content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_new_lp_file(test_nr):
""" Get name of new LP file """
return "test/{0}-new.lp".format(test_nr) | f7527a053a640d080f3aecd9db24623d5563b250 | 15,833 |
def tokenize(tokenizer, data, max_length = 128):
"""
Iterate over the data and tokenize it. Sequences longer than max_length are trimmed.
:param tokenizer: tokenizer to use for tokenization
:param data: list of sentences
:return: a list of the entire tokenized data
"""
tokenized_data = []
for sent in data:
tokens = tokenizer.encode(sent, add_special_tokens=True)
# keeping a maximum length of bert tokens: 512
tokenized_data.append(tokens[:max_length])
return tokenized_data | 30b3786c1299bc42cd2698eae83ce1c6bdc3cfbe | 15,834 |
import logging
def find_log_path(lg):
"""
Find the file paths of the FileHandlers.
"""
out = []
for h in lg.handlers:
if isinstance(h, logging.FileHandler):
out.append(h.baseFilename)
return out | efab0cb7eafd0491e1365224dc83f816c7bb1b51 | 15,836 |
import requests
def send_proms_pingback(pingback_target_uri, payload, mimetype='text/turtle'):
"""
Generates and posts a PROMS pingback message
:param pingback_target_uri: a URI, to where the pingback is sent
:param payload: an RDF file, in one of the allowed formats and conformant with the PROMS pingback message spec
:param mimetype: the mimetype of the RDF file being sent
:return: True or an error message
"""
headers = {'Content-Type': mimetype}
# send the post
try:
r = requests.post(pingback_target_uri, data=payload, headers=headers)
result = (r.status_code == 201)
if result:
return [True, r.content]
else:
return [False, r.content]
except Exception as e:
print(str(e))
return [False, str(e)] | 09ecff1835352f08e7fc5f4bce545585798e688c | 15,838 |
def sign(x):
"""
Sign function
"""
return 1 if x >= 0 else -1 | 20d85cf36d183c96e75fa3b795bf7f05f558e3b8 | 15,844 |
def dict_hangman(num_of_tries):
"""
The function return the "photo" of the hangman.
:param num_of_tries: the user's number of guessing
:type num_of_tries: int
:return: the photo of the hangman
:rtype: string
"""
HANGMAN_PHOTHOS = {
'1': """ x-------x""",
'2':
"""
x-------x
|
|
|
|
|""",
'3': """
x-------x
| |
| 0
|
|
|""",
'4': """
x-------x
| |
| 0
| |
|
|""",
'5': """
x-------x
| |
| 0
| /|\\
|
|""",
'6': """
x-------x
| |
| 0
| /|\\
| /
|""",
'7':"""
x-------x
| |
| 0
| /|\\
| / \\
|"""
}
return HANGMAN_PHOTHOS[str(num_of_tries)] | 3864d3072fa0fe9fea6c7e02733e466669335c80 | 15,847 |
def split_warnings_errors(output: str):
"""
Function which splits the given string into warning messages and error using W or E in the beginning of string
For error messages that do not start with E , they will be returned as other.
The output of a certain pack can both include:
- Fail msgs
- Fail msgs and warnings msgs
- Passed msgs
- Passed msgs and warnings msgs
- warning msgs
Args:
output(str): string which contains messages from linters.
return:
list of error messags, list of warnings messages, list of all undetected messages
"""
output_lst = output.split('\n')
# Warnings and errors lists currently relevant for XSOAR Linter
warnings_list = []
error_list = []
# Others list is relevant for mypy and flake8.
other_msg_list = []
for msg in output_lst:
# 'W:' for python2 xsoar linter
# 'W[0-9]' for python3 xsoar linter
if (msg.startswith('W') and msg[1].isdigit()) or 'W:' in msg or 'W90' in msg:
warnings_list.append(msg)
elif (msg.startswith('E') and msg[1].isdigit()) or 'E:' in msg or 'E90' in msg:
error_list.append(msg)
else:
other_msg_list.append(msg)
return error_list, warnings_list, other_msg_list | aaf0ea05f5d32247f210ae1696ea58824629d075 | 15,851 |
def _get_type_and_value(entry):
"""Parse dmidecode entry and return key/value pair"""
r = {}
for l in entry.split('\n'):
s = l.split(':')
if len(s) != 2:
continue
r[s[0].strip()] = s[1].strip()
return r | e6dd2068f10085c2dac233f1f71512e5874c5adc | 15,855 |
def _replace_strings(obj, old, new, inplace=False):
"""
Recursively replaces all strings in the given object.
