content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def draw_on_pattern(shape, pattern):
""" Draws a shape on a pattern.
>>> draw_on_pattern([(0, 0, 1), (0, 1, 3), (1, 1, 8)], [[0, 0, 0], [0, 0, 0]])
[[1, 3, 0], [0, 8, 0]]
"""
y_size = len(pattern)
x_size = len(pattern[0])
new_pattern = pattern.copy()
for cell in shape:
y, x, colour = cell
if 0 <= y < y_size and 0 <= x < x_size:
new_pattern[y][x] = colour
return new_pattern | 85c8f8f59b3bc241684798898f1780c7eda475f4 | 23,879 |
def image_to_normalized_device_coordinates(image):
"""Map image value from [0, 255] -> [-1, 1].
"""
return (image / 127.5) - 1.0 | c92fe3ef499164c957b1b4330cce584a6b6d9f1f | 23,884 |
def first_bad_pair(sequence, k):
"""Return the first index of a pair of elements in sequence[]
for indices k-1, k+1, k+2, k+3, ... where the earlier element is
not less than the later element. If no such pair exists, return -1."""
if 0 < k < len(sequence) - 1:
if sequence[k-1] >= sequence[k+1]:
return k-1
for i in range(k+1, len(sequence)-1):
if sequence[i] >= sequence[i+1]:
return i
return -1 | 0fe2957d8feb95fe285088be0c5d85ddf4b657ad | 23,886 |
def stitle(self, nline="", title="", **kwargs):
"""Defines subtitles.
APDL Command: /STITLE
Parameters
----------
nline
Subtitle line number (1 to 4). Defaults to 1.
title
Input up to 70 alphanumeric characters. Parameter substitution may
be forced within the title by enclosing the parameter name or
parametric expression within percent (%) signs. If Title is blank,
this subtitle is deleted.
Notes
-----
Subtitles (4 maximum) are displayed in the output along with the main
title [/TITLE]. Subtitles do not appear in GUI windows or in ANSYS
plot displays. The first subtitle is also written to various ANSYS
files along with the main title. Previous subtitles may be overwritten
or deleted. Issue /STATUS to display titles.
This command is valid in any processor.
"""
command = "/STITLE,%s,%s" % (str(nline), str(title))
return self.run(command, **kwargs) | 80775dca1d9de3bd2d1b88fbb9843d047d6d3766 | 23,888 |
def getDetailedChannelBoxAttrs(node):
"""
Return the list of attributes that are included
when the 'detailed channel box' is enabled for a node.
"""
attrs = [
# rotate order
'ro',
# rotate axis
'rax', 'ray', 'raz',
# rotate pivot
'rpx', 'rpy', 'rpz',
# scale pivot
'spx', 'spy', 'spz',
# rotate pivot translate
'rptx', 'rpty', 'rptz',
# scale pivot translate
'sptx', 'spty', 'sptz',
]
if node.nodeType() == 'joint':
attrs += [
# joint orient
'jox', 'joy', 'joz',
]
return attrs | 649eff52fcc43243891ce853732c2cf914ecc60a | 23,889 |
import torch
def get_class_weights(target: torch.Tensor, class_weight_power: float = 1.0) -> torch.Tensor:
"""
Returns class weights inversely proportional to some power of the number of pixels in each class.
:param target: one-hot tensor of shape (B, C, Z, X, Y); thus class dimension (of size C) is dimension 1
:param class_weight_power: power to raise 1/c to, for each class count c
"""
with torch.no_grad():
class_counts = target.sum([0] + list(range(2, target.dim()))).float() # sum over all except class dimension
class_counts[class_counts == 0.0] = 1.0 # prevent 1/0 when invert - value doesn't matter if no voxels
class_weights = class_counts ** (-class_weight_power)
# Normalize so mean of class weights is 1.0
class_weights *= class_weights.shape[0] / class_weights.sum()
return class_weights | 5199722699da87a57c8ddebfbaa5b44c11707393 | 23,890 |
import shlex
def split_string(s):
"""split string to list"""
if s is None:
return []
else:
return shlex.split(s) | e9cbd0c1928d16c673d70cc9aeffc0275de43f30 | 23,892 |
def get_collection_id(collection):
"""Return id attribute of the object if it is collection, otherwise return given value."""
return collection.id if type(collection).__name__ == 'Collection' else collection | 5c7b344ff89d28609b21962fda58acc3cd7684a1 | 23,893 |
def trainings(states):
"""Creates a dict from training_id to a list of game states."""
ret_value = {}
for state in states:
if state.training_id not in ret_value:
ret_value[state.training_id] = []
ret_value[state.training_id].append(state)
return ret_value | d58b815bcb5176989c581e12901863fb00da31d0 | 23,894 |
def lerp(value, start, end, minimum=0.0, maximum=1.0):
"""
Linear Interpolation between two points
"""
value = float(value)
start = float(start)
end = float(end)
return minimum+((1.0-value) * start +value * end)*maximum | a27ef478a51790c2bb5c449c6d73a15ac0ab02d0 | 23,895 |
def get_charset(message):
"""Get the charset defined for the message.
The charset can be retrieved in two ways. Try the preferred method
first and, if that fails, try the other method.
Args:
message (Message): An email Message object.
Returns:
(unicode) The charset that was found or `None` if not found.
"""
charset = message.get_content_charset()
if not charset:
charset = message.get_charset()
return charset | 447fa14e12792737f0c8aeb9a0c80214cb8e04bf | 23,897 |
from typing import Tuple
def is_valid_choice(options):
"""
Returns a function that tests if the config value is an element of the passed options.
:param options: The options that are considered as valid choices.
:return: A functions that takes a value and tests if it is within the specified choices. This function returns True
if the value in the config is in the passed options.
"""
def validator(value) -> Tuple[bool, str]:
return value in options, f"Value is not contained in the options {options}"
return validator | 4c1fb6c32a21e068256443c0110fa09a6b31d60b | 23,901 |
def synthesize_thermal(results_df):
""" Reduce thermal metrics table to one time-point like table
where for each metric, only the worst metric value of all time-points
is recorded
"""
filter_cols = ["name",
"substation",
"feeder",
"placement",
"sample",
"penetration_level",
"scenario"]
df = (
results_df.groupby(filter_cols)[
[
c for c in results_df.columns if (c not in filter_cols) and (c != "time_point")
]
]
.max()
.reset_index()
)
return df | 88b7c090a635d4410b91e69ff85462f4329e9051 | 23,902 |
def Keck_distortion(measured_wave, cutoff=10000.):
"""Telescope dependent distortion function for the Keck sample."""
slope1 = .0600
intercept1 = -100
slope2 = .160
intercept2 = -1500
if measured_wave < cutoff:
return measured_wave * slope1 + intercept1
else:
return measured_wave * slope2 + intercept2 | b0592bc8e9fde3d3f04234f6627ea8c5f7e7717a | 23,904 |
def wpoffs(self, xoff="", yoff="", zoff="", **kwargs):
"""Offsets the working plane.
