content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import time
def timeit(func):
"""
Simple wrapper to time a function. Prints the execution time after the
method finishes.
"""
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print('Execution Time ({0}): {1:.5f} seconds'.format(
func.__name__, end_time - start_time))
return result
return wrapper | 37a657ac013739329a84b619153fdfa781181bd8 | 23,251 |
def check_repeat_x(V):
"""
Check if exists repeated x value
Parameters
----------
V : dict
dictionary which contains X and Y values
Returns
-------
bool
Returns True if there are repeated x's values or
False if there are no repeated x's values
"""
xlabel, _ = V.keys()
return not(len(V[xlabel]) == len(set(V[xlabel]))) | e840a596353fc01523f94ba9fc03d7940206b01a | 23,253 |
from typing import Dict
import jinja2
def render(path: str, template_name: str, parameters: Dict[str, str]) -> str:
"""Returns a rendered Dockerfile.
path indicates where in the filesystem the Dockerfiles are.
template_name references a Dockerfile.<template_name> to render.
"""
env = jinja2.Environment(
loader=jinja2.FileSystemLoader(path), undefined=jinja2.StrictUndefined
)
template = "Dockerfile"
if template_name is not None:
template = "Dockerfile.{}".format(template_name)
return env.get_template(template).render(parameters) | 11850e6a093eb72d970462745184946e9500c440 | 23,255 |
from typing import Dict
import random
def randomValue(interval: Dict[str, int]) -> int:
"""Generate a random integer value from a given interval."""
if not isinstance(interval, dict):
raise ValueError('value has to be dict')
return random.randrange(interval['min'], interval['max'], 1) // 1 | d2445ab2127065fa5586080270757e9049246a6d | 23,262 |
def _categorizeVector(v):
"""
Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
of X and/or Y are zero, plus tuple of nonzero ones. If both are zero,
it returns a single zero still.
>>> _categorizeVector((0,0))
('0', (0,))
>>> _categorizeVector((1,0))
('h', (1,))
>>> _categorizeVector((0,2))
('v', (2,))
>>> _categorizeVector((1,2))
('r', (1, 2))
"""
if not v[0]:
if not v[1]:
return '0', v[:1]
else:
return 'v', v[1:]
else:
if not v[1]:
return 'h', v[:1]
else:
return 'r', v | 3532e4920eb7d58aca2dbf360cea6939d94ab730 | 23,263 |
def _NormalizeString(string):
"""Normalizes a string to account for things like case."""
return string.strip().upper() if string else None | 24b8c525df9b080716119ee013cf45eb8c7b892a | 23,267 |
def median_iqr(series):
"""
The interquartile range (Q3-Q1) and median are computed on a pandas series
:param df:
:return:
"""
iqr_median = [.25, .5, .75]
series = series.quantile(iqr_median)
iqr = series.iloc[2] - series.iloc[0]
median = series.iloc[1]
return median, iqr | 095f4d33fd4069cf888eedbfb3570099fc592772 | 23,272 |
def zerocross(eigenvec):
"""
Compute the amount of zero-crossing of an eigenvector matrix (for each eigenvector).
Parameters
----------
eigenvec : numpy.ndarray
The eigenvectors from a decomposition.
Returns
-------
numpy.ndarray
A 1D array with the amount of zero-crossing for each eigenvector.
"""
return (eigenvec[:-1, ...] * eigenvec[1:, ...] < 0).sum(axis=0) | 79fd04940261167336c088027a3550abad45a464 | 23,273 |
def calculate_tdew_from_rh(rh, T, temperature_metric="celsius", verbose=False):
"""Calculate dew point temperature from relative humidity and temperature.
Args:
rh (pd series): air relative humidity in %
T (pd series): air temperature in °C
temperature_metric (str, optional): Input temperature unit. Defaults to "celsius".
Returns:
pandas series: dew point temperature timeseries (in °C or K)
"""
if verbose:
print(
"Calculating dew point temperature (dewp_temp) from relative humidity and temp."
)
if temperature_metric != "celsius":
if verbose:
print("Assuming input temperature unit is Kelvin for rh calculation.")
T = T - 273 # K to °C
# inspired from humidity.to.dewpoint in:
# https://github.com/geanders/weathermetrics/blob/master/R/moisture_conversions.R
Tdew = (rh / 100) ** (1 / 8) * (112 + (0.9 * T)) - 112 + (0.1 * T) # in °C
if temperature_metric != "celsius":
Tdew = Tdew + 273 # °C to K
return Tdew | 079e4a871e8343378e8d0e95dc3ddeed9366e874 | 23,277 |
def to_pc(val):
"""Convert float value in [0, 1] to percentage"""
return r'%.2f\%%' % (val * 100) | ca6b59b437537beef85018089c6448572ece2b32 | 23,279 |
def simpson_index(species_num_array):
"""Calculate the Simpson's Diversity Index: 1 - ∑pi**2
The Simpson index is a dominance index because it gives more weight to
common or dominant species. In this case, a few rare species with only
a few representatives will not affect the diversity. p is the proportion
(n/N) of individuals of one particular species found (n) divided by the
total number of individuals found (N). The value of this index ranges
between 0 and 1, the greater the value, the greater the sample
diversity.
Args:
species_num_array: An array that store the number of different kind
of species.
Returns:
Simpson's diversity index of this population.
"""
ratio_ = species_num_array / species_num_array.sum()
simpson_index_diversity = 1 - sum(ratio_**2)
return float('%0.4f' % simpson_index_diversity) | 22c0c2074a2d389ef6e245ce0b3aa27aea0590b5 | 23,280 |
def can_embed(bin_msg: str, width: int, height: int) -> bool:
"""Determines whether the image can hold the message.
Parameters:
-----------
bin_msg:
string: A string of 1's and 0's representing the characters in the msg.
width:
int: The width of the image.
height:
int: The height of the image.
Returns:
--------
embed
boolean: States whether the message can fit in the specified image.
