content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import logging
def get_gp_kwargs(gp_config):
"""Extract keyword argument parameters for the Gaussian process layer."""
covmat_momentum = gp_config.get('covmat_momentum', 0.999)
# Extracts model parameter.
logging.info('gp_config.covmat_momentum = %s', covmat_momentum)
covmat_momentum = None if covmat_momentum < 0. else covmat_momentum
covmat_kwargs = dict(momentum=covmat_momentum)
# Assembles into kwargs dictionary.
gp_layer_kwargs = dict(covmat_kwargs=covmat_kwargs)
return gp_layer_kwargs | 4909d8b5231bbae20ae17e1cdc1ae17b0ad6714f | 22,302 |
def canon(raw_attr_name: str) -> str:
"""
Canonicalize input attribute name for indy proofs and credential offers.
Args:
raw_attr_name: raw attribute name
Returns:
canonicalized attribute name
"""
if raw_attr_name: # do not dereference None, and "" is already canonical
return raw_attr_name.replace(" ", "").lower()
return raw_attr_name | 71858810bc3a65864f4df3c8a2d9c714c12b3692 | 22,305 |
def TOC_schmoker1979(rho_b, A=157.0, B=58.1):
"""
Schmoker (1979) method of TOC caluculation from bulk density to estimate
TOC in devonian shales.
bulk density units: g/cc
"""
TOC = (A / rho_b) - B
return TOC | 530e86cbd3ba1629549c0d5fcc6b0263397d3fa2 | 22,308 |
def get_dtype(table,name):
""" get the dtype of a field in a table (recarray)
given its name
"""
return table.dtype.fields[name][0].descr[0][1] | 6d63ab0f80b955124ccc94363a860c345c1f92b5 | 22,311 |
def internal(fn):
"""
Decorator which does not affect functionality but it is used as marker
which tells that this object is not interesting for users and it is only used internally
"""
return fn | fa9a31962a4f45f7794ec42fc4f2507c52c4535a | 22,312 |
import click
def _cb_shape(ctx, param, value):
"""
Click callback to validate `--shape`.
Returns
-------
tuple
(height, width)
"""
for v in value:
if not v >= 1:
raise click.BadParameter('values must be >= 1')
return value | 5d978379ab21239dec12340347266cab7f0d14f2 | 22,313 |
from typing import Set
def get_subclasses(cls) -> Set:
"""Returns the subclasses of the specified class, recursively."""
return set(cls.__subclasses__()).union(
[s for c in cls.__subclasses__() for s in get_subclasses(c)]) | 2247d1e0ae33904d2019591cd939702fdf4cc26a | 22,319 |
def safe_module_name(n):
"""Returns a module name which should not conflict with any other symbol."""
if n:
return "_mod_" + n.replace(".", "_")
return n | 2c12f48a97a983f69fa39b3b94eb642157d212bf | 22,320 |
def staff_check(user):
"""A method that checks if a user is a memeber of staff and returns true.
It is used by the @user_passes_test() decorator to lock away views that should
only be accessed by staff memebers.
Returns:
Bool: The boolean indicating if a user is a staff memeber or not.
"""
return user.is_staff | e5832ceb205c31c9d6ff3bdacfaf5c7f6135c024 | 22,323 |
def compute_source_marker(line, column, expression, size):
"""Computes source marker location string.
>>> def test(l, c, e, s):
... s, marker = compute_source_marker(l, c, e, s)
... out = s + '\\n' + marker
...
... # Replace dot with middle-dot to work around doctest ellipsis
... print(out.replace('...', '···'))
>>> test('foo bar', 4, 'bar', 7)
foo bar
^^^
>>> test('foo ${bar}', 4, 'bar', 10)
foo ${bar}
^^^
>>> test(' foo bar', 6, 'bar', 6)
··· oo bar
^^^
>>> test(' foo bar baz ', 6, 'bar', 6)
··· o bar ···
^^^
The entire expression is always shown, even if ``size`` does not
accomodate for it.
>>> test(' foo bar baz ', 6, 'bar baz', 10)
··· oo bar baz
^^^^^^^
>>> test(' foo bar', 10, 'bar', 5)
··· o bar
^^^
>>> test(' foo bar', 10, 'boo', 5)
··· o bar
^
"""
s = line.lstrip()
column -= len(line) - len(s)
s = s.rstrip()
try:
i = s[column:].index(expression)
except ValueError:
# If we can't find the expression
# (this shouldn't happen), simply
# use a standard size marker
marker = "^"
else:
column += i
marker = "^" * len(expression)
if len(expression) > size:
offset = column
size = len(expression)
else:
window = (size - len(expression)) / 2.0
offset = column - window
offset -= min(3, max(0, column + window + len(expression) - len(s)))
offset = int(offset)
if offset > 0:
s = s[offset:]
r = s.lstrip()
d = len(s) - len(r)
s = "... " + r
column += 4 - d
column -= offset
# This also adds to the displayed length
size += 4
if len(s) > size:
s = s[:size].rstrip() + " ..."
return s, column * " " + marker | dcfd8bc74a83f3b2c7431a2a97c16c58c1b84742 | 22,325 |
def _get_value_for_key(lines, key):
"""Given list of |lines| with colon separated key value pairs,
return the value of |key|."""
for line in lines:
parts = line.split(':')
if parts[0].strip() == key:
return parts[1].strip()
return None | e08bad43f5b095632ef217a4ef7c8a6344d5d32f | 22,326 |
from typing import Optional
def prompt_yes_no(question: str, default: Optional[bool] = None) -> bool:
"""
Prompts the user a yes/no question and returns their choice.
"""
if default is True:
prompt = "[Y/n]"
elif default is False:
prompt = "[y/N]"
else:
prompt = "[y/n]"
text = f"{question} {prompt} "
wrong_reply = "Please reply with 'yes'/'y' or 'no'/'n'."
while True:
response = input(text).strip().lower()
if response in {"yes", "ye", "y"}:
return True
if response in {"no", "n"}:
return False
if response == "" and default is not None:
return default
print(wrong_reply) | d66ac36e51795f5b63fd0ddf482ae9e1529bc02a | 22,333 |
def first(iterable, condition=lambda x: True):
"""Return the first item in the `iterable` that satisfies the `condition`.
If the condition is not given, returns the first item of the iterable.
Raises `StopIteration` if no item satisfying the condition is found.
Parameters
----------
iterable : iterable
condition : callable
callable which returns true when the element is eligible as return value
"""
return next(x for x in iterable if condition(x)) | b031650e39a1acf5185a6760622c2197e34b21e1 | 22,334 |
def get_persistence(simplexTree, max_dimension):
"""Calculate the persistent homology of the abstract simplicial complex,
filtering by positive values and dimensions.
