content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def dict2cfgString(dictionary, separator="\n", assigner="="): """ Converts a dictionary into a string ​ Parameters ---------- dictionary : dict The dictionary to be transformed. separator : str, optional The character to be used to separate individual entries. The default is "\n". assigner: str, optional The character to represent the assignment from the key to the value. The default is "=". ​ Returns ------- str """ return "{}".format(separator).join([f"{k}{assigner}{v}" for k, v in dictionary.items()])
12c1f3b102429c22d1bb15714631908be41a63f2
22,010
def convert_indentation(indentation): """ Converts integer- or string- indentation into string indentation for prepending. :param int | str indentation: :return: str """ return " " * indentation if isinstance(indentation, int) else indentation
97b223e0b1d3a210e0d3cc875d6b7bd4d4486d73
22,015
def intersect(l0, l1): """Given two lists return the intersection.""" return [e for e in l0 if e in l1]
4dbc2307eabfbe6312407b19e0924952c6dcc9cc
22,017
import re def seems_like_section_name(line): """Check whether `line` starts with 'Para' or ends with ':', ignoring case and whitespace.""" return bool( re.search(r'(^[^a-záéíóúü0-9]*para\b|:\s*$)', line, re.IGNORECASE) )
d1c10116319c39cb5e0b5c57a2007703578da75c
22,019
import copy def get_recurs_class(g, derivLink): """Find the recurs_class property in the contents. Return its value and the dictionary with recurs_value removed.""" recursClass = 0 if derivLink['content'] is None or len(derivLink['content']) <= 0: return 0, derivLink newDerivLink = copy.deepcopy(derivLink) for iObj in range(len(newDerivLink['content']))[::-1]: obj = newDerivLink['content'][iObj] if obj['name'] == 'recurs_class': try: recursClass = int(obj['value']) except ValueError: g.raise_error('Incorrect recurs_class value: ' + obj['value']) newDerivLink['content'].pop(iObj) return recursClass, newDerivLink
e787614a5d433352551c684d134d5d85b870ec4a
22,026
def city_state(city, state, population=0): """Return a string representing a city-state pair.""" output_string = city.title() + ", " + state.title() if population: output_string += ' - population ' + str(population) return output_string
ae958598a57128cf36f63ff6bfb8181f9d07db31
22,028
import random def coin_flip(p=0.5): """Simulate a coin flip.""" return True if random.random() > p else False
51cd54a946cedb60589fdc24eb5f061afb713681
22,031
def getBoundingBox(veclist): """Calculate bounding box (pair of vectors with minimum and maximum coordinates). >>> getBoundingBox([(0,0,0), (1,1,2), (0.5,0.5,0.5)]) ((0, 0, 0), (1, 1, 2))""" if not veclist: # assume 3 dimensions if veclist is empty return (0,0,0), (0,0,0) # find bounding box dim = len(veclist[0]) return ( tuple((min(vec[i] for vec in veclist) for i in range(dim))), tuple((max(vec[i] for vec in veclist) for i in range(dim))))
a2c035f85071e5a9f8dfee2c98cc46e86439a0cc
22,033
def feed_options_str(feed_options): """Convert a FeedOptions dict of values into an appropriate string value. Amazon docs for VAT upload with details: https://m.media-amazon.com/images/G/01/B2B/DeveloperGuide/vat_calculation_service__dev_guide_H383rf73k4hsu1TYRH139kk134yzs.pdf (section 6.4) Example: feed_options = { "shippingid": "283845474", "totalAmount": 3.25, "totalvatamount": 1.23, "invoicenumber": "INT-3431-XJE3", "documenttype": "CreditNote", "transactionid": "amzn:crow:429491192ksjfhe39s", } print(feed_options_str(feed_options)) >>> "metadata:shippingid=283845474;metadata:totalAmount=3.25;metadata:totalvatamount=1.23; metadata:invoicenumber=INT-3431-XJE3;metadata:documenttype=CreditNote; metadata:transactionid=amzn:crow:429491192ksjfhe39s" """ if not feed_options: return None if not isinstance(feed_options, dict): raise ValueError("`feed_options` should be a dict or None") output = [] for key, val in feed_options.items(): outval = val if outval is True or outval is False: # Convert literal `True` or `False` to strings `"true"` and `"false"` outval = str(outval).lower() output.append(f"metadata:{key}={outval}") return ";".join(output)
995b2927efb94cd92733b1058f423e863ca9c6e2
22,034
from typing import OrderedDict def create_param_dict(param_file_name, outputPrefix): """ Create a dictionary with the parameters and file with posterior density :param param_file_name: original parameter file :param outputPrefix: prefix given in ABCtoolbox config file for estimation :return: param_dict: ordered dict with the parameters and file with posterior density """ param_file = open(param_file_name, "r") param_dict = OrderedDict() for line in param_file: if "=" in line: param_dict[line.split("=")[0].strip()] = '{}model0_MarginalPosteriorDensities_Obs0.txt'.format(outputPrefix) param_file.close() return param_dict
9344c1727b5f7d23d3df1b79987d38e9bdff6191
22,039
def isempty(line): """ Checks if a line is empty (contains only witespaces or tabs)""" if len(line.replace("\n","").replace(" ","").replace("\t","")) == 0: return True else: return False
abd8e429125cea6c9575d5e539f69f6a39a7ccfe
22,041
def filter_by_gender(df, male): """Filters the data by gender. Args: df: DataFrame. male: True if male, False otherwise. Returns: DataFrame. """ gender = 1 if male else 0 return df[df.male == gender]
ce8a339a24cbf930fd4e96dda9acc786dda45e07
22,042
def get_matched_dyads( dyads, d0_key="doctype", d1_key="doctype", d0_values=["foxnews"], d1_values=["foxnews"], ): """Filter which returns dyads which match the specified conditions. Args: dyads (list): list of 2-item tuples. Each item is a dictionary (document). d0_key (str) d1_key (str) d0_values (list): any values to match d1_values (list): any values to match Returns: matched_dyads (list): filtered version of dyads """ matched_dyads = [] for dyad in dyads: d0 = dyad[0] d1 = dyad[1] if d0[d0_key] in d0_values and d1[d1_key] in d1_values: matched_dyads.append(dyad) return matched_dyads
bffe8e624d9c08d377d712d111be4f0a396ff07c
22,043