"""
embed = len(bin_msg) + 8 < 3 * width * height # + 8 for terminating 00000000
return embed | 8489994fe239a920ece07dd69d97e85b9bc7ce60 | 23,281 |
def addition(*args):
"""Addition an inifite number of integer arguments
Args:
number (int): Numbers to addition
Returns:
int: The result of the addition
"""
result = 0
for arg in args:
result += int(arg)
return result | 0c0f9bc333cbcb1ce55e692cd2f6c1bb07461396 | 23,282 |
def precision_single_class(correctly_assigned, total_assigned):
"""
Computes the precision for a single class
:rtype : float
:param correctly_assigned: Samples correctly assigned to the class
:param total_assigned: Total samples assigned to the class
:return: The precision value
"""
# simply returning the precision value
return float(correctly_assigned) / float(total_assigned) | 49ab9693c4b0a59384a55b89e9ecd45dbe1da028 | 23,286 |
def get_bucket_ix(seq_length, bucket_range):
"""
Returns index of a bucket for a sequence with q given length when bucket range is bucket_range
Args:
seq_length: lengh of sequence
bucket_range: range of bucket
Returns: index of a bucket
"""
return seq_length // bucket_range + (1 if seq_length % bucket_range != 0 else 0) | 705dfbfeeb87adb7b5f39d6b1db46b380d58b276 | 23,288 |
def parse_response(response):
"""
Utility function to parse a response into a list.
"""
elements = []
for element in response['responses'][0]['labelAnnotations']:
elements.append(element['description'].capitalize())
return elements | f8b40a43ad00af68d5d13d3b78f00f33cec85270 | 23,289 |
def billing_mode_from_summary(billing_mode_summary):
"""Extract BillingMode field from BillingModeSummary object."""
return billing_mode_summary["BillingMode"] | 9ada170f42e1f0f1eec3378a5f25f0fc884b033e | 23,292 |
def cartesian(lst1, lst2):
"""Return cartesian of 2 lists"""
lst = []
for item1 in lst1:
for item2 in lst2:
lst.append([item1, item2])
return lst | 57bf192770d65143b0cf6c669b18c3baee6cd360 | 23,294 |
import re
def check_column_name(column_name):
""" 检查一列是否是温度相关列
:param column_name:
:return: BOOL
"""
# 2019年之前的数据,如P1_T,代表不覆膜温度
pat1 = re.compile(r'P\d+_T', re.I)
# 2019年之前的数据,如P11m_T,代表覆膜温度
pat2 = re.compile(r'P\d+m_T', re.I)
# 2020年的数据,如P1_8,代表不覆膜温度
pat3 = re.compile(r'P\d+-\d+', re.I)
# 2020年的数据,如P1_8m,代表覆膜温度
pat4 = re.compile(r'P\d+-\d+m', re.I)
if (pat1.match(column_name) is not None or
pat2.match(column_name) is not None or
pat3.match(column_name) is not None or
pat4.match(column_name) is not None):
return True
else:
return False | 63d501c028beb12be983892383873ffb166e387f | 23,297 |
def is_null_str(value):
"""
Indicate if a string is None or 'None' or 'N/A'
:param value: A string value
:return: True if a string is None or 'None' or 'N/A'
"""
return not value or value == str(None) or value == 'N/A' | e8edb22c77ddf712a039f92529d453b7a4947173 | 23,298 |
import math
def solveQuad(a, b, c):
"""
Solve a quadratic equation. Returns a list of solutions from length 0 to 2
:param a:
:param b:
:param c:
:return:
"""
discriminant = (b ** 2) - (4 * a * c)
divisor = 2 * a
if discriminant < 0.0:
return []
elif divisor == 0.0:
if b == 0.0:
return []
else:
return [-c / b]
elif discriminant > 0.0:
sdiscriminant = math.sqrt(discriminant)
return [(-b - sdiscriminant) / divisor,
(-b + sdiscriminant) / divisor]
else:
return [-b / divisor] | 199041cb7a6e6da8787511e29bdfbcee7d73640b | 23,301 |
def is_point_inside_object(obj, obj_BVHtree, point):
""" Checks whether the given point is inside the given object.
This only works if the given object is watertight and has correct normals
:param obj: The object
:param obj_BVHtree: A bvh tree of the object
:param point: The point to check
:return: True, if the point is inside the object
"""
# Look for closest point on object
nearest, normal, _, _ = obj_BVHtree.find_nearest(point)
# Compute direction
p2 = nearest - point
# Compute dot product between direction and normal vector
a = p2.normalized().dot((obj.rotation_euler.to_matrix() @ normal).normalized())
return a >= 0.0 | d838aece6338858fc4d7dd945418bd6db3a48c42 | 23,305 |
def preparation_time_in_minutes(layers):
"""Calculate prep time
:parm layers: Number of layers in the cake
:return: int Total number of minutes to prepare the cake
"""
return 2 * layers | b088c09e5ea43d6fc924d9aecb6b90d91c46fcf2 | 23,306 |
def get_product_from_time_scale(time_scale):
"""
get the the USGS nwis product that is appropriate for the time scale
:param time_scale: str - Pandas like time string for the time scale at which
the data will be aggregated (e.g., 'H' for hour or 'D' for daily)
:return:
"""
iv_scales = ['15T', 'T', 'H']
dv_scale = ['D']
if time_scale in iv_scales:
return 'iv'
elif time_scale in dv_scale:
return 'dv'
else:
raise ValueError("time scale must be '15T', 'T', 'H', or 'D'") | 425b0cbec0b20b79493dd53805cf3fd6f31fae95 | 23,313 |
def identity(arg):
"""
This function simply returns its argument. It serves as a
replacement for ConfigParser.optionxform, which by default
changes arguments to lower case. The identity function is a
better choice than str() or unicode(), because it is
encoding-agnostic.
"""
return arg | a5a5adfbc87ec25619eb4540dda995e49a03ba7a | 23,314 |
def _do_request(client, method, path, data=None, query=None):
"""Make a request to the endpoint with `data` in the body.
`client` is a flask test client
`method` is the request method
`path` is the path of the request
`data` a dictionary containing body arguments for non-GET methods that will
be converted to JSON -- the server will expect valid json, but we want to
write test cases with invalid input as well.
`query` a dictionary containing query arguments (ie - those after the ?)
for the GET method.