:param simplexTree: a simplcial complex, as returned by `build_local_complex`
:type simplexTree: simplexTree
:param max_dimension: max dimension of persistent homology to be returned.
:type max_dimension: int.
:returns: persistence diagram in the Gudhi format.
:rtype: list of tuples (dim, (birth, death)).
"""
pd = simplexTree.persistence()
return [p for p in pd if (p[0] <= max_dimension) & (p[1][0] >= 0.)] | 2b55afcc0503f55b8f08903c1164898abc675308 | 22,336 |
def find_modules(nn_module, type):
"""
Find and return modules of the input `type`
"""
return [module for module in nn_module.modules() if isinstance(module, type)] | d580e570843b7504ab91291fc3a173480c63f376 | 22,337 |
def how_many_can_list(num_market_listings: int, number_to_sell: int, num_in_inventory: int) -> int:
"""
How many items I can actually list on market to have number_to_sell on sale
:param num_market_listings: Number of own listing on market.
:param number_to_sell: Max number on sale
:param num_in_inventory: Number in inventory
:return: number that can be listed
"""
if number_to_sell > num_market_listings:
toList = number_to_sell - num_market_listings
return min(toList, num_in_inventory)
elif number_to_sell == num_market_listings or number_to_sell < num_market_listings:
return 0
return 0 | 29a9844448ebd68710920b83378025ad9ffd74a3 | 22,338 |
def predict_xlogvar_from_epslogvar(*, eps_logvar, logsnr):
"""Scale Var[eps] by (1+exp(-logsnr)) / (1+exp(logsnr)) = exp(-logsnr)."""
return eps_logvar - logsnr | 9f6e6e6d49ff2d6f7622d59439961a298d262693 | 22,343 |
import math
def dcg_trec(r, k=None):
"""The `trec_eval` version of DCG
:param r: results
:param k: cut-off
:return: sum rel_i / log(i + 2)
"""
result = sum([rel / math.log(rank + 2, 2) for rank, rel in enumerate(r[:k])])
return result | 5223776ddfe0a42eaf826cb72f69d1c91ec2f094 | 22,344 |
def qubo_to_ising(Q, offset=0.0):
"""Convert a QUBO problem to an Ising problem.
Map a quadratic unconstrained binary optimization (QUBO) problem :math:`x' Q x`
defined over binary variables (0 or 1 values), where the linear term is contained along
the diagonal of Q, to an Ising model defined on spins (variables with {-1, +1} values).
Return h and J that define the Ising model as well as the offset in energy
between the two problem formulations:
.. math::
x' Q x = offset + s' J s + h' s
See :meth:`~dimod.utilities.ising_to_qubo` for the inverse function.
Args:
Q (dict[(variable, variable), coefficient]):
QUBO coefficients in a dict of form {(u, v): coefficient, ...}, where keys
are 2-tuples of variables of the model and values are biases
associated with the pair of variables. Tuples (u, v) represent interactions
and (v, v) linear biases.
offset (numeric, optional, default=0):
Constant offset to be applied to the energy. Default 0.
Returns:
(dict, dict, float): A 3-tuple containing:
dict: Linear coefficients of the Ising problem.
dict: Quadratic coefficients of the Ising problem.
float: New energy offset.
Examples:
This example converts a QUBO problem of two variables that have positive
biases of value 1 and are positively coupled with an interaction of value 1
to an Ising problem, and shows the new energy offset.
>>> Q = {(1, 1): 1, (2, 2): 1, (1, 2): 1}
>>> dimod.qubo_to_ising(Q, 0.5)[2]
1.75
"""
h = {}
J = {}
linear_offset = 0.0
quadratic_offset = 0.0
for (u, v), bias in Q.items():
if u == v:
if u in h:
h[u] += .5 * bias
else:
h[u] = .5 * bias
linear_offset += bias
else:
if bias != 0.0:
J[(u, v)] = .25 * bias
if u in h:
h[u] += .25 * bias
else:
h[u] = .25 * bias
if v in h:
h[v] += .25 * bias
else:
h[v] = .25 * bias
quadratic_offset += bias
offset += .5 * linear_offset + .25 * quadratic_offset
return h, J, offset | d2df1b581612ab7f93aaf762915d62583a9df148 | 22,359 |
def find_indices(lst, element):
""" Returns the indices for all occurrences of 'element' in 'lst'.
Args:
lst (list): List to search.
element: Element to find.
Returns:
list: List of indices or values
"""
result = []
offset = -1
while True:
try:
offset = lst.index(element, offset+1)
except ValueError:
return result
result.append(offset) | 59df6c2dd7a4c8fd43895210503f7ae03d83618b | 22,360 |
def get_paths(cursor):
"""Get the currently watched paths."""
sql = "select path from games"
cursor.execute(sql)
paths = [row[0] for row in cursor.fetchall()]
return paths | 1e3cd541970583bfc452b46bf9c5e635bf5555f4 | 22,363 |
import math
def angle(pos_x, pos_y):
""" Angle in degrees of 2D point """
angle_rad = math.atan(abs(pos_y/pos_x))
angle_degree = math.degrees(angle_rad)
return angle_degree | 9d3b83c3bcb2415af50f5bad7268dd9a72542530 | 22,366 |
def _split_storage_url(storage_object_url):
""" Returns a list containing the bucket id and the object id. """
return storage_object_url.split("/")[2:] | 8506d5071c3061cd73fc0e8ece09279ef39c377a | 22,367 |
def encipher(message: str, cipher_map: dict) -> str:
"""
Enciphers a message given a cipher map.
:param message: Message to encipher
:param cipher_map: Cipher map
:return: enciphered string
>>> encipher('Hello World!!', create_cipher_map('Goodbye!!'))
'CYJJM VMQJB!!'
"""
return "".join(cipher_map.get(ch, ch) for ch in message.upper()) | 57053d93841dcc3982e18664a1a3ef6d85766788 | 22,370 |
def get_struct_instance_field_type(obj, field_name):
"""
:param obj: A ctypes struct instance
:param field_name: A name of a field in the struct
:return: The declared type of the field
"""
for field in obj._fields_:
current_field_name = field[0]
if current_field_name == field_name:
return field[1]
raise KeyError(field_name) | 255e088d9f36db652d0cbb4f1c21846b35a9d748 | 22,371 |
def capitalize_words(words):
"""Capitalize the words of an input string."""
capitalized = []
for word in words.split(' '):
capitalized.append(word.lower().capitalize())
return ' '.join(capitalized) | bd1e65c82e3abef987825354211c3ab09f12a46a | 22,373 |
def is_gzipped(text):
"""Check that we have gzipped content"""
return text[:2] == b"\x1f\x8b" | 01c1fef598661cc1a1ad8a707b4d5e439dcc8d79 | 22,374 |
def parse_slice_idx_to_str(slice_idx):
"""
Parse the slice index to a three digit string for saving and reading the
2D .npy files generated by io.preprocess.Preprocessor.
