content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def __api_reverse_suffix(path):
"""Return the normalized suffix of a url without any api information so that the correct version can be added."""
if path.startswith('/api/'):
components = path.split('/', 3)
if len(components) >= 4 and components[2].isdigit():
return '/' + components[3]
else:
return path[4:]
else:
return path | 57534f79a8162769a6a236d5b4df307021d3b573 | 29,019 |
def GenerateBlock(group):
"""group is a list of (name, value) pairs in which all values have the
same Most Significant Byte.
Prefix the list with, and insert dummy (name, value) pairs so that
value % 256 = position in the list for all values.
Example input:
[
("GL_FOO", 0xcc02),
("GL_BAR", 0xcc03),
("GL_BAZ", 0xcc05)
]
And the result:
[ ("", 0xcc00),
("", 0xcc01),
("GL_FOO", 0xcc02),
("GL_BAR", 0xcc03),
("", 0xcc004),
("GL_BAZ", 0xcc05)
]
"""
i = 0
block = []
for (name, value) in group:
while i < value % 256:
block.append(("", value))
i += 1
assert i == value % 256
block.append((name, value))
i += 1
return block | d22e6223ede2c60f16f9716aefe1fbc9ac928478 | 29,026 |
def get_fprimer_percent_aln(fprimer, percent_alignment):
"""
Gets the len of the fprimer and calculates minimum percent alignment
based on user input of maximum alignment between 2 primers allowed.
See percent alignment help for info.
Args:
fprimer (str): the forward primer
Returns:
fp_len (int): user defined total number of bases to allowed to match.
"""
fp_len = []
for fseq in fprimer:
f_len = len(fseq)
min_dimer_alignment = int(f_len*(percent_alignment/100))
fp_len.append(min_dimer_alignment)
return fp_len | 07316dabe0cfc12606bf6caddb8cee58a26534f1 | 29,028 |
def linearEOS(S,S0=1.0271,beta=1.0,RHO0=1000.0):
"""
Linear equation of state
Returns density from salinity and/or temperature
"""
return RHO0 * ( beta * (S-S0) ) | 51b23beff235905f0aa107e148121860c70a5de8 | 29,029 |
from typing import Tuple
def get_report_format_types() -> Tuple:
"""
Get all graph summary report formats supported by KGX.
Returns
-------
Tuple
A tuple of supported file formats
"""
return 'yaml', 'json' | fd3626a21551734179eaeef5423267c302c31013 | 29,030 |
def dictdict_to_listdict(dictgraph):
"""Transforms a dict-dict graph representation into a
adjacency dictionary representation (list-dict)
:param dictgraph: dictionary mapping vertices to dictionary
such that dictgraph[u][v] is weight of arc (u,v)
:complexity: linear
:returns: tuple with graph (listdict), name_to_node (dict), node_to_name (list)
"""
n = len(dictgraph) # vertices
node_to_name = [name for name in dictgraph] # bijection indices <-> names
node_to_name.sort() # to make it more readable
name_to_node = {}
for i in range(n):
name_to_node[node_to_name[i]] = i
sparse = [{} for _ in range(n)] # build sparse graph
for u in dictgraph:
for v in dictgraph[u]:
sparse[name_to_node[u]][name_to_node[v]] = dictgraph[u][v]
return sparse, name_to_node, node_to_name | 4dbd8f57230ba1a94a3eb861dddb3b9f35b2a80e | 29,032 |
import json
def get_host_osd_map(cls):
"""
Method to get the OSDs deployed in each of the hosts
Args:
cls: cephadm instance object
Returns:
Dictionary with host names as keys and osds deployed as value list
"""
out, _ = cls.shell(args=["ceph", "osd", "tree", "-f", "json"])
osd_obj = json.loads(out)
osd_dict = {}
for obj in osd_obj["nodes"]:
if obj["type"] == "host":
osd_dict[obj["name"]] = obj["children"]
return osd_dict | 2ce441001814b1fbdd00b32255f3365ade8a5ad5 | 29,034 |
def bool_formatter(attr):
"""Format a boolean into a more readable format
Args:
attr (bool): a boolean attribute
Returns:
str: the string "True" or "False", depending of the boolean value of the given
attribute.
"""
return str(attr) | b263320919a13d3f870b7474fbf1f371ef375fe2 | 29,037 |
import yaml
def read_cfg(cfg_file):
"""
Read configurations from yaml file
Args:
cfg_file (.yaml): path to cfg yaml
Returns:
(dict): configuration in dict
"""
with open(cfg_file, 'r') as rf:
cfg = yaml.safe_load(rf)
return cfg | ee44f0f6310240ea5e5d56ebe2ce68fabeb9dcec | 29,038 |
def intersection(bb1, bb2):
""" Calculates the Intersection of two aabb's
"""
min_w = min(bb1[2], bb2[2])
min_h = min(bb1[3], bb2[3])
if bb1[0] < bb2[0]:
leftbb, rightbb = bb1, bb2
else:
leftbb, rightbb = bb2, bb1
if bb1[1] < bb2[1]:
topbb, bottombb = bb1, bb2
else:
topbb, bottombb = bb2, bb1
w = min(min_w, max(leftbb[0] + leftbb[2] - rightbb[0], 0))
h = min(min_h, max(topbb[1] + topbb[3] - bottombb[1], 0))
return w * h | 368177cc00fcfff507198f39be3184fc2eed1855 | 29,040 |
def prds_worked_weekly_idx_rule(M):
"""
Index is (window, tour type, week) if more than one shift length
in tour type.
:param M: Model
:return: Constraint index rule
"""
return [(i, t, w) for (i, t) in M.okTourType
for w in M.WEEKS
if len(M.tt_length_x[t]) > 1] | 478182485e9bd199550172cf54856d5d867ad010 | 29,048 |
def ngramname(n):
"""Return the name of the nth n-gram"""
ngrams = ['bigrams', 'trigrams']
return ngrams[n] | b8ecbb832319824ef85f49528f59791fa8ecec40 | 29,054 |
def cm2nm(E_cm):
"""Converts photon energy from absolute cm-1 to wavelength
Parameters
----------
E_cm: float
photon energy in cm-1
Returns
-------
float
Photon energy in nm
Examples
--------
>>> cm2nm(1e5)
100
"""
return 1 / (E_cm * 1e-7) | ff7034356a42f01e1c876d0983e581b8c6860dd3 | 29,065 |
def render_chart(word_list):
"""
Renders a bar chart to the console. Each row of the chart contains the frequency
of each letter in the word list.
Returns:
A dictionary whose keys are the letters and values are the freqency (N) of the
letter. The value is a string containing the key repeated N times.
