; boundary="%s"' % ( subtype, boundary ) return {'Content-Type': ctype}
a19cb6fcf43f2b3c2abecf3af960f57987967c0e
29,563
import re def pattern_count(pattern, text): """Counts apperances of a Regex pattern in a string.""" return len(re.findall(pattern, text))
b12c8bc2132a9fd9afba7468befceac7edfb636f
29,564
from typing import List from typing import Any from typing import Dict from typing import Counter def get_common_items(list_to_count: List[Any], top_n: int) -> Dict[Any, int]: """Get the n most common items in descending order in a list of items. Args: text (List[Any]): List of items to be counted. top_n (int): This sets the limit for how many of the common items to return. Returns: Dict[str, int]: Dictionary with keys given by the item, and the value being count of the item in the list. """ counts = Counter(list_to_count) return {item: count for item, count in Counter(counts).most_common(top_n)}
928a243ab48cce35ead2c821b1891f88ce20123e
29,568
def trycast(value): """ Try to cast a string attribute from an XML tag to an integer, then to a float. If both fails, return the original string. """ for cast in (int, float): try: return cast(value) except ValueError: continue return value
3faaaa52a2d50e20a925db96de884709c052e7e3
29,571
def _fix_bed_coltype(bed): """Fix bed chrom and name columns to be string This is necessary since the chromosome numbers are often interpreted as int """ bed["chrom"] = bed["chrom"].astype(str) bed["name"] = bed["name"].astype(str) return bed
471410f31675d0de2f35883679e760c515ff0880
29,573
def get_time_slot(hour, minute): """ Computes time_slot id for given hour and minute. Time slot is corresponding to 15 minutes time slots in reservation table on Sutka pool web page (https://www.sutka.eu/en/obsazenost-bazenu). time_slot = 0 is time from 6:00 to 6:15, time_slot = 59 is time from 20:45 to 21:00. :param hour: hour of the day in 24 hour format :param minute: minute of the hour :return: time slot for line usage """ slot_id = (hour - 6)*4 + int(minute/15) return slot_id
dbfc510755a0b0a9612c0aa7d94922199c3f7f7d
29,576
from datetime import datetime def int_to_date_str(i_time): """unix epoc time in seconds to YYYY-MM-DD hh:mm:ss""" return str(datetime.fromtimestamp(i_time))
27f0773a78202e57ae498c1d40faabb29877b573
29,581
def get_waist_to_height_ratio(df): """Waist-to-height ratio A measure of the distribution of body fat. WHR= waist/height Ref.: https://en.wikipedia.org/wiki/Waist-to-height_ratio """ df["WHR"] = df["ac"] / df["height"] return df
0720dcda80bd5bccb3e121ca9859ea2da3b75144
29,586
def evaluate_acc(predictions, outputs): """Compute accuracy score by comparing two lists of same length element-wise Arguments: predictions {series} -- first list to be compared with the second one outputs {series} -- same length as predictions """ assert len(predictions) == len(outputs), "Lists have different size" return (predictions == outputs).sum()/len(predictions)
299086ba456799241505ab9df6c64e3cf54ea13a
29,590
def has_tool_tag(invocation): """ Checks if invocation has a tool_tag in workspace info Args: invocation (Invocation) Returns: True if tool_tag exists else false """ if (hasattr(invocation, 'workspace_info') and hasattr(invocation.workspace_info, 'tool_tag') and invocation.workspace_info.tool_tag != ''): return True return False
7ea992c62d6d3f9ec5e3d26d5e1c3ab850d6fe04
29,591
from typing import List def get_param_with_name(parameters: List[dict], name: str) -> dict: """Get the parameter that has the given name.""" matched_params = (p for p in parameters if p["name"] == name) return next(matched_params)
ea1f527bc03cb41a77e3b9743ee372246dc12f54
29,594