def clean_consecutive_duplicates( move_data, subset=None, keep='first', inplace=False ): """ Removes consecutive duplicate rows of the Dataframe, optionally only certain columns can be consider. Parameters ---------- move_data : dataframe The input trajectory data subset : Array of Strings, optional, default None(None by default) Specifies Column label or sequence of labels, considered for identifying duplicates. By default all columns are used. keep : 'first', 'last', optional, default 'first' If keep is set as first, all the duplicates except for the first occurrence will be dropped. On the other hand if set to last, all duplicates except for the last occurrence will be dropped. If set to False, all duplicates are dropped. inplace : boolean, optional, default False if set to true the original dataframe will be altered, the duplicates will be dropped in place, otherwise a copy will be returned. Returns ------- dataframe or None The filtered trajectories points without consecutive duplicates. """ if keep == 'first': n = 1 else: n = -1 if subset is None: filter_ = (move_data.shift(n) != move_data).any(axis=1) else: filter_ = (move_data[subset].shift(n) != move_data[subset]).any(axis=1) return move_data.drop(index=move_data[~filter_].index, inplace=inplace)
574ba4f6fba2d65f9680869178be1be9b45f0b97
22,047
from pathlib import Path def hmm_data_exists(file_path: Path) -> bool: """ Checks if HMM data exists in the local data path. :param file_path: Path to where `profiles.hmm` should be :return: True if both the `hmm` directory and `profiles.hmm` exist, else False """ return file_path.parent.is_dir() and file_path.is_file()
417e98366a6e458badd8c7b16d58468efdb9af53
22,049
def get_program_number(txt_row): """ Checks if the current line of text contains a program definition. Args: txt_row (string): text line to check. Returns: An integer number. If program number cannot be found, or is invalid in some way, a large negative number is returned. """ num = -9999 len_txt = len(txt_row) if (len_txt < 2): return num if (txt_row[0] == "O"): numeric_part = txt_row[1:len_txt] try: conv_num = int(numeric_part) num = conv_num except ValueError: pass return num
92f67bef6f36ad4e88e4840faa0878e72c0bb78c
22,052
def write_dfs_to_filepaths(dfs, filepaths): """ Accepts a list of pandas dataframes - dfs and a parralel list of filepaths - pathlib path objects Writes the dataframes to the filepaths as csvs with no index Returns the number of files written integer """ n = 0 for df, filepath in zip(dfs, filepaths): if not filepath.exists(): filepath.parent.mkdir(parents=True, exist_ok=True) df.to_csv(filepath, index=False) n += 1 return n
2e66c419f1a0a4472de0527cb157d2bf3bf33de8
22,053
def gnome_sort(lst: list) -> list: """ Pure implementation of the gnome sort algorithm in Python Take some mutable ordered collection with heterogeneous comparable items inside as arguments, return the same collection ordered by ascending. Examples: >>> gnome_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> gnome_sort([]) [] >>> gnome_sort([-2, -5, -45]) [-45, -5, -2] >>> "".join(gnome_sort(list(set("Gnomes are stupid!")))) ' !Gadeimnoprstu' """ if len(lst) <= 1: return lst i = 1 while i < len(lst): if lst[i - 1] <= lst[i]: i += 1 else: lst[i - 1], lst[i] = lst[i], lst[i - 1] i -= 1 if i == 0: i = 1 return lst
5aae393eabd046c20f51125e405d211555ed9bdb
22,057
def get_numeric_trace_attribute_value(trace, trace_attribute): """ Get the value of a numeric trace attribute from a given trace Parameters ------------ trace Trace of the log Returns ------------ value Value of the numeric trace attribute for the given trace """ if trace_attribute in trace.attributes: return trace.attributes[trace_attribute] raise Exception("at least a trace without trace attribute: " + trace_attribute)
fd757861972dce8d9624efa13773bd4624cf9ace
22,058
def get_in_out_tensors(graph): """ Get the input and output tensors from the TensorFlow graph 'graph'. """ # Get the graph nodes that perform computation on tensors ops = graph.get_operations() # Initialize input and output tensors inputs = [] outputs_set = set(ops) # Process operations for op in ops: # The input nodes are nodes without input if len(op.inputs) == 0 and op.type != 'Const': inputs.append(op) # The output nodes are nodes without output else: for input_tensor in op.inputs: if input_tensor.op in outputs_set: outputs_set.remove(input_tensor.op) outputs = list(outputs_set) return inputs, outputs
8c7c5c068bcb11d5d4f80f191af899dbf7e7aab1
22,061
import re def _match_channel_pattern(channel_name): """Returns a regex match against the expected channel name format. The returned match object contains three named groups: source, detector, and wavelength. If no match is found, a ValueError is raised. Parameters ---------- channel_name : str The name of the channel. """ rgx = r'^S(?P<source>\d+)_D(?P<detector>\d+) (?P<wavelength>\d+)$' match = re.fullmatch(rgx, channel_name) if match is None: msg = f'channel name does not match expected pattern: {channel_name}' raise ValueError(msg) return match
e40ba1b1c075d2fabae570bab36869b168ef6121
22,062
from datetime import datetime import pytz def with_gmt_offset(timezones, now=None): """ Given a list of timezones (either strings of timezone objects), return a list of choices with * values equal to what was passed in * display strings formated with GMT offsets and without underscores. For example: "GMT-05:00 America/New York" * sorted by their timezone offset """ now = now or datetime.utcnow() _choices = [] for tz in timezones: tz_str = str(tz) delta = pytz.timezone(tz_str).utcoffset(now) display = "GMT{sign}{gmt_diff} {timezone}".format( sign='+' if delta == abs(delta) else '-', gmt_diff=str(abs(delta)).zfill(8)[:-3], timezone=tz_str.replace('_', ' ') ) _choices.append((delta, tz, display)) _choices.sort(key=lambda x: x[0]) choices = [(one, two) for zero, one, two in _choices] return choices
b1916a3889016d3c608806fe0dab62f05801d5eb
22,068
def apply_activation_forward(forward_pass): """Decorator that ensures that a layer's activation function is applied after the layer during forward propagation. """ def wrapper(*args): output = forward_pass(args[0], args[1]) if args[0].activation: return args[0].activation.forward_propagation(output) else: return output return wrapper
950f2b96cadfc8df075763b25961c7f088ec9232
22,069
def get_option_name(name): # type: (str) -> str """Return a command-line option name from the given option name.""" if name == 'targets': name = 'target' return f'--{name.replace("_", "-")}'
77d4625be99944fb0748f6f3524d453fbf511795
22,071