APDL Command: WPOFFS
Parameters
----------
xoff, yoff, zoff
Offset increments defined in the working plane coordinate system.
If only ZOFF is used, the working plane will be redefined parallel
to the present plane and offset by ZOFF.
Notes
-----
Changes the origin of the working plane by translating the working
plane along its coordinate system axes.
This command is valid in any processor.
"""
command = f"WPOFFS,{xoff},{yoff},{zoff}"
return self.run(command, **kwargs) | e7382911339938e0c7f89606f8ffd2b66923c955 | 23,910 |
def resample_dataframe(df, resolution):
"""
Resamples a dataframe with a sampling frquency of 'resolution'
-> Smoothes the plots
:param df: Dataframe to be resampled. Must contain numbers only
:param resolution: Resolution of the sampling to be done
:return: Resampled dataframe
"""
df = df.set_index('timedelta', drop=True) # set timedelta as new index
resampled = df.resample(str(resolution)+'S').mean()
resampled.reset_index(inplace=True)
# timedelta was resampled, so we need to do the same with the Time-column
resampled['Time'] = resampled['timedelta'].apply(lambda time: time.total_seconds())
return resampled | 17a2c555e45a9067e68c97958200508525bef873 | 23,917 |
def equal_zip(*args):
"""
Zip which also verifies that all input lists are of the same length
"""
# make sure that all lists are of the same length
assert len(set(map(len, args))) == 1, "lists are of different lengths {}".format(args)
return zip(*args) | f50ad8586d24516ba641e1bbef5d62879a0f3d6b | 23,922 |
import hashlib
from re import M
def hash_key(integer):
"""Hash the given integers and trim to l digits
Arguments:
integer {Integer}
Returns:
Integer -- Hashed Integer Value
"""
name = str(integer)
m = hashlib.sha1(name.encode('utf-8'))
key_hash = m.hexdigest()[:M // 4]
return int(key_hash, 16) | d37361d02d270e75758b3268efbe0e18c7723d63 | 23,925 |
def _swap_ending(s, ending, delim="_"):
"""
Replace the ending of a string, delimited into an arbitrary
number of chunks by `delim`, with the ending provided
Parameters
----------
s : string
string to replace endings
ending : string
string used to replace ending of `s`
delim : string
string that splits s into one or more parts
Returns
-------
new string where the final chunk of `s`, delimited by `delim`, is replaced
with `ending`.
"""
parts = [x for x in s.split(delim)[:-1] if x != ""]
parts.append(ending)
return delim.join(parts) | ffce5c55d2f914668a4daa5634ad379785fd3f2a | 23,928 |
def extract_testing_substructures(doc):
""" Extract the search space for predicting with the mention pair model,
The mention ranking model consists in computing the optimal antecedent
for an anaphor, which corresponds to predicting an edge in graph. This
functions extracts the search space for each such substructure (one
substructure corresponds to one antecedent decision for an anaphor).
The search space is represented as a nested list of mention pairs. The
mention pairs are candidate arcs in the graph. The ith list contains the
ith mention pair, where we assume the following order:
(m_2, m_1), (m_3, m_2), (m_3, m_1), (m_4, m_3), ...
Args:
doc (CoNLLDocument): The document to extract substructures from.
Returns:
(list(list(Mention, Mention))): The nested list of mention pairs
describing the search space for the substructures.
"""
substructures = []
# iterate over mentions
for i, ana in enumerate(doc.system_mentions):
# iterate in reversed order over candidate antecedents
for ante in sorted(doc.system_mentions[1:i], reverse=True):
substructures.append([(ana, ante)])
return substructures | b18e9ef7bf825580618925ff2889b3df53fe4f89 | 23,933 |
import six
def explode(_string):
"""Explodes a string into a list of one-character strings."""
if not _string or not isinstance(_string, six.string_types):
return _string
else:
return list(_string) | c9c46382f2be8362e8f271983e32f1b1d2c2f7cc | 23,934 |
def validation(size, training):
""" Obtain the validation set corresponding to the given training set """
result = []
for i in range(0, size):
if i not in training:
result.append(i)
return result | 7d40be54aa5f54139f24c1b4b20695f70586d97f | 23,937 |
from typing import Callable
from typing import Any
def call_safe(cb: Callable, *args, **argv) -> Any:
"""Safely call a Callable"""
try:
cb(*args, **argv)
except TypeError:
return None | 5cdcca9fc5f3b834d161e7a596d20af73e5ed3b5 | 23,938 |
from typing import Dict
from typing import Any
def track_data() -> Dict[str, Any]:
"""Get track data to instantiate a Track."""
return dict(
title="Python 3.8 new features", release_date="2016-07-30", podcast_id=1
) | 61b41f23d25e56bbb33b4179f2f24c4f643ff44e | 23,947 |
def _residual_str(name):
"""Makes a residual symbol."""