For example in the string 'apple' the result would be like this:
{"A": "a"},
{"E": "e"},
{"L": "l"},
{"P": "pp"}
Although not shown above all keys are returned even if the frequency is zero.
"""
chart = {chr(n): "" for n in range(ord('A'), ord('Z') + 1)}
for word in word_list:
for letter in word:
try:
chart[letter.upper()] += letter.upper()
except KeyError:
continue
return chart | 7d004d7a3ca61151e9b58b68aa769fdb8c3ab98e | 29,066 |
def clean_popest(table):
"""Cleans the population estimate data"""
return table[["Code", "All ages"]].rename(
columns={"Code": "geo_code", "All ages": "pop_2020"}
) | ef0b7bb8d9a61709f03889833baba6e3b0ef7a00 | 29,067 |
def has_chr(s):
"""Returns whether the ``str`` starts with ``"chr"``."""
return s.startswith("chr") | 43b6e00a3deefe9d88cb7c74413eeb94a3ec6856 | 29,068 |
def event_type(play_description):
"""
Returns the event type (ex: a SHOT or a GOAL...etc) given the event description
:param play_description: description of play
:return: event
"""
events = {'GOAL SCORED': 'GOAL', 'SHOT ON GOAL': 'SHOT', 'SHOT MISSED': 'MISS', 'SHOT BLOCKED': 'BLOCK',
'PENALTY': 'PENL', 'FACEOFF': 'FAC', 'HIT': 'HIT', 'TAKEAWAY': 'TAKE', 'GIVEAWAY': 'GIVE'}
event = [events[e] for e in events.keys() if e in play_description]
return event[0] if event else None | cefd67ae82a3e22a8f8598218887eb9c6a5ea06c | 29,069 |
def cmr_filter_json(search_results, request_type="application/x-hdfeos"):
"""
Filter the CMR json response for desired data files
Arguments
---------
search_results: json response from CMR query
Keyword arguments
-----------------
request_type: data type for reducing CMR query
Returns
-------
producer_granule_ids: list of ICESat-2 granules
granule_urls: list of ICESat-2 granule urls from NSIDC
"""
#-- output list of granule ids and urls
producer_granule_ids = []
granule_urls = []
#-- check that there are urls for request
if ('feed' not in search_results) or ('entry' not in search_results['feed']):
return (producer_granule_ids,granule_urls)
#-- iterate over references and get cmr location
for entry in search_results['feed']['entry']:
producer_granule_ids.append(entry['producer_granule_id'])
for link in entry['links']:
if (link['type'] == request_type):
granule_urls.append(link['href'])
break
#-- return the list of urls and granule ids
return (producer_granule_ids,granule_urls) | 757953aabe2a83040f8e2e206396b80076288242 | 29,070 |
def rectAt(cen, size):
"""Returns a rectangle of the given `size` centered at the given location.
The coordinates are inclusive of borders."""
x, y = cen[:2]
w, h = size[:2]
return [x-w//2, y-h//2, x-w//2+w-1, y-h//2+h-1] | 98fff599be25853eeb488dac58a22ec2f7caaa66 | 29,074 |
import re
def parse_show_snmp_system(raw_result):
"""
Parse the 'show snmp system' command raw output.
:param str raw_result: vtysh raw result string.
:rtype: dict
:return: The parsed result of the show snmp system\
command in a dictionary of the form
::
{
'System description' : 'OpenSwitchsystem
'System location' : 'Bangalore'
'System contact' : '[email protected]'
}
"""
snmp_system_re = (
r'\s*SNMP\ssystem\sinformation\s*'
r'\s*-*\s*'
r'\s*System\sdescription\s\:\s*(?P<system_description>.+)'
r'\s*System\slocation\s\:\s*(?P<system_location>.+)'
r'\s*System\scontact\s\:\s*(?P<system_contact>.+)'
)
re_result = re.match(snmp_system_re, raw_result)
if re_result is None:
return re_result
result = re_result.groupdict()
return result | 3132ab88965bc04198a7d9c6deb290d4ab035280 | 29,076 |
def required_columns(row_to_add, wanted_keys):
"""
:param row_to_add: Contains the rows from the input file.
:param wanted_keys: List of required column header names to be displayed at the end.
:return: Dict of keys,values formatted data.
"""
required_keys = dict((k, row_to_add[k]) for k in wanted_keys if k in row_to_add)
return required_keys | 8643a592662939cf8b00f009c4dc3f87d1df4e6c | 29,080 |
def _parse_line(s):
"""Parses a line of a requirements.txt file."""
requirement, *_ = s.split("#")
return requirement.strip() | 5c0c96898c288a7c358bf978a4415c17c7fb19c4 | 29,081 |
def get_cpgs_orig_methylated(df, cells_to_use):
"""
Get a list of cpg which where methylated to begin with using a specific set of cells
:param df: The df to work on
:type df: pd.DataFrame
:param cells_to_use: A list of cells to use, should match the rows names of the df
:return: The indexes of CpG to use
"""
df_orig = df.filter(items=cells_to_use, axis=0)
mean_values = df_orig.mean()
return mean_values | 569b0dcf2befd521a5328108ec725f35fdb60c7a | 29,084 |
import torch
from typing import Tuple
def calculate_gae(
values: torch.Tensor,
rewards: torch.Tensor,
dones: torch.Tensor,
next_values: torch.Tensor,
gamma: float,
lambd: float
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate generalized advantage estimator
Parameters
----------
values: torch.Tensor
values of the states
rewards: torch.Tensor
rewards given by the reward function
dones: torch.Tensor
if this state is the end of the episode
next_values: torch.Tensor
values of the next states
gamma: float
discount factor
lambd: float
lambd factor
Returns
-------
advantages: torch.Tensor
advantages
gaes: torch.Tensor
normalized gae
"""
# calculate TD errors
deltas = rewards + gamma * next_values * (1 - dones) - values
# initialize gae
gaes = torch.empty_like(rewards)
# calculate gae recursively from behind
gaes[-1] = deltas[-1]
for t in reversed(range(rewards.shape[0] - 1)):
gaes[t] = deltas[t] + gamma * lambd * (1 - dones[t]) * gaes[t + 1]
return gaes + values, (gaes - gaes.mean()) / (gaes.std() + 1e-8) | be8deb444fdc8c708deab9e638ac9a223f85aba6 | 29,085 |
def enclose_string(text):
"""enclose text with either double-quote or triple double-quote
Parameters
----------
text (str): a text
Returns
-------
str: a new string with enclosed double-quote or triple double-quote
"""
text = str(text)
fmt = '"""{}"""' if len(text.splitlines()) > 1 else '"{}"'
enclosed_txt = fmt.format(text.replace('"', r'\"'))
return enclosed_txt | c0ce87633da75b019f2b59fa561172e851283fa8 | 29,089 |
def summarise_app(app):
"""Return a string the summarises the important information about the app"""
state = app["state"]
if state != "Installed":
state = state.upper()
pin_status = "Pinned" if app["is_pinned"] else "NOT PINNED"
known_status = "UNKNOWN" if app["application_version"]["is_unknown"] else "Known"
return f"{state}, {pin_status}, {known_status}" | 547cf213843e1aa635def247c23e6d353d1ceaaf | 29,091 |
import math
def getExpectationValue(bitScore: float, searchSequenceLength: int, foundSequenceLength: int, numberOfSequencesInDatabase: int) -> float:
"""
Returns the E-value of a single query in a sequence database.