def get_latest_file_url(files: dict, starts_with: str, file_extension: str) -> str: """ Get the url to a file which should start and have a specific file extension. Parameters ---------- files : dict Keys are the filenames and the values are the urls. starts_with : str Start of the filename. file_extension : str End of the filename. For example the file extension. Returns ------- str URL of the most recent file. """ filtered_files = { fname: link for fname, link in files.items() if (starts_with in fname[: len(starts_with)]) and file_extension in fname and "volume" not in fname } if len(filtered_files) == 0: return "" newest_file = sorted(filtered_files.keys())[-1] link = files.get(newest_file, "") return link
4b9d115c983f9cdcf1a96905d7c198b688851dea
22,075
def _extract_from_subworkflow(vs, step): """Remove internal variable names when moving from sub-workflow to main. """ substep_ids = set([x.name for x in step.workflow]) out = [] for var in vs: internal = False parts = var["id"].split("/") if len(parts) > 1: if parts[0] in substep_ids: internal = True if not internal: var.pop("source", None) out.append(var) return out
bd565b444084aa2b5dfab0444aaf13344240d17d
22,078
def chebyshev_distance(a, b): """ Calculate the Chebyshev distance of two vectors. """ distances = [] for x, y in zip(a, b): distances.append(abs(x - y)) distance = max(distances) return distance
aa6fccc804ccbeb312e0bb41693feb05787d84f4
22,081
def sort(li): """ Performs a mini radix sort on the top ten documents by first sorting on document ids, then sorting on document ranking. As sorted() is stable, this ensures that any documents with identical rankings will be sorted on their document ids in increasing order """ #first sort on document id li = sorted(li,key=lambda x: x[0]) #then sort on document ranking li = sorted(li,key=lambda x: x[1], reverse=True) #sort on window length li = sorted(li,key=lambda x: x[3]) #then sort on number of present words li = sorted(li,key=lambda x: x[2], reverse=True) return li
1bd1c440e8e2492f22d67b78215d9a8c1f483c60
22,084
def lammps_equilibrated_npt(job): """Check if the lammps equilibration step has run and passed is_equilibrated for the job.""" return job.isfile("equilibrated_npt.restart") and True
4d4ff20fc020b29319393989f852a7b2479627f0
22,086
def _flatten(d): """ Pack a hierarchical dictionary of variables into a list Sorting is important as it ensures the function is called with the inputs in the same order each time! """ l = [] # This sorting is important! for (k,v) in sorted(d.items(), key=lambda t: t[0]): if isinstance(v, dict): lv = _flatten(v) for v2 in lv: l.append(v2) else: l.append(v) return l
d1aea2b85e161747262ec424e9b63fb336967236
22,093
def get_logging_options_string(args): """ This function extracts the flags and options specified for logging options added with add_logging_options. Presumably, this is used in "process-all" scripts where we need to pass the logging options to the "process" script. Args: args (namespace): a namespace with the arguments added by add_logging_options Returns: string: a string containing all logging flags and options """ args_dict = vars(args) # first, pull out the text arguments logging_options = ['log_file', 'logging_level', 'file_logging_level', 'stdout_logging_level', 'stderr_logging_level'] # create a new dictionary mapping from the flag to the value logging_flags_and_vals = {'--{}'.format(o.replace('_', '-')) : args_dict[o] for o in logging_options if len(args_dict[o]) > 0} s = ' '.join("{} {}".format(k,v) for k,v in logging_flags_and_vals.items()) # and check the flags if args.log_stdout: s = "--log-stdout {}".format(s) if args.no_log_stderr: s = "--no-log-stderr {}".format(s) return s
070ed0cd906845abf784bd566118a1959af875f2
22,097
def to_bytes(text, encoding='utf-8'): """Make sure text is bytes type.""" if not text: return text if not isinstance(text, bytes): text = text.encode(encoding) return text
367da58c31dddd4c243c56a9780b47ef6682bee2
22,098
def email_get_unread(imap, from_email_address): """Returns (status, list of UIDs) of unread emails from a sending email address. """ search = '(UNSEEN UNFLAGGED FROM "{}")'.format(from_email_address) status, response = imap.search(None, search) if status != 'OK': return status, response # Return status and list of unread email UIDs. return status, response[0].split()
48c4cf036e24acadec425bb7bb8ac9395488229a
22,099
def _lambda_risk_mapper(risk_level: int) -> str: """Helper methods Parameters ---------- risk_level: int number from range 0-4 represents risk factor for given vault Returns ------- string: text representation of risk """ mappings = {0: "Non Eligible", 1: "Least", 2: "Low", 3: "Medium", 4: "High"} return mappings.get(risk_level, "Non Eligible")
e19ef85b82d4b36bb6e0dfdcae373f25a894dbff
22,100
import math def torsion_angle(c1, c2, c3, c4): """ float <- torsion_angle(a, b, c, d) returns the torsion angle in degrees between 3D pts a,b,c,d """ v1 = (c1[0]-c2[0], c1[1]-c2[1], c1[2]-c2[2]) v2 = (c2[0]-c3[0], c2[1]-c3[1], c2[2]-c3[2]) v3 = (c3[0]-c4[0], c3[1]-c4[1], c3[2]-c4[2]) p = (v2[1]*v1[2] - v1[1]*v2[2], v1[0]*v2[2] - v2[0]*v1[2], v2[0]*v1[1] - v1[0]*v2[1]) q = (v3[1]*v2[2] - v2[1]*v3[2], v2[0]*v3[2] - v3[0]*v2[2], v3[0]*v2[1] - v2[0]*v3[1]) n = 1.0 / math.sqrt( p[0]*p[0] + p[1]*p[1] + p[2]*p[2] ) p = (p[0]*n, p[1]*n, p[2]*n ) n = 1.0 / math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] ) q = (q[0]*n, q[1]*n, q[2]*n ) xtheta = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] if xtheta > 1.0: xtheta = 1.0 if xtheta < -1.0: xtheta = -1.0 theta = math.acos(xtheta) * 57.29578 absth = math.fabs(theta) if absth < 0.001: return 0.0 elif math.fabs(absth - 180.0) < 0.001: return 180.0 s = v1[0]*q[0] + v1[1]*q[1] + v1[2]*q[2] if s < 0.0: theta = 360.0 - theta if theta > 180.0: theta = theta - 360.0 return theta
32eb380fd8e4d0645481ab816a32e01144fb3c7b
22,101
def accumulate(instructions: list) -> dict: """ Read and execute instructions until an infinite loop if found: acc +12 -> add 12 to 'acc' jmp +48 -> jump to the instruction located at 'index' + 48 nop -56 -> do nothing & go to the next instruction if an instruction has already been executed, stop and return the current 'acc' value """ acc = 0 index = 0 seen = [] while index < len(instructions): if index in seen: return {'acc': acc, 'infinite': True} seen.append(index) op, val = instructions[index].split(' ') if op == 'acc': acc += int(val) elif op == 'jmp': index += int(val) continue index += 1 return {'acc': acc, 'infinite': False}
bf5a5bb278e71e783968eafed6a790ff2bdf77c1
22,105