return '\\mathcal{R}(%s)' % name | 385c7a0f4f1ea3e9ed37be73978eaa34ded9afa4 | 23,949 |
def update_df(df, dirname, filename, coverage, mean, std_dev, segmented_pixel_count):
"""
update the coverage, mean, std_dev in a given df for a specific segmentation type (dirname)
"""
df.loc[df['names'] == filename, f'{dirname}_coverage'] = coverage
df.loc[df['names'] == filename, f'{dirname}_mean'] = mean
df.loc[df['names'] == filename, f'{dirname}_std_dev'] = std_dev
df.loc[df['names'] == filename, f'{dirname}_segmentation_count'] = segmented_pixel_count
return df | d803dc4ab0c6946a3b9ac0e70fa5c1eb327d85a7 | 23,950 |
def dist_between(h,seg1,seg2):
"""
Calculates the distance between two segments. I stole this function from
a post by Michael Hines on the NEURON forum
(www.neuron.yale.edu/phpbb/viewtopic.php?f=2&t=2114)
"""
h.distance(0, seg1.x, sec=seg1.sec)
return h.distance(seg2.x, sec=seg2.sec) | 7c8ca520ea27f6297740eaffacb52a2ceeead287 | 23,951 |
def locate(tlsToFind, sets):
"""return
- the set in which the given traffic light exists
- the pair in which it was found
- the index within the pair
"""
for s in sets:
for pair in s:
if tlsToFind == pair.otl:
return s, pair, 0
elif tlsToFind == pair.tl:
return s, pair, 1
return None, None, None | 00956c33433bb34e7a5b8dd8a200a90d36bad801 | 23,956 |
def margin_fee(self, **kwargs):
"""Query Cross Margin Fee Data (USER_DATA)
Get cross margin fee data collection with any vip level or user's current specific data as https://www.binance.com/en/margin-fee
GET /sapi/v1/margin/crossMarginData
https://binance-docs.github.io/apidocs/spot/en/#query-cross-margin-fee-data-user_data
Keyword Args:
vipLevel (int, optional): User's current specific margin data will be returned if vipLevel is omitted
coin (str, optional)
recvWindow (int, optional): The value cannot be greater than 60000
"""
return self.sign_request("GET", "/sapi/v1/margin/crossMarginData", kwargs) | f2ca69c13b77fffadf6aa319f1847004ed5615da | 23,958 |
def list2string(list_of_strings):
"""
Return a string (OUTPUT) from a list of strings (INPUT).
E.g.,
["I think,", "Therefore, I am."] => "I think. Therefore, I am"
"""
return " ".join(list_of_strings) | 10efd017e6c09a2d17ec7f9135376f0a2f57c789 | 23,960 |
def clean_df(df):
"""
Takes in a Pandas Dataframe from Dreamclinic
and cleans it for aggregation.
"""
# remove rows where HrsWorked = 0
# because they are just used by the front desk staff somehow
df = df[df['HrsWorked'] != 0]
# fill NaN values in 'Service_Category with 'Massage'
df['Service_Category'] = df['Service_Category'].fillna(value='Massage')
# remove white space from Therapist names
df['Therapist'] = df['Therapist'].str.strip()
# make all therapist names lowercase to avoid typos in data entry
df['Therapist'] = df['Therapist'].str.lower()
# find and replace nicknames with domain knowledge
df = df.replace('abby thomson', 'abigail thomson')
# Drop Address_City and Addres_State Columns from Dataframe
df.drop(['Address_City', 'Address_State', 'Invoice_Category'],
axis=1,
inplace=True)
# Drop rows without a clientID
df = df.dropna()
return df | 0db35bdd25fcba3eb3c366bb1830d8402e019d9c | 23,962 |
def standard_dict(text):
"""Count with standard dict.
"""
d = {}
for key in text:
d.setdefault(key, 0)
d[key] += 1
return d | 9cd2a00e889cd28df7133fb0ea29480611bbe851 | 23,965 |
def a_send_line(text, ctx):
"""Send text line to the controller followed by `os.linesep`."""
ctx.ctrl.sendline(text)
return True | 79f40657fe2b346c695d808bb3cdc7650077b76e | 23,966 |
def invertMask(mask):
"""
Inverts a numpy binary mask.
"""
return mask == False | f6a668a9b2f0928e2a71dc7e4de4d1e04cf307de | 23,978 |
def _counter(metric):
"""Create a signal handler that counts metrics"""
def signal(sender, **kwargs):
metric.inc(job=sender.name)
return signal | 5eac04e45fe3d992d26b576e81b891416bb0bcef | 23,979 |
def get_full_name_from_any_step(
step):
"""Gets the full name of a protobuf from a google.protobuf.Any step.
An any step is of the form (foo.com/bar.Baz). In this case the result would
be bar.Baz.
Args:
step: the string of a step in a path.
Returns:
the full name of a protobuf if the step is an any step, or None otherwise.
"""
if not step:
return None
if step[0] != "(":
return None
if step[-1] != ")":
return None
step_without_parens = step[1:-1]
return step_without_parens.split("/")[-1] | 2be9ac75331947b4fa89cdb51bc62cc41c1935e5 | 23,981 |
import inspect
def configurable(pickleable: bool = False):
"""Class decorator to allow injection of constructor arguments.
Example usage:
>>> @configurable()
... class A:
... def __init__(self, b=None, c=2, d='Wow'):
... ...
>>> set_env_params(A, {'b': 10, 'c': 20})
>>> a = A() # b=10, c=20, d='Wow'
>>> a = A(b=30) # b=30, c=20, d='Wow'
Args:
pickleable: Whether this class is pickleable. If true, causes the pickle
state to include the constructor arguments.
"""
# pylint: disable=protected-access,invalid-name
def cls_decorator(cls):
assert inspect.isclass(cls)
# Overwrite the class constructor to pass arguments from the config.
base_init = cls.__init__
def __init__(self, *args, **kwargs):
if pickleable:
self._pkl_env_args = args
self._pkl_env_kwargs = kwargs
base_init(self, *args, **kwargs)
cls.__init__ = __init__
# If the class is pickleable, overwrite the state methods to save
# the constructor arguments
if pickleable:
# Use same pickle keys as gym.utils.ezpickle for backwards compat.
PKL_ARGS_KEY = '_ezpickle_args'
PKL_KWARGS_KEY = '_ezpickle_kwargs'
def __getstate__(self):
return {
PKL_ARGS_KEY: self._pkl_env_args,
PKL_KWARGS_KEY: self._pkl_env_kwargs,
}
cls.__getstate__ = __getstate__
def __setstate__(self, data):
saved_args = data[PKL_ARGS_KEY]
saved_kwargs = data[PKL_KWARGS_KEY]
inst = type(self)(*saved_args, **saved_kwargs)
self.__dict__.update(inst.__dict__)
cls.__setstate__ = __setstate__
return cls
# pylint: enable=protected-access,invalid-name
return cls_decorator | 8c037f92f070d36ecb9c1efa3586cb3e4a8a7a09 | 23,982 |
def getSchedule(filename):
"""
Expects a single line of the form
(1,4,3,2,6,4,5,0,8)
"""
with open(filename) as filly:
line = filly.readlines()[0]
line = line.replace('(', ' ').replace(')', ' ').replace(',', ' ')
return [int(x) for x in line.strip().split()] | 0435cb08093a262b1e6c2224998b361b3fc77853 | 23,983 |
def highest_sum_list(lst: list, n: int) -> int:
"""
Returns highest sum for n consecutive numbers in a list
Using sliding window technique that is an O(n) in time complexity
Args:
lst (list): list of ints
n (int): n, consecutive nums
Returns:
highest sum for n consecutive numbers
"""
initial = sum(lst[:n])
max_num = initial
i = 0
while i+n < len(lst):
max_num = max_num - lst[i] + lst[i+n]
i += 1
return max_num | fa453d717ffbfbceb47effc6559bd22a4d7542ba | 23,985 |
def writedataset(h5group, name, data, overwrite=True):
"""
Write a dataset to a hdf5 file.