Parameters
----------
bitScore : float
Comparison score, normalised to base 2 (bits).
searchSequenceLength : int
Length of the sequence that was the input of the query.
foundSequenceLength : int
Length of the sequence that was the result of the query. If you have several results, run this function for each of them individually.
numberOfSequencesInDatabase : int
Count of all sequences that could have potentially be found.
For example, a search in all genes of eco would mean the count of all sequenced genes for eco -> numberOfSequencesInDatabase = 4,498.
A search in all organisms, however, would mean the count of all sequenced genes in KEGG -> numberOfSequencesInDatabase = 25,632,969.
Returns
-------
float
Statistical E-value (expectation value) for the occurence of a match of the same confidence with a totally unrelated, e.g. random, sequence.
"""
return numberOfSequencesInDatabase * searchSequenceLength * foundSequenceLength * math.pow(2, -bitScore) | 01c8440c4be67ada93daf4ebbb519e9a550ae34a | 29,095 |
from typing import Any
def get_type_name(t: Any) -> str:
"""Find the name of a type passed. It will look in sequence for "__name__" and "_name" and if both fail it will
take the str(t)
Args:
t: Any object
Returns:
String: string with the name of the type
"""
return getattr(t, '__name__', getattr(t, '_name', str(t))) | bfd81cc4cb93dc636e93c44f7cd94706724d64c0 | 29,096 |
def mi2km(mi):
"""
Converts to miles to kilometers.
"""
if mi == None:
return None
return mi * 1.60934 | 2000ad884b375c525da5d11a9b948354b170d59d | 29,097 |
def construct_path(relation, start, end):
"""
Constructs a path between two actors using a dictionary of child-parent
relationships. Returns a list with actor IDs.
"""
path = [start]
while end != start:
path.append(relation[start])
start = relation[start]
path.reverse()
return path | f1cfb7cd1544406a32c2934956020a4ab768a7e0 | 29,099 |
def strfdelta(time_delta, fmt):
"""
A way to convert time deltas to string formats easily.
:param time_delta: timedelta object to convert
:param fmt: string format to output
:return: String form of timedelta
"""
d = {"d": time_delta.days}
d["h"], rem = divmod(time_delta.seconds, 3600)
d["m"], d["s"] = divmod(rem, 60)
return fmt.format(**d) | e9b2711dc09e4f0b6087938e9790d11adb5908cb | 29,100 |
def _sleep_time(iter):
"""Return the time-to-sleep for the n'th iteration of a retry loop.
This implementation increases exponentially.
:param iter: iteration number
:returns: number of seconds to sleep
"""
if iter <= 1:
return 1
return iter ** 2 | 6abd614bbabc872758049ea35d9ee0ebafd0f2ba | 29,102 |
from typing import OrderedDict
def tag_pairs(tags, index=False):
"""
Return an OrderedDict whose keys are pairs of tags in the format "tag1:tag2"
and whose values are a tuple of the two tags used to construct each key, or
a tuple of the indices of the two tags in the original tag list, if ``index``
is True. If ``index`` is a list, then it should be a list the same length as
``tags``, and the tuple is populated by indexing into ``index`` using the two
indices of the tags in the original tag list.
Arguments
---------
tags : list of strings
Map tags from which to construct cross-spectrum keys like "tag1:tag2".
index : bool
If True, make values in dictionary the indices of the map tags, rather
than the tags themselves.
Returns
-------
pairs : OrderedDict
Dictionary whose keys are pairs of tags in the format "tag1:tag2" and
whose values are a tuple of the two tags used to construct the key, or
their indices, if index=True.
Example
-------
>>> tags = ['a', 'b']
>>> tag_pairs(tags)
OrderedDict([('a:a', ('a', 'a')), ('a:b', ('a', 'b')), ('b:b', ('b', 'b'))])
>>> tag_pairs(tags, index=True)
OrderedDict([('a:a', (0, 0)), ('a:b', (0, 1)), ('b:b', (1, 1))])
>>> tag_pairs(tags, index=['c', 'd'])
OrderedDict([('a:a', ('c', 'c')), ('a:b', ('c', 'd')), ('b:b', ('d', 'd'))])
"""
pairs = OrderedDict()
for it0, t0 in enumerate(tags):
for it1, t1 in zip(range(it0, len(tags)), tags[it0:]):
xname = "{}:{}".format(t0, t1)
if isinstance(index, list):
pair = (index[it0], index[it1])
elif index is True:
pair = (it0, it1)
else:
pair = (t0, t1)
pairs[xname] = pair
return pairs | 97ce0a2815b5542275eb5b15c6b3ff434c456a6e | 29,103 |
def lily(the_note):
"""Sets Lilypond accidentals."""
s = the_note.note.lower()
if the_note.accidental == '+':
s += 'qs'
elif the_note.accidental == '#':
s += 's'
elif the_note.accidental == '++':
s += 'tqs'
elif the_note.accidental == '-':
s += 'qf'
elif the_note.accidental == 'b':
s += 'b'
elif the_note.accidental == '--':
s += 'tqf'
else:
pass
return s | e04c14bb13d91ccec5a83de36436aec7d55a7e30 | 29,113 |
import ast
def get_test_functions(filename):
"""
Returns a list of test functions.
ie. [{'id': 'test_empty_array', 'line': 1}, ...]
"""
with open(filename) as f:
read_data = f.read()
module_ast = ast.parse(read_data)
funcs = []
for stmt in module_ast.body:
if isinstance(stmt, ast.ClassDef):
for base in stmt.bases:
if isinstance(base, ast.Attribute) and base.attr == 'TestCase' and isinstance(base.value, ast.Name) and (base.value.id == 'unittest' or base.value.id == 'asynctest'):
for inner_stmt in stmt.body:
if (isinstance(inner_stmt, ast.FunctionDef) or isinstance(inner_stmt, ast.AsyncFunctionDef)) and inner_stmt.name.startswith('test'):
funcs.append({
'id': inner_stmt.name,
'line': inner_stmt.lineno,
})
return funcs | 2936e3a1e6759837a3a543f62727fb26303cb758 | 29,114 |
def pretty_ti_txt(line):
"""Make given TI TXT line pretty by adding colors to it.