"""
# The arguments for this method are documented at:
# http://werkzeug.pocoo.org/docs/0.11/test/#werkzeug.test.EnvironBuilder
return client.open(method=method, path=path, query_string=query, data=data) | b9409ad20674f5fc21c2e21e0580d5c837272767 | 23,317 |
def int_to_binary(int_num):
""" Converts int to binary """
return bin(int_num) | 9d72474454b0cdd8dee6cfecc3fba02410cdf959 | 23,322 |
from typing import Sequence
from typing import List
def read_present_files(paths: Sequence[str]) -> str:
"""Read the content of those files that are present."""
contents: List[str] = []
for path in paths:
try:
with open(path, "r") as f:
contents += ["\n".join(map(str.strip, f.readlines()))]
except FileNotFoundError:
continue
return "\n\n".join(contents) | 7dce316db22405e8482b8bbd2890b2213a931cfd | 23,325 |
def get_jaccard_similarity(s, t):
"""Computes the Jaccard Similarity of two sets"""
return len(s.intersection(t)) / len(s.union(t)) | 12c17780e3ca51b9948b7b89b8b22f89aed6690d | 23,343 |
def strip_list_items(items):
"""Apply str.strip to all items in a list"""
return list(map(str.strip, items)) | f34e5d483eb15b4936bff6df57afd0574b05397b | 23,345 |
import random
def best_index(seq):
"""best_index(seq)
Given a sequence, find the postion of the largest value.
Ties are broken randomly.
"""
largest = max(seq)
indices = []
for idx, val in enumerate(seq):
if val == largest:
indices.append(idx)
# Randomize if necessary
if len(indices) > 1:
random.shuffle(indices)
return indices[0] | 7d9506220d9b216c4016102f48853783d049f33d | 23,349 |
import ast
def _node_filter_for_globals(globals):
"""Filters ast nodes in support of setting globals for exec.
Removes initial assigns of any variables occuring in
`globals`. This is to allow globals to provide the initial
value. Subsequent assigns are not removed under the assumption
that are re-defining the initial variable value.
"""
names = set(globals.keys())
removed = set()
def f(node):
if isinstance(node, ast.Assign):
for target in node.targets:
if not isinstance(target, ast.Name) or target.id in removed:
return True
if target.id in names:
removed.add(target.id)
return False
return True
return f | 5ffc5fb128ab297d0cbc2efef6684fb455dfaa2e | 23,353 |
from typing import List
from typing import Dict
def get_initial_state(procs: int, tasks: List[int]) -> Dict[int, List[int]]:
"""generate the initial state of the system
the initial stage is easy to generate: all processors have an empty
tasklist except the first one which has it all
example:
{
0: [1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9],
1: [],
2: []
}
:param procs: number of available processors
:param tasks: list of tasks to distribute
:return: the initial state
"""
if procs < 1:
exit('Must provide at least one processor')
state = {i: [] for i in range(procs)}
state[0] = sorted(tasks)
return state | 04ac8b0d99d7b248772894ea5356065e555c5250 | 23,357 |
from typing import List
def list2str(l: List[int]) -> str:
""" Converts list to a string"""
return ' '.join([str(x) for x in l]) | fde657c2143ab73fbf0e9a28f3cf47fa377de7dc | 23,358 |
import math
def _pos_sqrt(value: float) -> float:
"""Returns sqrt of value or raises ValueError if negative."""
if value < 0:
raise ValueError('Attempt to take sqrt of negative value: {}'.format(value))
return math.sqrt(value) | 7b4e76f67b2f3f3dfab3e3c441f084685464a994 | 23,360 |
from typing import List
from typing import Dict
def generate_create_sqls(tbl_name: str, columns: List[tuple], keys: Dict) -> str:
"""
tbl_name: string a table name after pyjj_{tbl_name}
columns: list of tuples (column_name, data_type, options)
keys: dict of keys key: (columns, options)
"""
assert tbl_name
column_stmt = ",".join(f"{key} {val} {opt}" for key, val, opt in columns)
key_stmt = (
","
+ ",".join(
f"{key} ({','.join(value[0])}) {value[1]}" for key, value in keys.items()
)
if keys
else ""
)
return f"CREATE TABLE IF NOT EXISTS pyjj_{tbl_name} ({column_stmt} {key_stmt});" | 2bcf1e568ce093426666b8e10f9fa28128b7e995 | 23,368 |
def get_node_datatext(node):
"""Returns a string with data node text if it exists on the node, otherwise returns an empty string"""
datatext = ""
if node.attributes["id"].value:
for data_node in node.getElementsByTagName('data'):
if data_node.attributes["key"].value == "d5":
if data_node.firstChild:
datatext = data_node.firstChild.wholeText
return datatext | b686cc52e0194440f0c86b9e6dfb12e4b7f2a1b4 | 23,380 |
def make_constructed_utts(utt_tokens):
"""
Converts utterances into correct form for composition
Args:
utt_tokens: List of utterances (utterance = list of tokens)
Returns:
utts:
List of utterances for individual tokens and compositions
compose_idx:
List of indices in utts to be composed
[["green", "-ish"]] =>
[["#start#", "green", "#end#"],
["#start#", "-ish", "#end#"],
["#start#", "green", "-ish", "#end#"]],
[(0,2)]
"""
START = "#start#"
END = "#end#"
utts = []
compose_idx = []
for utt in utt_tokens:
compose_idx.append((len(utts), len(utts)+len(utt))) # [start, end)
for tok in utt:
utts.append([START, tok, END])
utts.append([START] + utt + [END])
return utts, compose_idx | 57eaa008883b2cfde95b438251dc305478dac3f9 | 23,383 |
import re
def isbase64(value):
"""
Return whether or not given value is base64 encoded.
If the value is base64 encoded, this function returns ``True``, otherwise ``False``.
Examples::
>>> isbase64('U3VzcGVuZGlzc2UgbGVjdHVzIGxlbw==')
True
>>> isbase64('Vml2YW11cyBmZXJtZtesting123')
False
:param value: string to validate base64 encoding
"""
base64 = re.compile(r"^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=|[A-Za-z0-9+/]{4})$")
return bool(base64.match(value)) | 02da2cfe0b32288aa599534dea08f4bc85a41123 | 23,386 |
def find_next_biggest_with_same_1s(n):
"""Finds the next biggest number with the same number of 1 bits.
- Flips the rightmost 0 that has ones on its right (increases the value)
- Rearrange 1s on its right to lowest positions and flips highest of them
(decreases the value and creates same number of 1s)
Example:
xxxx_0_111_0000 --> xxxx_1_111_0000 --> xxxx_1_000_0011
Args:
n: A positive integer.
Raises:
ValueError on non-positive input.
Returns:
Next biggest number with same number of 1s.