The `overwrite` parameter controls the behaviour when the dataset
already exists.
"""
if name in h5group:
if overwrite:
del h5group[name]
else:
return False
h5group[name] = data
return True | ae53c15155b79e850bc01a4ddadc6dc23adec7ea | 23,987 |
def get_url_and_type(xml):
"""
Gets the URL of the audio file, and it's type
"""
attr = xml.find('channel').find('item').find('enclosure').attrib
return attr['url'], attr['type'] | 5e6feacb59edaaca0192342e4c1424c8d23f2bfe | 23,993 |
def read_problem(filename):
"""
Read a 0hh1 puzzle from file <filename>
Takes a filename, and returns a problem dictionary with
the following fields:
- 'size': the number of rows/columns (assumed to be the same;
an error will be raised if there is a size mismatch)
- 'variables': the puzzle itself, a dictionary with (row, column)
tuples as keys and the corresponding value 'r', 'b', or '.'
- 'state': initially 'unsolved', to be updated by other methods
"""
with open(filename, 'r') as problem_file:
problem = [['rb' if c == '.' else c for c in line if c in '.rb']
for line in problem_file]
size = len(problem)
assert all(len(v) == size for v in problem)
cells = {(r, c): problem[r][c] for r in range(size) for c in range(size)}
problem_dict = {'size': size, 'variables': cells, 'state': 'unsolved'}
return problem_dict | 554f97862ddc56337a0ba786052a28955c10b03a | 23,997 |
import stat
def s_isdev(mode):
"""
Check to see if a file is a device.
"""
return stat.S_ISBLK(mode) | stat.S_ISCHR(mode) | 9caea3ac877f8b745c6c24487ad26f105ef99ca1 | 23,998 |
def in_dict(obj, key, default=False):
"""
Returns true if key exists in obj.__dict__; false if not in.
If obj.__dict__ is absent, return default
"""
return (key in obj.__dict__) if getattr(obj, '__dict__', None) else default | 905bc7afe9677f5f1dd70a1c6ec296df608cc6c3 | 24,000 |
def normalize_min_max(img, a=0.1, b=0.9):
"""
Normalize the image with Min-Max scaling to a range of [a, b]
Args:
img: The image to be normalized
Returns:
Normalized image data
"""
# Assume image data is in grayscale, with the current values in
# the range [0, 255] (uint8).
x_min = 0
x_max = 255
# x' = a + ((x - x_min) * (b - a)) / (x_max - x_min)
normalized_img = a + ((img - x_min) * (b - a)) / (x_max - x_min)
return normalized_img | 0772ce27ca4a7cc75df2ae2d40e37f638b43359f | 24,002 |
import threading
def wait_for_events(completion_queues, deadline):
"""
Args:
completion_queues: list of completion queues to wait for events on
deadline: absolute deadline to wait until
Returns:
a sequence of events of length len(completion_queues).
"""
results = [None] * len(completion_queues)
lock = threading.Lock()
threads = []
def set_ith_result(i, completion_queue):
result = completion_queue.next(deadline)
with lock:
results[i] = result
for i, completion_queue in enumerate(completion_queues):
thread = threading.Thread(target=set_ith_result,
args=[i, completion_queue])
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
return results | fd172ade97f78a538bcd9e6c0c95f5ee2102688c | 24,010 |
def analyse(text):
"""
Return a dictionary with the number of occurrences for each character in the given string.
"""
frequencies = {}
for c in text:
if c in frequencies:
frequencies[c] += 1
else:
frequencies[c] = 1
return frequencies | 5f4cabd36ab090ba3f26dab89851947ac8f70616 | 24,012 |
def norm_vec(lst, idx):
"""Get the normal vector pointing to cube at idx (from previous cube)."""
assert len(lst)>1 and 0 < idx < len(lst)
return [a-a1 for (a,a1) in zip(lst[idx], lst[idx-1])] | 76fb86ac29b2cd8b5ceab0ba83b9bb8360914764 | 24,016 |
def end_chat(input_list):
"""Function to end the chat.
Parameters
----------
input_list : list
List that contains the input that the user input to the chatbot.
Returns
-------
output : bool
Returns True to end chat or False to continue chat.
"""
if str('quit') in input_list:
output = True
return output
else:
output = False
return output | cf9a592af3981706c04aa97f4519a4d58a1d87af | 24,017 |
def isint(s):
""" Is the given string an integer?"""
try:
i = int(s)
except ValueError:
return False
return True | fc734c88031b2d0aa1c60b59d0605276b0215a83 | 24,025 |
def val_proto_to_python(msg):
"""
Converts a `protobuf` `Value` `Message` object into a Python variable.
Parameters
----------
msg : google.protobuf.struct_pb2.Value
`protobuf` `Value` `Message` representing a variable.
Returns
-------
one of {None, bool, float, int, str}
Python variable represented by `msg`.
"""
value_kind = msg.WhichOneof("kind")
if value_kind == "null_value":
return None
elif value_kind == "bool_value":
return msg.bool_value
elif value_kind == "number_value":
return int(msg.number_value) if msg.number_value.is_integer() else msg.number_value
elif value_kind == "string_value":
return msg.string_value
elif value_kind == "list_value":
return [val_proto_to_python(val_msg)
for val_msg
in msg.list_value.values]
elif value_kind == "struct_value":
return {key: val_proto_to_python(val_msg)
for key, val_msg
in msg.struct_value.fields.items()}
else:
raise NotImplementedError("retrieved value type is not supported") | 4dc710483a599ba16b6e27e0f1af6431c454a632 | 24,031 |
def shed(data):
"""
Drops columns that have been encoded
"""
data = data.drop(['Gender','Education','Married','Self_Employed'],axis=1)
return data | a50b8974d09d04d38497d87e3c4c96c05bf973ea | 24,032 |
import hashlib
def file_hash(filename):
"""Calculates the hash of an entire file on disk
Args:
filename (str)
Location of file on disk
Returns:
hash (str)
SHA256 checksum
"""
hash_sha256 = hashlib.sha256()
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest() | cebd76ad6dec53056ff829dacb5df6fee639ee10 | 24,034 |
def argsort_list(seq):
"""Returns indices such that the list is sorted.
