content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def augmentCrlStatus(msg):
"""Augment CRL message with status of ``COMPLETE`` or ``INCOMPLETE``.
Check the CRL message for completeness.
Will add a ``status`` field to the message with a value of
``COMPLETE`` or ``INCOMPLETE``.
``COMPLETE`` messages meet the following criteria:
- Doesn't have an overflow (i.e. has more the 138 reports).
- Has no reports.
- All reports are in the database (including both text and graphics if
indicated).
Args:
msg (dict): CRL message dictionary to be augmented.
Returns:
dict: ``msg`` dictionary with new ``status`` field indicating
completeness.
"""
reports = msg['reports']
# A no document report is a complete report.
if len(reports) == 0:
msg['status'] = 'COMPLETE'
return msg
# An overflow CRL is also incomplete
if ('overflow' in msg) and (msg['overflow'] == 1):
msg['status'] = 'INCOMPLETE'
return msg
for reportNumber in reports:
if not ('*' in reportNumber):
msg['status'] = 'INCOMPLETE'
return msg
msg['status'] = 'COMPLETE'
return msg | bd35db88259f2b4e1dad08a98973ef5413829542 | 21,666 |
def check_if_hits(row, column, fleet):
"""
This method checks if the shot of the human player at the square represented by row and column
hits any of the ships of fleet.
:param row: int
:param column: int
:param fleet: list
:returns result: bool - True if so and False otherwise
"""
result = False
for i in range(len(fleet)):
# check if guess already in hits set:
if (row, column) in fleet[i][4]:
break
for j in range(fleet[i][3]):
# if horizontal
if fleet[i][2]:
if row == fleet[i][0] and column == fleet[i][1] + j:
result = True
break
# if vertical
else:
if row == fleet[i][0] + j and column == fleet[i][1]:
result = True
break
return result | 2f62285d68c190b63a0934698cc209a59f15d445 | 21,668 |
def get_codon_dictionary(codon_dictionary, string):
""" Returns a dictionary with codon as key and its frequency as value """
# iterates on every 3th item; remove remainders by: len(string) - len(string) % 3
for i in range(0, len(string) - len(string) % 3, 3):
codon = "{first}{second}{third}".format(first=string[i], second=string[i+1], third=string[i+2])
if codon in codon_dictionary:
codon_dictionary[codon] += 1
else:
codon_dictionary[codon] = 1
return codon_dictionary | 32301f29b580d04f967d3714fae762b680c6049e | 21,672 |
def concat_fm(fm):
"""
Concatenates Directional feature maps as shown in original paper.
This function is used for visualization purposes only.
:param fm: 12 ltrp feature maps
:return: list of 4 concatenated feature maps
"""
d1 = fm[0]+fm[1]+fm[2]
d2 = fm[3]+fm[4]+fm[5]
d3 = fm[6]+fm[7]+fm[8]
d4 = fm[9]+fm[10]+fm[11]
return [d1,d2,d3,d4] | bb6d6b1f9c6d0441be78e1b04d31e1eb24a6ce28 | 21,676 |
def _bound(color_component: float, minimum: float=0,
maximum: float=255) -> float:
"""
Bound the given color component value between the given min and max values.
The minimum and maximum values will be included in the valid output.
i.e. Given a color_component of 0 and a minimum of 10, the returned value
will be 10.
"""
color_component_out = max(color_component, minimum)
return min(color_component_out, maximum) | 15f335051d228069e7ca0be3c0768e99b009b3e6 | 21,677 |
def orange(text):
""" Return this text formatted orange (olive) """
return '\x0307%s\x03' % text | aff6e5495b8e9c8f8b763539c6d9308236e313fe | 21,678 |
def position(table, _seat, postflop=False):
""" Returns how many seats from the button the seat is. """
# Raise an exception if the button is not set
if postflop:
seats = table.get_players(hascards=True)
else:
seats = table.get_players()
return len(seats) - seats.index(_seat) - 1 | 253b7685a42db9c4b344f8492fdd9710c8f24585 | 21,681 |
def fact(number):
"""
Calculating the factorial of a number
"""
result = 1
for number in range(1, number + 1):
result *= number
return result | 59f766f57ca71c487b640cd6d08841884657c8fd | 21,692 |
import random
def one_run(wr: float, fr: float, ranks: dict, start_rank: int, end_rank: int,
max_battles: int) -> int:
"""
Simulate battles required to complete ranked season.
:param wr: win rate
:param fr: first place rate
:param ranks: information on stars in each rank
:param start_rank: initial rank for the simulation
:param end_rank: final rank (simulation ends when reaching this rank)
:param max_battles: maximum battles before simulation ends (prevents infinite loops).
:return: number of battles
"""
battles = 0
stars = 0
simulated_rank = start_rank
while simulated_rank != end_rank:
battles += 1
if battles > max_battles:
break
# Determine battle outcome
if random.random() < wr:
stars += 1 # win
elif random.random() >= fr: # best player doesn't lose star
stars -= 1 # loss and no star saved
# Check if player moved up a rank
if stars == ranks[simulated_rank]['stars']:
simulated_rank -= 1 # move "up" a rank
if ranks[simulated_rank]['free-star']:
stars = 1 # get a free star for next rank
else:
stars = 0 # no free star
# Check if a player moved down a rank
if stars < 0:
if ranks[simulated_rank]['irrevocable']:
stars = 0
else:
simulated_rank += 1 # move "down" a rank
stars = ranks[simulated_rank]['stars'] - 1 # 1 star away from next rank
return battles | fb655a374696430d80668ae79423b7400cfc94c8 | 21,696 |
def _shift_parts(family_parts, subfamily_parts, stop_fn):
"""Iterate over subfamily parts, removing from
subfamily and appending to family, until stop_fn(part)
returns true. If subfamily_parts is empty, add
'Regular'. This works because for both original and
wws subfamilies the order of parts is such that all
parts that fail the stop_fn precede any that pass.
Does not modify the input parts lists."""
result_family_parts = family_parts[:]
limit = len(subfamily_parts)
i = 0
while i < limit:
part = subfamily_parts[i]
if stop_fn(part):
break
result_family_parts.append(part)
i += 1
result_subfamily_parts = subfamily_parts[i:]
if not result_subfamily_parts:
result_subfamily_parts.append('Regular')
return result_family_parts, result_subfamily_parts | 29c45bcaf667e42d5edf1602302649fb58661359 | 21,701 |
from typing import Dict
import gzip
def read_fasta(filename: str) -> Dict[str, str]:
"""
Reads a file containing multiple FASTA sequences and returns a dictionary of the header: sequence
:param str filename: should be the name of the open file to be read
:return: dict containing the header: the sequence
"""
seq_dict = {}
with gzip.open(filename, 'rt') as fc:
all_lines = str(fc.read())
seqs = all_lines.split('>')
for seq in seqs[1:]:
seq = seq.strip('"').split('\n')
ref_id, prot_name = seq[0].replace(' [Homo sapiens]', '').split(' ', 1)
if "NP_" in ref_id:
seq_dict[ref_id] = ''.join(seq[1:])
return seq_dict | 2e14ec124ec0a9c3273fe8f6d3d23da0a7da9b2a | 21,702 |
def char_replacement(list_smiles):
"""
Replace the double characters into single character in a list of SMILES string.