This function is specifically meant to help with saving and loading
of config dictionaries and should not be considered a general tool.
"""
if not inplace:
obj = obj.copy()
if isinstance(obj, dict):
obj_keys = obj.keys()
elif isinstance(obj, list):
obj_keys = range(len(obj))
else:
raise TypeError('Object must be either a dict or a list.')
for key in obj_keys:
if isinstance(obj[key], str):
obj[key] = obj[key].replace(old, new)
elif isinstance(obj[key], dict) or isinstance(obj[key], list):
obj[key] = _replace_strings(obj[key], old, new)
return obj | 3f7661a53ab8cbb836eee68b1bb3d1df9e73c4a5 | 15,857 |
def hello_world() -> str:
""" Say something! """
return "Hello World!" | 22deba02b863355d150653caf744a65950a2fec5 | 15,858 |
def range_geometric_row(number, d, r=1.1):
"""Returns a list of numbers with a certain relation to each other.
The function divides one number into a list of d numbers [n0, n1, ...], such
that their sum is number and the relation between the numbers is defined
with n1 = n0 / r, n2 = n1 / r, n3 = n2 / r, ...
"""
if r <= 0:
raise ValueError("r must be > 0")
n0 = number / ((1 - (1 / r)**d) / (1 - 1 / r))
numbers = [n0]
for i in range(d - 1):
numbers.append(numbers[-1] / r)
return numbers | 92e7f9f1b85011323cf5e90002d8f9151ae17e0e | 15,859 |
import hashlib
def getIdHash(id):
""" Return md5 prefix based on id value"""
m = hashlib.new('md5')
m.update(id.encode('utf8'))
hexdigest = m.hexdigest()
return hexdigest[:5] | a9e8d67fae494cd2eaac41b6258be69ed10b667a | 15,860 |
def findPayload(message, type):
"""
Find a payload/part that matches a type as closely as possible and decode it
properly.
Parameters
----------
message : email.message.Message
The message to search.
type : str
A MIME type.
Returns
-------
str
The payload as a string.
"""
charset = message.get_charset() or "utf-8"
if message.is_multipart():
for k in message.walk():
contenttype = k.get_content_type()
if contenttype == type:
return k.get_payload(decode=True).decode(charset), contenttype
for k in message.walk():
contenttype = k.get_content_type()
if k.get_content_type() == message.get_default_type():
return k.get_payload(decode=True).decode(charset), contenttype
return message.get_payload(decode=True).decode(charset), message.get_content_type() | 265159546f1b0d2a6cc065e2c467528ea74048ef | 15,870 |
import csv
def calculate_number_of_synthetic_data_to_mix(original_data_file,
target_ratio):
"""Calculate the number of negative samples that need to be added to
achieve the target ratio of negative samples.
Args:
original_data_file: path to the original data file
target_ratio: the target ratio of negative samples
Returns:
The number of negative samples needed to achieve the target ratio.
