content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import time
def seconds_since(t):
"""seconds_since returns the seconds since `t`. `t` is assumed to be a time
in epoch seconds since time.time() returns the current time in epoch seconds.
Args:
t (int) - a time in epoch seconds
Returns
int: the number of seconds since `t`
"""
return time.time() - t | db398fa2a18689c5ccd05d365948e9b5cd1f99d5 | 24,519 |
def intersect(box1, box2):
"""Calculate the intersection of two boxes."""
b1_x0, b1_y0, b1_x1, b1_y1 = box1
b2_x0, b2_y0, b2_x1, b2_y1 = box2
x0 = max(b1_x0, b2_x0)
y0 = max(b1_y0, b2_y0)
x1 = min(b1_x1, b2_x1)
y1 = min(b1_y1, b2_y1)
if x0 > x1 or y0 > y1: # No intersection, return None
return None
return (x0, y0, x1, y1) | 70daa13f0f0e59bbb21f52a74434935a4424dc68 | 24,520 |
def donottrack(request):
"""
Adds ``donottrack`` to the context, which is ``True`` if the ``HTTP_DNT``
header is ``'1'``, ``False`` otherwise.
This context processor requires installtion of the
``donottrack.middleware.DoNotTrackMiddleware``.
Note that use of this context processor is not strictly necessary. (Though
it is quite convenient.) If you are using the
``django.core.context_processors.request`` context processor, you have
access to ``{{ request.donottrack }}``.
"""
# We could just use the ``donottrack.utils.get_donottrack`` function rather
# than rely on the middlware, but we want to require the middleware so that
# the VARY header is properly patched to account for DNT.
try:
return {'donottrack': request.donottrack}
except AttributeError:
raise AttributeError("'WSGIRequest' object has no attribute 'donottrack'"
" - 'donottrack.middleware.DoNotTrackMiddleware' must be in your"
" MIDDLEWARE_CLASSES") | 50dc0c60ed70137c9aa1473ae436e48ef859ae9a | 24,522 |
def _sort_orders(orders):
"""Sort a list of possible orders that are to be tried so that the simplest
ones are at the beginning.
"""
def weight(p, d, q, P, D, Q):
"""Assigns a weight to a given model order which accroding to which
orders are sorted. It is only a simple heuristic that makes it so that
the simplest models are sorted first.
"""
cost = 0
if P + D + Q:
cost += 1000
cost += p**2 + d**2 + q**2
cost += P**3 + 2*d**3 + 3*q**3
return cost
orders = [(weight(*o), o) for o in orders]
orders.sort()
orders = [x[1] for x in orders]
return orders | a164aa850e44ddb59429436b78ea2cf0603a1aae | 24,524 |
def ToGLExtensionString(extension_flag):
"""Returns GL-type extension string of a extension flag."""
if extension_flag == "oes_compressed_etc1_rgb8_texture":
return "OES_compressed_ETC1_RGB8_texture" # Fixup inconsitency with rgb8,
# unfortunate.
uppercase_words = [ 'img', 'ext', 'arb', 'chromium', 'oes', 'amd', 'bgra8888',
'egl', 'atc', 'etc1', 'angle']
parts = extension_flag.split('_')
return "_".join(
[part.upper() if part in uppercase_words else part for part in parts]) | 78d767beba572291193c9819f885c8eb46650c1c | 24,525 |
def uniqued(iterable):
"""Return unique list of items preserving order.
>>> uniqued([3, 2, 1, 3, 2, 1, 0])
[3, 2, 1, 0]
"""
seen = set()
add = seen.add
return [i for i in iterable if i not in seen and not add(i)] | 51bc142d6872a2e811724cd0371f982a390d8f06 | 24,528 |
def genKgris(k):
"""
Calcule une liste de ``k`` teintes de gris allant du noir au blanc.
Paramètre:
k --> nombre de teintes (>=2)
La liste génére doit nécessairement commencer par la couleur noir (0,0,0)
et nécessairement terminer par la couleur blanc (255,255,255).
Les autres valeurs doivent être des teintes de gris uniformément réparties
entre le noir et le blanc.
:: EXEMPLES::
>>> genKgris(2)
[(0, 0, 0), (255, 255, 255)]
>>> genKgris(3)
[(0, 0, 0), (127, 127, 127), (255, 255, 255)]
>>> genKgris(4)
[(0, 0, 0), (85, 85, 85), (170, 170, 170), (255, 255, 255)]
"""
coef = 255//(k-2+1) # -2 (blanc et noir) +1 (1 élément minimum)
# teintes contient les valeurs de chaque pixel pour éviter la répétition
# teintes commence et fini par du blanc...
teintes = [0]
teintes += [n*coef for n in range(1, k-1)] # valeurs intermédiaires
# et se fini par du noir.
teintes += [255]
return [(v,v,v) for v in teintes] | 3e480d5bba5f60e3448392da97c7d7738f5decad | 24,531 |
def fromRoman(r):
"""Return the numeric value of a valid roman numeral."""
# Handle subtractions by trying to match two characters first.
# If this fails, match only one character.
romanMap = dict((('M', 1000), ('CM', 900), ('D', 500),
('CD', 400), ('C', 100), ('XC', 90),
('L', 50), ('XL', 40), ('X', 10),
('IX', 9), ('V', 5), ('IV', 4), ('I', 1)))
num, i = 0, 0
try:
while i < len(r) - 1:
if r[i:i+2] in romanMap:
num += romanMap[r[i:i+2]]
i += 2
else:
num += romanMap[r[i]]
i += 1
if i < len(r):
num += romanMap[r[i]]
return num
except KeyError as e:
raise ValueError('Bad roman numeral: ' + r) | b03c49bf1dfb3f72585ff2667cf9df2eea9e7a4c | 24,532 |
import glob
def summfile(ifldpth,idx):
""" Find _x1dsum file ending with idx + '_x1dsum.fits'
Parameters
----------
ifldpth : str
path to the files
idx : str
the file ends with idx + '_x1dsum.fits'
e.g. idx = '10'
Returns
-------
fname : str
sum file name
"""
fname = glob.glob(ifldpth+'*'+idx+'_x1dsum.fits')
if len(fname) != 1:
print('multiple or zero '+idx+'_x1dsum files: ', len(fname))
print(ifldpth)
else:
fname = fname[0]
return fname | 05f6778276487de8feb684dca41c326321335049 | 24,534 |
def get_hashable_cycle(cycle):
"""
Cycle as a tuple in a deterministic order.
Args
----
cycle: list
List of node labels in cycle.