"""
if line.startswith('@'):
line = '\033[0;33m' + line + '\033[0m (segment address)'
elif line == 'q':
line = '\033[0;35m' + line + '\033[0m (end of file)'
else:
line += ' (data)'
return line | 91fc1cfb5dba9467ca58da3154e7343d9845f44a | 29,116 |
import networkx
def draw_graph(g: networkx.Graph, fname: str):
"""Draw a graph using pygraphviz and return the AGraph object.
Parameters
----------
g :
A graph to draw.
fname :
The name of the file to write the graph to.
Returns
-------
:
A graphviz graph object.
"""
g = g.copy()
for node in g.nodes:
if "\\" in g.nodes[node]["label"]:
g.nodes[node]["label"] = g.nodes[node]["label"].replace("\\", "[backslash]")
ag = networkx.nx_agraph.to_agraph(g)
# Add some visual styles to the graph
ag.node_attr["shape"] = "plaintext"
ag.graph_attr["splines"] = True
ag.graph_attr["rankdir"] = "TD"
ag.draw(fname, prog="dot")
return ag | 761eeb2d44e41ecf704f4aa09eb5e30fbe665030 | 29,117 |
def sfc_sw(swup_sfc, swdn_sfc):
"""All-sky surface upward shortwave radiative flux."""
return swup_sfc - swdn_sfc | de51cf2b3ad410788e041117df01e19e959e3abe | 29,119 |
def read_runlist(filepath):
"""Read a list of runs from a txt file
Parameters
----------
filepath : `str`
The input file with the list of runs.
Each line should contain raft and run number, e.g., RTM-004-Dev 6106D
Returns
-------
outlist : `list`
A list of tuples with (raft, run)
"""
fin = open(filepath)
lin = fin.readline()
outlist = []
while lin:
tokens = lin.split()
if len(tokens) == 2:
outlist.append(tokens)
lin = fin.readline()
return outlist | de106013ef1cb1de32ed7120b2c5aeab2bf1aafb | 29,120 |
import pathlib
def is_pardir(pardir, subdir):
"""
Helper function to check if the given path is a parent of another.
"""
return pathlib.Path(pardir) in pathlib.Path(subdir).parents | c7b14ef578f24f2565ae2e88aff248eea3abf963 | 29,121 |
def energy(layer, data):
"""
Finds total E deposited in a given layer for each event.
"""
return data[layer].sum(axis=(1, 2)) | d8f73ac1b9fb9a03fdb89420f434a03306872d8a | 29,127 |
import six
def _get_query_dict(**kwargs):
"""Returns query dict by kwargs.
Skip None-values, but keeps False etc.
>>> res = _get_query_dict(url=None, test='a', page=True, full=False)
>>> res == {'test': 'a', 'page': True, 'full': False}
True
"""
def __get_quey_dict(**kwargs):
for k, v in six.iteritems(kwargs):
if v is not None:
yield k, v
return dict(__get_quey_dict(**kwargs)) | 6d4ba22bb82853356765498f45bd7fda82000921 | 29,130 |
import time
def time_strptime(*args, **kwargs):
"""Version of time.strptime that always uses the C locale.
This is because date strings are used internally in the database, and
should not be localized.
"""
return time.strptime(*args, **kwargs) | 5410a4b4154471834f70818bf2a0a2356bdc25dd | 29,135 |
def prepare_text(text):
"""Remove unnecessary spaces and lowercase the provided string"""
return text.strip().lower() | 337859656670fa9bcd7b4296318ea9a3c4b730f1 | 29,139 |
def z_minus_its_reciprocal(z: complex) -> complex:
"""
The function z - 1/z.
I define this function explicitly because it plays an important role in the model.
Furthermore, we also want to plot it and test it.
Note: I do not handle the case of zero (or infinite) argument here.
Args:
z (complex): a nonzero complex number
Returns:
complex: The value of z - 1/z.
"""
return z - (1 / z) | 46de97ee9c628faf5fe626108af801827e2dfc8f | 29,145 |
from typing import List
def split_str(data_str: str) -> List[str]:
"""
Split a string into a list of strings. The string will be split at ',' or '\n' with '\n' taking precedence.
:param data_str: A string to be split.
:return: List[str]
"""
if '\n' in data_str:
return list(str(data_str).splitlines())
elif ',' in data_str:
return list(str(data_str).split(','))
else:
i = list()
i.append(data_str)
return i | 450b301f2b696e2240f9bb8fe49def815c59478d | 29,147 |
def tokenization(tweet):
"""
DESCRIPTION:
Tokenizes a tweet into words
INPUT:
tweet: a tweet as a python string
OUTPUT:
list of tweet's tokens (words)
"""
return list(tweet.split()) | 60c59fdbe775ea8178b3f2c4de6657e3fedd776a | 29,155 |
import re
def _clean_multirc_inputs(dataset_name, text):
"""Removes HTML markup from Multi-RC task input text."""
if dataset_name == "super_glue/multirc":
# Remove HTML markup.
text = re.sub(r"<br>", " ", text.decode("utf-8"))
text = re.sub(r"<(/)?b>", " ", text)
return text | 71d0999ddb9a3942e6d53473c534d55924a0aaa1 | 29,165 |
def is_complex_parsing_required(value):
"""
Determine if the string being parsed requires complex parsing.
Currently, this is solely determined by the presence of a colon (:).
Args:
value (str):
A string that will be parsed.
Returns:
bool:
Flag value to indicate whether the string requires complex parsing.
"""
return ":" in value | b5b13eb6f8a28d69a2a069fa8228ace0e842873b | 29,166 |
import inspect
def ismethod(func):
""" Is func a method?
Note that this has to work as the method is defined but before the class is
defined. At this stage methods look like functions.
"""
signature = inspect.signature(func)
return signature.parameters.get('self', None) is not None | bbc971ae9ccde0c44e12e89027cd7180bfeac178 | 29,171 |
def rolling_mean(ts, window):
"""Calculate rolling mean of time series.
Uses pandas.DataFrame.rolling() to calculate rolling mean
of a given window size.
If more than one column of data in ts, returns rolling mean
using given window size for each column of data.
Returns nans for times before first window.
:param ts: Time series data as a pandas DataFrame.
:param window: Window size over which to calculate mean (int).
:return ts_std: DataFrame with same columns as ts but with rolling
mean in place of data column.