def build_sampler( sampler_class, pe_method, force_method, T = 1.0e-4, \ dt = 1.0e-1, traj_len = 100, absxmax = 1.0e2, dt_max = None, min_rate = 0.6, \ max_rate = 0.7, gaussianprior_std = None ): """Builds a sampling.Sampler class object of type sampler_class. Args: sampler_class : Sampler class from module sampling. Eg. sampling.Hmc pe_method : A method for evaluating the potential energy. force_method : A method for evaluating the forces. T (float) : Dimensionless temperature of the system: T=1/beta. (Default 1.0). dt (float) : Initial time step (or step size). This will be updated algorithmically, but a good starting point saves time. (Default 1.0e-4). traj_len (int) : The number of time steps in a single trajectory. (Default 100). absxmax (single float or numpy array of floats, with length 1 or length numdim) : During the main calculation, the sampler is restricted to a region x in [-absxmax,absxmax]. (Default: 1.0e2). dt_max (float) : maximum step size (time step). (Default: median(absxmax), which is set in module sampling.) min_rate (float) : minimum acceptance rate of trajectories. Used for setting step size (time step). (Default: 0.6. The optimal acceptance rate for HMC on a multivariate Gaussian is 0.65 http://www.mcmchandbook.net/HandbookChapter5.pdf, section 5.4.4.3). max_rate (float) : maximum acceptance rate of trajectories. Used for setting step size (time step). (Default 0.7. The optimal acceptance rate for HMC on a multivariate Gaussian is 0.65 http://www.mcmchandbook.net/HandbookChapter5.pdf, section 5.4.4.3). gaussianprior_std (single float or numpy array of floats, with length 1 or length numdim) : If this is set to a real value then an additional term is applied to (H)MC acceptance/rejection, such that the target distribution is proportional to a multivariate Gaussian with this standard deviation for each dimension. (Default: None.) Return: sampling.Sampler class object of type sampler_class. """ sampler = sampler_class( pe_method, force_method, dt, traj_len, absxmax, \ dt_max, 1.0/T, min_rate, max_rate, gaussianprior_std ) return sampler
528966ec88dd8d4a910753290e19849f7919cf22
22,107
import time from datetime import datetime def SecondsToZuluTS(secs=None): """Returns Zulu TS from unix time seconds. If secs is not provided will convert the current time. """ if not secs: secs = int(time.time()) return(datetime.utcfromtimestamp(secs).strftime("%Y-%m-%dT%H:%M:%SZ"))
2ca96ed779020037eb360a1250243dfe628f6195
22,109
def _LookupMeOrUsername(cnxn, username, services, user_id): """Handle the 'me' syntax or lookup a user's user ID.""" if username.lower() == 'me': return user_id return services.user.LookupUserID(cnxn, username)
68ef5ea6d6c3076717660848a0b8a9c3cb4847d4
22,111
import hashlib import ctypes def size_t_hash(key): """Hash the key using size_t. Args: key (str): The key to hash. Returns: str: The hashed key. """ hash_digest = hashlib.blake2b(key.encode()).hexdigest() # pylint: disable=no-member return '%u' % ctypes.c_size_t(int(hash_digest, 16)).value
19aa7ec430c9c0fbbba45baa9812f755d19a4cfe
22,120
def check_scenarios(scenes): """ Make sure all scenarios have unique case insensitive names """ assert len(scenes) == len(dict((k.lower(), v) for k, v in scenes)) return scenes
c9b437d396a4d0ca17c17a85cb99e8574cc78fe3
22,127
def fix_tract(t): """Clean up census tract names. :param t: Series of string tract names :returns: Series of cleaned tract names """ if type(t) == str: return t return str(t).rstrip("0").rstrip(".")
e8e2f6bee61596c57bb805717e9a34eb88f1c91e
22,132
def moving_avg_features(df): """ Function to calculate the exponential moving averages and moving averages over different intervals of days Input: Dataframe Output: Dataframe with new moving average features """ df['EMA_9'] = df['Close'].ewm(9).mean().shift() df['EMA_9'] = df['EMA_9'].fillna(0) df['SMA_5'] = df['Close'].rolling(5).mean().shift() df['SMA_5'] = df['SMA_5'].fillna(0) df['SMA_10'] = df['Close'].rolling(10).mean().shift() df['SMA_10'] = df['SMA_10'].fillna(0) df['SMA_15'] = df['Close'].rolling(15).mean().shift() df['SMA_15'] = df['SMA_15'].fillna(0) df['SMA_30'] = df['Close'].rolling(30).mean().shift() df['SMA_30'] = df['SMA_30'].fillna(0) return df
820eb6b0ad42592393d50d93d5718a6a10562907
22,135
def _old_style_nesting(vocab): """Detect old-style nesting (``dict[str, List[Tuple[str, Field]]]``).""" return isinstance(vocab, dict) and \ any(isinstance(v, list) for v in vocab.values())
bce0ba4ee2fe7de4916f970c6f765b493ccdf0db
22,136
from datetime import datetime def convert_date(date_string): """Convert the date_string to dd-mm-YYYY format.""" date = datetime.strptime(date_string, "%d.%m.%Y") return date.strftime('%d-%m-%Y')
33a67ba33fed1f195812e9839a811411de1e2987
22,140
def squeeze_whitespace(text): """Remove extra whitespace, newline and tab characters from text.""" return ' '.join(text.split())
ef476f4ed6cd524c1cb115345151e4bc18c616b5
22,142
def iso_string_to_sql_date_sqlite(x: str) -> str: """ Provides SQLite SQL to convert a column to a ``DATE``, just by taking the date fields (without any timezone conversion). The argument ``x`` is the SQL expression to be converted (such as a column name). """ return f"DATE(SUBSTR({x}, 1, 10))"
349c560589d4f03938538f74dbc188577ac63a2d
22,143
from pathlib import Path def save_NN_sequential(model, model_name): """ Saving a Neural Network as h5 file :param model: sequential model :param model_name: name to save the model :return: True """ file_name = 'Model_' + model_name file_path = Path().joinpath('Pickles', file_name + ".h5") print("The file ", file_path, "was save.") model.save(file_path) return True
a7481ace8971debb1be3af2140f6fdd33b3f679b
22,144
def get_second_validate_param(tel_num): """ Assemble param for get_second_validate :param tel_num: Tel number :return: Param in dict """ param_dict = dict() param_dict['act'] = '1' param_dict['source'] = 'wsyytpop' param_dict['telno'] = tel_num param_dict['password'] = '' param_dict['validcode'] = '' param_dict['authLevel'] = '' param_dict['decode'] = '1' param_dict['iscb'] = '1' return param_dict
efbd31c56e3fdd4cb0e75bcae92cf51d996aac5d
22,146
def typeless_equals(entity1, entity2, check_class, check_instance): """ Checks if entities are equal. The check is different whether entities are classes or instances, which is specified in corresponding parameters. If neither checks are specified, True is returned """ if check_class: return isinstance(entity1, entity2) if check_instance: return entity1 == entity2 return True