"""
if n <= 0:
raise ValueError('Input argument has to be positive.')
temp = n
# Count number rightmost 0s
num_of_zeros = 0
while temp & 1 == 0:
temp >>= 1
num_of_zeros += 1
# Count number of 1s to the left of 0s
num_of_ones = 0
while temp & 1 == 1:
temp >>= 1
num_of_ones += 1
# Flip next 0 to 1
n = n ^ (1 << (num_of_ones + num_of_zeros))
# Create a 0...01...1 mask, then invert it to get 1...10...0
mask = ~((1 << (num_of_ones + num_of_zeros)) - 1)
n = n & mask
# Create a 0...01...1 mask with number of 1s = (num_of_ones - 1)
mask = (1 << (num_of_ones - 1)) - 1
n = n | mask
return n | d323a3d828929f9f6ae0c0ad6f2849e067a2eb8d | 23,388 |
from typing import List
from typing import Dict
def get_single_color_dicts(self) -> List[List[Dict]]:
"""
Converts the text in the editor based on the line_string_list into a list of lists of dicts.
Every line is one sublist.
Since only one color is being applied, we create a list with one dict per line.
"""
rendering_list = []
for line in self.line_string_list:
# appends a single-item list
rendering_list.append([{'chars': line, 'type': 'normal', 'color': self.textColor}])
return rendering_list | 9ebcb28e59f6b05591c0c5465513aa9408952a62 | 23,393 |
def is_last_ts_in_thousands(timestamps):
"""Detect if the last timestamp in a sequence is a multiple of 1000.
Args:
timestamps (list): An list of timestamps (in picoseconds).
Returns:
True if the last timestamp is a multiple of 1000, False otherwise.
"""
if timestamps is None:
return True
last_timestamp = max(timestamps)
return last_timestamp % 1000 == 0 | cb26d134eada9407415fefb4761ec265fa3c8f28 | 23,394 |
from typing import List
def argv_pars(arguments: List[str]) -> int:
"""Returns second argv or 30.
Args:
argv (List[str]): sys.argv
Returns:
int: i >= 1, or 30
"""
try:
return max(int(arguments[1]), 1)
except Exception:
return 30 | b96340f9d547e3fabd959f2fe9feb8cd0d3f4c47 | 23,399 |
def get_pentagonal_number(n: int) -> int:
"""Get Pentagonal number `P_n=n*(3n−1)/2` for a given number `n`."""
return (n * (3*n - 1)) // 2 | 4ec89c0428ea83ede1084877790edadb7b61b6d5 | 23,400 |
def cpf_checksum(cpf):
"""
CPF Checksum algorithm.
"""
if cpf in map(lambda x: str(x) * 11, range(0, 10)):
return False
def dv(partial):
s = sum(b * int(v)
for b, v in zip(range(len(partial) + 1, 1, -1), partial))
return s % 11
dv1 = 11 - dv(cpf[:9])
q2 = dv(cpf[:10])
dv2 = 11 - q2 if q2 >= 2 else 0
return dv1 == int(cpf[9]) and dv2 == int(cpf[10]) | cbe634578d50687d2b2aec5aa996123f25a03327 | 23,407 |
def _findBeginning(file_name, loc):
"""Scan given TRY dat file and find end of header (start of data)
Arguments:
file_name {str} -- Name of TRY data file
loc {str} -- Location of TRY data file
Returns:
(int, string) -- (lines before data starts,
column header)
"""
with open(loc + file_name, 'r') as dat_file:
last_line = dat_file.readline()
current_line = dat_file.readline()
dat_start = 2
while current_line[:3] != '***':
last_line = current_line # save column header
current_line = dat_file.readline()
dat_start += 1
if dat_start == 100:
break
# get header as list of string
last_line = last_line.split()
return (dat_start, last_line) | 20be3ccefafc61bfa3f769b993e5f53c667b37ba | 23,409 |
def mhz_to_freq_khz(mhz):
"""
Convert MHz to exact frequency in kHz
"""
return {
14: 14100,
18: 18110,
21: 21150,
24: 24930,
28: 28200
}[mhz] | d7ec477c88b7e212e852aef407f2a31064d806a0 | 23,410 |
def price_table_to_price_mapping(table):
"""Convert price table to a dict mapping from region to instance type
to instance info
"""
region_price_mapping = {}
for region_table in table['config']['regions']:
types = {}
for type_category in region_table['instanceTypes']:
for size in type_category['sizes']:
types[size['size']] = size
region_price_mapping[region_table['region']] = types
return region_price_mapping | d39887b82be8ae37a20d73c830e7ef724553600e | 23,413 |
import hashlib
def hash16(data):
"""
Return a hex string of the data's hash. Currently uses md5.
"""
hash_object = hashlib.md5(bytes(data, 'utf-8'))
return hash_object.hexdigest() | bed6d51832f1354990c08c0c27f883e99f00ddd7 | 23,414 |
def dict_to_css(css_dict, pretty=False):
"""Takes a dictionary and creates CSS from it
:param css_dict: python dictionary containing css rules
:param pretty: if css should be generated as pretty
:return: css as string
"""
seperator = '\n'
tab = '\t'
if not pretty:
seperator = ''
tab = ''
css_rules = []
for selector, rules in css_dict.items():
tmp = selector + '{' + seperator
tmp_rules = []
if isinstance(rules, dict):
for rule, value in rules.items():
tmp_rules.append(tab + rule + ':' + value + ';')
tmp += seperator.join(tmp_rules)
tmp = tmp + '}'
css_rules.append(tmp)
return seperator.join(css_rules) | 03c489e2cb3f855fad2e2476c33fc2806be9043f | 23,419 |
def avg(iterable):
"""Simple arithmetic average function. Returns `None` if the length of
`iterable` is 0 or no items except None exist."""
items = [item for item in iterable if item is not None]
if len(items) == 0:
return None
return float(sum(items)) / len(items) | 1489cf0a828e8c1613453d04abb8773658d60e8e | 23,422 |
def dict_from_tokens(tokens, value):
"""Build a dict-tree from a list of tokens defining a unique branch within
the tree.