"""
# get index of minimum index in cycle.
m = min(cycle)
mi = cycle.index(m)
mi_plus_1 = (mi + 1) if (mi < len(cycle) - 1) else 0
if cycle[mi-1] > cycle[mi_plus_1]:
result = cycle[mi:] + cycle[:mi]
else:
result = list(reversed(cycle[:mi_plus_1])) + \
list(reversed(cycle[mi_plus_1:]))
return tuple(result) | 28e81992a4fc306151e8ac87426721f41d516beb | 24,535 |
def get_susceptibility_matrix_index(age):
"""
The age matrix is 16x16 and it's split in groups of 4,
We can use whole division to quickly get the index
"""
if age >= 75:
return 15
else:
return age // 5 | 6efb3665f8578820d4bd1c969538c3026f2bdcf9 | 24,541 |
def truncate(string, length=60):
"""Truncate the given string when it exceeds the given length."""
return string[:length - 4] + '.' * 3 if len(string) > length else string | c3bfc6d78703830e23240e671bc5c29f1cdcb19d | 24,543 |
from PIL import Image
def pilnew_imageobject(image_file: str):
"""Returns a PIL image object from a referenced image file.
Args:
image_file (str): Reference an existing image file.
Returns:
PIL.Image.Image: Returns a PIL image object
"""
#
image_object = Image.open(image_file)
return image_object | f80e8b2cb9a4a93f94fe1d3005c53caa54c00877 | 24,545 |
def string_handler(item):
"""
Create a string out of an item if isn't it already.
Parameters:
- item: The variable to make sure it is a string.
Returns:
The input as a string.
"""
return (
str(item)
if not isinstance(item, str) else
item
) | dcd767d1e05bab1f2ce770347b578b627005acf4 | 24,546 |
import random
def random_word_swap(sentence, p):
"""Swaps words from a sentence with probability p."""
def swap_word(new_words):
idx_1 = random.randint(0, len(new_words) - 1)
idx_2 = idx_1
counter = 0
while idx_2 == idx_1:
idx_2 = random.randint(0, len(new_words) - 1)
counter += 1
if counter > 3:
return new_words
new_words[idx_1], new_words[idx_2] = new_words[idx_2], new_words[idx_1]
return new_words
words = sentence.split(' ')
new_words = words.copy()
n = int(p * len(words))
for _ in range(n):
new_words = swap_word(new_words)
sentence = ' '.join(new_words)
return sentence | f81467776a3c1e8bae3fdb411bd95f8c6440fea2 | 24,550 |
def is_array_type(rtype):
"""
Test to see if return type parameter is a NumPy array.
:param str rtype: Return type parameter.
:return: *True* if return type parameter is a NumPy array, *False* if not.
:rtype: bool
"""
if rtype.lower() in ['ndarray', 'array', 'arr', 'np', 'a']:
return True
return False | 6973a9e1830b89fea87c70e42df97bbfc39e49c2 | 24,554 |
def check_magnetic_atoms(in_path: str) -> list:
"""
Args:
in_path (str) - path for the prepared to siman structure reader POSCAR type file.
Returns:
magnetic_atoms (list) - list of magnetic atoms in prepared
structures with "fake" atoms
e.g
>>> magnetic_atoms
['Po', 'Eu']
"""
with open(in_path, 'r') as in_f:
in_data = in_f.readlines()
magnetic_atoms = in_data[5].split()[: 2]
return magnetic_atoms | b0428fea0767688823b30cab14a11052fed0d149 | 24,560 |
import torch
from typing import Callable
from typing import Iterable
from typing import Tuple
def make_batcher(
x: torch.Tensor, y: torch.Tensor, batch_size: int
) -> Callable[[], Iterable[Tuple[torch.Tensor, torch.Tensor]]]:
"""Returns a function that can be called to yield batches over x and y."""
assert x.shape[0] == y.shape[0]
idxes = range(0, x.shape[0], batch_size)
def batcher() -> Iterable[Tuple[torch.Tensor, torch.Tensor]]:
for start in idxes:
end = start + batch_size
yield x[start:end], y[start:end]
return batcher | 2bcb36b9eca07f86aed565a437bdb2b9b5cb21f6 | 24,564 |
import re
def munge_subject_to_filename(subject):
"""Derive a suitable filename from a commit's subject"""
if subject.endswith('.patch'):
subject = subject[:-6]
return re.sub(r'[^A-Za-z0-9-]+', '_', subject).strip('_').lower() + '.patch' | b67350f2f4003f04c234103a2e3f7f1bf34dedbf | 24,567 |
def abstract_class(cls_):
"""Decorate a class, overriding __new__.
Preventing a class from being instantiated similar to abc.ABCMeta
but does not require an abstract method.
"""
def __new__(cls, *args, **kwargs):
if cls is cls_:
raise TypeError(f'{cls.__name__} is an abstract class and may not be instantiated.')
return object.__new__(cls)
cls_.__new__ = __new__
return cls_ | 15e6f5472b3a6e29ad26fd9c705ea418e9917ceb | 24,569 |
def is_upvoted(submission):
"""
If a comment is upvoted, we assume the question is welcomed, and that
there's no need for a template answer.
"""
min_score = 3
min_comment_count = 1
return (
submission.score > min_score and
len(submission.comments) > min_comment_count
) | 90fe43e6cd681a15daa97dba039e7fa94ac617ca | 24,572 |
def get_label(filename, labels=["head", "body", "arm","tail", "leg", "ear"]):
"""
If the filename contains the word in the list called labels, it returns a pair of name and id number.
example:
get_labels(./raccoon/labels/head.ply, ["head, leg"]): It will return ("head",0)
get_labels(./raccoon/somefilename.ply, ["goose","raccoon"]): It will return ("raccoon,1")
"""
for label in labels:
if label.lower() in filename.lower():
return (label, labels.index(label))
return -1
#raise Exception("There exists no label with "+ filename +". Provide the label of the contained file through the folder name or filename.") | 6c83e714de6c0b4959524110ac8dbe2f5210485d | 24,581 |
def _get_dropbox_path_from_dictionary(info_dict, account_type):
"""
Returns the 'path' value under the account_type dictionary within the main dictionary
"""
return info_dict[account_type]['path'] | 0869c08cd9d0f70d9dcdeb5bee843a6c9046d5bc | 24,585 |
def binary_search(array, value):
"""Search for value in sorted array, using binary search
Continually divide (sub-) array in half until value is found, or entire
array has been searched. Iterative approach.
Parameters
array : list
List to search. Must be sorted.
value : any
Value to search for. Must be same type as elements in array.