a0f1360509d8f2f1191c158426fa29ec42d3a3c8
22,149
def node_name(node): """Return lxml node name without the namespace prefix.""" try: return node.tag.split('}')[-1] except AttributeError: pass
0e61ae70563784b5c845a73a82c3b2265ce63202
22,150
def get_most_read_or_features( amb_sams: list, counts: dict) -> list: """ Get the samples that have the most counts (reads of features). Parameters ---------- amb_sams : list Sample IDs. counts : dict Count per Sample ID. Returns ------- cur_best_samples : list Selected samples (with max reads/features). """ cur_counts = dict((amb_sam, counts[amb_sam]) for amb_sam in amb_sams) count_max = max(cur_counts.values()) cur_best_samples = [amb_sam for amb_sam in amb_sams if cur_counts[amb_sam] == count_max] return cur_best_samples
147a9e3a1df579f1673a832bf7dd3a7267ac4394
22,151
def find_index_unsafe(val, bin_edges): """Find bin index of `val` within binning defined by `bin_edges`. Validity of `val` and `bin_edges` is not checked. Parameters ---------- val : scalar Assumed to be within range of `bin_edges` (including lower and upper bin edges) bin_edges : array Returns ------- index See also -------- find_index : includes bounds checking and handling of special cases """ # Initialize to point to left-most edge left_edge_idx = 0 # Initialize to point to right-most edge right_edge_idx = len(bin_edges) - 1 while left_edge_idx < right_edge_idx: # See where value falls w.r.t. an edge ~midway between left and right edges # ``>> 1``: integer division by 2 (i.e., divide w/ truncation) test_edge_idx = (left_edge_idx + right_edge_idx) >> 1 # ``>=``: bin left edges are inclusive if val >= bin_edges[test_edge_idx]: left_edge_idx = test_edge_idx + 1 else: right_edge_idx = test_edge_idx # break condition of while loop is that left_edge_idx points to the # right edge of the bin that `val` is inside of; that is one more than # that _bin's_ index return left_edge_idx - 1
08f89f8f6096d930e5d6c043374567d6646e9a37
22,156
import time def func_to_time(x): """This is sleeps for x seconds for timing tests.""" time.sleep(x) return 'Slept for {0} second(s)'.format(x)
8698514f6efe4b7b58aab3da5687cb72c2083fd7
22,158
def to_float_str( val): """to_float_str convert the float to a string with 2 decimal points of precision :param val: float to change to a 2-decimal string """ return str("%0.2f" % float(val))
c15c4e43e788ab416170f21413906fc2d218b345
22,160
def limits2slice(limits): """ Create a set of slice objects given an array of min, max limits. Parameters ---------- limits: tuple, (ndarray, ndarray) Two tuple consisting of array of the minimum and maximum indices. Returns ------- slices : list List of slice objects which return points between limits See Also -------- find_limits : Find the minimum and maximum limits from a list of points. slice2limits : Find a minimum and maximum limits for a list of slices. """ mins, maxs = limits return tuple([slice(i, j + 1) for i, j in zip(mins, maxs)])
f796f1e468f560d72e7d037e27a110ee50d3a45d
22,166
def has_clockwise_numbering(coords): """ tests if a polygon has clockwise vertex numbering approach: Sum over the edges, (x2 − x1)(y2 + y1). If the result is positive the curve is clockwise. from: https://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order :param coords: the list of (x,y) coordinates representing the polygon to be tested :return: true if the polygon has been given in clockwise numbering """ total_sum = 0.0 p1 = coords[-1] for p2 in coords: x1, y1 = p1 x2, y2 = p2 total_sum += (x2 - x1) * (y2 + y1) p1 = p2 return total_sum > 0
e9d55bfe9c5ef66e4b3e611c579c3ca940ba98d2
22,168
def convert_to_float(value: str) -> float: """ Get the float value from, for example, "R9 323.46". """ return float(value[1:].replace(' ', ''))
5ebea176aa6cbfaf6318b246fda73ff443efd092
22,169
def sift(iterable, predicate): """ Sift an iterable into two lists, those which pass the predicate and those who don't. :param iterable: :param predicate: :return: (True-list, False-list) :rtype: tuple[list, list] """ t_list = [] f_list = [] for obj in iterable: (t_list if predicate(obj) else f_list).append(obj) return (t_list, f_list)
347ae7cd9f79bccdc6fc6ae1efa1a29b5563322a
22,170
def compare_datetime(date, span): """ Compare information within datetime object with a span Parameters ---------- date: datetime Datetime to compare. span: Span Span to compare. Returns ------- bool True if match. """ return span.text in str(date)
d2bd942d7b6c536ac35d1cd18b10ed57a465622a
22,173
def reduce_list(data_set): """ Reduce duplicate items in a list and preserve order """ seen = set() return [item for item in data_set if item not in seen and not seen.add(item)]
e84b87b45c8a7aea14beee3b7822f55a0a99151e
22,174
def validate_knot(knot): """ Confirm a knot is in the range [0, 1] Parameters ---------- knot : float Parameter to verify Returns ------- bool Whether or not the knot is valid """ return (0.0 <= knot <= 1.0)
61ab023d61248268db74febd72df6ecf3ef0c056
22,175
def _get_all_deps(*, deps, split_deps_keys = []): """Returns a list of all dependencies from a Label list and optional split attribute keys. Args: deps: Label list of (split) dependencies to traverse. split_deps_keys: (optional) List of split attribute keys to use on split deps. Returns: List of all dependencies. If split_deps_keys is not provided, return deps. """ if type(deps) == "list": return deps if not split_deps_keys: return deps.values() all_deps = [] for split_deps_key in split_deps_keys: all_deps += deps[split_deps_key] return all_deps
30521b0ce646c3ee51b1d45d06e05aeb71058456
22,180
def get_time_string(codetime): """ Utility function that takes the codetime and converts this to a human readable String. Args: codetime (`float`): Code execution time in seconds (usually the difference of two time.time() calls) Returns: `str`: A string indicating the total execution time """ if codetime < 60.0: retstr = 'Execution time: {0:.2f}s'.format(codetime) elif codetime / 60.0 < 60.0: mns = int(codetime / 60.0) scs = codetime - 60.0 * mns retstr = 'Execution time: {0:d}m {1:.2f}s'.format(mns, scs) else: hrs = int(codetime / 3600.0) mns = int(60.0 * (codetime / 3600.0 - hrs)) scs = codetime - 60.0 * mns - 3600.0 * hrs retstr = 'Execution time: {0:d}h {1:d}m {2:.2f}s'.format(hrs, mns, scs) return retstr
2cdc53ba83e06297c3c09b59095553db72d41643
22,184