Naming convention: {type of slice}_{case}_{slice_idx}
* adding 0s to slice_idx until it reaches 3 digits,
* so sorting files is easier when stacking
"""
return f"{slice_idx:03}" | 2cc1fd4a0e4147ad1fdafe362f932f6fc7fb5d0e | 22,375 |
def bounded_binary_search(generator, length, target, lower_bound, upper_bound):
"""
efficient binary search for a <target> value within bounds [<lower_bound>, <upper_bound>]
- converges to a locally optimal result within the bounds
- instead of indexing an iterable, lazy evaluate a functor for performance
:param generator: a generator or functor that yields a value of the search area given an index
:param length: full length of the search area
:param target: the value to search
:param lower_bound: the lower bound up to which results are accepted
:param upper_bound: the upper bound up to which results are accepted
:return: success: (True, the index of the target) - fail: (False, -1)
"""
start, mid = 0, -1
end = length - 1
residual = 0.0
found = False
num_iter = 0
while start <= end and not found:
num_iter += 1
mid = (start + end) // 2
val = generator(mid)
if lower_bound <= val <= upper_bound:
residual = abs(val - target)
if abs(generator(mid - 1) - target) <= residual:
end = mid - 1
continue # refinement possible in left direction
elif abs(generator(mid + 1) - target) < residual:
start = mid + 1
continue # refinement possible in right direction
else:
found = True # converged
if not found:
if target < val:
end = mid - 1
else:
start = mid + 1
return found, mid, residual, num_iter | fd6af8a45130415dec063b2f4cb6884de5c7a8d5 | 22,381 |
from typing import List
from typing import Dict
def can_construct(target_str: str, word_bank: List, memo: Dict = {}) -> bool:
"""
:param target_str: target string
:param word_bank: List of words
:param memo: memoization i.e. hash map to store intermediate computation results
:return: Boolean value if it is possible to generate target_str using words from word_bank.
"""
if target_str in memo:
return memo[target_str]
if target_str == '':
return True
for str in word_bank:
if target_str.startswith(str):
rem_string = target_str.replace(str, '')
if can_construct(rem_string, word_bank, memo):
memo[target_str] = True
return True
memo[target_str] = False
return False | 00df007b49239277e3ce8768ea9d019c0bcd03f3 | 22,388 |
def mb_to_hgt(Psta, mslp=1013.25): # METERS
"""Convert millibars to expected altitude, in meters."""
return (1-(Psta/mslp)**0.190284)*44307.69396 | dbe2df667e54f80031f162f6d3e9aeb9fcee15f4 | 22,392 |
def _pad_name(name, pad_num=13, quotes=True):
""" Pads a string so that they all line up when stacked."""
l_name = len(name)
if l_name < pad_num:
pad = pad_num - l_name
if quotes:
pad_str = "'{name}'{sep:<{pad}}"
else:
pad_str = "{name}{sep:<{pad}}"
pad_name = pad_str.format(name=name, sep='', pad=pad)
return pad_name
else:
return '{0}'.format(name) | 5863e78d87a87d063181bcceb2d6d382208f4af4 | 22,393 |
def convertgoogle(ui):
"""function to convert user information returned by google auth service in expected format:
returns this format:
e.g.:{'name':'John Smith','id': '12345', 'email': '[email protected]','provider','google',...}
"""
myui = {'name':ui['name'],'given_name':ui['given_name'],'family_name':ui['family_name'],
'provider':ui['iss'],'email':ui['email'],'id':ui['sub']}
return myui | 96d74c39cfa641fcd3f4961518046b3c0b506284 | 22,395 |
def dataset_was_harvested(package):
"""Return True if package was harvested by a harvester,
False if not."""
return bool(len(package.harvest_objects) > 0) | 5fcd8647b520c2687d06fd1ba6b2ba9f1540da8a | 22,396 |
from pathlib import Path
def recurse_checker(file_path: Path, recursive_flag: bool, recursive_dot_flag: bool) -> bool:
"""
:param file_path: file to be checked.
:param recursive_flag: whether to recursively refactor directories.
:param recursive_dot_flag: whether to recursively refactor dot directories.
:return: bool, that determines whether or not a path should be recursed upon.
"""
# alias
p = file_path
# if a flag is set, and file_path is associated with
# the flag, the file_path is scheduled to be recursed upon.
if recursive_flag and p.is_dir() and p.name[0] != '.': return True
if recursive_dot_flag and p.is_dir() and p.name[0] == '.': return True
# None of the checks were passed
return False | 4b5edcf4d361f6fa27ccf9120bb9f15b16d381d0 | 22,397 |
def default_prompt(prompt, default=None):
"""
Prompt the user for input. If they press enter, return the default.
:param str prompt: Prompt to display to user (do not include default value)
:param str default: Default return value
:return: Value entered or default
:rtype: str or None
"""
value = str(input(prompt + " [default: %s]: " % str(default)))
return default if value == '' else value | 59282cb61a25b16dc7ca84553acd28f575350092 | 22,399 |
def bits_to_base(x):
"""convert integer representation of two bits to correct base"""
if x == 0:
return 'T'
elif x == 1:
return 'C'
elif x == 2:
return 'A'
elif x == 3:
return 'G'
else:
raise ValueError('Only integers 0-3 are valid inputs') | e1a9b8894e0591a51058747dc88cf9225c8d053c | 22,401 |
def get_script_sub_ses_and_task_from_cmd(cmd_parts):
"""
:param cmd_parts: List of string parts of complete command calling pipeline
:return: Dictionary mapping each of several pipeline .py script flags
to the index of its value in split_cmd
"""
flags_to_find = ['-subject', '-ses', '-task']
flags_found = dict()
for cmd_ix in range(len(cmd_parts)):
each_flag = cmd_parts[cmd_ix]
if 'script' not in flags_found and each_flag[-2:] == '.py':
flags_found['script'] = cmd_ix
for each_flag in flags_to_find:
if cmd_parts[cmd_ix][-len(each_flag):] == each_flag:
flags_to_find.pop(flags_to_find.index(each_flag))
flags_found[each_flag[1:]] = cmd_ix + 1
return flags_found | 8caee8ebbb930208f1c6d73e99f5788fc21034af | 22,403 |
import math
def diff_payments(P, n, i):
"""Finding the differentiated payment using:
P = credit principal
n = number of payments (months)
i = nominal (monthly) interest rate (float, not a percentage)
Returns formatted string
A differentiated payment schedule is where part of the payment reduces the credit principal is constant.