Returns
-------
bool
True if array contains value, False otherwise
"""
# Set starting indexes, which will be used to index sub-array as it shrinks
low = 0
high = len(array) - 1
# Keep searching until low and high pointers overlap
while (high - low) > 0:
mid = int((high + low) / 2)
# Check to see if dividing index (mid) equals value we're searching for
if array[mid] == value:
return True
elif value < array[mid]:
# -1 since don't want to check value at mid again (redundant)
high = array[mid] - 1
elif value > array[mid]:
# +1 since don't want to check value at mid again (redundant)
low = array[mid] + 1
return False | 08fc6be6571854a0003a7ccc354c397dfb791059 | 24,586 |
from typing import Tuple
def blend_colors(
rgba: Tuple[int, int, int, float], rgb: Tuple[int, int, int]
) -> Tuple[int, int, int]:
"""Get the resulting RGB color of an RGBA color rendered over an RGB color."""
red = (rgba[0] * rgba[3]) + (rgb[0] * (1 - rgba[3]))
blue = (rgba[1] * rgba[3]) + (rgb[1] * (1 - rgba[3]))
green = (rgba[2] * rgba[3]) + (rgb[2] * (1 - rgba[3]))
result_color = int(red), int(blue), int(green)
return result_color | bf48b7193002a48aa8996c543c3bd5633ae06362 | 24,587 |
def stripnl(s):
"""remove newlines from a string"""
return str(s).replace("\n", " ") | da0a46707b19b6faa054cd1e4dad96b9651b3f0b | 24,589 |
from typing import List
def solution(board: List[List[int]]) -> int:
"""
입력된 2차원 배열에서 가장 큰 1로 된 정사각형을 구하라
Args:
board (List[List[int]]): 각각의 원소가 1이나 0으로 되어 있는 2차원 배열
Returns:
int: 가장 큰 정사각형의 넓이
"""
row, calumn = len(board), len(board[0])
global_max = 0
for i in range(row):
for j in range(calumn):
if not (i and j):
global_max = board[i][j] if board[i][j] > global_max else global_max
continue
if board[i][j]:
near = [board[i - 1][j - 1], board[i - 1][j], board[i][j - 1]]
board[i][j] = min(near) + 1
global_max = board[i][j] if board[i][j] > global_max else global_max
return global_max * global_max | a34b7decafc1dc79bce566335e4edba7900e7744 | 24,592 |
import re
def distribute(string, delim, groups=[r'\S+', r'\S+']):
"""Distributes one part of a string to other parts of that string (seperated
by a delimiter), returning a list of strings.
Args:
string: input string
delim: regex matching delimiter between two parts of string to be
distributed upon
groups: list of regular expressions that match the parts of the string
receiving the distributed portion of the string.
defaults to [r'\S+', r'\S+'] (i.e. two blocks of non-whitespace)
Returns:
If delimiter and groups are found, returns a list of strings.
If they are not found, returns a list containing just the original
string.
Examples:
>>> distribute('hot spam/eggs', r'/')
['hot spam', 'hot eggs']
>>> distribute('hot spam/eggs on toast', r'/')
['hot spam on toast', 'hot eggs on toast']
>>> distribute('hot spam/eggs on toast', r'/', [r'\S+', r'\S+ on toast'])
['hot spam', 'hot eggs on toast']
"""
output = []
n = len(re.findall(delim, string)) + 1
gps = groups + [groups[-1]] * (n - len(groups))
rx = re.compile(delim.join([r'(' + group + r')' for group in gps]))
re_match = rx.search(string)
if re_match:
output = [rx.sub(re_match.group(i), string) for i in range(1, n+1)]
else:
return [string]
return output | 3b64474cabdf755bd41088e9e7f8d8a6e20adec4 | 24,593 |
import random
def generateColor(text):
"""Deterministically generates a colour for a given text."""
random.seed(text)
return ('#%06X' % random.randint(0,0xFFFFFF)) | 6577ba33642b68bdef3d1cec914078fa1d2b8b27 | 24,600 |
def unit_size(size):
""" Convert Byte size to KB/MB/GB/TB.
"""
units = ['KB', 'MB', 'GB', 'TB']
i = 0
size = size / 1024
while size >= 1024 and i<(len(units)-1):
i = i + 1
size = size / 1024
return '%.2f %s'%(size, units[i]) | 9f174d94cd7c3e57399f0689d67c35fe97da5e23 | 24,607 |
def tally_output(cons_file, output_path, file_stem):
"""Writes a tally file for easy graphing/analysis."""
tally_file = "{}/{}.tally".format(output_path, file_stem)
with open(cons_file, "r") as reader, open(tally_file, "w") as writer:
for line in reader:
if line.startswith('#'):
writer.write(line.split('# ')[1])
return tally_file | 02c1b20a1e71482344e5ad8516a2f8ed86429a60 | 24,608 |
def project_is_connected(project, user):
"""
Return True if the given project is connected (joined and authorized).
"""
return project.is_joined(user) | 7d513406f1ec66eb57d8f7a6f0dc5688d521f755 | 24,617 |
def filter_lower_case_keys(dict):
"""
Filter dict to include only lower case keys.
Used to skip HTTP response fields.
:param dict: Dict with all capabilities parsed from the SSDP discovery.
:return: Dict with lower case keys only.
"""
return {key: value for key, value in dict.items() if key.islower()} | f441202f6ae66ab023431c42680f349169ea0f79 | 24,627 |
def supports_int(value: object) -> bool: # noqa: E302
"""Check if an int-like object has been passed (:class:`~typing.SupportsInt`).
Examples
--------
.. code:: python
>>> from nanoutils import supports_int
>>> supports_int(1.0)
True
>>> supports_int(1.5)
False
>>> supports_int(1)
True
>>> supports_int('1')
True
>>> supports_int('not a int')
False
Parameters
----------
value : :class:`object`
The to-be evaluated object.
Returns
-------
:class:`bool`
Whether or not the passed **value** is int-like or not.
"""
# floats that can be exactly represented by an integer are also fine
try:
int(value) # type: ignore
return float(value).is_integer() # type: ignore
except Exception:
return False | c7a920837a080030d1300c99951d887ed4917091 | 24,637 |
from typing import Callable
from typing import Dict
from typing import Any
def memoized(func: Callable) -> Callable:
"""Decorator that caches values returned by a function for future calls.
The first time func is called with a particular sequence of arguments, the
result is computed as normal. Any subsequent calls to func with the same
sequence of arguments will then return the same value without requiring it
to be recomputed.
"""
memo: Dict[Any, Any] = {}
def memo_func(*args: Any) -> Any:
if args not in memo:
memo[args] = func(*args)
return memo[args]
return memo_func | fd348711215713aff3361cfc47609634a457de88 | 24,638 |
def intify_and_make_intron(junction):
"""Convert start and stop strings to ints and shorten the interval
Interval is shortened to match the introns of SJ.out.tab files from STAR
Parameters
----------
junction : tuple
(chrom, start, stop, strand) tuple of strings, e.g.
('chr1', '100', '200', '-')
Returns
-------
intron : tuple
(chrom, start, stop, strand) tuple of string, int, int, string.