"""
ts_mean = ts.rolling(window).mean()
ts_mean["time"] = ts["time"] # don't want mean of time!
return ts_mean | 8cd2933b1a9c285666a62a5edacae8477dec1d3d | 29,173 |
def X1X2_to_Xs(X1, X2):
"""Convert dimensionless spins X1, X2 to symmetric spin Xs"""
return (X1+X2)/2. | 9938f188d766d7895986b8796bb8eeeafe3b5b7d | 29,174 |
def repeat(l, n):
""" Repeat all items in list n times
repeat([1,2,3], 2) => [1,1,2,2,3,3]
http://stackoverflow.com/questions/24225072/repeating-elements-of-a-list-n-times
"""
return [x for x in l for i in range(n)] | 0a27596da9ef804a8a5badc0a0111b56c937aa35 | 29,178 |
from typing import IO
import requests
def download_file(url: str) -> IO:
"""Download a remote file.
Parameters
----------
url: string
Request URL.
Returns
-------
io.BytesIO
"""
r = requests.get(url, stream=True)
r.raise_for_status()
return r.raw | 85c1e885573bee2619a473a2d9954781d46d3f9d | 29,182 |
def get_filename(name):
"""Return filename for astrocats event."""
return name.replace('/', '_') + '.json' | e12598b6ca16299fd939bd3cfb619882bb50145c | 29,194 |
def read_hex_digit(char: str) -> int:
"""Read a hexadecimal character and returns its positive integer value (0-15).
'0' becomes 0, '9' becomes 9
'A' becomes 10, 'F' becomes 15
'a' becomes 10, 'f' becomes 15
Returns -1 if the provided character code was not a valid hexadecimal digit.
"""
if "0" <= char <= "9":
return ord(char) - 48
elif "A" <= char <= "F":
return ord(char) - 55
elif "a" <= char <= "f":
return ord(char) - 87
return -1 | 071445b3c0ec7a5392a7b5b0b354b4d3c59a3687 | 29,195 |
import base64
def rest_md5_to_proto(md5):
"""Convert the REST representation of MD5 hashes to the proto representation."""
return base64.b64decode(md5) | 64889241492ea5265c50b4ef95d55e864544d904 | 29,197 |
from pathlib import Path
def get_timestep(path):
"""
Get the timestep from a filename.
"""
path = Path(path)
fname = path.stem
tstep = fname.split('.')[-1]
return int(tstep) | f5eb746e06a6411008e609333cef8feb3250077c | 29,199 |
import itertools
def largest_group(iterable, key):
"""
Find a group of largest elements (according to ``key``).
>>> s = [-4, 3, 5, 7, 4, -7]
>>> largest_group(s, abs)
[7, -7]
"""
it1, it2 = itertools.tee(iterable)
max_key = max(map(key, it1))
return [el for el in it2 if key(el) == max_key] | 3b3ead0361f3c1cc94bad8e8fdf3bddd73c36bb7 | 29,204 |
import jinja2
def render_template(env: jinja2.Environment, template: str, **context):
"""Render the given template with an additional context being made available in it."""
return env.get_template(template).render(**context) | 99c71c306ee088e70a5168b4237709c4c71e8e80 | 29,205 |
def remove_non_ascii(text: str) -> str:
""" Removes non ascii characters
:param text: Text to be cleaned
:return: Clean text
"""
return ''.join(char for char in text if ord(char) < 128) | 94a003856809eb740b5c85af094095acb2e07dad | 29,211 |
def group_by_keys(dict_list, keys):
"""
>>> data = [
... {'a': 1, 'b': 2},
... {'a': 1, 'b': 3}
... ]
>>> group_by_keys(data, ['a', 'b'])
{(1, 2): [{'a': 1, 'b': 2}], (1, 3): [{'a': 1, 'b': 3}]}
"""
groups = {}
for d in dict_list:
value = tuple((d[k] for k in keys))
groups.setdefault(value, [])
groups[value].append(d)
return groups | 425d223eff828e24ebdab4900c0c461868228eb4 | 29,213 |
import functools
import ctypes
def hash_code(text: str) -> int:
"""Implements Java's hashCode in Python.
Ref: https://stackoverflow.com/a/8831937
"""
return functools.reduce(lambda code, char: ctypes.c_int32(31 * code + ord(char)).value, list(text), 0) | eadda940e3b2d63b8ff83f74816024160334288f | 29,220 |
def ask_yes_no(prompt="[y/n] :", default="y", valid=["y", "n"]):
"""Display a yes/no question and loop until a valid answer is entered
Keyword Arguments:
prompt {str} -- the question message (default: {'[y/n] :'})
default {str} -- the default answer if there is no answer (default: {"y"})
valid {list} -- the list of appropriate answers (default: {["y", "n"]})
Returns:
str -- the answer
"""
answer = input(prompt)
if answer in valid:
return answer
elif answer == "":
return default
else:
return ask_yes_no(prompt, default, valid) | f46dcd6ed7fefcb38c4bc5307b49cf59e0c813b4 | 29,221 |
def _process_line(request: dict, cost_price_delta: int):
"""The function that builds out the report line by line"""
asset = request["asset"]
created = request["created"]
try:
qty = int(asset["items"][0]["quantity"]) # [0] to filter out irrelevant skus
except IndexError:
# to handle some older requests without items
qty = 0
return (asset["id"], asset["tiers"]["customer"]["id"], qty, cost_price_delta * qty, created) | f650dd5cc7592f700e9b3aa9824b8d79679e4bbb | 29,222 |
import socket
def iptoint(ip_v4: str) -> int:
"""
Convert an ip address to an integer.
Adopted from http://goo.gl/AnSFV
:param ip_v4: IPv4 address
:returns: int of IPv4 hex
"""
return int(socket.inet_aton(ip_v4).hex(), 16) | bcdad9f575ee4bb33bb4716f95eb8a4124824fe7 | 29,223 |
import struct
def long_long_int(value):
"""Decode a long-long integer value
:param bytes value: Value to decode
:return tuple: bytes used, int
:raises: ValueError
"""
try:
return 8, struct.unpack('>q', value[0:8])[0]
except TypeError:
raise ValueError('Could not unpack data') | 76e36535f382eb6e143b0d1f2f17102a8a9b886f | 29,225 |
import re
def regex(pattern):
"""
Compile a case-insensitive pattern.