"""
total_number_of_samples = 0
original_negative_sample_count = 0
with open(original_data_file) as tsv_file:
read_tsv = csv.reader(tsv_file, delimiter="\t")
for line in read_tsv:
if int(line[-1]) == 0:
original_negative_sample_count += 1
total_number_of_samples += 1
return int(
(original_negative_sample_count - total_number_of_samples * target_ratio)
/ (target_ratio - 1)) | eb83cdbb9af39715f16e412f8ae799222a2a232f | 15,871 |
def get_contact_info_keys(status_update):
"""Returns the contact info method keys (email, sms)
used to send a notification for a status update if the notification
exists. Returns [] if there is no notification
"""
if hasattr(status_update, 'notification'):
return list(status_update.notification.contact_info.keys())
else:
return [] | 020a9742df99cd65be1433165823c4f364009d85 | 15,879 |
def binary_search(input_list, number, min_idx, max_idx):
"""
Find the index for a given value (number) by searching in a sorted array
Time complexity: O(log2(n))
Space Complexity: O(1)
Args:
- input_list(array): sorted array of numbers to be searched in
- number(int): number to be searched for
Returns:
- position(int): reuturns array index for the given number
returns -1 when the number was not found
"""
# corner case for case when provided min_idx is higher than provided max_idx
if max_idx < min_idx:
return -1
# binary search
while min_idx <= max_idx:
mid = (min_idx + max_idx) // 2
# Check if x is present at mid
if input_list[mid] == number:
return mid
# If the guess was too low, set min to be one larger than the guess
if input_list[mid] < number:
min_idx = mid + 1
# If the guess was too high, set max to be one smaller than the guess
else:
max_idx = mid - 1
# if we got here, the number was not found
return -1 | 20358c096c529937d57503285150a90a37f62dd1 | 15,882 |
import torch
def _calculate_ece(logits, labels, n_bins=10):
"""
Calculates the Expected Calibration Error of a model.
(This isn't necessary for temperature scaling, just a cool metric).
The input to this loss is the logits of a model, NOT the softmax scores.
This divides the confidence outputs into equally-sized interval bins.
In each bin, we compute the confidence gap:
bin_gap = | avg_confidence_in_bin - accuracy_in_bin |
We then return a weighted average of the gaps, based on the number
of samples in each bin
See: Naeini, Mahdi Pakdaman, Gregory F. Cooper, and Milos Hauskrecht.
"Obtaining Well Calibrated Probabilities Using Bayesian Binning." AAAI.
2015.
"""
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
bin_lowers = bin_boundaries[:-1]
bin_uppers = bin_boundaries[1:]
softmaxes = logits
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece.item() | af311a47b7558b07838a38d736386147804ea109 | 15,886 |
def history_parser(arg):
"""
@param: arg is a string that contains the words seperated by spaces
@return: Returns two strings. The first word removed from arg and everything after the space
"""
v = -1
try:
v = arg.index(' ')
except ValueError:
return None, None
first_word = arg[0:v]
remain = arg[v + 1: len(arg)]
return first_word, remain | 267f0cd8ddfc0bfa9106d18341421d5d4d48ed1f | 15,888 |
import json
def decode(body):
"""decode string to object"""
if not body:
return None
return json.loads(body) | 2663a3d742b6f5e17d5b0aed876f136b30fdde1c | 15,893 |
def bintodec(x):
"""Convert Binary to Decimal. Input is a string and output is a positive integer."""
num = 0
n = len(x)
for i in range(n):
num = num + 2 ** i * int(x[n - i - 1])
return num | e83e3c34c237d5840bd024f49f3d436e6804b427 | 15,895 |
import collections
def _create_gt_string(cnv_row):
"""
Creates VCF gt string for a single-sample VCF.
"""
gt_dict = collections.OrderedDict()
gt_dict["GT"] = cnv_row.GT
gt_dict["S"] = cnv_row.S
gt_dict["NS"] = cnv_row.NS
gt_dict["LS"] = cnv_row.LS
gt_dict["LNS"] = cnv_row.LNS
gt_dict["RS"] = cnv_row.RS
gt_dict["RNS"] = cnv_row.RNS
gt_dict["GQ"] = cnv_row.GQ
gt_dict["AB"] = cnv_row.AB
gt_dict["SQ"] = cnv_row.SQ
out_string = ""
length_of_info = len(gt_dict.values())
for i, item in enumerate(gt_dict.items()):
value = str(item[1])
if (i + 1) != length_of_info:
out_string += value +":"
else:
out_string += value
return out_string | fd866f2ce22cb8b34608dcd6161be5d11f374c82 | 15,896 |
def generate_name_Id_map(name, map):
"""
Given a name and map, return corresponding Id. If name not in map, generate a new Id.