def extract_layout_switch(dic, default=None, do_pop=True): """ Extract the layout and/or view_id value from the given dict; if both are present but different, a ValueError is raised. Futhermore, the "layout" might be got (.getLayout) or set (.selectViewTemplate); thus, a 3-tuple ('layout_id', do_set, do_get) is returned. """ if do_pop: get = dic.pop else: get = dic.get layout = None layout_given = False set_given = 'set_layout' in dic set_layout = get('set_layout', None) get_given = 'get_layout' in dic get_layout = get('get_layout', None) keys = [] for key in ( 'layout', 'view_id', ): val = get(key, None) if val is not None: if layout is None: layout = val elif val != layout: earlier = keys[1:] and tuple(keys) or keys[0] raise ValueError('%(key)r: %(val)r conflicts ' '%(earlier)r value %(layout)r!' % locals()) keys.append(key) layout_given = True if layout is None: layout = default if set_layout is None: set_layout = bool(layout) return (layout, set_layout, get_layout)
41a7a11e72ed70dee1456334a93a5cfe0651ec37
29,600
from bs4 import BeautifulSoup def get_targets(html): """ Return bolded targeting parameters """ if html: doc = BeautifulSoup(html, "html.parser") return " ".join([b.get_text(" ") for b in doc.find_all("b")]) return ""
04248637d3f77d4ed5b5365e60298e7bfb0c6933
29,601
def diff_possible(numbers, k): """ Given a list of sorted integers and a non negative integer k, find if there exists 2 indicies i and j such that A[i] - A[j] = k, i != j """ if k < 0: raise ValueError('k can not be non negative') # Find k since as long as i is not larger than k # we do not even need to compare if numbers[-1] < k: return False start_i = 0 while start_i < len(numbers): if numbers[start_i] >= k: break else: start_i += 1 for i in range(start_i, len(numbers)): needed_num = numbers[i] - k for j in reversed(range(0, i)): if numbers[j] == needed_num: return True elif numbers[j] < needed_num: # All hope is lost, we can never reach k again break return False
54c45f24644c478dc48679c11c5217c0318af2b4
29,604
import tarfile def smart_is_tarfile(filepath): """ :func:`tarfile.is_tarfile` plus error handling. :param filepath: Filename. :type filepath: str """ try: istar = tarfile.is_tarfile(filepath) except (OSError, IOError): return False else: return istar
4fb203685100204ea4a28d7854634628599801ce
29,605
def to_cmd_string(unquoted_str: str) -> str: """ Add quotes around the string in order to make the command understand it's a string (useful with tricky symbols like & or white spaces): .. code-block:: python >>> # This str wont work in the terminal without quotes (because of the &) >>> pb_str = r"D:\Minab_4-DA&VHR\Minab_4-DA&VHR.shp" >>> to_cmd_string(pb_str) "\"D:\Minab_4-DA&VHR\Minab_4-DA&VHR.shp\"" Args: unquoted_str (str): String to update Returns: str: Quoted string """ if not isinstance(unquoted_str, str): unquoted_str = str(unquoted_str) cmd_str = unquoted_str if not unquoted_str.startswith('"'): cmd_str = '"' + cmd_str if not unquoted_str.endswith('"'): cmd_str = cmd_str + '"' return cmd_str
bdba5138daa580c34d49618da511ff0e20f192d4
29,607
from typing import Optional from typing import Dict from typing import Any def define_by_run_func(trial) -> Optional[Dict[str, Any]]: """Define-by-run function to create the search space. Ensure no actual computation takes place here. That should go into the trainable passed to ``tune.run`` (in this example, that's ``easy_objective``). For more information, see https://optuna.readthedocs.io/en/stable\ /tutorial/10_key_features/002_configurations.html This function should either return None or a dict with constant values. """ # This param is not used in the objective function. activation = trial.suggest_categorical("activation", ["relu", "tanh"]) trial.suggest_float("width", 0, 20) trial.suggest_float("height", -100, 100) # Define-by-run allows for conditional search spaces. if activation == "relu": trial.suggest_float("mult", 1, 2) # Return all constants in a dictionary. return {"steps": 100}
f8237b135e3a6467bdefd397f1da0ebaec0f4380
29,608