Parameters
----------
list_smiles: list
list of SMILES string describing a compound.
Returns
-------
list
list of SMILES with character replacement.
"""
return [
smile.replace("Cl", "L")
.replace("Br", "R")
.replace("Se", "E")
.replace("Zn", "Z")
.replace("Si", "T")
.replace("@@", "$")
for smile in list_smiles
] | b0a7e2a09cb966b826ee1cb9cf5afa734a2d2ed1 | 21,704 |
def _edge_match(edge_a_attr, edge_b_attr):
"""
Compares attributes of the edges for equality.
:param edge_a_attr: Attributes of first edge.
:param edge_b_attr: Attributes of second edge.
:return: True is equal - otherwise False
"""
if edge_a_attr == edge_b_attr:
return True
return False | 0afa7dd6402f1c954753c27e0ab4244740eb5ffe | 21,708 |
from typing import List
def _encode_strings(strings: List[str]) -> List[bytes]:
"""
Encodes a list of strings as bytes
Parameters
----------
strings : list
List of any-codification strings
Returns
-------
strings: list
List of ASCII encoded bytes
"""
return [s.encode("ascii", "ignore") for s in strings] | 58e4aafa7aca4a65f1d62fde37023f7f1a638b33 | 21,710 |
def box_sizing(keyword):
"""Validation for the ``box-sizing`` property from css3-ui"""
return keyword in ('padding-box', 'border-box', 'content-box') | 42666cee49ba77d3089633a923872d2064e8f080 | 21,711 |
import random
def RANDBETWEEN(low, high):
"""
Returns a uniformly random integer between two values, inclusive.
"""
return random.randrange(low, high + 1) | 6382801f41af2b05304b7fbf1c8d22b6f10b90a8 | 21,712 |
import re
def unindent(value):
"""Remove indentation from string."""
return re.sub("\n +", "\n", value) | f455d1d7b24d708e73a0307af6ee333cfffe91f2 | 21,713 |
from typing import List
from typing import Tuple
def bono_tasa_fija(
start_time: float,
yf: float,
num_cupones: int,
valor_tasa: float) -> List[Tuple[float, float]]:
"""
Retorna los plazos y flujos de un bono a tasa fija bullet con nominal = 1.
params:
- start_time: fecha (expresada en fracción de año) en que comienza el devengo del primer cupón.
- yf: fracción de año que representa la periodicidad del bono (yf = .5 -> bono semestral).
- num_cupones: número de cupones del bono
- valor_tasa: valor de la tasa fija del bono. Los intereses se calculan de forma lineal.
return:
- Una `list` de `tuple` con la fecha de pago del cupón (como instante de tiempo) y el monto del cupón.
"""
result = []
nominal = 100.0
flujo = nominal * valor_tasa * yf
for i in range(1, num_cupones + 1):
if i == num_cupones:
flujo += nominal
result.append((i * yf + start_time, flujo))
return result | a3d792762458b7b30facf7ead74e2899e545425f | 21,716 |
from datetime import datetime
def find_todays_file(dir_list=None):
"""Identifies filename of most recent Sierra report"""
fhdate = datetime.strftime(datetime.now(), '%Y%m%d')
if dir_list is not None:
# grab the latest file with date
for fh in sorted(dir_list, reverse=True):
if 'BookOpsQC.{}'.format(fhdate) in fh:
return fh
return None | 789040c743375bc85c5ac2f8eaed4fec11c46158 | 21,718 |
def format_location(text):
"""Replace all the spaces with plus signs."""
return text.replace(' ', '+') | e95002ae4b385e346628cf363f27b4db2475465d | 21,721 |
def url_remove_user_pwd(url):
"""
Given a URL, remove the username and password if any::
print(url_remove_user_pwd("https://user:password@host:port/path"))
https://host:port/path
"""
_url = url.scheme + "://" + url.hostname
if url.port:
_url += ":%d" % url.port
if url.path:
_url += url.path
return _url | 0713a0973e6fac666198462145eab3d15179b6e0 | 21,728 |
def _remove_unwanted(args):
"""
Lower cases tokens and removes numbers and possibly names.
Parameters
----------
args : list of tuples
The following arguments zipped.
text : list
The text to clean.
words_to_ignore : str or list
Strings that should be removed from the text body.
stop_words : str or list
Stopwords for the given language.
Returns
-------
text_words_removed : list
The text without unwanted tokens.
"""
text, words_to_ignore, stop_words = args
return [
token.lower()
for token in text
if token not in words_to_ignore and token not in stop_words
] | 3031b24e4581adf3ed701c999e995e2779e48cf2 | 21,733 |
def merge_none(a, b):
"""
Compare two sequences elementwise and merge them discarding None entries.
Raises ValueError exception if the two sequances do not have the same
length or if they have different non-None elements.
Parameters
----------
a, b : sequences
The sequences to be compared.
Example
-------
>>> merge_none([1,None,3],[None,2,3])
[1, 2, 3]
"""
if a is b is None:
return None
if len(a) != len(b):
raise ValueError('The input sequences do not have the same length.')
if any(p != q for p, q in zip(a, b) if None not in (p, q)):
raise ValueError('The input sequences have incompatible values.')
return tuple(p if p is not None else q for p, q in zip(a, b)) | e25747cb2c8aeaa647ed9f3b19fbf311a7b0b701 | 21,738 |
def _identifier_split(identifier):
"""Return (name, start, end) string tuple from an identifier (PRIVATE)."""
id, loc, strand = identifier.split(":")
start, end = map(int, loc.split("-"))
start -= 1
return id, start, end, strand | 9fa8f1850fe628b7a26c5813b6d738e72c0d7ae5 | 21,741 |
import re
import time
import requests
def check(url, regexp=None):
"""
Make a get request to a given url and return some metrics about the request.
If the regexp parameter is present,
check if this regular expression is present within the page returned by the request.
:param url: url to be checked. if it does not start with http:// or https://, it will be prefixed with http://
:param regexp: (compiled) regular expression, or None
:return: if connection is successful, it returns a dictionary with the following keys:
'timestamp': of the check,
'url': the actual url checked (which may have been prefixed with 'http://'),
'response_time': in seconds, see below note
'status_code': from the response, as string
'matched': True/False if the regular expression was matched within the page returned by the url
if connection is unsuccessful, it returna a dictionary with the following keys:
'timestamp': of the check,
'url': the actual url checked (which may have been prefixed with 'http://'),
'error_msg': the message explaining the connection failure
Note that as the HTTP response time, the "elapsed" time provided by the request library is used,
that is, the amount of time elapsed between sending the request and the arrival of the response (as a timedelta).