"""
P = int(P)
n = int(n)
i = float(i) / (100 * 12)
subtotal = 0
res = ''
for m in range(1, n + 1):
D_m = math.ceil((P / n) + i * (P - (P * (m - 1) / n)))
res = res + f'Month {m}: payment is {D_m}\n'
subtotal += D_m
overpayment = subtotal - P
string_overpayment = f'\nOverpayment = {overpayment}'
res = res + string_overpayment
return res | b0eb64645c894d649b350c44e32084cbd11dc766 | 22,407 |
def string2array(value):
""" covert a long string format into a list
:param value: a string that can be split by ","
:type value: str
:return: the array of flaoting numbers from a sring
:rtype: [float,float,....]
"""
value = value.replace("[", "").replace("]", "")
value = value.split(",")
# print("def string2array", value)
return [float(i)for i in value] | 4a301e42b535be64a34f4fbfe20ee81c6b214cc9 | 22,411 |
def is_eligible_file( filename ):
""" Based on the file name, decide whether the file is likely to contain image data """
eligible = False
if ( filename.endswith( '.png' ) or filename.endswith( '.jpg' ) ):
eligible = True
return eligible | 75988428ce9078f8de1f95c97dba4f2e77bdbe3b | 22,412 |
def parse_mltag(mltag):
"""
Convert 255 discrete integer code into mod score 0-1, return as a generator.
This is NOT designed to handle interleaved Ml format for multiple mod types!
:param mltag: The Ml tag obtained for the read with('Ml:B:C,204,89,26'). (str)
:return: Generator of floats, probabilities of all mod bases in query seq. (iter)
"""
return (round(x / 256, 3) if x > 0 else 0 for x in mltag) | 8f775a80717c366ffe00b33a53c924c02f7dc844 | 22,413 |
def collect(gen):
"""Turn the output of a generator into a string we can compare."""
return "\n".join(list(gen)) + "\n" | 9081bc65519d222a355e5adee855e3d22aa75122 | 22,415 |
import time
def to_epoch(cmk_ts):
"""Parse Check_MK's timestamp into epoch time"""
return int(time.mktime(time.strptime(cmk_ts, '%Y-%m-%d %H:%M:%S'))) | 87f11ddffc6fbab3e833d4a39529c94bfca3a6ef | 22,425 |
def truncate_string_to_length(string: str, length: int) -> str:
""" Truncate a string to make sure its length not exceeding a given length. """
if len(string) <= length:
return string
half_length = int(0.5 * length) - 1
head = string[:half_length]
tail = string[-half_length:]
return f"{head}{'.' * (length - 2 * half_length)}{tail}" | 67e5d1bbe7cd7aa6421fff647c6842af19faabc4 | 22,426 |
import struct
import socket
import ipaddress
def parse_ipv4_address(ipv4_hex):
"""
Convert /proc IPv4 hex address into standard IPv4 notation.
:param ipv4_hex: IPv4 string in hex format
:return: IPv4Address object
"""
ipv4 = int(ipv4_hex, 16)
# pack IPv4 address in system native byte order, 4-byte integer
packed = struct.pack("=L", ipv4)
# convert the IPv4 address from binary to text form
ascii_ipv4_address = socket.inet_ntop(socket.AF_INET, packed)
return ipaddress.ip_address(ascii_ipv4_address) | 007ae07c91df8484ae304fc2218c751e341bbede | 22,428 |
def revcomp(seq):
"""
Convert sequence to reverse complementary
"""
trantab = str.maketrans("ATCG", "TAGC")
return seq.translate(trantab)[::-1] | c5420fdca7e2c85d78a2346d352a6ac4993378da | 22,436 |
def find_perimeter(height: int, width: int) -> int:
"""Find the perimeter of a rectangle."""
return (height + width) * 2 | 75913101034c873743aefb53540d5c0884d162f1 | 22,441 |
def bin_to_dec( clist , c , tot=0 ):
"""Implements ordinary binary to integer conversion if tot=0
and HEADLESS binary to integer if tot=1
clist is a list of bits; read c of them and turn into an integer.
The bits that are read from the list are popped from it, i.e., deleted
Regular binary to decimal 1001 is 9...
>>> bin_to_dec( ['1', '0', '0', '1'] , 4 , 0 )
9
Headless binary to decimal [1] 1001 is 25...
>>> bin_to_dec( ['1', '0', '0', '1'] , 4 , 1 )
25
"""
while (c>0) :
assert ( len(clist) > 0 ) ## else we have been fed insufficient bits.
tot = tot*2 + int(clist.pop(0))
c-=1
pass
return tot | 9aec0835251c52a00ad439e4ba72a7a01ced5196 | 22,442 |
def osr_proj4(input_osr):
"""Return the PROJ4 code of an osr.SpatialReference
Args:
input_osr (:class:`osr.SpatialReference`): OSR Spatial reference
of the input projection/GCS
Returns:
str: Proj4 string of the projection or GCS
"""
return input_osr.ExportToProj4() | 12dd419ebbeb20c48fc795eabf57cd1f64a459a9 | 22,451 |
def otu_name(tax):
"""
Determine a simple Genus-species identifier for an OTU, if possible.
If OTU is not identified to the species level, name it as
Unclassified (familly/genus/etc...).
:type tax: list
:param tax: QIIME-style taxonomy identifiers, e.g.
["k__Bacteria", u"p__Firmicutes", u"c__Bacilli", ...
:rtype: str
:return: Returns genus-species identifier based on identified taxonomical
level.
"""
extract_name = lambda lvl: "_".join(lvl.split("_")[2:])
spname = "spp."
for lvl in tax[::-1]:
if len(lvl) <= 3:
continue
if lvl.startswith("s"):
spname = extract_name(lvl)
elif lvl.startswith("g"):
return "{}_{}".format(extract_name(lvl), spname)
else:
if spname != "spp.":
return spname
else:
return "Unclassified_{}".format(extract_name(lvl)) | 1badcad0d023616d72c4276bc6b5bd55b4e5073b | 22,453 |
def split(a, n):
""" Splits an input list into n equal chunks; this works even if modulo > 0.