def rectangle_to_square(rectangle, width, height): """ Converts a rectangle in the image, to a valid square. Keeps the original rectangle centered whenever possible, but when that requires going outside the original picture, it moves the square so it stays inside. Assumes the square is able to fit inside the original picture. """ from_x, from_y, to_x, to_y = rectangle rectangle_width = to_x - from_x rectangle_height = to_y - from_y size = max(rectangle_width, rectangle_height) x_center = from_x + rectangle_width // 2 y_center = from_y + rectangle_height // 2 from_x = x_center - size // 2 to_x = x_center + size // 2 from_y = y_center - size // 2 to_y = y_center + size // 2 # ensure fitting horizontally if from_x < 0: to_x = to_x - from_x from_x = 0 elif to_x > width: from_x = from_x - (to_x - width) to_x = width # ensure fitting vertically if from_y < 0: to_y = to_y - from_y from_y = 0 elif to_y > height: from_y = from_y - (to_y - height) to_y = height return from_x, from_y, to_x, to_y
e879cf81c1448f72d1d5326b0a8f964e47173f07
29,613
def check_treedepth(samples, max_treedepth=10, quiet=False, return_diagnostics=False): """Check transitions that ended prematurely due to maximum tree depth limit. Parameters ---------- samples : ArviZ InferenceData instance Contains samples to be checked. Must contain both `posterior` and `samples_stats`. max_treedepth: int, default 10 Maximum tree depth used in the calculation. quiet : bool, default False If True, do not print diagnostic result to the screen. return_diagnostics : bool, default False If True, return both a Boolean about whether the diagnostic passed and the number of samples where the tree depth was too deep. Otherwise, only return Boolean if the test passed. Returns ------- passed : bool Return True if tree depth test passed. Return False otherwise. n_too_deep : int, optional Number of samplers wherein the tree depth was greater than `max_treedepth`. """ n_too_deep = (samples.sample_stats.treedepth.values >= max_treedepth).sum() n_total = samples.sample_stats.dims["chain"] * samples.sample_stats.dims["draw"] if not quiet: msg = "{} of {} ({}%) iterations saturated".format( n_too_deep, n_total, 100 * n_too_deep / n_total ) msg += " the maximum tree depth of {}.".format(max_treedepth) print(msg) pass_check = n_too_deep == 0 if not pass_check and not quiet: print( " Try running again with max_treedepth set to a larger value" + " to avoid saturation." ) if return_diagnostics: return pass_check, n_too_deep return pass_check
ed949405b408841d4d716151187c65d2638b1b4e
29,617
def inchesToMeters(inches): """Convert inches to meters.""" return inches * 0.0254
b9f87ddc885474964ff59618bd560fb20ac9d7ff
29,640
import bs4 def get_navigable_string_type(obj): """Get navigable string type.""" return bs4.NavigableString
79d47783e0441a17fc3016218683dc19c7dc78f2
29,650
def convert_parentheses_back(text: str): """Replaces ( and ) tokens with -LRB- and -RRB-""" return text.replace("(", "-LRB-").replace(")", "-RRB-")
7bf23c858ade23d61c3d12b39cb3a76b840aefc0
29,651
def is_asc_sorted(lst: list) -> bool: """ Utility that tells whether a given list is already ascendentally sorted with every item in the list greater than the previous. :param lst: list to check :return: true if and only if the given list is ascendentally sorted """ return all(lst[i+1] > lst[i] for i in range(0, len(lst) - 2))
9c1fcd2354196ca33c3f61fc91c17fa5cf6907a8
29,654
def identifyFileType(suffix): """Identify the file type and return correct syntax. :suffix: file suffix :returns: [inline comment syntax, multiple line comment syntax] """ if suffix == "py": return "#", "\"\"\"", "\"\"\"" elif suffix == "c" or suffix == "h" or suffix == "cpp" or suffix == "hpp": return "//", "/*", "*/" elif suffix == "java": return "//", "/*", "*/" else: return "not defined"
b4a6de0039fc7ca1459fffb56b0e95b884a10704
29,655
def parse_walltime(wt_arg): """ Converts walltimes to format dd:hh:mm:ss. """ # Clean the wt parts = wt_arg.split(":") wt_clean = ["{0:02d}".format(int(value)) for value in parts] # Pad with 00 wt_clean = ["00"] * (4 - len(wt_clean)) + wt_clean # Join and return return ":".join(wt_clean)
85327866ccf738f4212324f258e7400318b6a2d1
29,659