def remove_duplicates(lst): """ This function removes all duplicate object from a list. :param lst: A list. :return: The same list, with all its elements appearing just once. """ if len(lst) == 1: return lst return [i for n, i in enumerate(lst) if i not in lst[:n]]
bf28a109a1af4760c39e31fdda88ea30b1e55f8a
22,185
def aln_abuts_unknown_bases(tx, fasta): """ Do any exons in this alignment immediately touch Ns? :param tx: a GenePredTranscript object :param fasta: pyfasta Fasta object for genome :return: boolean """ chrom = tx.chromosome for exon in tx.exon_intervals: if exon.start == 0: # we are at the edge of the contig left_base = None else: left_base = fasta[chrom][exon.start - 1] if exon.stop >= len(fasta[chrom]): # we are at the edge of the contig right_base = None else: right_base = fasta[chrom][exon.stop] if left_base == 'N' or right_base == 'N': return True return False
ceb31739be0091b3b52f763c0c0d6d15b1aebd19
22,188
import json import hashlib def get_md5(obj, trans_func=None): """get a object md5, if this obj is not supported by `json.dumps` please provide a trains_func. Args: obj (object): obj to get md5 trans_func (function, optional): use this to trans obj to str. Defaults to None. """ if trans_func is None: trans_func = json.dumps obj_str = trans_func(obj) hl = hashlib.md5() hl.update(obj_str.encode(encoding='utf-8')) return hl.hexdigest()
ae7da1f0bab1815a2d357617dd93d26e020a2316
22,190
import re def extract_courts(s: str) -> list: """ Extract a list of court numbers listed in the statute's text. Args: s (str): The text of the statute that lists the court numbers. Returns: (list): A list court numbers, all cleaned up. """ my_s = re.sub(r'[^0-9\s]', '', s) my_s = re.sub(r'\s{2,}', ' ', my_s) courts = my_s.strip().split(' ') result = [] for court in courts: if court not in result: result.append(court) return sorted(result)
d15e279ca2368d23fc75c7c2151329cfd60bb43a
22,191
def fa_attachment(extension): """ Add fontawesome icon if found. Else return normal extension as string. :param extension: file extension :return: matching fontawesome icon as string """ if extension == 'pdf': return "<i class='fa fa-file-pdf-o fa-lg'></i>" elif extension == 'jpg' or extension == 'png': return "<i class='fa fa-picture-o fa-lg'></i>" elif extension == 'doc' or extension == 'docx': return "<i class='fa fa-file-word-o fa-lg'></i>" elif extension == 'xls' or extension == 'xlsx': return "<i class='fa fa-file-excel-o fa-lg'></i>" elif extension == 'extern': return "<i class='fa fa-external-link'></i>" elif extension == 'zip': return "<i class='fa fa-file-archive-o fa-lg'></i>" else: return extension
3add6bf4c177cba893a2242df352fd0ae619ee90
22,194
def get_worksheet_keys(data_dict, result_info_key): """Gets sorted keys from the dict, ignoring result_info_key and 'meta' key Args: data_dict: dict to pull keys from Returns: list of keys in the dict other than the result_info_key """ keys = set(data_dict.keys()) keys.remove(result_info_key) if 'meta' in keys: keys.remove('meta') return sorted(keys)
1092eee46980a5e4f745d3a99ff6abe7d5c9db62
22,196
def add_options(click_options): """ Decorator that adds multiple Click options to the decorated function. The list is reversed because of the way Click processes options. Note: This function has its origins in the https://github.com/pywbem/pywbemtools project (Apache 2.0 license) Parameters: click_options (list): List of `click.option` objects. """ def _add_options(func): """ Apply the Click options to the function in reversed order. """ for option in reversed(click_options): func = option(func) return func return _add_options
fe6c5bda8f0606cc7fcdec87dd3332d1abb9b695
22,197
import itertools def _expand(the_set, expand_fn): """Returns a concatenation of the expanded sets. I.e. Returns a set of all elements returned by the expand_fn function for all elements in the_set. E.g. With expand_fn = lambda x: (10*x, 100*x) and the_set = set([1, 2, 3]) this function returns set([10, 100, 20, 200, 30, 300]) Args: the_set: A set of elements. expand_fn: Function returning an interable given some element in the_set. Returns: a concatenation of the expanded sets. """ return set(itertools.chain(*[expand_fn(x) for x in the_set]))
694661c0cc6d2d09d72d65ea63cc1241fc32d4d5
22,198
import re def ingredients_from_food(food): """ Extract ingredients from food description :param food: A string, value from the Food column :return: A list of ingredients (strings) or empty list "Салат "Папарать-Кветка"(Говядина,ветчина,помидоры,огурцы)" -> ["говядина", "ветчина", "помидоры", "огурцы"] "Капуста тушеная" -> [] """ re_ingr = re.compile(r'\(([^\)]+)\)') ingr = re_ingr.findall(food) if ingr: ingr_parts = ingr[0].split(',') ingr_parts = [p.strip().lower() for p in ingr_parts] return ingr_parts else: return []
4314bce50e602f0e3c0d8db4d7c22ef2bd693c2a
22,201
import json def json_content(directory, file_name): """ This function gets the content of a json file and returns as dictionary. :param directory: String The folder where the json file is located :param file_name: String The name of the json file :return: dict The content of the json file as python dictionary """ f = open(directory + file_name + '.json', "r") if f.mode == 'r': contents = f.read() contents = json.loads(contents) return contents
98cf97b4a1d6853cae9b4087fd02a1d316afb492
22,202
def get_cai_ptr(X): """ Function gets the pointer from an object that supports the __cuda_array_interface__. Raises TypeError if `X` does not support it. """ if hasattr(X, '__cuda_array_interface__'): return X.__cuda_array_interface__['data'][0] else: raise TypeError("X must support `__cuda_array_interface__`")
467e4437b34693e37f3f90e822899dc3a548710e
22,209
def validate_float(s): """Convert s to float or raise a ValueError.""" try: return float(s) except ValueError: raise ValueError('Could not convert {0!r} to float'.format(s))
1559e4b8465e4d380c74784f0dab68aaf7965dbc
22,210
def show_element(elem): """ Output whole a element as it is. """ return elem
bcb8d2ae273c105524a7518a2f4247a5aa48410f
22,212