Args:
tokens (list): A list of tokens defining a branch within the nested dict
value (any): An object set as the leaf of a branch
Returns:
dict: A nested dictionary
"""
if len(tokens) == 0:
return value
key = tokens.pop(0).lower()
return {key: dict_from_tokens(tokens, value)} | dd3b9e72208ba404354f9bd98c8a4a8d80609611 | 23,427 |
def mk_falls_description(data_id, data): # measurement group 8
"""
transforms a h-falls-description.json form into the triples used by insertMeasurementGroup to
store each measurement that is in the form
:param data_id: unique id from the json form
:param data: data array from the json form
:return: The list of (typeid,valType,value) triples that are used by insertMeasurementGroup to add the measurements
"""
return [(220, 2, data_id),
(48, 7, data['fallint']),
(49, 2, data['falldesc']),
(50, 2, data['fallinjury'])] | 1e0c304538159b9bb01d677bdacdfa9a0b3b4e4d | 23,428 |
def addMessage(row_num, valid, new_msg, messages):
""" Add error message to the list of errors and set the validity"""
if new_msg:
if "Error" in new_msg:
valid = False
match = False
for msg in messages:
if new_msg == msg[1]:
match = True
if row_num + 1 != msg[0][-1]:
msg[0].append(row_num + 1)
return valid, messages
if match == False:
messages.append([[row_num + 1], new_msg])
return valid, messages | 899f2c4168ccfbc1fe66ffd35f6b4ad008d6f032 | 23,432 |
from typing import Dict
def word_count_helper(results: Dict) -> int:
"""
Helper Function that computes
word count for ocr results on a single image
Parameters
----------
results: Dict
(OCR results from a clapperboard instance)
Returns
-------
Int
Number of words computed from
OCR results
"""
count = 0
for element in results:
words_list = element["text"].split(" ")
count += len(words_list)
return count | aaf4b9b6e430c13b804ed96374eecddb134a31ae | 23,434 |
def get_num_train_images(hparams):
"""Returns the number of training images according to the dataset."""
num_images_map = {
'imagenet': 1281167,
'cifar10': 50000,
}
if hparams.input_data.input_fn not in num_images_map:
raise ValueError(
f'Unknown dataset size for input_fn {hparams.input_data.input_fn}')
num_images = num_images_map[hparams.input_data.input_fn]
if hparams.input_data.max_samples > 0:
return min(num_images, hparams.input_data.max_samples)
return num_images | e75e827026b247158ca76890990b04d51cd99a6a | 23,439 |
def _same_file_up_to_epsilon(filen1, filen2, eps=1e-9):
"""_same_file_up_to_epsilon
Return True if filen1 and filen2 contains the same float data up to epsilon
Args:
filen1 (str): The path and name of the first filename
filen2 (str): The path and name of the second filename
eps (float): The maximum tolerance for asserting that two floating point
numbers are different
Returns:
A bool indicating if the two files contains the same data
"""
assert filen1 != filen2, "File names must be different."
with open(filen1, "r") as filep_ref:
with open(filen2, "r") as filep_test:
line_ref = next(filep_ref)
line_test = next(filep_test)
assert line_ref == line_test, "Invalid line generated for " + filen1 + ":\n" + line_test + "\nthat is different from the reference file " + filen2 + ":\n" + line_ref
for line_ref, line_test in zip(filep_ref, filep_test):
# Checks that the 38 3D landmarks generated are equal up to epsilon to the reference
for val_ref, val_test in zip(line_test.split(",")[1:38 * 3 + 1], line_test.split(",")[1:38 * 3 + 1]):
assert abs(float(val_ref) - float(val_test)) < eps, "Invalid value detected for " + filen1 + ":\n" + line_test + "\nthat is different from the reference file " + filen2 + ":\n" + line_ref
return True | 5aea46a44ce5d5df0e8c32ea4c59f34b4751d492 | 23,442 |
def unite_statuses(statuses, update):
""" Takes two dictionaries <hostname, hoststatus> and returns dictionary with united entries (returncode is set
to the max value per host, logs per host are concatenated)"""
result = {}
for key, value in statuses.iteritems():
if key in update:
upd_status = update[key]
res_status = {
"exitstatus" : max(value["exitstatus"], upd_status["exitstatus"]),
"log" : value["log"] + "\n" + upd_status["log"]
}
result[key] = res_status
else:
result[key] = value
return result | c0454e3fdc0ccda0c6cabf3ac2ee479aacbfee27 | 23,448 |
def stringify(value):
"""
Escapes a string to be usable as cell content of a CSV formatted data.
"""
stringified = '' if value is None else str(value)
if ',' in stringified:
stringified = stringified.replace('"', '""')
stringified = f'"{stringified}"'
return stringified | 74d5683a79e7efab48ec24767d1c912b66c0e65b | 23,450 |
import math
def get_bpd(log_p, dimentions=28*28):
"""
bpd = (nll_val / num_pixels) / numpy.log(2).
log_p: log probability
dimentions: dimentions (resolution) of image
"""
return ((-log_p / dimentions) / math.log(2)).mean().item() | a1ba8c8e688988ef0b02ec555e5b31ffc5408d2a | 23,452 |
def nb_coverage_distance(epitope, peptide, mmTolerance = 0):
"""Determines whether pepitide covers epitope
and can handle epitopes and peptides of different lengths.
To be a consistent distance matrix:
covered = 0
not-covered = 1
If epitope is longer than peptide it is not covered.
Otherwise coverage is determined based on a mmTolerance
Parameters
----------
epitope : np.array
peptide : np.array
mmTolerance : int
Number of mismatches tolerated
If dist <= mmTolerance then it is covered
Returns
-------
covered : int
Covered (0) or not-covered (1)"""
LEpitope, LPeptide = len(epitope), len(peptide)
if LEpitope > LPeptide:
return 1
for starti in range(LPeptide-LEpitope+1):
mm = 0
for k in range(LEpitope):
if epitope[k] != peptide[starti + k]:
mm = mm + 1
if mm > mmTolerance:
"""If this peptide is already over the tolerance then goto next one"""
break
if mm <= mmTolerance:
"""If this peptide is below tolerance then return covered (0)"""
return 0
"""If no peptides meet mmTolerance then return not covered"""
return 1 | 46b88f83934465e8bb4b30f144b5acc2791c809a | 23,455 |
def construct_unsent_berichten_query(naar_uri, max_sending_attempts):
"""
Construct a SPARQL query for retrieving all messages for a given recipient that haven't been received yet by the other party.
:param naar_uri: URI of the recipient for which we want to retrieve messages that have yet to be sent.