def read_list(fn): """Reads a list from a file without using readline. Uses standard line endings ("\n") to delimit list items. """ f = open(fn, "r") s = f.read() # If the last character in the file is a newline, delete it if s[-1] == "\n": s = s[:-1] l = s.split("\n") return l
0b73082074914b824e93cceb18ea773a916db5bc
29,660
def difference(f1_d, f2_d, out_f1_head, out_f2_head): """ Figures out the difference between two dictionaries and reports the difference Parameters ---------- f1_d : dict Dictionary for first fasta, chromosome names as values f2_d : dict Dictionary for second fasta, chromosome names as values out_f1_head : list Dictionary of filtered out chromosomes from first fasta out_f2_head : list List of filtered out chromosomes from second fasta Returns ------- The dictionaries of chromosome names found in one fasta and not the other nor in the filtered out chromosome names """ f1_not_f2 = [ f1_d[i] for i in set(list(f1_d.keys())).difference(list(f2_d.keys())) ] f1_not_f2_not_out = list(set(f1_not_f2) - set(list(out_f1_head))) f1_not_f2_not_out.sort() f2_not_f1 = [ f2_d[i] for i in set(list(f2_d.keys())).difference(list(f1_d.keys())) ] f2_not_f1_not_out = list(set(f2_not_f1) - set(list(out_f2_head))) f2_not_f1_not_out.sort() return(f1_not_f2_not_out, f2_not_f1_not_out)
4f25fc4595fbc59f02121a772123413a9e2a61a6
29,663
def add_error_total_and_proportion_cols( total_errs, total_rows, date, errs_by_table, total_by_table, aggregate_df_total, aggregate_df_error, aggregate_df_proportion): """ Function adds a new column to the growing dataframes. This column contains information depending on the dataframe in question. The column may contain information about a. the total number of rows b. the total number of 'poorly defined' rows c. the relative contribution of a particular table to the number of 'poorly defined' rows The column represents a particular date. Each row represents a particular table type. The final row is an 'aggregate' metric that is a sum of the rows immediately above it. :param total_errs (int): total number of errors across all sites for a particular date; across all tables total_rows (int): total number of rows across all sites for a particular date; across all tables date (string): date used to index into the dictionaries above errs_by_table (list): list of the total number of poorly defined row counts across all sites. sequence of the list parallels the alphabetical order of the tables. has 'total' metric at the end. total_by_table (list): list of the total number of row counts across all sites. sequence of the list parallels the alphabetical order of the tables. has 'total' metric at the end. aggregate_df_total (dataframe): dataframe that contains the total number of rows across all sites. each column is a date. each row is a table type. last row is the total number of rows for a particular date. aggregate_df_error (dataframe): dataframe that contains the total number of poorly defined rows across all sites. each column is a date. each row is a table type. last row is the total number of poorly defined rows for a particular date. aggregate_df_proportion (dataframe): dataframe that shows the 'contribution' of each table to the total number of poorly defined rows. for instance, if a table has half of all of the 'poorly defined rows' for a particular date, it will have a value of 0.5. each column is a date. each row is a table type. :return: aggregate_df_total (dataframe): same as the df that entered except now with an additional column to represent the date in question aggregate_df_error (dataframe): same as the df that entered except now with an additional column to represent the date in question aggregate_df_proportion (dataframe): same as the df that entered except now with an additional column to represent the date in question """ # adding to the growing column # total number of 'poorly defined' rows for a date if total_errs > 0: errs_by_table.append(total_errs) else: errs_by_table.append(float('NaN')) # total