:param a: list of arbitrary length
:param n: number of groups to split into
:return: generator of chunks
"""
k, m = int(len(a) / n), len(a) % n
return (a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)) | 832bb9fa9e2dfcae2cee6cb65703aa2a7f35ab7f | 22,456 |
def unprefix(path, prefix):
"""Remove the prefix from path. Append '/' if an empty string results."""
if not path.startswith(prefix):
raise Exception('Not prefixed.')
if prefix != '/':
path = path[len(prefix):]
if not path:
path = '/'
return path | afb4b008e23a62cc1ac0e71196fd131d736d8498 | 22,461 |
def _gen_key_value(size: int) -> bytes:
"""Returns a fixed key_value of a given size."""
return bytes(i for i in range(size)) | 84a5bc5370df0f70994f753ababb40b9e3357458 | 22,463 |
def alternate_capitalization(s):
"""
Given a string, capitalize the letters that occupy even indexes and odd indexes separately, and return as shown
below. Index 0 will be considered even.
:param s: a string value.
:return: a list of strings with the first string starting with capitalization alternate and the other lower.
"""
s = "".join(j if i % 2 else j.upper() for i, j in enumerate(s))
return [s, s.swapcase()] | 89a10d51cc87b306c4f29e2d87baab39c6dbeb2f | 22,465 |
def _inner_join(xA_df, xB_df):
"""
Simple innner join on "interaction_id"
"""
xA_xB_map = xA_df.merge(xB_df, on="interaction_id", how="inner", suffixes=('_A', '_B'))
return xA_xB_map | 79fe471a0644eba9fd0111284e70058e935c148d | 22,471 |
def FairShareTax(c00100, MARS, ptax_was, setax, ptax_amc,
FST_AGI_trt, FST_AGI_thd_lo, FST_AGI_thd_hi,
fstax, iitax, combined, surtax):
"""
Computes Fair Share Tax, or "Buffet Rule", types of reforms.
Taxpayer Characteristics
------------------------
c00100 : AGI
MARS : filing (marital) status
ptax_was : payroll tax on wages and salaries
setax : self-employment tax
ptax_amc : Additional Medicare Tax on high earnings
Returns
-------
fstax : Fair Share Tax amount
iitax : individual income tax augmented by fstax
combined : individual income tax plus payroll taxes augmented by fstax
surtax : individual income tax subtotal augmented by fstax
"""
if FST_AGI_trt > 0. and c00100 >= FST_AGI_thd_lo[MARS - 1]:
employee_share = 0.5 * ptax_was + 0.5 * setax + ptax_amc
fstax = max(c00100 * FST_AGI_trt - iitax - employee_share, 0.)
thd_gap = max(FST_AGI_thd_hi[MARS - 1] - FST_AGI_thd_lo[MARS - 1], 0.)
if thd_gap > 0. and c00100 < FST_AGI_thd_hi[MARS - 1]:
fstax *= (c00100 - FST_AGI_thd_lo[MARS - 1]) / thd_gap
iitax += fstax
combined += fstax
surtax += fstax
else:
fstax = 0.
return (fstax, iitax, combined, surtax) | 13ad589d6e1cd3dc98a5ef696d811ce41b23b311 | 22,474 |
def word_count_dict_to_tuples(counts, decrease=True):
"""
Given a dictionary of word counts (mapping words to counts of their
frequencies), convert this into an ordered list of tuples (word,
count). The list is ordered by decreasing count, unless increase is
True.
"""
return sorted(list(counts.items()), key=lambda key_value: key_value[1],
reverse=decrease) | b8abfff7b74d2e1b2724bfbe29d1823f6682bd64 | 22,478 |
def _as_mu_args(
mu=None,
omega=None,
tau=None,
# _default={},
**kwargs):
"""
utility function to convert model arguments to kernel arguments.
This renames omega and mu, and *deletes* tau.
"""
kwargs = dict(**kwargs)
# kwargs.setdefault(**_default)
if omega is not None:
kwargs['kappa'] = omega
if mu is not None:
kwargs['mu'] = mu
return kwargs | eebe8933d9157c8fc9e61fbfd325f3864547aa36 | 22,481 |
from typing import List
from typing import Tuple
from typing import Optional
def get_additional_data_lengths(source_pre: List[List[str]],
source_nxt: List[List[str]],
target_pre: List[List[str]],
target_nxt: List[List[str]]) -> Tuple[Optional[List[int]],
Optional[List[int]],
Optional[List[int]],
Optional[List[int]]]:
"""
Computes lengths of additional data.
:param source_pre: List of previous source sentences as strings.
:param source_nxt: List of next source sentences as strings.
:param target_pre: List of previous target sentences as strings.
:param target_nxt: List of next target sentences as strings.
:return: Respective lengths of additional input strings.
"""
source_pre_lens = [len(src_pre) for src_pre in source_pre] if source_pre else None
source_nxt_lens = [len(src_nxt) for src_nxt in source_nxt] if source_nxt else None
target_pre_lens = [len(tar_pre) for tar_pre in target_pre] if target_pre else None
target_nxt_lens = [len(tar_nxt) for tar_nxt in target_nxt] if target_nxt else None
return source_pre_lens, source_nxt_lens, target_pre_lens, target_nxt_lens | 789ba560074efa0c41f0f26bf71518a8e200cf24 | 22,483 |
def _get_axis(snapshot_data, column, axis_type):
"""Return column of data from snapshot data of the axis type passed.
Parameters
----------
snapshot_data : numpy.ndarray
The data read in holding the axis data of the log.
column : int
The column of the desired data in snapshot_data
axis_type : subclass of Axis
The type of axis the data is.
Returns
-------
axis_type
"""
return axis_type(expected=snapshot_data[:, column],
actual=snapshot_data[:, column + 1]) | 5bf7b947d0f593a485f6d5b3a4612717b171b87d | 22,485 |
def calc_fixed_bn(func, in_data, **kwargs):
"""[FixedBatchNormalization](https://docs.chainer.org/en/v4.3.0/reference/generated/chainer.functions.fixed_batch_normalization.html)
Test-mode batch normalization.
It consists of normalization part (using $\mu$ and $\sigma$) and
bias part ($\\gamma$ and $\\beta$), both are composed of
elementwise scale and shift. However this can actually be fused into single
scale and shift operation.
Therefore, regardless of existence of bias ($\\gamma$ and $\\beta$),
computational cost is always $2 \|x\|$ FLOPs.
Since scale-and-shift operation can be done by FMA,
it becomes $\|x\|$ FLOPs if `fma_1flop` is set to `True`.
Due to the same reason as explained above, reading learned scale and shift
parameter is required only once (not twice) regardless of bias existence.