Example: argsort_list([2, 1, 3]) = [1, 0, 2].
"""
return sorted(range(len(seq)), key=seq.__getitem__) | 25e598b3771f1aae0b28dff83909705f9bd76b3d | 24,036 |
def make_mgt_byte(service, sync=False):
"""
Creates the management byte according to the protocol
:param service: Service code as defined in :obj:`~.Service`
:param sync: boolean if synchronized mode should be used
:return: integer
"""
msg = service + 3*16
if sync:
msg += 64
return msg | 2e69845f9fd19d03013f39eb0a74e0b5f0c0ea7e | 24,037 |
def fuzzy_match(pattern, instring, adj_bonus=5, sep_bonus=10, camel_bonus=10,
lead_penalty=-3, max_lead_penalty=-9, unmatched_penalty=-1):
"""Return match boolean and match score.
:param pattern: the pattern to be matched
:type pattern: ``str``
:param instring: the containing string to search against
:type instring: ``str``
:param int adj_bonus: bonus for adjacent matches
:param int sep_bonus: bonus if match occurs after a separator
:param int camel_bonus: bonus if match is uppercase
:param int lead_penalty: penalty applied for each letter before 1st match
:param int max_lead_penalty: maximum total ``lead_penalty``
:param int unmatched_penalty: penalty for each unmatched letter
:return: 2-tuple with match truthiness at idx 0 and score at idx 1
:rtype: ``tuple``
"""
score, p_idx, s_idx, p_len, s_len = 0, 0, 0, len(pattern), len(instring)
prev_match, prev_lower = False, False
prev_sep = True # so that matching first letter gets sep_bonus
best_letter, best_lower, best_letter_idx = None, None, None
best_letter_score = 0
matched_indices = []
while s_idx != s_len:
p_char = pattern[p_idx] if (p_idx != p_len) else None
s_char = instring[s_idx]
p_lower = p_char.lower() if p_char else None
s_lower, s_upper = s_char.lower(), s_char.upper()
next_match = p_char and p_lower == s_lower
rematch = best_letter and best_lower == s_lower
advanced = next_match and best_letter
p_repeat = best_letter and p_char and best_lower == p_lower
if advanced or p_repeat:
score += best_letter_score
matched_indices.append(best_letter_idx)
best_letter, best_lower, best_letter_idx = None, None, None
best_letter_score = 0
if next_match or rematch:
new_score = 0
# apply penalty for each letter before the first match
# using max because penalties are negative (so max = smallest)
if p_idx == 0:
score += max(s_idx * lead_penalty, max_lead_penalty)
# apply bonus for consecutive matches
if prev_match:
new_score += adj_bonus
# apply bonus for matches after a separator
if prev_sep:
new_score += sep_bonus
# apply bonus across camelCase boundaries
if prev_lower and s_char == s_upper and s_lower != s_upper:
new_score += camel_bonus
# update pattern index iff the next pattern letter was matched
if next_match:
p_idx += 1
# update best letter match (may be next or rematch)
if new_score >= best_letter_score:
# apply penalty for now-skipped letter
if best_letter is not None:
score += unmatched_penalty
best_letter = s_char
best_lower = best_letter.lower()
best_letter_idx = s_idx
best_letter_score = new_score
prev_match = True
else:
score += unmatched_penalty
prev_match = False
prev_lower = s_char == s_lower and s_lower != s_upper
prev_sep = s_char in '_ '
s_idx += 1
if best_letter:
score += best_letter_score
matched_indices.append(best_letter_idx)
return p_idx == p_len, score | 5d5f4164f6230161842f37b29f03758753f36ef6 | 24,038 |
def add_lists(list1, list2):
"""
Add list1 and list2 and remove any duplicates.
Example:
list1=[1,2,3,4]
list2=[3,4,5,6]
add_lists(list1, list2) = [1, 2, 3, 4, 5, 6]
:param list1: input list 1
:param list2: input list 2
:return: added lists with removed duplicates
"""
return list1 + list(set(list2) - set(list1)) | fc3f024ddbe0de0b6c5cfb92c173fedade0b1f54 | 24,039 |
def group(iterable, n_groups):
"""Group a list into a list of lists
This function can be used to split up a big list items into a set to be
processed by each worker in an MPI scheme.
Parameters
----------
iterable : array_like
A list of elements
n_groups : int
The number of groups you'd like to make
Returns
-------
groups : list
A list of lists, where each element in `groups` is a list of
approximately `len(iterable) / n_groups` elements from `iterable`
See Also
--------
interweave : inverse of this operation
"""
return [iterable[i::n_groups] for i in range(n_groups)] | bb981dbc8f1fc8034e2b672652c63d6af7de8f5b | 24,040 |
def emails_parse(emails_dict):
"""
Parse the output of ``SESConnection.list_verified_emails()`` and get
a list of emails.
"""
return sorted([email for email in emails_dict['VerifiedEmailAddresses']]) | db5b1935057367bdacd923e1f27557727f1b9a00 | 24,050 |
def create_datafile_url(base_url, identifier, is_filepid):
"""Creates URL of Datafile.
Example
- File ID: https://data.aussda.at/file.xhtml?persistentId=doi:10.11587/CCESLK/5RH5GK
Parameters
----------
base_url : str
Base URL of Dataverse instance
identifier : str
Identifier of the datafile. Can be datafile id or persistent
identifier of the datafile (e. g. doi).
is_filepid : bool
``True`` to use persistent identifier. ``False``, if not.
Returns
-------
str
URL of the datafile
"""
assert isinstance(base_url, str)
assert isinstance(identifier, str)
base_url = base_url.rstrip("/")
if is_filepid:
url = "{0}/file.xhtml?persistentId={1}".format(base_url, identifier)
else:
url = "{0}/file.xhtml?fileId={1}".format(base_url, identifier)
assert isinstance(url, str)
return url | d6deece390b3028f45b27a0f6aa1864688ed97fa | 24,053 |
def suffix_all_lines(s, suffix):
"""
Returns 's', with 'suffix' appended to all lines.