Adds 1 to original start and subtracts 1 from original stop
>>> intify_and_make_intron(('chr1', '100', '200', '-'))
('chr1', 101, 199, '-')
"""
chrom, start, stop, strand = junction
start = int(start) + 1
stop = int(stop) - 1
return chrom, start, stop, strand | 200a8504e0a28194ea70fe9e9702094b6ddeb1f1 | 24,640 |
def get_value_for_key_from_json(key, data_structure):
"""
Given a data_structure return the *first* value of the key from the first dict
example:
data_structure: [ { "id": 1, "name": "name1" }, { "id": 2, "name": "name2"} ]
key: "id"
return 1
:param key: key of a dict of which to return the value
:param data_structure: python data_structure
:return: value of key in first dict found
"""
if type(data_structure) == list:
for v in data_structure:
# print("recursively searching %s" % str(v))
r = get_value_for_key_from_json(key, v)
if r is not None:
return r
return None
elif type(data_structure) == dict:
if key in data_structure:
return data_structure[key]
else:
for k in data_structure:
v = data_structure[k]
# print("recursively searching %s" % str(v))
r = get_value_for_key_from_json(key, v)
if r is not None:
return r
return None | 071d6c771d750bdef99a209ba537d0709c1d9582 | 24,641 |
import pickle
def predict(dataX):
""" Predict dependent variable from a features vector """
# load model
model = pickle.load(open('model.pickle', 'rb'))
# predict
predY = model.predict(dataX.values.reshape(-1, dataX.shape[1]))
return predY | 85505d3435ad8593542851680aef7491058a0239 | 24,642 |
def format_pci_addr(pci_addr):
"""Pad a PCI address eg 0:0:1.1 becomes 0000:00:01.1
:param pci_addr: str
:return pci_addr: str
"""
domain, bus, slot_func = pci_addr.split(':')
slot, func = slot_func.split('.')
return '{}:{}:{}.{}'.format(domain.zfill(4), bus.zfill(2), slot.zfill(2),
func) | 9da677c2f1ff832cfbe86f19dffcada1fb33003a | 24,643 |
import re
def make_url_pattern(url: str, version: str) -> str:
"""Returns a regular expression for matching versioned download URLs.
Args:
url: Existing download URL for `version`.
version: Version corresponding to `url` (must be a substring).
Returns:
Regular expression that matches URLs similar to `url`, where all instances
of `version` are replaced by match groups.
"""
replacement_temp = 'XXXXXXXXXXXXXXX'
return re.escape(url.replace(version, replacement_temp)).replace(
replacement_temp, '([^/"\']+)') | 384a58bf8ef02b75f510fe5884445e297862f0ef | 24,647 |
import re
def parse_not_to_prune(model, config):
"""Returns a list of names of modules not to prune in the model"""
patterns = [re.compile(s) for s in config.not_to_prune]
parsed_not_to_prune = []
for name, module in model.named_modules():
if type(module).__name__ in config.prune_layer_types:
if any([p.search(name) for p in patterns]):
parsed_not_to_prune.append(name)
return parsed_not_to_prune | 71e56a5c3d9a2502e8309225feeb127b8b98f7eb | 24,648 |
def right(x):
"""Helper function: argument x must be a dot.
Returns dot right of x."""
return (x[0]+1,x[1]) | bbb9b16ddbecd8bb452d941e5a871c9799f2ca7a | 24,651 |
def isMatch(peak, biomarker, tolerance):
"""Check if spectral peak matches protein biomarker
Args:
peak: Spectral peak obatained from experiment, float
biomarker: An array of biomarker values
tolerance: Maximal difference between experimental weight and
theoretical one that could be considered a match. float
Return:
True / False
"""
for each in biomarker:
if abs(float(peak) - each) <= float(tolerance):
return True
return False | a81a67deca75a4d41c17707dc2e8e528c8fc3949 | 24,654 |
def create_stratum_name(stratification_name, stratum_name, joining_string="X"):
"""
generate a name string to represent a particular stratum within a requested stratification
:param stratification_name: str
the "stratification" or rationale for implementing the current stratification process
:param stratum_name: str
name of the stratum within the stratification
:param joining_string: str
the character to add to the front to indicate that this string is the extension of the existing one
in SUMMER, capitals are reserved for non-user-requested strings, in this case "X" is used as the default
:return: str
the composite string for the stratification
"""
return joining_string + "%s_%s" % (stratification_name, str(stratum_name)) | d778f2538c3e9c451bcafba287ef34fcc5bed07b | 24,658 |
import socket
def get_node_address(node_name=''):
"""
Return the IP address associated to the node's domain.
This is by no means perfect and should not be
relied upon aside from testing purpose.
"""
return socket.gethostbyname(socket.getfqdn(node_name)) | d3f8b5c39118cf05e195d82430f024ef27d01c21 | 24,659 |
def extract_muMax(df_Annotations):
"""
Extracts the growth rate (Slope) for each sample.
Parameters
----------
df_Annotations : pandas.DataFrame
The dataframe contains the results of a linear fit through the
exponential growth phase.
Returns
-------
df_mu : pandas.DataFrame
A dataframe that shows the calculated maximal growth rate for each
sample.
"""
# Delete index name and transform
df_Annotations.index.name = None
df_mu = df_Annotations.T
# Keep only sample name and slope
df_mu.reset_index(inplace=True)
df_mu = df_mu.rename(columns={"index": "samplename_OD"})
df_mu = df_mu[["samplename_OD", "Slope"]]
df_mu["samplename_OD"] = df_mu["samplename_OD"].str[:6]
# Rename slope
df_mu.rename(columns={"Slope": "mu[/h]"}, inplace=True)
return df_mu | 63ca33ddf29c0bfc1ee1af49ef5b6ad4f89829ff | 24,663 |
def _parse_system_prop(line):
"""Returns the name and value of a system property (The line is preceded by @).
Args:
line (str): The definition of the system property.
Returns:
str, str: Pair of name, value.
"""
return line[1:].split("#")[0].split("=") | f2822175a717f9ee96524438eaa610898f7fb613 | 24,664 |
def pentad_to_month_day(p):
"""
Given a pentad number, return the month and day of the first day in the pentad
:param p: pentad number from 1 to 73
:type p: integer
:return: month and day of the first day of the pentad
:rtype: integer
"""
assert 0 < p < 74, 'p outside allowed range 1-73 ' + str(p)
m = [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12]
d = [1, 6, 11, 16, 21, 26, 31, 5, 10, 15, 20, 25, 2, 7, 12, 17, 22,
27, 1, 6, 11, 16, 21, 26, 1, 6, 11, 16, 21, 26, 31, 5, 10, 15, 20,
25, 30, 5, 10, 15, 20, 25, 30, 4, 9, 14, 19, 24, 29, 3, 8, 13, 18,
23, 28, 3, 8, 13, 18, 23, 28, 2, 7, 12, 17, 22, 27, 2, 7, 12, 17, 22, 27]
return m[p - 1], d[p - 1] | 183c3954fe6ee003af28ca13d2a2207812d66483 | 24,665 |
def balance_from_utxos(utxos):
"""Return balance of a list of utxo.
Args:
utxos: A list of utxo with following format.
[{
txid: ''
value: 0,
vout: 0,
scriptPubKey: '',
}]
Returns: A balance sum of value
value.