"""
return re.compile(pattern, re.I) | b30c594fc9d4134bf464d010d085bf8eb59157fc | 29,226 |
import ast
def make_attr_call(attr1, attr2, args=None):
"""
flor._attr1_._attr2_(arg)
"""
if args is None:
return ast.Call(
func=ast.Attribute(
value=ast.Attribute(
value=ast.Name('flor', ast.Load()),
attr=attr1,
ctx=ast.Load()
),
attr=attr2,
ctx=ast.Load()
),
args=[], # arg is None
keywords=[]
)
else:
return ast.Call(
func=ast.Attribute(
value=ast.Attribute(
value=ast.Name('flor', ast.Load()),
attr=attr1,
ctx=ast.Load()
),
attr=attr2,
ctx=ast.Load()
),
args=args, # arg is not None
keywords=[]
) | 1b2b839ab8e76730d33405782283b2fbc6e326d3 | 29,229 |
def formation_temperature(surface_temperature, gradient, depth):
"""
Calculates formation temperature based on a gradient.
Parameters
----------
surface_temperature : float
Surface temperature (deg F or deg C)
gradient : float
Temperature gradient (degF/ft or degC/m)
depth : float
Depth at which temperature is required (ft or m)
Returns
-------
float
Returns formation temperature at a entered depth
"""
form_temp = surface_temperature + gradient * depth
return form_temp | 13b55f67810775cbdd531036bb40780a4138af0a | 29,232 |
def fn_url_p(fn):
"""check if fn is a url"""
url_sw = ['http://', 'https://', 'ftp://', 'ftps://']
for u in url_sw:
try:
if fn.startswith(u):
return(True)
except:
return(False)
return(False) | 0d56366d055b985bb819e0516c63acd117f371fd | 29,234 |
import pickle
import base64
def ObjectFromBase64EncodedString(EncodedObject):
"""Generate Python object from a bas64 encoded and pickled
object string.
Arguments:
str: Base64 encoded and pickled object string.
Returns:
object : Python object or None.
"""
return None if EncodedObject is None else pickle.loads(base64.b64decode(EncodedObject)) | ff82b5e3a130e563a11ed7ccfa4ce80b257b4ada | 29,235 |
def insertion_sort(A):
"""Sort list of comparable elements into nondecreasing order."""
for i in range(1, len(A)):
value = A[i]
hole = i
while hole > 0 and A[hole-1] > value:
A[hole] = A[hole-1]
hole -= 1
A[hole] = value
return A | 467f22572c775472d018f234be51d6ffb8effde2 | 29,237 |
def all_awards_are_reviewed(request):
""" checks if all tender awards are reviewed
"""
return all([award.status != "pending" for award in request.validated["tender"].awards]) | 325fb138db00b8696fa424b2a4c95e1378ddd667 | 29,241 |
def _knapsack(weights, capacity):
"""
Binary knapsack solver with identical profits of weight 1.
Args:
weights (list) : list of integers
capacity (int) : maximum capacity
Returns:
(int) : maximum number of objects
"""
n = len(weights)
# sol : [items, remaining capacity]
sol = [[0] * (capacity + 1) for i in range(n)]
added = [[False] * (capacity + 1) for i in range(n)]
for i in range(n):
for j in range(capacity + 1):
if weights[i] > j:
sol[i][j] = sol[i - 1][j]
else:
sol_add = 1 + sol[i - 1][j - weights[i]]
if sol_add > sol[i - 1][j]:
sol[i][j] = sol_add
added[i][j] = True
else:
sol[i][j] = sol[i - 1][j]
return sol[n - 1][capacity] | 158e96376bc3e7a60bbb24111b4b26636aaa86d5 | 29,242 |
def get_layer_save_path(layer):
"""Get custom HoudiniLayerInfo->HoudiniSavePath from SdfLayer.
Args:
layer (pxr.Sdf.Layer): The Layer to retrieve the save pah data from.
Returns:
str or None: Path to save to when data exists.
"""
hou_layer_info = layer.rootPrims.get("HoudiniLayerInfo")
if not hou_layer_info:
return
save_path = hou_layer_info.customData.get("HoudiniSavePath", None)
if save_path:
# Unfortunately this doesn't actually resolve the full absolute path
return layer.ComputeAbsolutePath(save_path) | 16e20d0bcedf9717bb60af400548308ff05b0570 | 29,245 |
from typing import List
from typing import Any
from typing import Iterator
from typing import Tuple
import itertools
def pairwise(s: List[Any]) -> Iterator[Tuple[Any, Any]]:
"""
Iterates over neighbors in a list.
s -> (s0,s1), (s1,s2), (s2, s3), ...
From https://stackoverflow.com/a/5434936
"""
a, b = itertools.tee(s)
next(b, None)
return zip(a, b) | 58bbd84005b8caef2535cf3477f8745d511b5a0b | 29,249 |
def _znode_to_class_and_name(znode):
"""
Local helper function that takes a full znode path that returns it in the
service_class/service_name format expected in this module
"""
znode = znode.split("/")
znode.pop(0)
return (znode[0], znode[1]) | 7039b35227d967978c073a41fa044a75c4a1670d | 29,258 |
def meta_REstring(REstr): # generic
""" get meta information of the RapidEye file name
Parameters
----------
REstr : string
filename of the rapideye data
Returns
-------
REtime : string
date "+YYYY-MM-DD"
REtile : string
tile code "TXXXXX"
REsat : string
which RapedEye satellite
Example
-------
>>> REstr = '568117_2012-09-10_RE2_3A_Analytic.tif'
>>> REtime, REtile, REsat = meta_REstring(REstr)
>>> REtime
'+2012-09-10'
>>> REtile
'568117'
>>> REsat
'RE2'
"""
assert type(REstr)==str, ("please provide a string")
REsplit = REstr.split('_')
REtime = '+' + REsplit[1][0:4] +'-'+ REsplit[1][5:7] +'-'+ REsplit[1][8:10]
REsat = REsplit[2]
REtile = REsplit[0]
return REtime, REtile, REsat | d325034dd8dc7e7033387e22796b1449ba14d4dc | 29,265 |
def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:] | 268d56ff3a24b3a5c9b1e4b1d1ded557afcdce8c | 29,266 |
def get_title_from_vuln(vuln):
"""
Returns CVE ID from vulnerability document
When there is no title, returns "No-title" string
"""
return vuln.get('title', "No-Title") | 3c81cd0a873015d8e3d5a96819a7608dbfd8330f | 29,272 |
import json
from datetime import datetime
def get_user_insert(user, event):
"""
Gets all insertion data for a single user
Parameters
----------
user: dict
Dictionary object of a Twitter user
event: str
Event name of query the user was retrieved from
Returns
-------
user_insert: dict
Dictionary of values extracted and formatted for insertion into a
PostgreSQL database
"""
# Description hashtags
try:
hashtags = [hashtag_info['tag'].replace('\x00', '')
for hashtag_info in user['entities']['description']['hashtags']]
except KeyError:
hashtags = None
# Description mentions
try:
mentions = [mention_info['tag'] for mention_info in user['entities']['description']['mentions']]
except KeyError:
mentions = None
# Description URLs
try:
urls = user['entities']['description']['urls']
urls = [json.dumps(url) for url in urls]
except KeyError:
urls = None
# Profile URL
try:
url = user['entities']['url']['urls'][0]['expanded_url']
except (KeyError, IndexError):
url = None
now = datetime.now()
user_insert = {
'id': user['id'],
'event': event,
'inserted_at': now,
'last_updated_at': now,
'created_at': user['created_at'],
'followers_count': user['public_metrics']['followers_count'],
'following_count': user['public_metrics']['following_count'],
'tweet_count': user['public_metrics']['tweet_count'],
'url': url,
'profile_image_url': user['profile_image_url'],
'description_urls': urls,
'description_hashtags': hashtags,
'description_mentions': mentions,
'verified': user['verified']
}
for f in ['description', 'location', 'pinned_tweet_id', 'name', 'username']:
try:
user_insert[f] = user[f].replace('\x00', '')
except KeyError:
user_insert[f] = None
return user_insert | 8c9a269fb7fd349d26899f63af5f8415b7d86210 | 29,273 |
def parse_number_input(user_input):
"""Converts a string of space-separated numbers to an array of numbers."""