If the last line is empty, suffix is not appended
to it. (If s is blank, returns s unchanged.)
"""
split = s.split('\n')
last = split.pop()
final = []
for line in split:
final.append(line)
final.append(suffix)
final.append('\n')
if last:
final.append(last)
final.append(suffix)
return ''.join(final) | fe43cb9039254a7acf7cb11375356ef2fc1c01b4 | 24,059 |
def safe_float(x):
"""Returns the value of x converted to float, if fails return None.
"""
try:
return float(x)
except (ValueError, TypeError):
return None | a492ce03eeb15c4fe192b56dc447a97fff94b03e | 24,061 |
def string_to_scopes(scopes):
"""Converts stringifed scopes value to a list.
Args:
scopes (Union[Sequence, str]): The string of space-separated scopes
to convert.
Returns:
Sequence(str): The separated scopes.
"""
if not scopes:
return []
return scopes.split(' ') | ba304ebc17cd52739809d84c0617cf853de6d21b | 24,064 |
def calculate_total_bill(subtotal):
"""
(float) -> float
subtotal is passed through as an input
HST_RATE variable in this function is multiplied by inputted variable
Function returns the resulting variable "total", rounded and formatted to 2 decimal points.
Variable "total" is then rounded to the nearest 5 cents using the following nickel rounding scheme standard rules in Canada:
0.01 to 0.02 will round down to 0.00. 0. 03 to 0.04 will round up to 0.05. 0.06 to 0.07 will round down to 0.05.
0.08 to 0.09 will round up to 0.10
>>> calculate_total_bill(3.0)
3.40
>>> calculate_total_bill(6.67)
7.55
>>> calculate_total_bill(2.05)
2.30
"""
HST_RATE = 1.13
total_bill = subtotal *HST_RATE
return format(round(0.05 * round(float(total_bill)/0.05), 2), '.2f') | 6335c9e85e37e6d897eaa48ad09557b5d77d2e1b | 24,066 |
import multiprocessing
def consumer_process_factory(kafka_bootstrap_servers):
"""
Use this "factory as a fixture" to create multiprocessing.Process running
a Kafka consumer polling loop in a test function.
Parameters
----------
kafka_bootstrap_servers: pytest fixture (str)
comma-separated list of host:port
Returns
-------
_consumer_process_factory :
function(consumer_factory, topics, group_id, consumer_config, document_queue, **kwargs)
factory function returning a multiprocessing.Process that will run a Kafka
consumer polling loop
"""
def _consumer_process_factory(
consumer_factory, topics, group_id, consumer_config, document_queue, **kwargs
):
"""
Parameters
----------
consumer_factory : function(topics, group_id, consumer_config, **kwargs)
a factory function (or callable) returning a BlueskyConsumer-like object
topics : list of str, required
the underlying Kafka consumer will subscribe to the specified topics
group_id : str, optional
the underlying Kafka consumer will have the specified group_id, "pytest" by default
consumer_config : dict, optional
the underlying Kafka consumer will be created with the specified configuration parameters
document_queue : multiprocessing.Queue
the underlying Kafka consumer will place documents it receives in this queue
kwargs
kwargs will be passed to the consumer_factory to be used in constructing the
underlying Kafka consumer
Returns
-------
document_queue: multiprocessing.Queue
this queue will contain bluesky (name, document) pairs that were delivered
to the underlying Kafka consumer
"""
if consumer_config is None:
consumer_config = {
# it is important to set a short time interval
# for automatic commits or the Kafka broker may
# not be notified by the consumer that messages
# were received before the test ends; the result
# is that the Kafka broker will try to re-deliver
# those messages to the next consumer that subscribes
# to the same topic(s)
"auto.commit.interval.ms": 100,
}
# this function will run in the external process created below
def start_consumer_with_queue(document_queue_):
logger = multiprocessing.get_logger()
logger.warning("constructing consumer process with inter-process queue")
def put_document_in_queue(consumer, topic, name, doc):
logger.warning("BlueskyConsumer putting %s in queue", name)
document_queue_.put((name, doc))
# it is important the BlueskyConsumer be
# constructed in the external process
bluesky_consumer_ = consumer_factory(
topics=topics,
bootstrap_servers=kafka_bootstrap_servers,
group_id=group_id,
consumer_config=consumer_config,
process_document=put_document_in_queue,
**kwargs,
)
# consume messages published by a Kafka broker
bluesky_consumer_.start()
# create an external process for the bluesky_kafka.BlueskyConsumer polling loop
# but do not start it, the client of this function will start the process
consumer_process = multiprocessing.Process(
target=start_consumer_with_queue, args=(document_queue,), daemon=True,
)
return consumer_process
return _consumer_process_factory | 90222728439dc071a39afa72b83c66c757b0a2a7 | 24,069 |
def pil_to_rgb(pil):
"""Convert the color from a PIL-compatible integer to RGB.
Parameters:
pil: a PIL compatible color representation (0xBBGGRR)
Returns:
The color as an (r, g, b) tuple in the range:
the range:
r: [0...1]
g: [0...1]
b: [0...1]
>>> '(%g, %g, %g)' % pil_to_rgb(0x0080ff)
'(1, 0.501961, 0)'
"""
r = 0xff & pil
g = 0xff & (pil >> 8)
b = 0xff & (pil >> 16)
return tuple((v / 255.0 for v in (r, g, b))) | b6c2c3f150ddf2e82120febc676e400582d7db48 | 24,070 |
def get_instance(instances, field, value):
"""Given a list of instances (dicts), return the dictionary where field == value."""
for inst in instances:
if inst[field] == value:
return inst
assert False, "Value '{}' for field '{}' was not found in instances!".format(value, field) | 56b79d142885c54a356709e99d9333476bbc1c43 | 24,072 |
def version_number_to_array(version_num):
"""Given a version number, return an array of the elements, as integers."""
return [int(x) for x in version_num.split(".")] | b55605238bd0b534c92c7867f5f2257226e8382f | 24,076 |
def get_lr(optimizer):
"""
Return current learning rate from optimiser function
* :param optimiser(torch.optim): Optimiser function
:return (float): Learning rate at current epoch
"""
for param_group in optimizer.param_groups:
return param_group['lr'] | d35703b89e07bce65113135c78733b282eebffd4 | 24,077 |
def dedup(lst):
"""Remove duplicates from lst"""
result = []
repeated = set()
for element in lst:
if element not in repeated:
result.append(element)
repeated.add(element)
return result | 367640c9f4795ddc9ee2d7db1d88755a9b901290 | 24,078 |
def comma(text):
"""Split a string into components by exploding on a comma"""
components = (el.strip() for el in text.split(','))
return tuple(filter(bool, components)) | ebfd1d0fe7be436a93973e4ee14f7565414cd5f3 | 24,084 |
def get_column(puzzle: str, col_num: int) -> str:
"""Return column col_num of puzzle.