This property specifically measures the time taken between sending
the first byte of the request and finishing parsing the headers.
It is therefore unaffected by consuming the response content or the value of the stream keyword argument.
See also https://2.python-requests.org/en/master/api/#requests.Response.elapsed
"""
if isinstance(regexp, str):
regexp = re.compile(regexp)
if not (url.startswith('http://') or url.startswith('https://')):
url = 'http://' + url
timestamp = time.time()
metrics = {
'timestamp': timestamp,
'url': url,
}
try:
resp = requests.get(url)
metrics['response_time'] = resp.elapsed.total_seconds()
metrics['status_code'] = str(resp.status_code)
if regexp:
metrics['matched'] = bool(regexp.search(resp.text))
except requests.exceptions.RequestException as e:
# we catch with this all exceptions explicitly raised from requests
metrics['error_msg'] = "connection error" #str(e)
return metrics | 879069e2763e3be793e77bdcc540005adcec1435 | 21,750 |
def partition(arr, low, high):
""" Partition is a helper function for the quicksort. It takes a pivot and
places lower values to the left and higher values to the right
"""
i = (low-1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1) | 1bacd1c407542087bd161253e129f4fff098f05d | 21,762 |
def deep_update_dict(origin_dict, override_dict):
""" update origin dict with override dict recursively
e.g. origin_dict = {'a': 1, 'b': {'c': 2, 'd': 4}}
override_dict = {'b': {'c': 3}}
return: {'a': 1, 'b': {'c': 3, 'd': 4}}
"""
for key, val in override_dict.items():
if isinstance(val, dict):
tmp = deep_update_dict(origin_dict.get(key, {}), val)
origin_dict[key] = tmp
else:
origin_dict[key] = override_dict[key]
return origin_dict | 09c0f8bb1656aef387a4a8a96f756a520d1dc23d | 21,766 |
def get_coordinates_from_kml(coordinates):
"""Returns list of tuples of coordinates.
Args:
coordinates: coordinates element from KML.
"""
if coordinates:
return [tuple(float(x.strip()) for x in c.split(',')) for c in str(coordinates[0]).split(' ') if c.strip()] | 921741e0e157a7d635f59cf75800fb32fcdd4ba2 | 21,769 |
def isArray(v, N=None):
"""Check if v is an array or a vector, with optional size.
Examples
--------
>>> import pygimli as pg
>>> print(pg.isArray([0, 1]))
True
>>> print(pg.isArray(np.array(5)))
True
>>> print(pg.isArray(pg.Vector(5)))
True
>>> print(pg.isArray(pg.Vector(5), N=5))
True
>>> print(pg.isArray(pg.Vector(5), N=2))
False
>>> print(pg.isArray('foo'))
False
"""
if N is None:
return hasattr(v, '__iter__') and not isinstance(v, (str))
return isArray(v) and len(v) == N | 32b05b6810a9cfc2d97fbfcfdbdc2da0c1b47104 | 21,770 |
def filter_collections_exist(hsp, collection_names):
"""
Filters a list of collections to return only those that do exist
"""
filtered = []
for entry in hsp.collections.apiget('list'):
if entry['name'] in collection_names:
filtered.append(entry['name'])
return filtered | 54122ca77d6cb4acd5bd1492d1dcd15d6406c1a7 | 21,773 |
def anagram_solution_1(s1, s2):
"""
解法一:冒泡检查
检查第一个字符串是不是出现在第二个字符串中,如果可以检验到每一个字符,
那这两个字符串一定是乱序。
可以通过用 None 替换字符来了解一个字符是否完成检查。
但是,由于 Python 字符串是不可变的,所以第一步是将第二个字符串转换为列表。
检查第一个字符串中的每个字符是否存在于第二个列表中,如果存在,替换成 None。
T = O(n^2)
"""
if len(s1) != len(s2):
return False
alist = list(s2)
pos1 = 0
still_ok = True
while pos1 < len(s1) and still_ok:
pos2 = 0
found = False
while pos2 < len(alist) and not found:
if s1[pos1] == alist[pos2]:
found = True
else:
pos2 = pos2 + 1
if found:
alist[pos2] = None
else:
still_ok = False
pos1 = pos1 + 1
return still_ok | e45ba0e0607c57a9b21ca1dd59a86b98dcac6f89 | 21,776 |
def has_argument(command: str) -> bool:
"""
Check if command has an argument.
This is helper function for process_command
:param command: an alphabetic string
:precondition: command must be an alphabetic string and part of the list returned by get_command_list
:postcondition: returns True if command has an argument, else False
:return: True if command has an argument, otherwise False
>>> has_argument("h")
False
>>> has_argument("b")
True
"""
commands_dictionary = {
"q": False,
"h": False,
"b": True,
"s": True,
"i": True,
"c": True
}
return commands_dictionary[command] | 50bc475fa910ab0637f19bb07819fcc4fb78e325 | 21,780 |
from datetime import datetime
def convert_date(timestamp):
"""Converts API timestamp to publication-ready dateline"""
day = timestamp[5:7]
month = datetime.strptime(timestamp[8:11], '%b').strftime('%B')
year = timestamp[12:16]
date = month + ' ' + day + ", " + year
return date | 661e91a9c037d65db7ea9621bb47e0230a833c31 | 21,782 |
def _check_before_comment(commented_map, key_to_check, first=False):
"""Check if commented_map has a comment before key_to_check or not.
All our default comments are before a key, so we just check for that.
:param commented_map:
:type commented_map: ruamel.yaml.comments.CommentedMap
:param key_to_check:
:type key_to_check: str
:param first: True if the key is the first key in the yaml file, as that comment is associated with the file
and not with the key.
:type first: bool
:return: True if there is a comment before a key.
:rtype: bool
"""
if first:
# In the first case, the comment is associated to the CommentedMap, and not to the key.
comments_list = commented_map.ca.comment
if not comments_list:
return False
# This is the comment structure in ruamel. They don't have any good method for us to check.
return len(comments_list) > 1 and comments_list[1] and len(comments_list[1]) > 0
else:
comments_dict = commented_map.ca.items
if not comments_dict:
return False
if key_to_check in comments_dict:
comments_list = comments_dict[key_to_check]
# This is the comment structure in ruamel. They don't have nay good method for us to check.
if len(comments_list) > 1 and comments_list[1] and len(comments_list[1]) > 0:
return True
else:
return False
else:
# No key exists, so no comments.
return False | 92997028120026e3ae604704510c082f9b201543 | 21,783 |
import re
def is_comment(line):
"""Determines if a string is entirely a fortran comment."""
return bool(re.match('\A\s*!', line)) | 942bf9b780f7c890c75a18aac0a4380d96825c04 | 21,789 |
def header(table):
"""
Return the header row for the given table. E.g.::
>>> from petl import header
>>> table = [['foo', 'bar'], ['a', 1], ['b', 2]]
>>> header(table)
['foo', 'bar']
See also :func:`fieldnames`.