lst_str = user_input.strip().split(' ')
return list(map(int, lst_str)) | 5e03156c79814a7916d78203749cfd82ab6b98d5 | 29,275 |
def _is_finite(constraints):
"""
Return ``True`` if the dictionary ``constraints`` corresponds to
a finite collection of ordered multiset partitions into sets.
If either ``weight`` or ``size`` is among the constraints, then
the constraints represent a finite collection of ordered multiset
partitions into sets. If both are absent, one needs ``alphabet`` to be
present (plus a bound on length or order) in order to have a
finite collection of ordered multiset partitions into sets.
EXAMPLES::
sage: from sage.combinat.multiset_partition_into_sets_ordered import _is_finite
sage: W = {"weight": {1:3, 2:3, 4:1}, "length": 5}
sage: S = {"size": 44, "min_length": 5}
sage: AO = {"alphabet": range(44), "max_order": 5}
sage: all(_is_finite(constr) for constr in (W, S, AO))
True
sage: AL = {"alphabet": range(44), "min_order": 5}
sage: _is_finite(AL)
False
"""
if "weight" in constraints or "size" in constraints:
return True
elif "alphabet" in constraints:
# Assume the alphabet is finite
Bounds = set(["length", "max_length", "order", "max_order"])
return Bounds.intersection(set(constraints)) != set() | 5802604f8a338b8e0c7b5a99e63661637350371f | 29,277 |
import math
def atanh(x):
"""Get atanh(x)"""
return math.atanh(x) | b721fd642ac99dd7e790db4baa73792333d7af7c | 29,278 |
def get_strata(creel_run):
"""Given a creel_run, return a list of tuples that represent the rows
in the Strata table - each row contains the strata label, and foreign
keys to the corresponding creel_run, season, space, daytype, period and
fishing mode.
Arguments:
- `creel_run`: An FN011 creel_run object.
"""
all_strata = []
modes = creel_run.creel.modes.all()
spots = creel_run.creel.spatial_strata.all()
seasons = creel_run.creel.seasons.all()
for season in seasons:
daytypes = season.daytypes.all()
for spot in spots:
for daytype in daytypes:
periods = daytype.periods.all()
for period in periods:
for mode in modes:
strata = "{}_{}{}_{}_{}".format(
season.ssn, daytype.dtp, period.prd, spot.space, mode.mode
)
all_strata.append(
(
creel_run.id,
strata,
season.id,
spot.id,
daytype.id,
period.id,
mode.id,
)
)
return all_strata | 845295eb27b1951e8cc90971419583fc41231b0f | 29,279 |
from datetime import datetime
from dateutil.tz import tzlocal
import pytz
def timestamp_to_datetime(timestamp):
"""Converts timestamp to datetime string."""
timeUTC = datetime.utcfromtimestamp(timestamp)
timeLocal = pytz.utc.localize(timeUTC).astimezone(tzlocal())
return timeLocal.strftime("%Y-%m-%d %H:%M:%S.%f%z") | 59f410f72beced48792fb4c40796da7393285c28 | 29,280 |
import json
def _pretty_json(data):
"""
Pretty string of JSON data
:param data: JSON data
:return: Pretty string
:rtype: str
"""
return json.dumps(data, sort_keys=True, indent=2) | 5bc0bed881bbacd89caa320d47b81c71e2377211 | 29,282 |
def _get_harvester_connection_msg(
farmer_id: str,
harvester_id: str,
ip_address: str,
is_connected: bool,
) -> str:
"""Get the connection msg for a harvester
Parameters
----------
farmer_id : str
id of the farmer
harvester_id : str
id of the harvester
ip_address : str
harvester ip address
is_connected: bool
connection status
Returns
-------
msg : str
harvester connection message
"""
# send message
icon = "🟢" if is_connected else "🟠"
connection_status = "connected" if is_connected else "disconnected"
CONNECTION_MSG: str = "{icon} Farmer {farmer_id} {status} to Harvester {harvester_id} ({ip})."
msg = CONNECTION_MSG.format(
icon=icon,
harvester_id=harvester_id[:10],
ip=ip_address,
status=connection_status,
farmer_id=farmer_id,
)
return msg | 0e32ca3c4463d802a1c719441ae9bf6dabd5cb8d | 29,287 |
def merge_pixel_values(meta_df, l_28_28_df, rgb_28_28_df):
""" Merges metadata dataframe with RGB and luminance pixel values dfs
Parameters
----------
meta_df
metadata dataframe
l_28_28_df
28 X 28 luminance dataframe
rgb_28_28_df
28 X 28 RGB dataframe
Returns
-------
pandas.core.frame.DataFrame
Merged dataframe
"""
# Add suffix to names to ensure they are unique after merge
l_28_28_df.columns = [str(col) + '_l_28_28'
for col in l_28_28_df.columns]
rgb_28_28_df.columns = [str(col) + '_rgb_28_28'
for col in rgb_28_28_df.columns]
# Merge first with luminance then rgb using append with transpose
# Transpose makes sure axis direction is correct
merged_df_l = (l_28_28_df.T.append(meta_df.T, sort=False)).T
merged_df_l_rgb = (rgb_28_28_df.T.append(merged_df_l.T, sort=False)).T
return(merged_df_l_rgb) | 1a12d6e3f84a80eeaf99125e4e144c2a8cd9e08c | 29,290 |
def get_snapshots_list(response, is_aurora):
"""
Simplifies list of snapshots by retaining snapshot name and creation time only
:param response: dict Output from describe_db_snapshots or describe_db_cluster_snapshots
:param is_aurora: bool True if output if from describe_db_cluster_snapshots, False otherwise
:return: Dict with snapshot id as key and snapshot creation time as value
"""
snapshots = {}
response_list_key = "DBClusterSnapshots" if is_aurora else "DBSnapshots"
identifier_list_key = "DBClusterSnapshotIdentifier" if is_aurora else "DBSnapshotIdentifier"
for snapshot in response[response_list_key]:
if snapshot["Status"] != "available":
continue
snapshots[snapshot[identifier_list_key]] = snapshot["SnapshotCreateTime"]
return snapshots | 349657e7face0287f5b0f5f0e02b8c5067acf53f | 29,293 |
def assign_params(keys_to_ignore=None, values_to_ignore=None, **kwargs):
"""Creates a dictionary from given kwargs without empty values.