Both are 1-dimensional array with $c_{\mathrm{in}}$ elements.
| Item | Value |
|:--------------|:------|
| FLOPs(FMA) | $$ \| x \| $$ |
| FLOPs(no-FMA) | $$ 2 \| x \| $$ |
| mread | $$ \|x\| + 2 c_{\mathrm{in}} $$ |
| mwrite | $$ \| x \| $$ |
| params | `eps`: epsilon for BN |
"""
x, _, _, mean, var = in_data
x = in_data[0]
n_elements = len(x.flatten())
if kwargs.get('fma_1flop'):
flops = n_elements
else:
flops = n_elements * 2 # *2 <- scale and shift
mread = n_elements + len(mean) + len(var)
mwrite = n_elements
return (flops, mread, mwrite, {'eps': func.eps}) | 8f20d0210effb07989a35b6b439d3144b0fe6790 | 22,492 |
def count_truthy(items):
"""
Count non None values viz, but includes 0
----
examples:
1) count_truthy([1, 2, None, 'a']) -> 3
2) count_truthy([1, 2, 0, 'a']) -> 4
----
:param items: list
:return: int
"""
counter = 0
for item in items:
if item is not None:
counter += 1
return counter | 670c97294bae6a75fe3f0949814e52454470df11 | 22,494 |
def int_to_chain(i,base=62):
"""
int_to_chain(int,int) -> str
Converts a positive integer to a chain ID. Chain IDs include uppercase
characters, numbers, and optionally lowercase letters.
i = a positive integer to convert
base = the alphabet size to include. Typically 36 or 62.
"""
if i < 0:
raise ValueError("positive integers only")
if base < 0 or 62 < base:
raise ValueError("Invalid base")
quot = int(i)//base
rem = i%base
if rem < 26:
letter = chr( ord("A") + rem)
elif rem < 36:
letter = str( rem-26)
else:
letter = chr( ord("a") + rem - 36)
if quot == 0:
return letter
else:
return int_to_chain(quot-1,base) + letter | aa4a96d67ec8b809ec6e01916e9a54369580a897 | 22,495 |
def to_applescript(num):
"""
Convert a Python number to a format that can be passed to Applescript.
A number doesn't need coerced to print to stdout, but it's best to be
thorough and explicit.
"""
return str(num) | 7d4fe31e276267668078cedc0b5fa6c5f97dc035 | 22,504 |
import random
def sample(population, k, seed=42):
"""Return a list of k elements sampled from population. Set random.seed with seed."""
if k is None or k > len(population):
return population
random.seed(len(population) * k * seed)
return random.sample(population, k) | 0f087c675e87fef721426229f570e95ae84b10bc | 22,507 |
def convertBinaryToDecimal(num: str) -> int:
"""
Converts a binary string to a decimal number
"""
multiplier: int = 1
decimalNum: int = 0
for c in reversed(num):
decimalNum += (int(c) * multiplier)
multiplier *= 2
return decimalNum | 6ae6ee26f8f66347284c4db4a6a0e76dd88f749f | 22,512 |
import mimetypes
def get_content_type(filename):
"""
Uses mimetype's guess functionality to take a shot at guessing the provided filename's mimetype.
:param str filename: name of the file, should include extension
:return: the guessed value or `application/octet-stream` by default
:rtype: str
"""
return mimetypes.guess_type(filename)[0] or 'application/octet-stream' | 7bc7c33763157ba3104de854dde9106d93db0205 | 22,514 |
def acceptance_probability(previousConfigCost, newConfigurationCost, NumberOfSteps):
"""
e = previous config
e' = new config
T = NumberOfSteps
* Implementation of P(e, e', T).
* The probability of making a transition from the current state s
* to a candidate state s' is specified by the acceptance probability P().
* e ==> getCost(s)
* e' ==> getCost(s')
* T ==> Temperature [number of steps/iterations in our setting].
*
* s and s' are configurations in our setting.
*
* According to the kirkpatrick 1983 paper:
* P(e, e', T) = 1 if e' < e
* exp( -(e' - e) / T ) otherwise
*/
"""
if newConfigurationCost < previousConfigCost:
return 1
else:
acceptance_prob = pow(2.7, -(newConfigurationCost - previousConfigCost) / NumberOfSteps)
return acceptance_prob | ea56f38830f00115e567fc426961e6eafe42695e | 22,522 |
def multiple_split(source_string, separators, split_by = '\n'):
"""
This function allows the user to split a string by using different
separators.
Note: This version is faster than using the (s)re.split method (I tested it
with timeit).
Parameters:
* source_string: string to be splitted
* separators: string containing the characters used to split the source
string.
* split_by: all the ocurrences of the separators will be replaced by this
character, then the split will be done. It defaults to '|' (pipe)
"""
translate_to = split_by * len(separators)
translation = str.maketrans(separators, translate_to)
return source_string.translate(translation).split(split_by) | 0310d60a225fe156f86d6c0b4ce02781773750de | 22,526 |
def base36decode(base36_string):
"""Converts base36 string into integer."""
return int(base36_string, 36) | 66da9d391705cd0748e0e7c0ea5c69be2366ed4e | 22,527 |
def get_topic_data(topics_with_summaries):
"""
This function takes in a list of ranked topic objects
and returns a dictionary of the data.
Keys are document object and values are list of tuples of (sent, set of nouns)
for each sent in the doc. {doc_obj: [(sent_index, sent_noun_set)]
"""
# Master list of 2D feature vector permuations of each document
all_training_vectors = []
topic_dict = dict()
for topic in topics_with_summaries:
sentences = topic.summary
# List to hold (sent_pos, sent_noun_set) tuples
topic_list = []
for sent_obj in sentences:
topic_list.append((sentences.index(sent_obj), sent_obj.nouns))
# Add the list of sentence tuples to the dictionary
topic_dict[topic] = topic_list
# Return the dictionary
return topic_dict | b0abf8ba28bc4359c2453050cb1a24340ac21158 | 22,529 |
def decode(symbol_list, bit_count):
""" Decodes the value encoded on the end of a list of symbols.
Each symbol is a bit in the binary representation of the value, with more significant
bits at the end of the list.
- `symbol_list` - the list of symbols to decode from.
- `bit_count` - the number of bits from the end of the symbol list to decode.