"""
it = iter(table)
return next(it) | c4e772b40cdda2ffcbaf383dc4787f2e146a97e1 | 21,791 |
import six
import base64
def is_base64(s):
"""
is_base64 tests whether a string is valid base64 by testing that it round-trips accurately.
This is required because python 2.7 does not have a Validate option to the decoder.
"""
try:
s = six.ensure_binary(s, "utf-8")
return base64.b64encode(base64.b64decode(s)) == s
except Exception as e:
return False | 8c869fd96217e70dd896d8309719d3b0c754c388 | 21,793 |
def _n2(a, b):
"""Return (a - b).evalf(2) if a and b are comparable, else None.
This should only be used when a and b are already sympified.
"""
# /!\ it is very important (see issue 8245) not to
# use a re-evaluated number in the calculation of dif
if a.is_comparable and b.is_comparable:
dif = (a - b).evalf(2)
if dif.is_comparable:
return dif | bb1c3ebcea8af5ddf248bd90ef9810093840bbcf | 21,795 |
def create_non_dupe(base_name: str, opt_num: int, comparison) -> str:
"""Makes sure base_name is not in comparison, and if it is it's renamed.
:param base_name: Name to check/make unique.
:param opt_num: Number of the option base_name belongs to, used in making it unique.
:param comparison: Dictionary or set to search for base_name in.
:return: Unique name.
"""
h = base_name
if h in comparison:
n = 0
h = h + '_O' + str(opt_num)
h_end = len(h)
while h in comparison:
h = h[:h_end] + '_' + str(n)
n += 1
return h | cb12092838d6e0482f28b7b00682a3390fcac790 | 21,797 |
def get_min_value_from_matrix(matrix_filename):
"""
Returns the minimum value of a matrix file
:param matrix_filename: str
:rtype: float
"""
matrix = []
with open(matrix_filename) as file:
for line in file:
matrix.extend([float(val) for val in line.rstrip().split()])
return min(matrix) | 69413010834b4e4fb903e164e41677619ac88bb3 | 21,799 |
def interpret_instruction(instruction, parameter):
""" Interprets an instruction and returns offset to next command and accumulator value.
:param instruction: acc, jmp or nop
:param parameter: signed integer
:return: (jump_offset, accumulator_offset)
"""
if instruction == 'acc':
return 1, parameter
elif instruction == 'jmp':
return parameter, 0
else:
return 1, 0 | 4f1b0ba7b1d92256e299a3f2dab9eb6c42a5314b | 21,800 |
import re
def _contains_expression(repr_str: str) -> bool:
"""
Checks whether or not a `repr_str` contains an expression. (Single unary expressions are excluded)
"""
repr_str = re.sub(r"\s+", "", repr_str)
repr_str = repr_str.replace("(", "")
repr_str = repr_str.replace(")", "")
symbols = re.findall(r"[\w']+", repr_str)
non_symbols = re.findall(r"[^\w']+", repr_str)
if len(non_symbols) == 0:
return False
if len(non_symbols) == 1 and len(symbols) == 1:
return False
return True | af758c8874d22ea1cfa25bb73c7605ed5e4d2d75 | 21,801 |
def issafe(arg):
"""Returns False if arg contains ';' or '|'."""
return arg.find(';') == -1 and arg.find('|') == -1 | f6746d5290e21eb84d7343792d277bce4c1871ff | 21,804 |
def _bisect_blocks(web3, timestamp, use_left_bound=True):
"""
Perform a binary search on the blockchain for the block that matches the
given timestamp. The `use_left_bound` parameter determines whether to
return the block to the left or right of the timestamp in the event that no
block matches the timestamp exactly.
"""
left_bound = 1
right_bound = web3.eth.blockNumber
left_block = web3.eth.getBlock(left_bound)
if left_block['timestamp'] >= timestamp:
return 'earliest'
right_block = web3.eth.getBlock(right_bound)
if right_block['timestamp'] <= timestamp:
return 'latest'
while left_bound < right_bound - 1:
middle = (left_bound + right_bound) // 2
middle_block = web3.eth.getBlock(middle)
if middle_block['timestamp'] < timestamp:
left_bound = middle
elif middle_block['timestamp'] > timestamp:
right_bound = middle
else:
return middle
else:
if use_left_bound:
return left_bound
else:
return right_bound | 9eb011ca488b7262e78efd29fe11f3c0136a5933 | 21,809 |
def chunks(l, n):
"""
Successive n-sized chunks from l.
"""
res = []
for i in range(0, len(l), n):
assert len(l[i:i + n]) == n
res += [l[i:i + n]]
return res | 148467d681e545487ea1a52c3b4d548726c77f6c | 21,815 |
def update_max_speed(driver, speed):
"""
Updates the max speed of the driver
:param driver: driver
:param speed: new max speed
:type driver: DriverProfile
:return: updated driver profile
"""
return driver.update_max_speed(speed) | 73987703b584099538d865dde9d7d25f48080283 | 21,817 |
import torch
def evaluate_nll(confidences: torch.Tensor,
true_labels: torch.Tensor) -> float:
"""
Args:
confidences (Tensor): a tensor of shape [N, K] of predicted confidences.
true_labels (Tensor): a tensor of shape [N,] of ground truth labels.
Returns:
nll (float): average negative-log-likelihood of predictions.
"""
nll = torch.nn.functional.nll_loss(
torch.log(1e-12 + confidences), true_labels
).item()
return nll | d1c5aa5d69e788ee835d8b94b6dd9d6895656e53 | 21,831 |
def train_test_column_split(x, y, df_column):
"""Function for splitting dataset into train/test partitions w.r.t. a column (pd.Series).
Args:
x (pd.DataFrame): DataFrame containing predictors.
y (pd.DataFrame): DataFrame containing target variable.
df_column (pd.Series): Series for train/test split, assuming it is contained in x.
Returns:
tuple: (x_train, x_test, y_train, y_test).
A tuple of partitions of the initial dataset.
"""
x1, y1, col_name = x.copy(), y.copy(), df_column.name
y1[col_name] = df_column
return (x1[x1[col_name] == 'train'].drop(col_name, axis=1), x1[x1[col_name] == 'test'].drop(col_name, axis=1),
y1[y1[col_name] == 'train'].drop(col_name, axis=1), y1[y1[col_name] == 'test'].drop(col_name, axis=1)) | a28b536be57e04870ae9e6f1e1abc854838e24ae | 21,833 |
def triplo(n=0):
"""
-> Calcula o triplo de um número
:param n: número
:return: triplo do número
"""
return n * 3 | e612051944215b2491958005cadaac9eff5ba3b6 | 21,835 |
def calculateXVertice(termA, termB):
"""
Calculates the value of the vertice X.