"""
balance = 0
if utxos:
balance = sum(utxo['value'] for utxo in utxos)
return balance | e20373db24483bb33189b396da44b2c453b717d9 | 24,678 |
from typing import Counter
def most_common_letter(s: str) -> str:
"""Returns the most common letter in a string."""
return Counter(s).most_common(1)[0][0] | 9cf0d1fb6790a2f5a72dff976423868c0dce9a89 | 24,685 |
def captcha_halfway(numbers):
"""Sum the digits that match the one half way around a cyclic string."""
total = 0
for i in range(int(len(numbers) / 2)):
if numbers[i] == numbers[i + int(len(numbers) / 2)]:
total += int(numbers[i])
return total * 2 | c772c194c038484c144337dd32d93ab74e1d9370 | 24,696 |
def get_all_regions(config):
"""Retrieve a set of all regions used by the declared integration tests."""
regions = set()
for feature in config.get("test-suites").values():
for test in feature.values():
for dimensions_config in test.values():
for dimensions_group in dimensions_config:
regions.update(dimensions_group.get("regions", []))
return regions | c2dfddc73601f3661f482cf0ed5547b9b8434689 | 24,697 |
def keras_name_to_tf_name_block(keras_name,
keras_block='block1a',
tf_block='blocks_0',
use_ema=True,
model_name_tf='efficientnet-b0'):
"""Mapping name in h5 to ckpt that belongs to a block.
we map name keras_name that points to a weight in h5 file
to a name of weight in ckpt file.
Args:
keras_name: str, the name of weight in the h5 file of keras implementation
keras_block: str, the block name for keras implementation (e.g. 'block1a')
tf_block: str, the block name for tf implementation (e.g. 'blocks_0')
use_ema: Bool, use the ExponentialMovingAverage resuolt in ckpt or not
model_name_tf: str, the name of model in ckpt.
Returns:
String for the name of weight as in ckpt file.
Raises:
ValueError if keras_block does not show up in keras_name
"""
if keras_block not in keras_name:
raise ValueError('block name {} not found in {}'.format(
keras_block, keras_name))
# all blocks in the first group will not have expand conv and bn
is_first_blocks = (keras_block[5] == '1')
tf_name = [model_name_tf, tf_block]
# depthwide conv
if 'dwconv' in keras_name:
tf_name.append('depthwise_conv2d')
tf_name.append('depthwise_kernel')
# conv layers
if is_first_blocks:
# first blocks only have one conv2d
if 'project_conv' in keras_name:
tf_name.append('conv2d')
tf_name.append('kernel')
else:
if 'project_conv' in keras_name:
tf_name.append('conv2d_1')
tf_name.append('kernel')
elif 'expand_conv' in keras_name:
tf_name.append('conv2d')
tf_name.append('kernel')
# squeeze expansion layers
if '_se_' in keras_name:
if 'reduce' in keras_name:
tf_name.append('se/conv2d')
elif 'expand' in keras_name:
tf_name.append('se/conv2d_1')
if 'kernel' in keras_name:
tf_name.append('kernel')
elif 'bias' in keras_name:
tf_name.append('bias')
# batch normalization layers
if 'bn' in keras_name:
if is_first_blocks:
if 'project' in keras_name:
tf_name.append('tpu_batch_normalization_1')
else:
tf_name.append('tpu_batch_normalization')
else:
if 'project' in keras_name:
tf_name.append('tpu_batch_normalization_2')
elif 'expand' in keras_name:
tf_name.append('tpu_batch_normalization')
else:
tf_name.append('tpu_batch_normalization_1')
for x in ['moving_mean', 'moving_variance', 'beta', 'gamma']:
if x in keras_name:
tf_name.append(x)
if use_ema:
tf_name.append('ExponentialMovingAverage')
return '/'.join(tf_name) | 6a249f992be1c1232ba8415523b8408be5680133 | 24,699 |
def _format_version(name):
"""Formats the string name to be used in a --version flag."""
return name.replace("-", "_") | 9b0bb72d6cef2836dce1f6c0d167ba41ce5a487b | 24,705 |
import math
def rho2_rho1(M, beta, gamma):
"""Density ratio across an olique shock (eq. 4.8)
:param <float> M: Mach # upstream
:param <float> Beta: Shock angle w.r.t initial flow direction (radians)
:param <float> gamma: Specific heat ratio
:return <float> Density ratio r2/r1
"""
m1sb = M * math.sin(beta)
n1 = (gamma + 1.0) * m1sb ** 2
d1 = 2.0 + (gamma - 1.0) * m1sb ** 2
return n1 / d1 | 20de69d2ac14100cd8c88e3f51eb14220052195b | 24,706 |
import logging
import pathlib
def collector(name, fields, filepath, append=False, format_types=None, delimiter='|'):
"""
Returns a function for collecting rows with fields :fields: (along with
datetime information) in a CSV log file located at :filepath:.
We often want to collect some data about choices we are making
while processing and transforming data. This collector function provides
a way to do that using python's logging standard library module.
:name: the name to be given to the logger
:fields: list of fields that you want to collect
:filepath: target for the logfile
:append: (default False) if True, will append to the given filepath. Default
behavior is to overwrite it, with column headings in the first line.
:format_types: optional dictionary from fields to format-string types
(like 's' or '.6f') describing how fields should be formatted in the
CSV. Any fields not included will default to 'f'.
:delimiter: the delimiter in the CSV. Defaults to '|' to avoid collisions.
"""
if not format_types:
format_types = dict()
if 'asctime' not in fields:
fields = ['asctime'] + fields
logger = logging.Logger(name)
pathlib.Path(filepath).parent.mkdir(parents=True, exist_ok=True)
if not append:
with open(filepath, 'w') as f:
f.write(delimiter.join(fields) + '\n')
handler = logging.FileHandler(filepath, mode='a')
default_types = {field: 's' for field in fields}
types = {**default_types, **format_types}
formatted_fields = [f"%({field}){types[field]}" for field in fields]
formatter = logging.Formatter(delimiter.join(
formatted_fields), "%Y-%m-%d %H:%M:%S")
handler.setFormatter(formatter)
handler.setLevel(logging.INFO)
logger.addHandler(handler)
def collect(**kwargs):
logger.info("Collected data point for {vtd_splits}", extra=kwargs)
return collect | 0f6f9fd0df1e262d2b0d0a8d4965f8038722e649 | 24,717 |
def print_network(net, out_f=None):
"""
Prints the number of learnable parameters.
:param net: the network.
:type net:
:param out_f: file
:type out_f:
:return: number of learnable parameters.
:rtype: int
"""
num_params = 0
for param in net.parameters():
num_params += param.numel()
if out_f is not None:
out_f.write(net.__repr__() + "\n")
out_f.write('Total number of parameters: %d\n' % num_params)
out_f.flush()
return num_params | 9dcfd7da51eab385dacb90d35bfeb139ed785be1 | 24,720 |
def _skip_first_max_pooling(inputs):
"""Whether to skip the first max pooling layer in ResNet.
For 128x128 inputs, we skip the first 3x3 2-stride max pooling layer.
Args:
inputs: The inputs passed to ResNet.
Returns:
Whether to skip the first max pooling layer in ResNet.
"""
dims = inputs.shape.dims
size = dims[1] # dims is like [B, H, W, C]
return size == 128 | 45425522c23191e014c9cb687baf1a5d123fc443 | 24,723 |
def is_hom(G, H, hom):
"""
Check whether hom is a homomorphism from G to H.
Works for both directed and undirected.