"""
assert bit_count > 0, "The given number of bits (%d) is invalid." % bit_count
assert bit_count <= len(symbol_list), "The given number of bits (%d) is greater than the length of the symbol list. (%d)" % (bit_count, len(symbol_list))
# Take the last `bit_count` number of symbols from the end of the given symbol list.
bits = symbol_list[-bit_count:]
# Reverse the list of bits, and make a string out of them.
bits.reverse()
bit_string = ''.join(map(str, bits))
# Return the bit string as an integer via the built-in int command, telling it that the number in the string is binary/base 2.
return int(bit_string, 2) | f7cbfe783b32db099713d357fc6a20a7deff7e9f | 22,530 |
import requests
import json
def make_post_request(url, payload, headers=None):
"""Wrapper for requests.post"""
return requests.post(url, data=json.dumps(payload), headers=headers) | 3d02fe19bfd8c3c80d0f181679b563d4d2429a6a | 22,533 |
def make_scoped_name(*args):
""" Convert a series of strings into a single string
representing joined by points. This convertion represents
Pythons scope convention.i.e. pkg.subpkg.module
Args:
*ags: list of string. The strings will
joined in FIFO order.
Returns:
str: string-scope representation.
"""
return '.'.join(args) | 39895772eb6d4cb8b0c63b54f8f2cfd4c83964c9 | 22,537 |
def AND(p: bool, q: bool) -> bool:
"""
Conjunction operator used in propositional logic
"""
return bool(p and q) | 5e166eff3b1b998490fd5ed1c9e6e034de1efea0 | 22,538 |
def array_to_string(array, delimiter=" ", format="{}", precision=None):
"""
Converts a numeric array into the string format in mujoco.
Examples:
[0, 1, 2] => "0 1 2"
"""
if precision is not None and format == "{}":
return delimiter.join([format.format(round(x, precision)) for x in array])
else:
return delimiter.join([format.format(x, precision) for x in array]) | 8b308b41d5b6f82d58a8b9a4afd529fc7cbf7408 | 22,546 |
import json
def json_roundtrip(data: dict) -> dict:
"""Input `data` is returned after JSON dump/load round trip."""
return json.loads(json.dumps(data)) | 2e15814d1e975f5f3e845196365de5b521e60cd8 | 22,548 |
def is_apple_os(os_):
"""returns True if OS is Apple one (Macos, iOS, watchOS or tvOS"""
return str(os_) in ['Macos', 'iOS', 'watchOS', 'tvOS'] | 77b85f8e4fec837c5009fff3d8e8446c9f1d0d58 | 22,550 |
def getTZLookup(tzfname='cities15000.txt'):
"""Returns a mapping from gps locations to time-zone names.
The `tzfname` file is read to map gps locations to timezone names.
This is from: http://download.geonames.org/export/dump/cities15000.zip
Returns a list of `((lat, lon), timezone)` pairs.
"""
ret = [l.rstrip('\n').split('\t') for l in open(tzfname) if l.strip()]
ret = [((float(l[4]), float(l[5])), l[17]) for l in ret]
return ret | 3dcb3b297be72eb55c2d75ffc0bf269e27775232 | 22,553 |
def format_with_default_value(handle_missing_key, s, d):
"""Formats a string with handling of missing keys from the dict.
Calls s.format(**d) while handling missing keys by calling
handle_missing_key to get the appropriate values for the missing keys.
Args:
handle_issing_key: A function that takes a missing key as the argument
and returns a value for the value of the missing key.
s: A format string.
d: A dict providing values to format s.
Returns s.format(**d) with missing keys handled by calling
handle_missing_key to get the values for the missing keys.
"""
copy = dict(**d)
while True:
try:
return s.format(**copy)
except KeyError as ex:
key = ex.args[0]
copy[key] = handle_missing_key(key) | 957b851dcacfc98c5bcdb5f1c76850014f8262f5 | 22,559 |
def sum_combinations(numbers):
"""Add all combinations of the given numbers, of at least one number"""
combinations = [0]
for element in numbers:
new_combinations = list(combinations)
for element2 in combinations:
new_combinations.append(element + element2)
combinations = new_combinations
combinations.remove(0) # Remove 0
return combinations | 193f3c7285f70f13435e971844288cb6faeb1d98 | 22,565 |
import json
def load_json(filepath):
"""
Load a json file
Inputs
filepath: string, path to file
Outputs
data: dictionary, json key, value pairs
Example
path = "~/git/msc-data/unity/roboRacingLeague/log/logs_Sat_Nov_14_12_36_16_2020/record_11640.json"
js = load_json(path)
"""
with open(filepath, "rt") as fp:
data = json.load(fp)
return data | bca35e8e10da33ac599a8895e8495fb5eec829e0 | 22,566 |
from math import log
def idf(term, corpus):
"""
computes inverse document frequency. IDF is defined as the
logarithm of the total number of documents in the corpus over the
number of documents containing the search term:
log(all documents/documents containing the search term)
Note that if *no* document contains the search term, it would result
in a division by zero. This is mitigated by adding 1 to the
denominator in that case.
Parameters:
term: a string containing the search term
corpus: a list of lists; the outer list is the corpus, while the
inner lists should represent the document texts, split into
tokens (make sure that punctuation is split, too!)
Return Value: a float representing the idf value
"""
documents_with_term = 0
for document in corpus:
for token in document:
if token == term:
documents_with_term += 1
break
try:
return log(len(corpus)/documents_with_term)
except ZeroDivisionError:
return log(len(corpus) / 1 + documents_with_term) | 15ca03e272a0e535500f38e3bb73bab342e42390 | 22,569 |
def two_oldest_ages(ages):
"""Return two distinct oldest ages as tuple (second-oldest, oldest)..
>>> two_oldest_ages([1, 2, 10, 8])
(8, 10)
>>> two_oldest_ages([6, 1, 9, 10, 4])
(9, 10)
Even if more than one person has the same oldest age, this should return
two *distinct* oldest ages:
>>> two_oldest_ages([1, 5, 5, 2])
(2, 5)
"""
# find two oldest by sorting unique; this is O(n log n)
uniq_ages = set(ages)
oldest = sorted(uniq_ages)[-2:]
return tuple(oldest)
# a longer, but O(n) runtime would be:
#
# uniq_ages = set(ages)
# oldest = None
# second = None
#
# for age in uniq_ages:
# if oldest is None or age > oldest:
# second = oldest
# oldest = age
# elif second is None or age > second:
# second = age
#
# return (second, oldest) | 38944082fdf1ca44ff1813b9570dcb0377f40960 | 22,578 |
def replace_pad(l, new_symbol='-'):
"""<pad> refers to epsilon in CTC replace with another symbol for readability"""
new_l = []
for x in l:
if x == "<pad>":
new_l.append(new_symbol)
else:
new_l.append(x)
return new_l | 94671a5d035a4ce2fae1f26e65c52ad55e4dba6c | 22,579 |
def getLemma(line):
"""
retreves the second word in a line in the coha corpus, or nothing if
given an empty line
"""
if line == "":
return ""
s = line.split("\t")
return s[1] | 34c51925d6a9d3908bf8b3114256e50ae3712467 | 22,581 |
import re
def _regex_search(pattern: str, string: str, group: int):
"""Shortcut method to search a string for a given pattern.