:param name: session or item name in dataset
:param map: existing map, a dictionary: map[name]=Id
:return: Id: allocated new Id of the corresponding name
"""
if name in map:
Id = map[name]
else:
Id = len(map.keys()) + 1
map[name] = Id
return Id | 8e86daf1a345803b280ad91f40a18eaeaa0cde5f | 15,897 |
def _flatten_task(obj):
"""Flatten the structure of the task into a single dict
"""
data = {
'id': obj.id,
'checkpoint_id': obj.checkpoint_id,
'policy_id': obj.policy_id,
'provider_id': obj.provider_id,
'vault_id': obj.vault_id,
'vault_name': obj.vault_name,
'operation_type': obj.operation_type,
'error_mesage': obj.error_info.message,
'error_code': obj.error_info.code,
'created_at': obj.created_at,
'ended_at': obj.ended_at,
'started_at': obj.started_at,
'updated_at': obj.updated_at,
}
return data | f10b0db4cefad81818f3195da0cf25339c420823 | 15,907 |
import itertools
def prev_this_next(it):
"""
iterator to gradually return three consecutive elements of
another iterable. If at the beginning or the end of the iterable,
None is returned for corresponding elements.
"""
a, b, c = itertools.tee(it, 3)
next(c)
return zip(itertools.chain([None], a), b, itertools.chain(c, [None])) | dc4416ed0b1c06502f3005df418536b9a92b4481 | 15,911 |
def parse_unity_results(output):
"""Read output from Unity and parse the results into 5-tuples:
(file, lineno, name, result, message)"""
result = []
lines = output.split('\n')
for line in lines:
if line == '':
break
parts = line.split(':', maxsplit=4)
if len(parts) == 4:
parts.append(None)
else:
parts[4] = parts[4][1:]
result.append(tuple(parts))
return result | 488f98d69434b2abdb9200353e51c12805694297 | 15,913 |
def airports_codes_from_city(name, airports_list, airport_type):
"""
Here we finding all airports(their codes) in city or state.
:param name: name of airport we gonna check
:param airports_list: list of all airports
:param airport_type: type of :param name: - 'code', 'city', 'state'
:return: list of airports codes
"""
temp = []
for airport in airports_list:
if name.lower() == airport[airport_type].lower():
temp.append(airport['code'])
return temp | 995bab1eca1633c5e52cfdfe5b1a92b7738fbbb5 | 15,916 |
from tqdm import tqdm
def _get_iterator(to_iter, progress):
"""
Create an iterator.
Args:
to_iter (:py:attr:`array_like`): The list or array to iterate.
progress (:py:attr:`bool`): Show progress bar.
Returns:
:py:attr:`range` or :py:class:`tqdm.std.tqdm`: Iterator object.
"""
iterator = range(len(to_iter))
if progress:
try:
iterator = tqdm(range(len(to_iter)))
except ModuleNotFoundError:
print(
"For the progress bar, you need to have the tqdm package "
"installed. No progress bar will be shown"
)
return iterator | c1dd29a430d2c468e3f89536fef593b7477a04ce | 15,917 |
def check_replication(service, service_replication,
warn_range, crit_range):
"""Check for sufficient replication of a service
:param service: A string representing the name of the service
this replication check is relevant to.
:param service_replication: An int representing the number of available
service instances
:param warn_range: A two tuple of integers representing the minimum and
maximum allowed replication before entering the WARNING
state.
:param crit_range: A two tuple of integers representing the minimum and
maximum allowed replication before entering the CRITICAL
state.
Note that all ranges are closed interval. If the replication is outside the
closed interval for the relevant level (e.g. warning, critical), then
the error code will change appropriately.