"""
vertice = ((-termB)/(2*termA))
return vertice | aafeb34baad2c5361ad6f1c49088984708cdffee | 21,838 |
def _search(left, right, predicate):
"""Simple binary search that uses the ``predicate`` function to determine direction of search"""
if right >= left:
mid = left + (right - left) // 2
res = predicate(mid)
if res == 0:
return mid
elif res > 1:
return _search(left, mid - 1, predicate)
else:
return _search(mid + 1, right, predicate)
else:
return -1 | 80a8ae96468fa4a13e42dc5b45920123c1eb8833 | 21,841 |
def getPadding(sField, cchWidth):
""" Returns space padding for the given field string. """
if len(sField) < cchWidth:
return ' ' * (cchWidth - len(sField));
return ''; | 895d3cde1daf0045cb434cc2fcdef6c9ca8808ff | 21,843 |
def get_data_file_path_list(data_file_list_path):
"""Get mappting of video id to sensor data files.
video id to (original video id, [file 1, ..., file n])
where file 1, ..., file n are one series data.
Note.
- Original video id in input files sometimes mixed lower and upper case.
- To treat several case, lower case of them are used as key of mapping.
"""
mapping = {}
with open(data_file_list_path) as f_in:
for line in f_in.readlines():
if line.strip() == '':
continue
video_name_prefix, files_txt = line.strip().split('\t')
mapping[video_name_prefix.lower()] = (
video_name_prefix, files_txt.split(','))
return mapping | 7655c27105b1ce051bf1942655daabc2dfce9bd0 | 21,851 |
def snake_case_to_pascal_case(input_string):
"""
Converts the input string from snake_case to PascalCase
:param input_string: (str) a snake_case string
:return: (str) a PascalCase string
"""
input_list = input_string.split('_')
input_list = [i.capitalize() for i in input_list]
output = ''.join(input_list)
return output | 6c6344fb052dc6c1a712b838d58266ce8ea9b5c0 | 21,854 |
import socket
def check_port(ip, port, timeout=None):
"""
Checks if the port is open on a specific IP
@param ip: IP of the remote host
@param port: The port to check
@param timeout: Timeout, in seconds
@return bool: True if the port is open, False if closed
"""
socket_port = socket.socket()
if timeout is not None:
socket_port.settimeout(timeout)
try:
socket_port.connect((ip, int(port)))
except socket.error:
return False
else:
socket_port.close()
return True | 43a4696ca002f96e9b6c28d67326dd4c0c285e5e | 21,860 |
def make_collision_handler(collider, maplayer):
"""Returns ``f = collider.collide_map(maplayer, ...)``
Returns:
f : ``(last, new, vx, vy)`` -> ``(vx, vy)``
Utility function to create a collision handler by combining
Arguments:
maplayer : tells the objects to collide with.
collider : tells how velocity changes on collision and resolves
actual collisions.
"""
def collision_handler(last, new, vx, vy):
return collider.collide_map(maplayer, last, new, vx, vy)
return collision_handler | df59b7eb4b74fe803f1b13fcac7dabc29e06a62b | 21,862 |
def conv_out_shape(in_shape, layers):
"""
Calculates output shape of input_shape going through a list of pytorch convolutional layers
in_shape: (H, W)
layers: list of convolution layers
"""
shape = in_shape
for layer in layers:
h_out = ((shape[0] + 2*layer.padding[0] - layer.dilation[0] * (layer.kernel_size[0] - 1)-1) / layer.stride[0])+1
w_out = ((shape[1] + 2*layer.padding[1] - layer.dilation[1] * (layer.kernel_size[1] - 1)-1) / layer.stride[1])+1
shape = (int(h_out), int(w_out))
return shape | b75fb479f47304be03aef20a36583ad8a2edc0de | 21,870 |
import collections
import json
def load_json(files):
"""Load all json files as a list of dictionaries"""
config = []
for file in files:
with open(file, 'r') as data_file:
config.append(collections.OrderedDict(json.load(data_file)))
return config | 63174b3fd1ce208a347c6cf7b4904873a97e7136 | 21,871 |
from datetime import datetime
def print_start_time(message: str) -> datetime:
"""Print start time.
Args:
message (str): Message to print.
Returns:
start (datetime): Start time.
"""
start = datetime.now()
print(f'{message} {start}')
return start | a8f7f07da5c72bea88cf8e48a8d3f651a7662e0e | 21,875 |
def ispalindrome(s):
"""
Returns true if s is a palindrome
There are two ways to define a palindrome:
1. s is a palindrome if it reads the same backward
and forward.
2. s is a palindrome if either
(1) its length is <= 1 OR
(2) its first and last chars are the same and the
string between them is a palindrome.
Letters must match exactly.
Parameter s: the candidate palindrome
Precondition s is a string
"""
assert type(s) == str, repr(s) + ' is not a string' # get in the habit
# Base palindrome
if len(s) < 2:
return True
# s has at least 2 characters
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
# Both must be true to be a palindrome
return ends and middle | 5ad5aaef785be935ab6494cf0a1653a265b680ab | 21,887 |
def prefer_insertions_at_309_and_315(mb):
"""Prefer alternatives that include 309.1C or 315.1C over others.
There are two multi-C runs at the beginning of the 300's and by
convention, any insert in one of those runs is pushed to the end.
Mostly, the other rules will pick these, but in some circumstances
with other substitutions or deletions in this area, these won't get
picked - although we want them to. Thus, this special case preference.
"""
special_cases = ['309.1C', '315.1C']
# mb: mismatch block
if len(mb) > 1:
scores = [0] * len(mb)
# pos: position
# aa: alternate alignment
for pos, aa in enumerate(mb):
for variant in aa:
if str(variant) in special_cases:
scores[pos] += 1
if max(scores) > 0:
# lsi: indices of lower scoring alternate alignments
lsi = list(x for x in range(len(mb)) if scores[x] < max(scores))
# remove low scoring alignments from the mismatch block
# in reverse order so as to not mess up the preceding indices
lsi.sort(reverse=True)
for i in lsi:
mb.pop(i)
return mb | 92152d8de90617ce4a21da680bd34e96d7df98cc | 21,896 |
def get_patch_centered(img, x, y, radius):
"""
Extracts a patch from an image centered at (x, y) with a given radius.
"""
return img[x - radius : x + radius + 1, y - radius : y + radius + 1] | 6ad8c8ee8b737fcbe036c8d5a1fb0b00a76e4014 | 21,899 |
def is_for_ast_eval(test_str: str):
"""
Is the test string a valid list of dict string,
such as "[1, 2]", that can be evaluated by ast eval.
Arguments:
test_str (str): Test string
Returns:
bool: Is test_str a valid list of dict strings
"""
return ('[' in test_str and ']' in test_str) or \
('{' in test_str and '}' in test_str) | e3f30a6b27f9d66e91a2c122cc9b3fc5ae1f948f | 21,905 |
def _ap(relevances, scores, topn=None):
"""Returns the average precision (AP) of a single ranked list.