:returns: string containing SPARQL query
"""
q = """
PREFIX schema: <http://schema.org/>
PREFIX ext: <http://mu.semte.ch/vocabularies/ext/>
SELECT DISTINCT ?referentieABB ?dossieruri ?bericht ?betreft ?uuid ?van ?verzonden ?inhoud
WHERE {{
GRAPH ?g {{
?conversatie a schema:Conversation;
schema:identifier ?referentieABB;
schema:about ?betreft;
schema:hasPart ?bericht.
?bericht a schema:Message;
<http://mu.semte.ch/vocabularies/core/uuid> ?uuid;
schema:dateSent ?verzonden;
schema:text ?inhoud;
schema:sender ?van;
schema:recipient <{0}>.
FILTER NOT EXISTS {{ ?bericht schema:dateReceived ?ontvangen. }}
OPTIONAL {{
?conversatie ext:dossierUri ?dossieruri.
}}
BIND(0 AS ?default_attempts)
OPTIONAL {{ ?bericht ext:failedSendingAttempts ?attempts. }}
BIND(COALESCE(?attempts, ?default_attempts) AS ?result_attempts)
FILTER(?result_attempts < {1})
}}
}}
""".format(naar_uri, max_sending_attempts)
return q | ff380f1dd2edc77f6ee41376f6c1d8ee50448d43 | 23,458 |
def _roman_to_int(r):
""" Convert a Roman numeral to an integer. """
if not isinstance(r, str):
raise TypeError(f'Expected string, got type(input)')
r = r.upper()
nums = {'M': 1000, 'D': 500, 'C': 100, 'L': 50, 'X': 10, 'V': 5, 'I': 1}
integer = 0
for i in range(len(r)):
try:
value = nums[r[i]]
if i+1 < len(r) and nums[r[i + 1]] > value:
integer -= value
else:
integer += value
except KeyError:
raise ValueError('Input is not a valid Roman numeral: %s' % r)
return integer | f91c88cbdd6ca31ae811a2300b45fb5a6df3ea91 | 23,459 |
import re
def match_absolute_path(path: str) -> bool:
"""
Return true if the path starts with ``http(s)://``, false otherwise.
Args:
path (str): URL
Returns:
bool: True for absolute URL, false for relative URL.
"""
return re.match(r"http(s)*://*", path, re.IGNORECASE) is not None | 8b508b76fc0f5102c687a202a0ffab26631eaf8b | 23,463 |
def fps(branch):
"""
extracts function #, process #, and scan # from the idstring of a spectrum branch
returns function, process, scan as integers
"""
idstring = branch.getAttribute('id').split() # pull id string from scan attribute
return [int(x.split('=')[1]) for x in idstring] | a470d609d2c8c15c88bbaba539c587410c03394a | 23,464 |
def partition(alist, indices):
"""A function to split a list based on item indices
Parameters:
-----------------------------
: alist (list): a list to be split
: indices (list): list of indices on which to divide the input list
Returns:
-----------------------------
: splits (list): a list of subreads based on cut sites
"""
return [alist[i:j] for i, j in zip([0]+indices, indices+[None])] | b14040058d96d66acf81e0bff8eedfe23df20738 | 23,466 |
from typing import Counter
def count_elements(data_lst):
"""Count how often each element occurs in a list.
Parameters
----------
data_lst : list
List of items to count.
Returns
-------
counts : collections.Counter
Counts for how often each item occurs in the input list.
"""
counts = Counter(data_lst)
try:
counts.pop(None)
except KeyError:
pass
return counts | a12f0a35a228e8a8627a8fcfc703d3231984e3f4 | 23,467 |
import re
def clean_text_from_private_unicode(line):
"""Cleans the line from private unicode characters and replaces these with space."""
line = re.sub(r"([\uE000-\uF8FF]|\uD83C[\uDF00-\uDFFF]|\uD83D[\uDC00-\uDDFF])", " ", line)
return line | 0ad7f47446dfb91069003c3fce0d1129dcb71113 | 23,469 |
def get_unique_actions_set(classifier_set):
"""Returns a set containing the unique actions advocated by the
classifiers in the classifier set.
"""
unique_actions = set()
for classifier in classifier_set:
unique_actions.add(classifier.rule.action)
return unique_actions | b6274413764bd8f2bac18700556e00e2855a0534 | 23,471 |
def mass_surface_solid(
chord,
span,
density=2700, # kg/m^3, defaults to that of aluminum
mean_t_over_c=0.08
):
"""
Estimates the mass of a lifting surface constructed out of a solid piece of material.
Warning: Not well validated; spar sizing is a guessed scaling and not based on structural analysis.
:param chord: wing mean chord [m]
:param span: wing span [m]
:param mean_t_over_c: wing thickness-to-chord ratio [unitless]
:return: estimated surface mass [kg]
"""
mean_t = chord * mean_t_over_c
volume = chord * span * mean_t
return density * volume | 1bb2e1c571b6b9fee137bcd226d517151dd51fbd | 23,483 |
def largest(die):
"""Return the largest value die can take on."""
return max(die) | 17ad51ecb0960d3c83c2c8c5e8e67465046d8745 | 23,484 |
import math
def dist(x1, y1, x2, y2):
"""
Computes Euclidean distance between two points.
Parameters
----------
x1: float
point A x
y1: float
point A y
x2: float
point B x
y2: float
point B y
Returns
-------
float
distance from A to B
"""
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) | ea2cf04ec831f0e045407cb7cb2b4c8a68bebf37 | 23,485 |
from typing import Tuple
from typing import Optional
def restore_postgres_db(
backup_file: str, postgres_db: str
) -> Tuple[Optional[str], bytes]:
"""Restore postgres db from a file."""
try:
# restore postgres with pg_restore and terminal
pass
# check if command succeeded
return None, bytes()
except Exception as e:
return f"Issue with the db restore : {e}", bytes() | 9b9b9a43d97118807d190b1a1f317e73b9445484 | 23,486 |
def json_pointer(jsonpointer: str) -> str:
"""Replace escape characters in JSON pointer."""
return jsonpointer.replace("~0", "~").replace("~1", "/") | a0bd02c5cdc6d97ce76ac38ef0b254f0ed592b43 | 23,493 |
def expand_buses(pins_nets_buses):
"""
Take list of pins, nets, and buses and return a list of only pins and nets.