Precondition: 0 <= col_num < number of columns in puzzle
>>> get_column('abcd\nefgh\nijkl\n', 1)
'bfj'
"""
puzzle_list = puzzle.strip().split('\n')
column = ''
for row in puzzle_list:
column += row[col_num]
return column | 4d4dd5c6d6345786e4ef0f41c4748e47d1231603 | 24,088 |
def _convert_boolean(value):
"""Convert a string to a boolean value the same way the server does.
This is called by the transform_parameter_value function and shouldn't be
called directly.
Args:
value: A string value to be converted to a boolean.
Returns:
True or False, based on whether the value in the string would be interpreted
as true or false by the server. In the case of an invalid entry, this
returns False.
"""
if value.lower() in ('1', 'true'):
return True
return False | 0c30185b8745be6b431baab6d6e4331c608c93cb | 24,089 |
import click
def prompt_tag_selection(tags):
"""Prompt user to chose a tag or <HEAD>."""
# Prompt user to select a tag to export
tags = sorted(tags, key=lambda t: t.created)
text_prompt = 'Tag to export: \n\n<HEAD>\t[1]\n'
text_prompt += '\n'.join(
'{}\t[{}]'.format(t.name, i) for i, t in enumerate(tags, start=2)
)
text_prompt += '\n\nTag'
selection = click.prompt(
text_prompt, type=click.IntRange(1,
len(tags) + 1), default=1
)
if selection > 1:
return tags[selection - 2]
return None | 913ebd41f23905acf967f466910966e435d957e1 | 24,092 |
def _status_code_for_git_status_line(status_line):
"""Returns the XY status git status.
Git status char ' ' (empty space) is replaced with an underscore
per the MergeFile status spec above.
See `git status --help` for details.
"""
assert len(status_line) >= 2, status_line
return status_line[:2].replace(" ", "_") | 51e802e4f6aded85d5344eba89bb0f20af192d7f | 24,093 |
def open_file(fname):
"""Open <fname> and return its contents."""
with open(fname, "r") as reader:
data = reader.read()
return data | c08c02414fcacdffc7fc1391ee9201a6a0151c5a | 24,096 |
def abi_crs(G, reference_variable="CMI_C01"):
"""
Get coordinate reference system for the Advanced Baseline Imager (ABI).
Parameters
----------
G : xarray.Dataset
An xarray.Dataset to derive the coordinate reference system.
reference_variable : str
A variable in the xarray.Dataset to use to parse projection from.
Returns
-------
Three objects are returned
1. cartopy coordinate reference system
2. data projection coordinates in x direction
3. data projection coordinates in y direction
"""
# We'll use the `CMI_C01` variable as a 'hook' to get the CF metadata.
dat = G.metpy.parse_cf(reference_variable)
crs = dat.metpy.cartopy_crs
# We also need the x (north/south) and y (east/west) axis sweep of the ABI data
x, y = (dat.x, dat.y)
return crs, x, y | b420ea4cda12f1acd4b9af6ecd9c2f70c756f761 | 24,097 |
def EncodePublic(pk):
"""
Encode a public key into bytes.
"""
return bytes(pk) | a4dcc174f12fa78b3ec425b4129c038d51312fea | 24,098 |
def _without_otter_metadata(metadata):
"""
Return a copy of the metadata with all the otter-specific keys
removed.
"""
meta = {k: v for (k, v) in metadata.get('metadata', {}).iteritems()
if not (k.startswith("rax:auto_scaling") or
k.startswith("rax:autoscale:"))}
return {'metadata': meta} | b35a10d3961c1885df4ae9a25b39c639d4f77b9c | 24,101 |
import math
def griewank(phenome):
"""The bare-bones Griewank function."""
ssum = 0.0
product = 1.0
for i in range(len(phenome)):
ssum += phenome[i] ** 2 / 4000.0
product *= math.cos(phenome[i] / math.sqrt(i + 1.0))
return ssum - product + 1.0 | b2f5ad697051b3d1e491da9c159aafa2faa1cc6d | 24,111 |
def tx_vport(b2b_raw_config_vports):
"""Returns a transmit vport"""
return b2b_raw_config_vports.ports[0] | b2b6629a868d1ee75566a2c86acf5e38c75e992c | 24,114 |
import json
def get_hosts_deployed(cls):
"""
Method to get all the hosts deployed in the cluster
Args:
cls: cephadm instance object
Returns:
List of the names of hosts deployed in the cluster
"""
out, _ = cls.shell(args=["ceph", "orch", "host", "ls", "-f", "json"])
hosts = list()
host_obj = json.loads(out)
for host in host_obj:
hosts.append(host["hostname"])
return hosts | 221bd1a437bb4a271c1b85af9f80de5cbf99884c | 24,116 |
def initial_status_ok (db, status_id, cat_id, is_simple) :
""" Allow "escalated" when submitting new issue. This is allowed in
case the analysis was done in advance. The first (submission)
message should contain the analysis results.
Allow "open" when submitting new non-cert issue. This is allowed
in case the analysis and decision about implementation was made
in advance, the first message should contain the analysis
results and decision.
Allow open for simple kind (the ones using simple_transitions).
"""
status = db.status.get (status_id, 'name')
if status == 'escalated' and not is_simple :
return True
if status == 'open' and is_simple :
return True
if ( status == 'open'
and cat_id
and db.category.get (cat_id, 'valid')
and not db.category.get (cat_id, 'cert_sw')
) :
return True
return False | f2e28779258a5f1f590e6cf2a2e9a26a415c16b7 | 24,117 |
import json
def process_synonyms(genes, synonyms_file):
"""Process a list of genes into a dictionary with synonyms
The user may select only a subset of genes to look for,
rather than the entire dictionary. This function creates
a new dictionary for the genes used by the user.
Returns:
dict: Dictionary containing the gene names provided as keys,
and the synonyms as values.