import re import warnings def parse_psp_name(psp_name): """ Parse the name of vasp's psp Parameter psp_name: str The name of vasp's psp, e.g. GGA, LDA, potpaw_LDA Return psp_name_norm: str The normalized psp name """ psp_name = psp_name.upper() psp_name_list = re.split(r'\.|\_|\-|\=|\+|\*|\s',psp_name) flag_us = False for psp_name_i in psp_name_list: if "US" in psp_name_i: flag_us = True break if "LDA" in psp_name_list: if "52" in psp_name_list: psp_name_norm = "POT_LDA_PAW_52" elif "54" in psp_name_list: psp_name_norm = "POT_LDA_PAW_54" elif flag_us: psp_name_norm = "POT_LDA_US" else: psp_name_norm = "POT_LDA_PAW" elif "PBE" in psp_name_list: if "52" in psp_name_list: psp_name_norm = "POT_GGA_PAW_PBE_52" elif "54" in psp_name_list: psp_name_norm = "POT_GGA_PAW_PBE_54" else: psp_name_norm = "POT_GGA_PAW_PBE" elif "GGA" in psp_name_list: if flag_us: psp_name_norm = "POT_GGA_US_PW91" else: psp_name_norm = "POT_GGA_PAW_PW91" else: warnings.warn("{} is not a proper name of vasp's pseudopotential, please ref \ https://github.com/PhasesResearchLab/dfttk/blob/master/docs/Configuration.md. \ This folder will be ignored.".format(psp_name)) psp_name_norm = None return psp_name_norm
0b5e025fa503f23fc17101690b978d414003197b
22,214
def _format_list_items(list_items): """Generate an indented string out of a list of items.""" list_string = '' if list_items: for item in list_items: list_string = list_string + " '" + item + "',\n" list_string = "[\n {}\n]".format(list_string.strip()[:-1]) else: list_string = '[]' return list_string
dd677277650e5d3105c01f6636518b8bbd2a1bff
22,216
import torch import math def importance_sampling_cross_validation(logp): """Compute the importance-sampling cross validation (ISCV) estimate. The ISCV estimates the holdout log-likelihood from just an approximation to the posterior predictive log-likelihoods on the training data. ### References: [1]: Alan E. Gelfand, Dipak K. Dey, Hong Chang. Model determination using predictive distributions with implementation via sampling-based methods. Technical report No. 462, Department of Statistics, Stanford university, 1992. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.860.3702&rep=rep1&type=pdf [2]: Aki Vehtari, Andrew Gelman, Jonah Gabry. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. arXiv:1507.04544 https://arxiv.org/pdf/1507.04544.pdf [3]: Sumio Watanabe. Mathematical Theory of Bayesian Statistics. CRC Press. 2018 https://www.crcpress.com/Mathematical-Theory-of-Bayesian-Statistics/Watanabe/p/book/9781482238068 Args: logp: Tensor, shape (B,M,...), containing log p(y_i | x_i, theta_j) for i=1,..,B instances and j=1,...,M models. Returns: iscv_logp: Tensor, (...), the ISCV estimate of the holdout log-likelihood. iscv_logp_sem: Tensor, (...), the standard error of th emean of `iscv_logp`. """ logse = torch.logsumexp(-logp, 1) iscv_logp = logse.mean(0) iscv_logp_var = logse.std(0) m = int(logp.shape[1]) iscv_logp -= math.log(m) iscv_logp = -iscv_logp iscv_logp_sem = (iscv_logp_var / float(m)).sqrt() return iscv_logp, iscv_logp_sem
9bef3b3c3775e359d52a321a8e72b69d38f0fcb7
22,217
import re def convert_character(text : str): """ Convert consecutive full-size numbers to half-size numbers. Convert a single half-size number into a full-size number. Convert half-size English characters to full-size ones. Parameters ---------- text : str input text Returns ---------- output : str converted text """ list_text = list(text) half_nums = re.findall('[0-9]+', text) full_nums = re.findall('[0-9]+', text) c_half_nums = [] for half_num in half_nums: if len(half_num) == 1: c_half_nums.append(half_num) c_full_nums = [] for full_num in full_nums: if len(full_num) > 1: c_full_nums.append(full_num) #half to full for c_half_num in c_half_nums: index = text.find(c_half_num) convert = c_half_num.translate(str.maketrans({chr(0x0021 + i): chr(0xFF01 + i) for i in range(94)})) list_text[index] = convert #full to half for c_full_num in c_full_nums: index = text.find(c_full_num) converts = c_full_num.translate(str.maketrans({chr(0xFF01 + i): chr(0x21 + i) for i in range(94)})) for i, convert in enumerate(converts): list_text[index + i] = convert output = "".join(list_text) return output
f388de9eac9c92daceb96a46fce3efc525ce3eff
22,218
import time def retry(func, exc=Exception, tries=3, delay=1): """ Call ``func()`` up to ``tries`` times, exiting only if the function returns without an exception. If the function raises an exception on the final try that exception is raised. If given, ``exc`` can be either an `Exception` or a tuple of `Exception`s in which only those exceptions result in a retry, and all other exceptions are raised. ``delay`` is the time in seconds between each retry, and doubles after each retry. """ while True: try: return func() except exc: tries -= 1 if tries == 0: raise time.sleep(delay) delay *= 2
5384afd77840b77b2cb278502d8fc64890af6be7
22,227
import json def _get_entry_count(doi_file): """ Given a file path, will return the number of entries in that file. If the file reading files, returns None. """ try: with open(doi_file) as f: content = json.load(f) return len(content) except: return None
fba5a3152811fbc01f4d91b72bdbe5659a65a152
22,230
from typing import Dict from typing import Any def as_lta_record(catalog_record: Dict[str, Any]) -> Dict[str, Any]: """Cherry pick keys from a File Catalog record to include in Bundle metadata.""" # As created by the nersc_verifier component... # --------------------------------------------- # "uuid": bundle["uuid"], # "logical_name": hpss_path, # "checksum": bundle["checksum"], # "locations": [ # { # "site": "NERSC", # "path": hpss_path, # "hpss": True, # "online": False, # } # ], # "file_size": bundle["size"], # # note: 'lta' is an application-private metadata field # "lta": bundle, KEYS = ['checksum', 'file_size', 'logical_name', 'meta_modify_date', 'uuid'] lta_record = {k: catalog_record[k] for k in KEYS} return lta_record
96eb177bb8de6a8faa5f2647e922e70f2516187e
22,239
import decimal import math def factorPR(n: int) -> int: """Return a factor of n using the Pollard Rho method. The return value is 1, if n is prime, and a non-trivial factor, otherwise. Note: This method will occasionally fail to find a non-trivial factor when one exists. Examples: >>> factorPR(2017*2027*12353948231) # product of primes 2017 >>> factorPR(8) == factorPR(4) == 2 # fails False """ numsteps = 2 * int(decimal.Decimal(n).sqrt().sqrt()) for slow in [2, 3, 4, 6]: fast = slow for _ in range(numsteps): slow = (slow * slow + 1) % n fast = (fast * fast + 1) % n fast = (fast * fast + 1) % n g = math.gcd(fast - slow, n) if g != 1: if g == n: break else: return g return 1
a429f4e5c7fa603615a8bd4f687fc076a4becc56
22,242