The implementation here is copied from Equation (1.7) in
Liu, T-Y "Learning to Rank for Information Retrieval" found at
https://www.nowpublishers.com/article/DownloadSummary/INR-016
Args:
relevances: A `list` of document relevances, which are binary.
scores: A `list` of document scores.
topn: An `integer` specifying the number of items to be considered in the
average precision computation.
Returns:
The MAP of the list as a float computed using the formula
sum([P@k * rel for k, rel in enumerate(relevance)]) / sum(relevance)
where P@k is the precision of the list at the cut off k.
"""
def argsort(arr, reverse=True):
arr_ind = sorted([(a, i) for i, a in enumerate(arr)], reverse=reverse)
return list(zip(*arr_ind))[1]
num_docs = len(relevances)
if isinstance(topn, int) and topn > 0:
num_docs = min(num_docs, topn)
indices = argsort(scores)[:num_docs]
ranked_relevances = [1. * relevances[i] for i in indices]
precision = {}
for k in range(1, num_docs + 1):
precision[k] = sum(ranked_relevances[:k]) / k
num_rel = sum(ranked_relevances[:num_docs])
average_precision = sum(precision[k] * ranked_relevances[k - 1]
for k in precision) / num_rel if num_rel else 0
return average_precision | e856a98630548313362aa1bf49749a0b32208e61 | 21,910 |
def _get_env_var(rctx, name, default):
"""Find an environment variable in system. Doesn't %-escape the value!
Args:
rctx: rctx
name: environment variable name
default: default value to return if env var is not set in system
Returns:
The environment variable value or the default if it is not set
"""
if name in rctx.os.environ:
return rctx.os.environ[name]
return default | 1e98d7b65f1b7323caff51d897e7c5b5bedae3cf | 21,913 |
def filter_for_sprl(c):
"""
Given a BIDSFile object, filter for sprl type file
"""
try:
val = "sprlcombined" in c.entities["acquisition"]
except KeyError:
return False
else:
return val | 6f05313701ecc01512fedf05709e5e13629c467d | 21,920 |
def roll(lst, shift):
"""Roll elements of a list. This is similar to `np.roll()`"""
return lst[-shift:] + lst[:-shift] | 4805c646d4d6025b0ebcd660a020a58fb6078036 | 21,922 |
def count_distinct_occurence(calls, texts):
"""Return the count of distinct occurence of number
Args:
calls: list of calls
texts: list of texts
Returns:
number of distinct number
"""
number_set = set()
for record in calls+texts:
number_set.add(record[0])
number_set.add(record[1])
return len(number_set) | 4acf40c50bbd32b23735aaad2c581559829bb664 | 21,923 |
def get(sarif_struct, *path):
""" Get the sarif entry at PATH """
res = sarif_struct
for p in path:
res = res[p]
return res | f4c1eb9f98acb5e795d65ac427079748a9b89a6f | 21,926 |
def swift_module_name(label):
"""Returns a module name for the given label."""
return label.package.lstrip("//").replace("/", "_") + "_" + label.name | e10dee81c5bbd3d5a1fc15ae94aebe74e8de94c6 | 21,927 |
def remove_duplicate_values(array_like, tol=0.0):
"""
Removes duplicate values from list (when tol=0.0) or remove approximately duplicate
values if tol!=0.0.
"""
unique_values = [array_like[0]]
for element in array_like:
element_is_duplicate = False
for uval in unique_values:
if abs(uval - element) <= tol:
element_is_duplicate = True
if not element_is_duplicate:
unique_values.append(element)
return unique_values | afdad5db2aa00858aa9bcd29e1b64b744b2fb963 | 21,932 |
from pathlib import Path
def create_job(
create_job_header,
create_job_body,
create_job_tail,
job_name_prefix,
scenario_name,
job_name_suffix,
queue_name,
ncores,
work_dir,
run_dir,
#
config_file,
):
"""
Create the job file.
The jobs is created by assembling three parts: the job header,
the body, and the final tail (post execution process).
The different parameters will be injected in the respective job
creation functions.
Parameters
----------
create_job_header : callable
The function that will create the header.
create_job_body : callable
The function that will create the job body.
create_job_tail: callable
The function that will create the job tail.
job_name_prefix : str
A prefix for the job name. Normally this is the name of the job
test case, for example the PDB ID.
Injected in `create_job_header`.
scenario_name : str
The name of the benchmark scenario.
Injected in `create_job_header`.
job_name_suffix : str
An additional suffix for the job name. Normally, `BM5`.
Injected in `create_job_header`.
queue_name : str
The name of the queue. Injected in `create_job_header`.
ncores : int
The number of cpu cores to use in the jobs. Injected in
`create_job_header`.
work_dir : pathlib.Path
The working dir of the example. That is, the directory where
`input`, `jobs`, and `logs` reside. Injected in `create_job_header`.
run_dir : pathlib.Path
The running directory of the scenario.
config_file : pathlib.Path
Path to the scenario configuration file.
Injected in `create_job_body`.
Returns
-------
str
The job file in the form of string.
"""
# create job header
job_name = f'{job_name_prefix}-{scenario_name}-{job_name_suffix}'
std_out = str(Path('logs', 'haddock.out'))
std_err = str(Path('logs', 'haddock.err'))
job_header = create_job_header(
job_name,
work_dir=work_dir,
stdout_path=std_out,
stderr_path=std_err,
queue=queue_name,
ncores=ncores,
)
available_flag = str(Path(run_dir, 'AVAILABLE'))
running_flag = str(Path(run_dir, 'RUNNING'))
done_flag = str(Path(run_dir, 'DONE'))
fail_flag = str(Path(run_dir, 'FAIL'))
job_body = create_job_body(available_flag, running_flag, config_file)
job_tail = create_job_tail(std_err, done_flag, fail_flag)
return job_header + job_body + job_tail | acc38ee8dc0169173f71e1fa5f81e75b340250e1 | 21,934 |
def toUnicode(articles):
"""Convert a list of articles utf-8 encoded to unicode strings."""
return tuple([art.decode('utf_8') for art in articles]) | 6924a837d5a093b3e0ea358381d67a1fc011519c | 21,936 |
def update_parent_child_relationships(links_dict, old_id, new_id):
"""
Update the parent-child relationships after clustering a firework
by replacing all the instances of old_id with new_id
Args:
links_dict (list): Existing parent-child relationship list
old_id (int): Existing id of the firework
new_id (int): New id of the firework
Returns:
links_dict (list): Updated parent-child relationship list
"""
# Enumerate child ids and replace it with the new id
for parent_id in links_dict:
child_id_list = links_dict[parent_id]
for index, child_id in enumerate(child_id_list):
if child_id == old_id:
child_id_list[index] = new_id
break
# Enumerate parent ids and replace it with the new id
if old_id in links_dict:
links_dict[new_id] = links_dict.pop(old_id)
return links_dict | a08201e455ed87ebaae52542c99ff500df523367 | 21,938 |
def normalize_name(name):
"""Returns a normalized version of the given algorithm name."""
name = name.upper()
# BouncyCastle uses X.509 with an alias of X509, Conscrypt does the
# reverse. X.509 is the official name of the standard, so use that.
if name == "X509":
name = "X.509"
# PKCS5PADDING and PKCS7PADDING are the same thing (more accurately, PKCS#5
# is a special case of PKCS#7), but providers are inconsistent in their
# naming. Use PKCS5PADDING because that's what our docs have used
# historically.
if name.endswith("/PKCS7PADDING"):
name = name[:-1 * len("/PKCS7PADDING")] + "/PKCS5PADDING"
return name | 77858e7217c3a17e3b041781f117e7b53dd4c57d | 21,939 |
import torch
def upfeat(input, prob):
""" A function to compute pixel features from superpixel features
Args:
input (tensor): superpixel feature tensor.
prob (tensor): one-hot superpixel segmentation.