"""
# This relies on the fact that a bus is an iterable of its nets,
# and pins/nets return an iterable containing only a single pin/net.
pins_nets = []
for pnb in pins_nets_buses:
pins_nets.extend(pnb)
return pins_nets | 6addae03775fba5b12f5e7c691a5426c12f7e0f7 | 23,494 |
def loss_batch(model, loss_func, x, y, opt=None):
"""
The function to perform backpropagation
:param model: Training model
:param loss_func: Function to calculate training loss
:param x: Feature in train dataset
:param y: Labels in train dataset
:param opt: Optimizer
:return: Loss per epoch, length of the features
"""
loss = loss_func(model(x), y)
if opt is not None:
loss.backward()
opt.step()
opt.zero_grad()
return loss.item(), len(x) | a24a379bbfad4db0e7a549f23a9be500cead1610 | 23,496 |
def XlaLaunchOpCount(labels):
"""Count how many XlaLaunch labels are present."""
return sum("XlaLaunch(" in x for x in labels) | e3b083de64bf1627ca98c427a268412cacf9f43b | 23,499 |
def read_parse_sql_file(path_sql_script):
"""
Function to read and parse a sql file
Parameters:
path_sql_script (str): path of the sql script to read and parse
Returns:
(list): list of string of sql requests
"""
with open(path_sql_script, 'r') as dml_file:
dml = dml_file.read().strip().split(';')[:-1]
return dml | 719ae91664c9f61fc1e0af44edb150e91e0f99e7 | 23,505 |
def parse_service_url(url):
"""Given a URL, extract the 'group' and 'specific_path'
(See the get_service function.)"""
parts = url.split('/phylotastic_ws/')
return (parts[0].split(':')[1],
parts[1]) | cb8578418deabebc1cfbca1a363bf774acb1d745 | 23,507 |
import random
def random_simple_split(data, split_proportion=0.8):
"""Splits incoming data into two sets, randomly and with no overlapping. Returns the two resulting data objects along
with two arrays containing the original indices of each element.
Args:
data: the data to be split
split_proportion: proportion of the data to be assigned to the fist split subset. As this function returns
two subsets, this parameter must be strictly between 0.0 and 1.0 (Default value = 0.8)
Returns:
the two resulting datasets and the original index lists
"""
assert 0.0 < split_proportion < 1.0
indices = list(range(len(data))) # all indices in data
random.shuffle(indices)
split_index = int(len(data) * split_proportion)
return data[indices[:split_index]], data[indices[split_index:]], indices[:split_index], indices[split_index:] | 547900ccda505416b10a07a94836649a4c84172a | 23,521 |
from datetime import datetime
from pathlib import Path
def create_run_path(checkpoints_path):
"""create the run path to save the checkpoints of the model
Arguments:
checkpoints_path {str} -- the path to save the checkpoints
Returns:
Path -- the path to save the checkpoints
"""
run_folder = 'run_' + datetime.now().strftime('%Y%m%d_%H:%M.%S')
run_path = Path(checkpoints_path) / run_folder
return run_path | 5930ff28ade4edb2c9b02b483b1e41934a519aeb | 23,523 |
def elo_expected(d :float ,f :float =400 )->float:
""" Expected points scored in a match by White player
:param d: Difference in rating (Black minus White)
:param f: "F"-Factor
:return:
"""
if d/ f > 8:
return 0.0
elif d / f < -8:
return 1.0
else:
return 1. / (1 + 10 ** (d / f)) | 739b01e6c641e1d0bd163cc104deb50dcf76187a | 23,528 |
from typing import Any
from typing import Iterable
def to_iterable(val: Any) -> Iterable:
"""Get something we can iterate over from an unknown type
>>> i = to_iterable([1, 2, 3])
>>> next(iter(i))
1
>>> i = to_iterable(1)
>>> next(iter(i))
1
>>> i = to_iterable(None)
>>> next(iter(i)) is None
True
>>> i = to_iterable('foobar')
>>> next(iter(i))
'foobar'
>>> i = to_iterable((1, 2, 3))
>>> next(iter(i))
1
"""
if isinstance(val, Iterable) and not isinstance(val, (str, bytes)):
return val
return (val,) | 6c24de85d822a5511adb26149ec863197164c61b | 23,531 |
import random
def random_or_none(s):
"""Return a random element of sequence S, or return None if S is empty."""
if s:
return random.choice(s) | 05ed40d21d754422c3a9ca45d52867f6947d23a4 | 23,532 |
from typing import Union
from typing import List
def comma_separated_string_to_list(line: str) -> Union[List[str], str]:
"""
Converts a comma-separated string to a List of strings.
If the input is a single item (no comma), it will be returned unchanged.
"""
values = line.split(",")
return values[0] if len(values) <= 1 else values | 998a4a93d8a6cdcd31ec6ff53cbd171224aba782 | 23,534 |
def arr_to_dict(arr):
"""
takes in an numpy array or list and returns a dictionary with indices, values
"""
d = {}
for i in range(len(arr)):
for j in range(len(arr[0])):
d[(i,j)] = arr[i][j]
return d | bf9382eaf9ca20b4dfff80e4a18afa055d78ec00 | 23,537 |
def compute_intersection_over_union(gt_bbox, pred_bbox):
""" Compute the intersection over union for a ground truth bounding box and a prediction
bounding box
Params:
gt_bbox (RectangleProto): single ground truth bbox
pred_bbox (RectangleProto): single prediction bbox
Returns:
iou_width (double): intersection over union for width dimension
iou_height (double): intersection over union for height dimension
iou_area (double): intersection over union area
"""
intersection_width = min(gt_bbox.max.y, pred_bbox.max.y) - max(gt_bbox.min.y, pred_bbox.min.y)
intersection_height = min(gt_bbox.max.x, pred_bbox.max.x) - max(gt_bbox.min.x, pred_bbox.min.x)
intersection_area = intersection_width * intersection_height
gt_bbox_width = gt_bbox.max.y - gt_bbox.min.y
gt_bbox_height = gt_bbox.max.x - gt_bbox.min.x
gt_bbox_area = gt_bbox_width * gt_bbox_height
pred_bbox_width = pred_bbox.max.y - pred_bbox.min.y
pred_bbox_height = pred_bbox.max.x - pred_bbox.min.x
pred_bbox_area = pred_bbox_width * pred_bbox_height
union_width = gt_bbox_width + pred_bbox_width - intersection_width
union_height = gt_bbox_height + pred_bbox_height - intersection_height
union_area = gt_bbox_area + pred_bbox_area - intersection_area
iou_width = intersection_width / union_width
iou_height = intersection_height / union_height
iou_area = intersection_area / union_area
return iou_width, iou_height, iou_area | b556b9f2d36118c05de14949a54b8531dbfe1baa | 23,538 |
def spandex_dataset_ids(input_file):
"""
Read all dataset IDs currently in the Spandex index.