number of rows for a table for the date if total_rows > 0: total_by_table.append(total_rows) else: total_by_table.append(float('NaN')) # column for the 'total' rows; column for one date aggregate_df_total[date] = total_by_table # column for 'error' rows; column for one date aggregate_df_error[date] = errs_by_table # column for the contribution of each error type succ_rate_by_table = [] for errors, total in zip(errs_by_table, total_by_table): error_rate = round(errors / total * 100, 2) success_rate = 100 - error_rate succ_rate_by_table.append(success_rate) aggregate_df_proportion[date] = succ_rate_by_table return aggregate_df_error, aggregate_df_total, \ aggregate_df_proportion
3f1e6b7aa675d0184cde7d7712e41b89d689a536
29,664
import yaml def parse_str(source: str, model_content: str) -> dict[str, dict]: """Parse a string containing one or more yaml model definitions. Args: source: The file the content came from (to help with better logging) model_content: The yaml to parse Returns: A dictionary of the parsed model(s). The key is the type name from the model and the value is the parsed model root. """ parsed_models = {} roots = yaml.load_all(model_content, Loader=yaml.FullLoader) for root in roots: if "import" in root: del root["import"] root_name = list(root.keys())[0] parsed_models[root[root_name]["name"]] = root return parsed_models
acbca7fb764b09c8ccb2b5d7e28748bbb74ad870
29,665
def int_scale(val, val_range, out_range): """ Scale val in the range [0, val_range-1] to an integer in the range [0, out_range-1]. This implementation uses the "round-half-up" rounding method. >>> "%x" % int_scale(0x7, 0x10, 0x10000) '7777' >>> "%x" % int_scale(0x5f, 0x100, 0x10) '6' >>> int_scale(2, 6, 101) 40 >>> int_scale(1, 3, 4) 2 """ num = int(val * (out_range-1) * 2 + (val_range-1)) dem = ((val_range-1) * 2) # if num % dem == 0 then we are exactly half-way and have rounded up. return num // dem
a58bd33dd0712444bbfbd91e4f988a44780de323
29,667
def dict_search(data: dict, key: str, depth: int = 3): """Search a key value in a dict, return None if not found. Warn: This method can be slow due to the amount of depth """ data_keys = data.keys() for keys in data_keys: if keys == key: return data[key] if depth > 0: for keys in data_keys: if isinstance(data[keys], dict): result = dict_search(data[keys], key, depth - 1) if result: return result
94bf3753b8b37afb313983ff8a0d99a14b2e9b98
29,668
import importlib def load_plugin(plugin): """Get the plugin module """ return importlib.import_module(plugin)
5a59ee8f41e7a0e3d96e0582937a7f9eb7fa4be8
29,669
def bisection_search2(L, e): """ Implementation 2 for the divide-and-conquer algorithm Complexity: O(log n) :param L: List-object :param e: Element to look for :return: Boolean value if element has been found """ def helper(L, e, low, high): if high == low: return L[low] == e mid = (low + high) // 2 if L[mid] == e: return True elif L[mid] > e: if low == mid: return False else: return helper(L, e, low, mid - 1) else: return helper(L, e, mid + 1, high) if len(L) == 0: return False else: return helper(L, e, 0, len(L) - 1)
d3bda3698b5a321ac6307fe2a068c4ec61d6c57b
29,670
from importlib import import_module def try_import_for_setup(module_name): """ Returns the imported module named :samp:`{module_name}`. Attempts to import the module named :samp:`{module_name}` and translates any raised :obj:`ImportError` into a :obj:`NotImplementedError`. This is useful in benchmark :samp:`setup`, so that a failed import results in the benchmark getting *skipped*. :type module_name: :obj:`str` :param module_name: Attempt to import this module. :rtype: :obj:`module` :returns: The imported module named :samp:`{module_name}`. :raises NotImplementedError: if there is an :obj:`ImportError`. """ try: module = import_module(module_name) except ImportError as e: raise NotImplementedError("Error during '%s' module import: %s." % (module_name, str(e))) return module
9dc45df6372276258f6b0b9aab2a151e9b4b75af
29,671