"""
assert set(G.vertices()) == set(hom.keys())
assert set(H.vertices()).issuperset(set(hom.values()))
for e in G.edges():
u, v = e[0], e[1]
if not H.has_edge(hom[u], hom[v]):
return False
return True | 256ed3b2b496ed72bcd4e23f6f28bcc742049e15 | 24,725 |
from typing import List
from typing import Any
def lazy_content(__list: List, /, nvals: int, ellipsis: Any = ...) -> List:
"""Return list at most {nvals} items from object
Extra values are replaced with mid_value
Examples:
>>> lazy_content([1, 2, 3, 4, 5], 3)
... [1, ..., 5]
"""
if len(__list) <= nvals:
return __list
return (
__list[: nvals // 2] + [ellipsis] + __list[len(__list) - abs(nvals - 1) // 2:]
) | 7af6fe6766c677b0bd9261c305e1e5301567045f | 24,728 |
def clear_form(n_clicks):
"""Empty input textarea"""
return "" | a1d72b827f61d14d898170129d8dee75adf2a88a | 24,729 |
def wrap_to_pmh(x, to2):
"""Wrap x to [-to/2,to/2)."""
to = to2/2
return (x + to)%to2 - to | 29a1ce74e903fb23c316ec841097bf571f561a40 | 24,735 |
def return_index(lbound, ubound, cells, position):
"""
Give the position of a node on a 1D mesh this function will return the corresponding index
of that node in an array that holds the node positions.
lbound: Lower bound of mesh domain.
ubound: Upper bound of mesh domain.
cells: Number of cells along axis in mesh domain.
position: Position of mesh node to find corresponding index for.
returns
Integer
"""
index = (position - lbound) * cells / (ubound - lbound)
return int(index) | dcb0fb35f6ec8b5d7d948b951ce6677d27023a95 | 24,736 |
import huggingface_hub
def list_metrics(with_community_metrics=True, with_details=False):
"""List all the metrics script available on the Hugging Face Hub.
Args:
with_community_metrics (:obj:`bool`, optional, default ``True``): Include the community provided metrics.
with_details (:obj:`bool`, optional, default ``False``): Return the full details on the metrics instead of only the short name.
Example:
```py
>>> from datasets import list_metrics
>>> list_metrics()
['accuracy',
'bertscore',
'bleu',
'bleurt',
'cer',
'chrf',
...
]
```
"""
metrics = huggingface_hub.list_metrics()
if not with_community_metrics:
metrics = [metric for metric in metrics if "/" not in metric.id]
if not with_details:
metrics = [metric.id for metric in metrics]
return metrics | db833a683cb3a549ba040cd5ef3c020c7286624e | 24,742 |
def pathCount(stairs: int):
"""number of unique ways to climb N stairs using 1 or 2 steps"""
#we've reached the top
if stairs == 0:
return 1
else:
if stairs < 2:
return pathCount(stairs - 1)
return pathCount(stairs - 2) + pathCount(stairs - 1) | 69992b4f1a0043935a34ae15a3370f78d0bbf274 | 24,744 |
def _split_comment(lineno, comment):
"""Return the multiline comment at lineno split into a list of comment line
numbers and the accompanying comment line"""
return [(lineno + index, line) for index, line in
enumerate(comment.splitlines())] | 07a4f160ce47d9391b90646cf8b43b18eb32ed14 | 24,751 |
def ts_path(path):
"""Make a URL path with a database and test suite embedded in them."""
return "/api/db_<string:db>/v4/<string:ts>/" + path | c007887e752af8aa4be6936f1fceb3df873d9d61 | 24,752 |
def display_formatter(input_other_type):
"""
Used by QAbstractItemModel data method for Qt.DisplayRole
Format any input value to a string
:param input_other_type:
:return: str
"""
return str(input_other_type) | 8f5e619d98e666f3d6820ec119dd01b11d357555 | 24,753 |
def first_name(s):
"""
Returns the first name in s
Examples:
last_name_first('Walker White') returns 'Walker'
last_name_first('Walker White') returns 'Walker'
Parameter s: a name 'first-name last-name'
Precondition: s is a string 'first-name last-name' with one or more blanks
between the two names.
"""
end_first = s.find(' ')
return s[:end_first] | ca37032ac865981ff83d8f076b3c827334e2fc58 | 24,757 |
def replace_keys(d, old, new):
"""replace keys in a dict."""
return {k.replace(old, new): v for k, v in d.items()} | 44e44308741e37a3b499aac4518cff74f087a589 | 24,761 |
from typing import Union
import io
def _hash(fn, buffer: Union[io.StringIO, io.BytesIO]):
"""Partial function for generating checksum of binary content."""
buffer.seek(0)
hashsum = fn()
for chunk in iter(lambda: buffer.read(4096), b''):
hashsum.update(chunk)
return hashsum.hexdigest() | c2b7b3ba1487273b7759d396d29e0aece15b5efa | 24,766 |
import inspect
def _num_required_args(func):
""" Number of args for func
>>> def foo(a, b, c=None):
... return a + b + c
>>> _num_required_args(foo)
2
>>> def bar(*args):
... return sum(args)
>>> print(_num_required_args(bar))
None
borrowed from: https://github.com/pytoolz/toolz
"""
try:
spec = inspect.getfullargspec(func)
if spec.varargs:
return None
num_defaults = len(spec.defaults) if spec.defaults else 0
return len(spec.args) - num_defaults
except TypeError:
return None | dacc2ed0165ea8bc1e4be45bf2a9477778d2fe45 | 24,768 |
def expand(values, index, padding=128):
""" Modify in place and return the list values[] by appending
zeros to ensure that values[index] is not out of bounds.
An error is raised if index is negative.
"""
assert index >= 0, f"Oops: negative index in expand(values, index={index})"
if index >= len(values):
space_needed = index - len(values) + 1
values.extend([0] * (space_needed + padding))
return values | 6f4d09244972e7af28b6119706a8095bedbc629d | 24,769 |
import typing
import dataclasses
def dataclass_from_dict(cls: type, src: typing.Dict[str, typing.Any]) -> typing.Any:
"""
Utility function to construct a dataclass object from dict
"""
field_types_lookup = {field.name: field.type for field in dataclasses.fields(cls)}
constructor_inputs = {}
for field_name, value in src.items():
if dataclasses.is_dataclass(field_types_lookup[field_name]):
constructor_inputs[field_name] = dataclass_from_dict(field_types_lookup[field_name], value)
else:
constructor_inputs[field_name] = value
return cls(**constructor_inputs) | f91ddb784d3a0ef4a2c5d78205f4a7908b79a1b3 | 24,772 |
from typing import Any
def pm_assert(
condition: Any,
exc: Any=Exception,
context: Any=None,
msg: str="",
) -> Any:
""" Generic assertion that can be used anywhere
@condition: A condition to assert is true
@exc: Raise if @condition is False
@context: The relevant data structures
@msg: Any additional text to include
"""
if not condition:
raise exc(f"{msg}\n{context}")
return condition | a99f0ed3f460f95c84a1391664cc2bc169f17201 | 24,775 |
def resize_halo_datasets(halos_dset, new_size, write_halo_props_cont, dtype):
"""
Resizes the halo datasets
Parameters
-----------
halos_dset: dictionary, required
new_size: scalar integer, required
write_halo_props_cont: boolean, required
Controls if the individual halo properties are written as distinct
datasets such that any given property for ALL halos is written
contiguously (structure of arrays, SOA).