:param str pattern:
A regular expression pattern.
:param str string:
A target string to search.
:param int group:
Index of group to return.
:returns:
Substring pattern matches.
"""
regex = re.compile(pattern)
results = regex.search(string)
if not results:
return False
return results.group(group) | c703ac3eed3cbb981586b5a950f071c8535f32a5 | 22,583 |
import json
def jsonString(obj, pretty=False):
"""Creates a json object, if pretty is specifed as True proper
formatting is added
Args as data:
obj: object that needs to be converted to a json object
pretty: Boolean specifying whether json object has to be formatted
Returns:
JSON object corresponding to the input object
"""
if pretty == True:
return json.dumps(obj, sort_keys=True, indent=4, separators=(',', ': ')) + '\n'
else:
return json.dumps(obj) | 7fb621029ee509240dfd46bc641dcde34c87170c | 22,584 |
import struct
def read_plain_int96(fo):
"""Reads a 96-bit int using the plain encoding"""
tup = struct.unpack("<qi", fo.read(12))
return tup[0] << 32 | tup[1] | 39d924fe211a17192b4b3158340d40b3f28948d1 | 22,587 |
def computeAirProperties(T, p, pInhPa=False):
""" Calculates air density in kg/m3 and viscosity in m2/s given pressure
in mmHg and temperature in deg C. Can also specify pressure in hPa with the flag."""
mmHgTohPa = 1.3332239
if pInhPa:
p = p/mmHgTohPa
# from engineering toolbox:
# http://www.engineeringtoolbox.com/air-temperature-pressure-density-d_771.html
rho = 1.325 * p/25.4 / ((T+273.15)*9/5) * 16.0185
# from Sutherland equation:
# http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/fprops/propsoffluids/node5.html
mu = 1.458e-6 * (T+273.15)**(3./2.) / ((T+273.15) + 110.4)
# Alternative air density calculations as a function of temperature and pressure
"""
# pressure is in mmHg, temperature in deg C
# 1 mmHg = 133.322368 Pa
# T_R = (T_C = 273.15) * 9/5
# from Wikipedia: https://en.wikipedia.org/wiki/Density_of_air
R = 287.058 # J / (kg K)
rho0 = (p * 133.322368) / (R * (T+273.15))
# from engineering toolbox: http://www.engineeringtoolbox.com/air-temperature-pressure-density-d_771.html
rho1 = 1.325 * p/25.4 / ((T+273.15)*9/5) * 16.0185
"""
return rho, mu/rho | 645db891cc775bbd1702a8ee437a2fa1fe9b62a3 | 22,590 |
def readonly(label, value):
"""Return HTML markup for a readonly display like a form input."""
return {"label": label, "value": value} | c153ae42b074dea68101ca2e3abce03d1ed6c552 | 22,596 |
def course_str(course):
"""Format course as a string."""
return (
f"[{course['pk']}] {course['name']} "
f"{course['semester']} {course['year']}"
) | a9b1d6663ab18da220eceedc3c2319f9da80a08c | 22,599 |
import functools
def loss_function_for_data(loss_function, X):
""" Get a loss function for a fixed dataset
Parameters
----------
loss_function : function
The loss function to use. The data parameter for the function must
be `X`
X : coo_matrix
coo_matrix of data to apply loss function to
Returns
-------
fixed_data_loss_function : function
A loss function which takes all the same parameters as the input
`loss_function`, except for the data parameter `X` which is fixed
"""
return functools.partial(loss_function, X=X) | 782d050ed313146d9cdae38b7e63ed9dd287e3cc | 22,600 |
def time_duration_formatter(x):
"""Format time duration in seconds
"""
mm, ss = divmod(x, 60)
hh, mm = divmod(mm, 60)
dd, hh = divmod(hh, 24)
res = ''
if dd:
res += '%dd ' % dd
if dd or hh:
res += '%dh ' % hh
if dd or hh or mm:
res += '%dm ' % mm
res += '%ds' % ss
return res | a0b28b2dd6cd81cb297b2b1dbbc184ff1be896b8 | 22,611 |
def get_keys_from_post(request, *args):
"""Get a tuple of given keys from request.POST object."""
return tuple(request.POST[arg] for arg in args) | f504a784849470405dbb6022bc0b7ce877caceda | 22,612 |
async def some_async_function(value):
"""A demo async function. Does not do any actual I/O."""
return value | 9324669acd9955095e12c28acc09cf0b7d68d767 | 22,613 |
import json
import hashlib
def compute_caching_hash(d):
"""Generate a hash from a dictionary to use as a cache file name
This is intended to be used for experiments cache files
"""
string = json.dumps(d, sort_keys=True, ensure_ascii=True)
h = hashlib.sha1()
h.update(string.encode('utf8'))
return h.hexdigest() | 140a68c2f349fb5f3db6d48a24c16cc22a215bb0 | 22,614 |
def slopeFromVector(v):
"""
Return the slope of a vector from a QVector2D object.
"""
if v.x() == 0.0:
return v.y()
return v.y() / v.x() | 26d33063f84b889ee80868758eb7d15d9abf7dae | 22,615 |
def validation(model, val_fn, datagen, mb_size=16):
""" Validation routine for speech-models
Params:
model (keras.model): Constructed keras model
val_fn (theano.function): A theano function that calculates the cost
over a validation set
datagen (DataGenerator)
mb_size (int): Size of each minibatch
Returns:
val_cost (float): Average validation cost over the whole validation set
"""
avg_cost = 0.0
i = 0
for batch in datagen.iterate_validation(mb_size):
inputs = batch['x']
labels = batch['y']
input_lengths = batch['input_lengths']
label_lengths = batch['label_lengths']
# Due to convolution, the number of timesteps of the output
# is different from the input length. Calculate the resulting
# timesteps
output_lengths = [model.conv_output_length(l)
for l in input_lengths]
_, ctc_cost = val_fn([inputs, output_lengths, labels,
label_lengths, True])
avg_cost += ctc_cost
i += 1
if i == 0:
return 0.0
return avg_cost / i | 14b1465ec9934f95b96f2f019cc83a42e8c25cc7 | 22,620 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.