Returns:
reconstr_feat (tensor): the pixel features.
Shape:
input: (B, N, C)
prob: (B, N, H, W)
reconstr_feat: (B, C, H, W)
"""
B, N, H, W = prob.shape
prob_flat = prob.view(B, N, -1)
reconstr_feat = torch.matmul(prob_flat.permute(0, 2, 1), input)
reconstr_feat = reconstr_feat.view(B, H, W, -1).permute(0, 3, 1, 2)
return reconstr_feat | 8b1515d7e3c7cfbf656f4e60e4c5e7899e48dbbf | 21,942 |
def remote(obj):
""" Return the remote counterpart of a local object.
:param obj: the local object
:return: the corresponding remote entity
"""
try:
return obj.__remote__
except AttributeError:
return None | adf85d39797c158bd16f874f6ce9cf3867d6fb8b | 21,948 |
import requests
def download_pac(candidate_urls, timeout=1, allowed_content_types=None,
session=None):
"""
Try to download a PAC file from one of the given candidate URLs.
:param list[str] candidate_urls: URLs that are expected to return a PAC file.
Requests are made in order, one by one.
:param timeout: Time to wait for host resolution and response for each URL.
When a timeout or DNS failure occurs, the next candidate URL is tried.
:param allowed_content_types: If the response has a ``Content-Type`` header,
then consider the response to be a PAC file only if the header is one of these values.
If not specified, the allowed types are
``application/x-ns-proxy-autoconfig`` and ``application/x-javascript-config``.
:return: Contents of the PAC file, or `None` if no URL was successful.
:rtype: str|None
"""
if not allowed_content_types:
allowed_content_types = {'application/x-ns-proxy-autoconfig', 'application/x-javascript-config'}
if not session:
sess = requests.Session()
else:
sess = session
sess.trust_env = False # Don't inherit proxy config from environment variables.
for pac_url in candidate_urls:
try:
resp = sess.get(pac_url, timeout=timeout)
content_type = resp.headers.get('content-type', '').lower()
if content_type and True not in [allowed_type in content_type for allowed_type in allowed_content_types]:
continue
if resp.ok:
return resp.text
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
continue | ba1554e01c0a3b2cf9251d686d946459aef40f2d | 21,952 |
from io import StringIO
def list_to_string_io(list_of_entries:list):
"""
Return file like object of the type StringIO from a given list of list of strings.
Argument:
- list_of_entries {list} - list of list of strings to transform to StringIO
Example:
[
['AR8IEZO1187B99055E', 'SOINLJW12A8C13314C', 'City Slickers', 2008, 149.86404],
['AR558FS1187FB45658', 'SOGDBUF12A8C140FAA', 'Intro', 2003, 75.67628]
]
Return:
{StringIO} - file type object with values in input list concatenated.
Example:
'AR8IEZO1187B99055E\tSOINLJW12A8C13314C\tCity Slickers\t2008\t149.86404\n
AR558FS1187FB45658\tSOGDBUF12A8C140FAA\tIntro\t2003\t75.67628'
"""
return StringIO('\n'.join(['\t'.join([str(entry) for entry in set_of_entries]) for set_of_entries in list_of_entries])) | b71528876a2fd65264c1f77bdea96ab112616894 | 21,954 |
import re
def parse_quast_result(path_to_quast_result):
"""
Args:
path_to_quast_result (str): Path to the QUAST result file.
Returns:
dict: Parsed QUAST report
For example:
{
"contigs_count": 72,
"largest_contig": 692871,
"N50": 299446,
"L50": 6,
"N75": 123167,
"L75": 12,
"total_length": 5182695,
"percent_GC": 51.75,
"complete_busco_percent": 100.0,
"partial_busco_percent": 100.0
}
"""
quast_output = []
with open(path_to_quast_result, 'r') as quast_result:
for line in quast_result:
quast_output.append(line)
def parse_quast_report_line(line):
"""
Takes a line of the quast report and returns the specific data that we're interested in from that line.
Collapse multiple spaces into a tab char ('\t'), then split the line on tabs and take the second item.
Cast floats to floats and ints to ints.
'# contigs 751 ' -> '# contigs\t751\t' -> ['# contigs', '751', ''] -> '751' -> 751
"""
result_data = re.sub(' {2,}', '\t', line).split('\t')[1]
if re.match('\d+\.\d+', result_data):
return float(result_data)
else:
return int(result_data)
# Associate a regex that can be used to identify the line of interest in the quast report
# with a string to use as a key in the output dict.
quast_report_parsing_regexes = {
'^# contigs {2,}\d+': 'num_contigs',
'^Largest contig {1,}\d+': 'largest_contig',
'^N50 +\d+': 'N50',
'^NG50 +\d+': 'NG50',
'^L50 +\d+': 'L50',
'^LG50 +\d+': 'LG50',
'^N75 +\d+': 'N75',
'^NG75 +\d+': 'NG75',
'^L75 +\d+': 'L75',
'^LG75 +\d+': 'LG75',
'^Total length {2,}\d+': 'total_length',
'^Reference length +\d+': 'reference_length',
'^GC \(%\) +\d+\.\d+': 'percent_GC',
'^Reference GC \(%\) +\d+\.\d+': 'reference_percent_GC',
'^Genome fraction \(%\) +\d+\.\d+': 'genome_fraction_percent',
'^Duplication ratio +\d+\.\d+': 'duplication_ratio',
'^Complete BUSCO \(\%\) +\d+\.\d+': 'complete_busco_percent',
'^Partial BUSCO \(\%\) +\d+\.\d+': 'partial_busco_percent',
}
quast_result = {}
for line in quast_output:
for regex, key in quast_report_parsing_regexes.items():
if re.match(regex, line):
quast_result[key] = parse_quast_report_line(line)
return quast_result | d7a620a1dedbcbdf00b82a6b03c816ac963503cb | 21,957 |
def is_digit(c) -> bool:
"""Checks if given char is a digit."""