"""
with open(synonyms_file) as f:
gene_to_syns = json.load(f)
target_to_syns = {}
targets_lower = [target.lower() for target in genes]
for symbol, synonyms in gene_to_syns.items():
if symbol in genes:
target_to_syns[symbol] = synonyms
else:
for synonym in synonyms:
if synonym.lower() in targets_lower:
target_to_syns[synonym] = synonyms
target_to_syns[synonym].append(symbol)
return target_to_syns | f2452464eb58e70487c8f0fbf3159dcb8a7a0d75 | 24,120 |
from typing import Any
import inspect
from pydantic import BaseModel # noqa: E0611
def _is_basemodel(obj: Any) -> bool:
"""Checks if object is a subclass of BaseModel.
Args:
obj (Any): Any object
Returns:
bool: Is a subclass of BaseModel.
"""
return inspect.isclass(obj) and issubclass(obj, BaseModel) | 30027d6e5ce9f685c4b227ef3c2f83d76a963da7 | 24,121 |
import statistics
def median(wm):
"""
Median Operator
wm = list of importance weighted membership values
returns the middle value in the set
"""
return statistics.median(wm) | bee3aa1f17d943ed1951277c17eff958a6b16e12 | 24,123 |
def title(info):
"""
concatenate page title from info dict
"""
version = info['node']['version']
try: # perhaps cut away "-stable-316fc7ec"
version = version.split("-")[0]
except:
pass
T = "(%s) %s %s with %d txs: %.1f TPS"
T = T % (info['diagrams']['prefix'],
info['node']['name'], version,
info['send']['num_txs'],
info['diagrams']['blocktimestampsTpsAv'])
return T | 94d1116bfedc2b9f2585ba6479e2cb04a1a05b70 | 24,130 |
def has_duplicates(t):
"""Takes a list returns True if any element appears more than once, otherwise False"""
seen_letters = []
for i in t:
if i in seen_letters:
return True
else:
seen_letters.append(i)
return False | dc1316d94ed510eaa468feb26a62ae9afd6cfbc2 | 24,131 |
def rational_polynomial2(data):
"""Rational polynomial benchmark function.
.. list-table::
:widths: 10 50
:stub-columns: 1
* - Range
- :math:`\mathbf{x} \in [0, 6]^2`
* - Function
- :math:`f(\mathbf{x}) = \\frac{(x_1 - 3)^4 + (x_2 - 3)^3 - (x_2 - 3)}{(x_2 - 2)^4 + 10}`
"""
return ((data[0] - 3)**4 + (data[1] - 3)**3 - (data[1] - 3)) / ((data[1] - 2)**4 + 10) | 99d7802acf72ee57421d543c3a324958e7bb5281 | 24,132 |
def split_join_text(text, n, prefix, joiner):
"""Splits the text into chunks that are n characters long, then joins them up again."""
return joiner.join(f"{prefix}{text[i:i+n]}" for i in range(0, len(text), n)) | a44c5944c6718360af287db2b2520ebd643aaf76 | 24,141 |
def moving_average(input_list):
"""Compute the moving average with window size of 3
Args:
input_list (list of floats of ints): list of numbers
Returns:
list of floats or ints: moving average with window size of 3
Example:
moving_average([2,3,4,5,6]) = [3,4,5]
"""
N = 3
output = []
for i in range(len(input_list)):
if i < N-1:
continue
else:
tmp_sum = 0
for k in range(N):
tmp_sum+= input_list[i-k]
output.append(tmp_sum/N)
return output | e0412ffb9c348c60c0e471405708757cd7917cfe | 24,145 |
import socket
def get_container_hostname(device):
"""Maps a device to its container hostname."""
this_host = socket.gethostname().split('.')[0]
if device.physical_port is not None:
return '%s--device%d' % (this_host, device.physical_port)
else:
return '%s--%s' % (this_host, device.serial) | c1ee92ddc7dc2fd310b56a657098f42e9645abd5 | 24,158 |
def object_list_check_any_has_attribute(object_list,attr_name):
"""
check if any object in the list has the attribute.
"""
unique = False
for obj in object_list:
if hasattr(obj,attr_name):
unique = True
break
else:
pass
return unique | cac90dab958b4bfc25493a2dba86b72454230222 | 24,162 |
import re
def file_to_array(file_name):
"""Read file and extract lines to list.
Parameters
----------
file_name : str
Path of file to read.
Returns
-------
array : list
List of lines contained in file.
"""
with open(file_name, 'r') as f:
array = [line.strip() for line in f]
array = [line for line in array if line]
array = [line for line in array if not re.match('\#',line)]
return array | 762e96b2098d6a5435af549d2a72c3033d12ae33 | 24,166 |
def dotProduct(D1, D2):
"""
Returns the dot product of two documents
"""
Sum = 0.0
for key in D1:
if key in D2:
Sum += (D1[key] * D2[key])
return Sum | d3d81029a85d34269de3454511a193aa8e433370 | 24,167 |
def normal_from_lineseg(seg):
""" Returns a normal vector with respect to the given line segment. """
start, end = seg
x1, y1 = start
x2, y2 = end
dx = x2 - x1
dy = y2 - y1
return (dy, -dx) | a64d18a9bd82ee8a7f28ac96f84403bac4ea2981 | 24,168 |
def escape_backslash(s: str) -> str:
"""Replaces any \\ character with \\\\"""
return s.replace('\\', '\\\\') | e185c40d4cfe52eeed77e5fab2ee40a15c6a760c | 24,169 |
def is_collection(v):
"""
Decide if a variable contains multiple values and therefore can be
iterated, discarding strings (single strings can also be iterated, but
shouldn't qualify)
"""
# The 2nd clause is superfluous in Python 2, but (maybe) not in Python 3
# Therefore we use 'str' instead of 'basestring'
return hasattr(v,'__iter__') and not isinstance(v,str) | e51ee293566e0be9f7143524abb055da0e35671e | 24,170 |
def format_node(cluster_name, node):
"""Formats a string representation of a node."""
return '<{0}[{1}]>'.format(cluster_name, node) | 7a8b35dd2d8845d3fdf9484769d8ee2db819aaa6 | 24,171 |
import hashlib
def sha256(s):
""" Return the SHA256 HEX digest related to the specified string.
"""
m = hashlib.sha256()
m.update(bytes(s,"utf-8"))
return m.hexdigest() | e868e345cf942127c1bbd0b56402d3a007bb8ff6 | 24,173 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.