empty values are: None, '', [], {}, ()
` Examples:
>>> assign_params(a='1', b=True, c=None, d='')
{'a': '1', 'b': True}
>>> since_time = 'timestamp'
>>> assign_params(values_to_ignore=(15, ), sinceTime=since_time, b=15)
{'sinceTime': 'timestamp'}
>>> item_id = '1236654'
>>> assign_params(keys_to_ignore=['rnd'], ID=item_id, rnd=15)
{'ID': '1236654'}
:type keys_to_ignore: ``tuple`` or ``list``
:param keys_to_ignore: Keys to ignore if exists
:type values_to_ignore: ``tuple`` or ``list``
:param values_to_ignore: Values to ignore if exists
:type kwargs: ``kwargs``
:param kwargs: kwargs to filter
:return: dict without empty values
:rtype: ``dict``
"""
if values_to_ignore is None:
values_to_ignore = (None, '', [], {}, ())
if keys_to_ignore is None:
keys_to_ignore = tuple()
return {
key: value for key, value in kwargs.items()
if value not in values_to_ignore and key not in keys_to_ignore
} | e6bc55c91a1670d2dc2eb5ce998a55d78f342dd2 | 29,294 |
import string
def file_name_for_term(term):
"""Return a valid filename that corresponds to an arbitrary term string."""
valid_characters = '-_' + string.ascii_letters + string.digits
no_space = term.replace(' ', '_')
return ''.join(c for c in no_space if c in valid_characters) + '.txt' | 0a23bfca56310810ffe1d6e414eaf9237e9a9be4 | 29,296 |
from typing import Iterable
from typing import List
import re
def split(delimiters: Iterable[str], s: str, maxsplit: int = 0) -> List[str]:
"""Split the string over an iterable of delimiters.
Based on https://stackoverflow.com/a/13184791
"""
pattern = "|".join(map(re.escape, delimiters))
return re.split(pattern, s, maxsplit) | 42ab4216b6c24e28fb98970b85e7492612ac1a21 | 29,297 |
def remove_user_from_group(db, user_id, group_id):
"""Removes user from user group.
Args:
db (object): The db object
user_id (int): User ID
group_id (int): Group ID
Returns:
A boolean value indicating whether the given user was removed from the given group
"""
db.execute("""DELETE FROM user_group_has_user
WHERE user_id = ? AND user_group_id=?""",
(user_id, group_id,))
return db.rows_affected != 0 | 94a02c44878a7fe2f4f162b943ebf4f2b0254403 | 29,302 |
def _add_reciprocal_relations(triples_df):
"""Add reciprocal relations to the triples
Parameters
----------
triples_df : Dataframe
Dataframe of triples
Returns
-------
triples_df : Dataframe
Dataframe of triples and their reciprocals
"""
# create a copy of the original triples to add reciprocal relations
df_reciprocal = triples_df.copy()
# swap subjects and objects
cols = list(df_reciprocal.columns)
cols[0], cols[2] = cols[2], cols[0]
df_reciprocal.columns = cols
# add reciprocal relations
df_reciprocal.iloc[:, 1] = df_reciprocal.iloc[:, 1] + "_reciprocal"
# append to original triples
triples_df = triples_df.append(df_reciprocal)
return triples_df | 8ca96fc2162d80041c21db8e6b81718781784ffe | 29,307 |
import binascii
def adjust_get_sends_results(query_result):
"""Format the memo_hex field. Try and decode the memo from a utf-8 uncoded string. Invalid utf-8 strings return an empty memo."""
filtered_results = []
for send_row in list(query_result):
try:
if send_row['memo'] is None:
send_row['memo_hex'] = None
send_row['memo'] = None
else:
send_row['memo_hex'] = binascii.hexlify(send_row['memo']).decode('utf8')
send_row['memo'] = send_row['memo'].decode('utf-8')
except UnicodeDecodeError:
send_row['memo'] = ''
filtered_results.append(send_row)
return filtered_results | 7d2e6cb1b1e5781123fbfd0d953b9c22ffea1a37 | 29,309 |
def calc_ema(smoothed, new_data, N=22):
"""
INPUT:
smoothed (Series) - Last record's smoothed EMA value (a copy)
new_data (Series) - New values, prepended with last value
N (int) - Number of time periods for smoothing
OUTPUT:
Exponential Moving Average as a pandas Series
"""
K = 2/(N + 1) # coefficient for incoming datum
J = 1 - K # coefficient for fading data
# if first smoothed, use last data value
if not len(smoothed.index):
smoothed[new_data.index.values[0]] = new_data[0]
for n,index in enumerate(new_data[1:].index, start=1):
smoothed[index] = K*new_data[n] + J*smoothed[n-1]
return smoothed | 0bc9d61d9c982c58ab176c9506553a8458a7b7fc | 29,318 |
def find_difference(left: dict, right: dict) -> dict:
"""Accepts two dicts with list values. Check which items are present in left
but not in right, similar to set difference.
Args:
left (dict): Dict with list values
right (dict): Dict with list values
Returns:
dict: Dict with list values. Contains items in left but not in right
"""
diff = {} # Empty dict to store differences
for key, values in left.items():
if key in right.keys():
right_values = [v for v in right[key]]
diff[key] = set(values).difference(
set(right_values)
)
else:
# If key doesn't exist in right, all values are new
diff[key] = left[key]
diff = {k:v for k,v in diff.items() if len(v) > 0} # Remove empty
return diff | c8f523b0d6d8352c253e3c596e551ea4ff35b4f8 | 29,321 |
def get_gcp_zones(compute, project):
"""
Get all zones in GCP (needs compute engine)
"""
zones = []
details = compute.zones().list(project=str(project)).execute()
if details.has_key('items'):
for item in details['items']:
zones.append(str(item['name']))
return zones | 042a67f6b8a51ca4022f435adb205b5e919b0351 | 29,323 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.