dtype: numpy datatype
Returns
-------
Returns ``True`` on successful completion
"""
if write_halo_props_cont:
for name in dtype.names:
dset = halos_dset[name]
dset.resize((new_size, ))
else:
halos_dset.resize((new_size, ))
return True | a5461a776a0991eda04fc5d0e1d2a2a14e6e1f5f | 24,780 |
def checksum(sentence):
"""Calculate and return checsum for given NMEA sentence"""
crc = 0
for c in sentence:
crc = crc ^ ord(c)
crc = crc & 0xFF
return crc | 841c35f11c5f4a46cfb62efc04379fa54772e739 | 24,784 |
def _apply_affine_scalar(i, j, k, affine_matrix):
"""
Applies an affine matrix to the given coordinates. The 3 values i, j and k must be scalars. The affine matrix consists of a 3x3 rotation matrix and a 3x1 transposition matrix (plus the last row).
Parameters
----------
i, j, k: numeric scalars
The source coordinates.
affine_matrix: numpy 2D float array with shape (4, 4)
The affine matrix
Returns
-------
The coordinate vector after applying the matrix.
"""
rotation = affine_matrix[:3, :3]
translation = affine_matrix[:3, 3]
return rotation.dot([i, j, k]) + translation | a548ac37cad242549e7f40ab799a2361dc2733ff | 24,791 |
import re
def get_dict(post, key):
""" Extract from POST PHP-like arrays as dictionary.
Example usage::
<input type="text" name="option[key1]" value="Val 1">
<input type="text" name="option[key2]" value="Val 2">
options = get_dict(request.POST, 'option')
options['key1'] is 'Val 1'
options['key2'] is 'Val 2'
"""
result = {}
if post:
patt = re.compile('^([a-zA-Z_]\w+)\[([a-zA-Z_\-][\w\-]*)\]$')
for post_name, value in post.items():
value = post[post_name]
match = patt.match(post_name)
if not match or not value:
continue
name = match.group(1)
if name == key:
k = match.group(2)
result.update({k: value})
return result | 35649820407161432f5e3d01816376e67b19ea82 | 24,799 |
import json
def json_load(file):
"""
load json data from file.
"""
with open(file, 'r', encoding='utf8') as _file:
data = json.load(_file)
return data | 9d2ef792a9d2b201a5608601057f4f76e7905662 | 24,804 |
from typing import Dict
from typing import Any
def severity(event: Dict[str, Any]) -> str:
"""Maps `score` of a Qualys event to `severity`.
Possible `score` values:
0 = Known Good [File/Process/Network]
1 = Remediated [File/Process/Network]
2 = Suspicious Low File event
3 = Suspicious Low Process event
4 = Suspicious Low Network event
5 = Suspicious Medium File event
6 = Suspicious Medium Process event
7 = Suspicious Medium Network event
8 = Malicious File event
9 = Malicious Process event
10 = Malicious Network event
"""
if 'score' not in event:
return 'Unknown'
scores = {
'0': 'None',
'1': 'High',
'2': 'Low',
'3': 'Low',
'4': 'Low',
'5': 'Medium',
'6': 'Medium',
'7': 'Medium',
'8': 'High',
'9': 'High',
'10': 'High'
}
score = event['score']
return scores.get(score, 'Unknown') | 4952bbf5b76f7d5f7ab16d1ef9f475a9a5f54582 | 24,805 |
def get_diff(df, column1, column2):
"""Get the difference between two column values.
Args:
df: Pandas DataFrame.
column1: First column.
column2: Second column.
Returns:
Value of summed columns.
Usage:
df['item_quantity_vs_mean'] = get_diff(df, 'item_quantity', 'item_code_item_quantity_mean')
"""
return df[column1] - df[column2] | 1fc5ec361cfdd28775257980c28b4924fdab4eeb | 24,810 |
def int_to_bytes(number: int) -> bytes:
"""Convert integer to byte array in big endian format"""
return number.to_bytes((number.bit_length() + 7) // 8, byteorder='big') | 1158b63b71774c6202aa4c96dae54eca2fae2c0a | 24,811 |
import random
def DEFAULTPOLICY(state):
"""
random policy
:param state: from this state, run simulation with random action
:return: final reward after reaching the final state
"""
while state.terminal() == False: # simulate until terminal state
random_action = random.randint(0, 3)
state = state.next_state(random_action)
# print(state)
return state.reward() | 99a281406c5a293a9040b2c772ca60fdc7b6a2eb | 24,814 |
import hashlib
from pathlib import Path
def label_generator(predictions, processor, filename):
"""Generates a unique label for the image based on the predicted class, a hash,
and the existing file extension.
Parameters
----------
predictions : np.array
Output from model showing each target probability
processor : keras.util
Prediction utility unique to each model
filename : str
Path to image or image name
Returns
-------
new_label : str
New label consisting of predicted class plus a hash
"""
# Hash predictions for always unique filename
hashed = hashlib.sha1(predictions).hexdigest()
# Get label from keras predictor
label = processor(predictions, top=1)[0][0][1]
# Capture original image suffix
suffix = "".join(Path(filename).suffixes)
new_label = f"{label}_{hashed}{suffix}"
return new_label | 8baba1aad6ad9a7f4d69b499a76b1b4079e79cb5 | 24,817 |
import re
def parse_csl_item_note(note):
"""
Return the dictionary of key-value pairs encoded in a CSL JSON note.
Extracts both forms (line-entry and braced-entry) of key-value pairs from "cheater syntax"
https://github.com/Juris-M/citeproc-js-docs/blob/93d7991d42b4a96b74b7281f38e168e365847e40/csl-json/markup.rst#cheater-syntax-for-odd-fields
"""
note = str(note)
line_matches = re.findall(
r'^(?P<key>[A-Z]+|[-_a-z]+): *(?P<value>.+?) *$', note, re.MULTILINE)
braced_matches = re.findall(
r'{:(?P<key>[A-Z]+|[-_a-z]+): *(?P<value>.+?) *}', note)
return dict(line_matches + braced_matches) | 2a9076c646cd3efff12a4f2bbc3d639e2104a5b3 | 24,822 |
def field_is_required(field):
""" Returns true if the field is required (e.g. not nullable) """
return getattr(field, 'required', False) | 15eaf261ef0316c06272b1c38e0ec65bd16e77e6 | 24,834 |
from datetime import datetime
def date_to_datetime(value):
"""Get datetime value converted from a date or datetime object
:param date/datetime value: a date or datetime value to convert
:return: datetime; input value converted to datetime
>>> from datetime import date, datetime
>>> from pyams_utils.date import date_to_datetime
>>> value = date(2016, 11, 15)
>>> date_to_datetime(value)
datetime.datetime(2016, 11, 15, 0, 0)
>>> value = datetime(2016, 11, 15, 10, 13, 12)
>>> value
datetime.datetime(2016, 11, 15, 10, 13, 12)
>>> date_to_datetime(value) is value
True
>>> date_to_datetime(None) is None
True
"""
if not value:
return None
if isinstance(value, datetime):
return value
return datetime(value.year, value.month, value.day) | 5ba2d15d8169d923b87181545eb910f1715ac4c2 | 24,836 |
def filter_set_options(options):
"""Filters out options that are not set."""
return {key: value for key, value in options.items() if value} | e6605af08626189a501895973c59d6dd9956cb55 | 24,838 |
def not_in_dict_or_none(dict, key):
"""
Check if a key exists in a map and if it's not None
:param dict: map to look for key
:param key: key to find
:return: true if key is in dict and not None
"""
if key not in dict or dict[key] is None:
return True
else:
return False | 2bc3f2194b82e978ab8edb2ffaac7a88a58e9c9e | 24,841 |
def to_digits_base10(n):
"""
Return the digits of a number in base 10.