Args:
input_file (str): The path to a flat file with a list of dataset IDs currently in spandex
Returns:
A set of dataset IDs
"""
return {x.strip() for x in open(input_file, "r") if x.strip()} | b1ae62221a7534264ac39881b8365749f4b8d625 | 23,540 |
def sortAndReturnQuantiles(values):
"""Returns minimum, 0.25-quantile, median, 0.75-quantile, maximum"""
values.sort()
N = len(values)
return (values[0], values[N/4], values[N/2], values[(3*N)/4], values[N-1]) | 067aec1fc88cfcf33f9bab4201b81dfede82f61d | 23,549 |
def generate_diff(old_list, new_list):
"""Returns 2 lists of added, deleted and unchanged elements.
Added elements are elements presents in new_list but not in old_list.
Deleted elements are elements presents in old_list but not in new_list.
Args:
old_list (list): Old list.
new_list (list): New list.
Returns:
tuple: Contains 2 elements:
- A list of added elements;
- A list of deleted elements.
- A list of unchanged elements.
"""
old_set = set(old_list)
new_set = set(new_list)
added = new_set - old_set
deleted = old_set - new_set
unchanged = old_set.intersection(new_set)
return list(added), list(deleted), list(unchanged) | f915c0ca33b6f9fa53450dc3d40b042271ca3fc2 | 23,551 |
def gcd(a, b):
"""Euclid's greatest common denominator algorithm."""
if abs(a) < abs(b):
return gcd(b, a)
while abs(b) > 0:
q, r = divmod(a, b)
a, b = b, r
return a | f0b023ad587c896d99ff196f9bb5a7491b529106 | 23,561 |
import asyncio
def sync_version(async_coroutine):
""" Decorates asyncio coroutine in order to make it synchronous.
Args:
async_coroutine: asyncio coroutine to wrap.
Returns:
Synchronous version of the method.
"""
def sync(*args, **kwargs):
event_loop = asyncio.get_event_loop()
result = event_loop.run_until_complete(async_coroutine(*args, **kwargs))
return result
return sync | b8a6e034186faa080c02c21c2433678634b1f155 | 23,563 |
def arithmetic_mean(X):
"""Computes the arithmetic mean of the sequence `X`.
Let:
* `n = len(X)`.
* `u` denote the arithmetic mean of `X`.
.. math::
u = \frac{\sum_{i = 0}^{n - 1} X_i}{n}
"""
return sum(X) / len(X) | cf6f2300442afe961e96a5f10943393cf071eb5b | 23,566 |
def get_lat_array(bw, bw_array, lat_array):
"""
Returns the latency for measured bandwidth using bandwidth-latency dependency.
@params:
bw - Required : measured bandwidth (Float)
bw_array - Required : array of measured bandwidths for bw-lat dependency (List of floats)
lat_array - Required : array of measured latencies for bw-lat dependency (List of floats)
"""
if bw > bw_array[len(bw_array)-1]:
return lat_array[len(bw_array)-1]
i = 0
while bw > bw_array[i]:
i+=1
if i == len(bw_array):
return 0
if i == 0:
return lat_array[0]
else:
bw_percent = ( bw - bw_array[i-1] )/( bw_array[i] - bw_array[i-1] )
latency = lat_array[i-1] + bw_percent*(lat_array[i] - lat_array[i-1])
return latency | d92c63f8f3a1cb96220a4c13b377244522c32d6a | 23,568 |
def get_quoted_name_for_wlst(name):
"""
Return a wlst required string for a name value in format ('<name>')
:param name: to represent in the formatted string
:return: formatted string
"""
result = name
if name is not None and '/' in name:
result = '(' + name + ')'
return result | 1ead7ae2a0b5c1d3dc3d5fc1e8e07a51697597b4 | 23,570 |
def get_reverse_bits(bytes_array):
"""
Reverse all bits in arbitrary-length bytes array
"""
num_bytes = len(bytes_array)
formatstring = "{0:0%db}" % (num_bytes * 8)
bit_str = formatstring.format(int.from_bytes(bytes_array, byteorder='big'))
return int(bit_str[::-1], 2).to_bytes(num_bytes, byteorder='big') | c4c64624a9fab5d9c564b8f781885a47984f1eaf | 23,577 |
def get_reg_dict(kwd_df):
"""
Create a dictionary of domains. All regexes belonging to a domain are joined into one regex.
Parameters
----------
kwd_df: DataFrame
dataframe with the columns `domain` and `regex`
Returns
-------
dict
dictionary with the domain as key and a "joined domain regex" as value
"""
reg_dict = dict()
for domain in kwd_df.domain.unique():
reg_dict[domain] = '|'.join(kwd_df.query("domain == @domain").regex)
return reg_dict | 2fb3e86e3f77329d88731f9d6743eafcc999133d | 23,579 |
def regex_ignore_case(term_values):
"""
turn items in list "term_values" to regexes with ignore case
"""
output = []
for item in term_values:
output.append(r'(?i)'+item)
return output | dc9fd3cb9e54896bacb7e2a296d5583a16aaf3ec | 23,580 |
import glob
import re
def get_calcium_stack_lenghts(folder):
"""
Function to extract calcium stack lenghts from imageJ macro files associated to the stacks.
params:
- folder: path of the folder containing the IJ macros files
return:
- list of stack lenghts
"""
record_lenghts = []
pattern_nFrame = r".*number=(\d*) .*"
for fn in glob.glob(folder+"/*.txt"):
with open(fn) as f:
line = f.readline()
record_lenghts.append(int(re.findall(pattern_nFrame, line)[0]))
return record_lenghts | a9985bc6427ac31e7e1e3d941c227ac302af9206 | 23,581 |
def retry_if_value_error(exception):
"""
Helper to let retry know whether to re-run
:param exception: Type of exception received
:return: <bool> True if test failed with ValueError
"""
return isinstance(exception, ValueError) | a4f184da177fa26dee55f8f7ed76e3c7b8dbfc87 | 23,582 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.