try:
return ord(c) >= 48 and ord(c) <= 57
except TypeError:
return False | 81eb6d9a3b73e567dff9b5c040309073db4ed3eb | 21,958 |
def stations_by_river(stations):
"""Find stations which are by the same river
Args:
stations (list): list of MonitoringStation objects
Returns:
dictionary: river name as key to a list of station names
"""
dic_stations_river = {}
for station in stations:
key = station.river
if key in dic_stations_river:
dic_stations_river[key].append(station.name)
else:
dic_stations_river[key] = [station.name]
return dic_stations_river | f094ee7cae07a0b6037aac75559b68b09e88c26d | 21,963 |
from typing import Iterable
from typing import Tuple
from typing import Any
from typing import List
def unzip(tuples: Iterable[Tuple[Any, ...]]) -> List[Iterable[Any]]:
"""The inverse of the `zip` built-in function."""
return [list(x) for x in zip(*tuples)] | 10dd4755c501f64f6b98dea8abd7677d6fa23535 | 21,964 |
def clean_unicode(text):
"""A function to clean unsee unicode character like \\u2xxx
Args:
text (str): Can be news title or news body
Returns:
[str]: A unicode-free string
"""
clean_text = text.encode("ascii", errors="replace").strip().decode("ascii")
clean_text = clean_text.replace("?", ' ')
return clean_text | ed62e2644818120ea8417e2549bac76870447e55 | 21,967 |
import math
def make_divisible(x, divisor, ceil=True):
"""
Returns x evenly divisible by divisor.
If ceil=True it will return the closest larger number to the original x, and ceil=False the closest smaller number.
"""
if ceil:
return math.ceil(x / divisor) * divisor
else:
return math.floor(x / divisor) * divisor | 02df42d8c490ac0c85d7ad983c0c9c838bdfa088 | 21,968 |
def color_mapping_func(labels, mapping):
"""Maps an label (integer or string) to a color"""
color_list = [mapping[value] for value in labels]
return color_list | da1f4f5432a28ef972bdcd74bd351ab4d5d09aad | 21,969 |
def bytes_to_str(b):
"""Converts a byte string argument to a string"""
if isinstance(b, str):
return b
return str(b, 'latin1') | 1494de161b7a9b4ef7743627bbbeba7624c7fa1c | 21,975 |
def _dict_key_to_key(dictionary):
"""creates a dummy map from the nominal key to the nominal key"""
return {key : key for key in dictionary.keys()} | 9feed672c1f678ed58a4d29fea5fbb0848b8b483 | 21,981 |
def seconds_to_nanoseconds(seconds):
"""Convert the specified number of seconds to nanoseconds
:param seconds: an integer representing a certain number of seconds
:returns: an integer (or float) representation of the specified number of seconds as nanoseconds
"""
return seconds * 1000000000 | d9f4687335b263a73f7f22065bfbbebb12468ce3 | 21,982 |
def get_board_copy(board):
"""Make a duplicate of the board list and return it the duplicate."""
return list(board) | 36aa2bd0719dc73602fd1fda68b120ea9c6a4a4c | 21,984 |
def map_challenge_set(x):
"""
Map a SQLAlchemy ChallengeSet model object into a generic map.
:param x: SQLAlchemy ChallengeSet model.
:return: Generic map containing relevant details for REST API.
"""
return {"id": x.id, "slug": x.slug, "name": x.name, "description": x.description} | 5a70a8d14a486c9ee57475d8b4c11b8d956430b1 | 21,985 |
import requests
def get_session(username, password):
"""
Returns a request session for the SANtricity RestAPI Webserver
"""
request_session = requests.Session()
# Default credentials
request_session.auth = (username, password)
request_session.headers = {'Accept': 'application/json', 'Content-Type': 'application/json'}
# Ignore the self-signed certificate issues for https
request_session.verify = False
return request_session | 42f896195f714bad3928146b49bac88564b4a477 | 21,986 |
from typing import List
import re
def lexLine(line : str) -> List[str]:
"""Tokenizes a code line
Args:
line (str): A line of VLang code
Returns:
List(str): A list of tokenized strings
"""
if line == "\n":
return ["\n"]
elif line.startswith('#'):
return ["#"]
splittedList = re.split('\s|(\")', line) # Splits the line based on quotes or whitespaces(spaces)
filteredList = filter(None, splittedList) # Filters None's out of the list. These ocur due to the regex expression above
return list( filteredList ) | 3f8c3633300275e43c93381c91202ac02aeca01b | 21,987 |
def parse_http_header(header, header_key):
"""
**Parse HTTP header value**
Parse the value of a specific header from a RAW HTTP response.
:param header: String containing the RAW HTTP response and headers
:type header: str
:param header_key: The header name of which to extract a value from
:type header_key: str
:return: The value of the header
:rtype: str
"""
split_headers = header.split('\r\n')
for entry in split_headers:
header = entry.strip().split(':', 1)
if header[0].strip().lower() == header_key.strip().lower():
return ''.join(header[1::]).split()[0] | 993b8190d631accf7c63e259aa5f4f4c4b657c0e | 21,988 |
def is_dictable(obj):
"""Returns ``True`` if `obj` has a ``to_dict()`` method."""
return hasattr(obj, "to_dict") | 0a12ccae0a0d3242db0bb7ad6537f2ff34ee7c48 | 21,994 |
def _mean(values:list)->float:
"""
Return mean
"""
return sum(values)*1.0/len(values) | dc433357122e84523200a6e932c787f96ff66185 | 21,995 |
def get_name(i):
"""
Return the name of i-th component of a sensor sample
"""
assert i >= 0 and i <= 5, f"Component {i} is not supported, must be between 0 and 5"
names = ["x_acc", "y_acc", "z_acc", "x_gyro", "y_gyro", "z_gyro"]
return names[i] | 9775b41ecfb28a5cefaee0bbf83569f9d115d4ea | 21,996 |
from datetime import datetime
def datetime_to_str(dt: datetime) -> str:
"""Get a timestamp string from a datetime object.
Args:
dt: The datetime object.
Returns:
The timestamp string.
"""
return dt.strftime("%Y_%m_%d_%H_%M_%S") | 9b604c18e648ce6783cd0ff8897842a8576225ab | 22,003 |
import errno
def _retry_if_file_already_exists(exception):
"""Retry if file already exist exception raised."""
return (
isinstance(exception, OSError) and
exception.errno == errno.EEXIST
) | d0094c155cc43f8172f85b1aa1fa42d7348330c2 | 22,005 |
def no_deprecated_adapter(adapter):
"""Modify an adapter to disable deprecated symbols.
``no_deprecated_adapter(adapter)(name, active, section)`` is like
``adapter(name, active, section)``, but unsets all deprecated symbols
and sets ``MBEDTLS_DEPRECATED_REMOVED``.
"""
def continuation(name, active, section):
if name == 'MBEDTLS_DEPRECATED_REMOVED':
return True
if adapter is None:
return active
return adapter(name, active, section)
return continuation | 2c18bf3d059a1a2d7555f09662509688023b61ed | 22,007 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.