from typing import List from typing import Any def _get_lemmas(synsets: List[Any]) -> List[str]: """ Return all the lemma names associated with a list of synsets. """ return [lemma_name for synset in synsets for lemma_name in synset.lemma_names()]
43b6be39b733c9fee82958476b32b4ab296c5276
22,245
def normalize(x): """ Normalize input data. Args: x (NDarray): Returns: Normalized NDarray """ return (x-x.min())/(x.max()-x.min()) # Normalize (0.0-1.0)
5e6adbaff542afd54490665bc1764aa3c2688545
22,250
def rsplit(_str, seps): """ Splits _str by the first sep in seps that is found from the right side. Returns a tuple without the separator. """ for idx, ch in enumerate(reversed(_str)): if ch in seps: return _str[0:-idx - 1], _str[-idx:]
9755b328e0b414721a7db4fe52293100bb03d1a8
22,258
def compare(numA, numB): """ compare(numA, numB): Compares two numbers. Returns: 1, if the first number is greater than the second, 0, if they are equal, -1, if the first number is smaller than the second. Parameters ---------- numA: integer or float numB: integer of float Returns ------- integer """ if numA > numB: return 1 if numA < numB: return -1 if numA == numB: return 0
7ad62cb677882d22b32adb517a31a4149685ecef
22,259
def ratio_col(df, df_cols): # Tested [Y] """ This function computes the ratio between two columns and returns a Dataframe containing the ratio as a column. Args df (pd.DataFrame): Dataframe containing the columns to compute a ratio. df_cols (tuple): A tuple containing the names of columns in the Dataframe to use in computing the ratio. Format is (<numerator>, <denominator>) Return (pd.Series) The inital dataframe entered with addition columns for the ratio of the two columns specified in the df_cols argument """ df[df_cols[0]] = df[df_cols[0]].div(df[df_cols[1]].values, axis=0) return df[df_cols[0]]
a4bfc13a5e87604ddae865f6df3b9b123359be52
22,264
def clean_hanging_newline(t): """ Many editors will silently add a newline to the final line of a document (I'm looking at you, Vim). This function fixes this common problem at the risk of removing a hanging newline in the rare cases where the user actually intends it. """ if t and t[-1] == "\n": return t[:-1] return t
16c80b00530ef333ce1ad39ebf083e12a04ab58b
22,266
def has_video_search_args(request): """ Returns whether the object has any video search filter args in it """ search_kws = ( "q", "location", "channel_ids", "collection_id", "tag_ids", "date",) for kw in search_kws: if getattr(request, kw, None) is not None: return True
49dcbdc681be0867c80fc9c8e90a1cbf10a9f5bb
22,267
def _parse_one_level_list(dat): """Get list information from queued message Args: dat (bytes): received message data Returns: list: list of information """ results = [] count = int.from_bytes(dat[:2], 'big') for i in range(count): base = 2 + 32 * i results.append(dat[base:base + 32]) return results
6c090cb9e396c1a5ae273f250fd7b0a88fcf418a
22,269
def parse_predecessor_ids(predecessor_ids_string): """Parses a comma seperated list of task IDs Args: predecessor_ids_string: [string] comma separated task IDs Returns: List of task IDs as integers """ predecessor_ids = [] predecessor_ids_strings = predecessor_ids_string.split(',') for predecessor_id_string in predecessor_ids_strings: if predecessor_id_string != '': predecessor_ids.append(int(predecessor_id_string)) return predecessor_ids
a8c344c5c51a5735899515c10df7b51349d4971e
22,270
import socket def _receive_devices(port: int, sock: socket.socket, devices: list) -> list: """ After sending the device discovery request, collect all available devices Args: port (int): Local port sock (socket.socket): Socket object devices (list): List of available devices. [(device_name: str, ip: str)] Returns: list: Updated list of available devices. [(device_name: str, ip: str)] """ try: while True: data, _ = sock.recvfrom(port) split_data = data.decode("utf-8").split(":") if len(split_data) == 3: devices.append((split_data[0].strip(), split_data[2].strip())) else: raise ValueError(data) except (socket.timeout, OSError): pass return devices
176a6606e5179f28edefa56c0d79474715d15b5b
22,274
def extract_gif_param(proc: str): """ Extracts the parameter for an animated GIF, currently just the frame display duration in milliseconds, from a string that ends with an integer, in parentheses. """ a = proc.strip(")").split("(") assert len(a) == 2 return int(a[1])
0b9f5f6cc7ecfe38ad36731fc28d932316b5b0b3
22,280
def R(a0,a1,a2,a3,a4,T): """ Troscompt et al (2009) coefficients using Faure et al (2004) equation: log10(R) = sum(a_n T^{-n/6}) where n=0..4, R is presumably cm^3 s^-1 """ return a0 + a1*T**(-1./6.) + a2*T**(-2./6.) + a3*T**(-3./6.) + a4*T**(-4./6.)
ea5111f0c745bfc396271092596b932822cd4ada
22,285
def permission_check(check): """ Class decorator for subclasses of PublicTask to sprinkle in re-usable permission checks:: @permission_check(user_id_matches) class MyTask(PublicTask): def run_public(self, user_id): pass """ def decorator(cls): cls.check_permission = staticmethod(check) return cls return decorator
14880bf052c7659447dbd9388174860f8f74a133
22,286
import math def calcFrag(values): """Given a set of parsed values that were generated by macs2 predictd, see get_size fn, this fn calculates the estimated fragment size and the sd. **IMPORTANT: this fn is a python translation of the R code in chilin2/modules/macs2_fragment/qc.py -- stat_frag_std RETURNS: (estimated frag, sd) """ #calculate the estimated frag size: xmax ymax = max(values['ycorr']) i_ymax = values['ycorr'].index(ymax) xmax = values['xcorr'][i_ymax] #print(ymax, xmax) #find expected p_expect=sum([x* p/100.0 for (x,p) in zip(values['x'],values['positive'])]) m_expect=sum([x* m/100.0 for (x,m) in zip(values['x'],values['minus'])]) #print(p_expect, m_expect) #calc sd p_sd = math.sqrt(sum([((x - p_expect)**2)* p/100.0 \ for (x,p) in zip(values['x'],values['positive'])])) m_sd = math.sqrt(sum([((x - m_expect)**2)* m/100.0 \ for (x,m) in zip(values['x'],values['minus'])])) #print(p_sd, m_sd) #FINAL avg std error avg_sd = (p_sd + m_sd) /2.0 return (xmax, avg_sd)
dd4079265ca300760e364cfbfbcf5705dcf265f5
22,300
def solution(integers): """ Finds the two entries that sum to 2020 and returns their product. Raises `ValueError` if there is no solution. """ inverse = set() for n in integers: if 2020 - n in inverse: return n * (2020 - n) inverse.add(n) raise ValueError('no solution found')
188aff6b889b7903361ac347fa3806f94a86d39e
22,301