"""
digits = []
remaining = n
while remaining > 0:
digit = remaining % 10
remaining = (remaining - digit) // 10
digits.append(digit)
return digits[::-1] | 5acc6a2ef1e10bc3142371944232c7d1bcad3a32 | 24,843 |
def pbc(rnew, rold):
"""
Periodic boundary conditions for an msd calculation
Args:
rnew (:py:attr:`float`, optional): New atomic position
rold (:py:attr:`float`, optional): Previous atomic position
Returns:
cross (:py:attr:`bool`, optional): Has the atom cross a PBC?
rnew (:py:attr:`float`, optional): New position
"""
shift = abs(rold - rnew)
shift = round(shift, 0)
shift = int(shift)
cross = False
if shift < 2:
if rnew - rold > 0.5:
rnew = rnew - 1.0
cross = True
elif -(rnew - rold) > 0.5:
rnew = rnew + 1.0
cross = True
else:
if rnew - rold > 0.5:
rnew = rnew - shift
cross = True
elif -(rnew - rold) > 0.5:
rnew = rnew + shift
cross = True
return cross, rnew | 67260f98371fbb95d2eca5958f75d80c76b89371 | 24,847 |
import requests
def submit_task(task: dict, username: str, password: str) -> str:
"""
Submits a task using the AppEEARS API.
Parameters
----------
task: dictionary following the AppEEARS API task object format
username: Earthdata username
password: Earthdata password
Returns
-------
Task ID
Notes
-----
For more information about the task object convention and all the
properties that can be specified, check the documentation:
https://lpdaacsvc.cr.usgs.gov/appeears/api/#task-object
"""
api_url = "https://lpdaacsvc.cr.usgs.gov/appeears/api"
try:
# get authorization token and build headers
r = requests.post(f"{api_url}/login", auth=(username, password))
r.raise_for_status()
token = r.json()["token"]
headers = {"Authorization": f"Bearer {token}"}
# submit the task and logout to dispose of the authentication
r = requests.post(f"{api_url}/task", json=task, headers=headers)
requests.post(f"{api_url}/logout", headers=headers)
return r.json()["task_id"]
except requests.HTTPError as err:
raise Exception(f"Error submitting task. {err}") | fd75b86b5258f9b4b0abd02f8fb289a7467149df | 24,848 |
def compare_int(entry, num):
"""Return True if the integer matches the line entry, False otherwise."""
if int(entry) == num:
return True
else:
return False | e779829b0d9a8343d3c48e6a66542e8e6ee62494 | 24,851 |
def _prepare_params(params):
"""return params as SmashGG friendly query string"""
query_string = ''
if len(params) == 0:
return query_string
prefix = '?expand[]='
query_string = prefix + '&expand[]='.join(params)
return query_string | 9fc0573961d50536ee28ae576ac030197eae0cf2 | 24,852 |
def load_settings(path='api/settings'):
"""Loads the user settings located under `api/`"""
with open(path, 'r', encoding='utf-8') as file:
return {
l.strip(): r.strip()
for l, r in (l.split('=') for l in file if l.strip())
} | 1a89c3f80f0a8b4013429fbb060b453f5f447aa5 | 24,853 |
def get_mask(source, source_lengths):
"""
Args:
source: [B, C, T]
source_lengths: [B]
Returns:
mask: [B, 1, T]
"""
B, _, T = source.size()
mask = source.new_ones((B, 1, T))
for i in range(B):
mask[i, :, source_lengths[i]:] = 0
return mask | 8466ff5113ca22488b4218f86c43bfea248197d1 | 24,855 |
import glob
def get_all_html_files(directory):
"""
Returns list of html files located in the directory
"""
return glob.glob(directory + "/*.html") | 5e92a8b4fc52ea63e5c65c5eb7b2487556b08a3d | 24,857 |
import csv
def load_csv(csv_filename):
"""Load csv file generated py ```generate_training_testing_csv.py``` and parse contents into ingredients and labels lists
Parameters
----------
csv_filename : str
Name of csv file
Returns
-------
list[str]
List of ingredient strings
list[dict]
List of dictionaries, each dictionary the ingredient labels
"""
labels, ingredients = [], []
with open(csv_filename, 'r') as f:
reader = csv.reader(f)
next(reader) # skip first row
for row in reader:
ingredients.append(row[0])
labels.append({'quantity': row[1].strip(),
'unit': row[2].strip(),
'item': row[3].strip(),
'comment': row[4].strip()})
return ingredients, labels | 704151f36424f9e72ecb1d0dce9f8f7e8f77c1f1 | 24,870 |
def largest_common_substring(query, target, max_overhang):
"""Return the largest common substring between `query` and `target`.
Find the longest substring of query that is contained in target.
If the common substring is too much smaller than `query` False is returned,
else the location `(start, end)` of the substring in `target` is returned.
Parameters:
-----------
query (str)
The sequence to be found in target (minus some overhangs possibly).
target (str)
The sequence in which to find `query`.
max_overhang
Maximal size allowed for the flanking regions of `query` that would
not be contained in `target`.
Examples
--------
>>> seqA = '-----oooooooo'
>>> seqB = 'oooooo-----tttt'
>>> largest_common_substring(seqA, seqA, 80) # == (0, 12)
>>> largest_common_substring(seqA, seqB, 80) # == (5, 11)
Notes:
------
This is intended for finding whether `query` can be extracted from `target`
using PCR. See the PcrExtractionStation implementation in DnaSupplier.py.
"""
# The trick here is to start with the central region of "query".
# This region is initially as small as max_overhang allows, and it is
# progressively expanded on the sides
max_overhang = min(max_overhang, int(len(query) / 2))
start, end = max_overhang, len(query) - max_overhang
if query[start:end] not in target:
return False
while (start >= 0) and (query[start:end] in target):
start -= 1
start += 1
while (end < len(query)) and (query[start:end] in target):
end += 1
end -= 1
return start, end | 4e0e1e1ee9d5d37fe5e56601fcedab66621ac9fb | 24,871 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.