:returns check_result: A tuple of error code and a human readable error
message. The error codes conform to the nagios plugin api.
e.g. for an OK service
(0,
"OK lucy has 1 instance(s)")
e.g. for a CRITICAL service
(2,
"CRITICAL lucy has 0 instance(s), expected value in [1, 1e18])
"""
code, status, interval = 0, 'OK', None
if not (crit_range[0] <= service_replication <= crit_range[1]):
code, status, interval = 2, 'CRITICAL', crit_range
elif not (warn_range[0] <= service_replication <= warn_range[1]):
code, status, interval = 1, 'WARNING', warn_range
expected_message = ""
if interval is not None:
expected_message = ", expected value in {0}".format(interval)
message = "{0} {1} has {2} instance(s){3}".format(
status, service, service_replication, expected_message
)
return code, message | ac515bd0881431eebd0e14d0578f0bb1c07835f3 | 15,919 |
import json
def load_metadata(filename):
"""Read json from file and return json object."""
with open(filename, encoding="utf-8") as fd:
return json.load(fd) | 9a9fbccaf4a7e64d2aef4b427a68226e2b41c181 | 15,920 |
def get_section_number(data):
"""Gets the section number from the given section data
Parses the given array of section data bytes and returns the section number. SI tables come in sections.
Each section is numbered and this function will return the number of the given section.
"""
return data[6] | 5d7b9c51d614f627e3765b683216905ad124598b | 15,922 |
def denumpyfy(tuple_list_dict_number):
"""A nested structure of tuples, lists, dicts and the lowest level numpy
values gets converted to an object with the same structure but all being
corresponding native python numbers.
Parameters
----------
tuple_list_dict_number : tuple, list, dict, number
The object that should be converted.
Returns
-------
tuple, list, dict, native number (float, int)
The object with the same structure but only native python numbers.
"""
if isinstance(tuple_list_dict_number, tuple):
return tuple([denumpyfy(elem) for elem in tuple_list_dict_number])
if isinstance(tuple_list_dict_number, list):
return [denumpyfy(elem) for elem in tuple_list_dict_number]
if isinstance(tuple_list_dict_number, dict):
return {denumpyfy(k): denumpyfy(tuple_list_dict_number[k])
for k in tuple_list_dict_number}
if isinstance(tuple_list_dict_number, float):
return float(tuple_list_dict_number)
if isinstance(tuple_list_dict_number, int):
return int(tuple_list_dict_number)
return tuple_list_dict_number | 70558250e3875cde2c66fe6680fd6a6ace498602 | 15,924 |
def _get_nn_for_timestamp(kd_tree, X, timestep, aso_idx, k, radius):
"""Returns the nearest ASOs to the provided `aso_idx` ASO. If a `radius` is
provided then the results are all the ASOs within that given radius, otherwise
the results are the `k` nearest ASOs
:param kd_tree: The KD-tree build for the prediction timestep
:type kd_tree: sklearn.neighbors.KDTree
:param X: The numpy array of orbital predictions for each ASO for the
prediction timestep
:type X: numpy.array
:param timestep: The orbital prediction timestep that the `X` array
represents
:type timestep: int
:param aso_idx: The index in `X` of the ASO to find nearest ASOs for
:type aso_idx: int
:param k: The number of nearest ASOs to return. Not used if `radius` is passed
:type k: int
:param radius: The radius, in meters, to use in determining what is a near ASO
:type radius: float
:return: A list of tuples representing all ASOs that match the provided query
where the first value is the index in `X` of the matching ASO, the
second value is the timestep where this match occurred, and the third
value is the distance from the query ASO to the matching ASO.
:rtype: [(int, int, float)]
"""
query_point = X[aso_idx].reshape(1, -1)
if radius:
result_idxs, dists = kd_tree.query_radius(query_point,
r=radius,
return_distance=True)
else:
dists, result_idxs = kd_tree.query(query_point, k=k+1)
idx_dists = zip(result_idxs[0], dists[0])
if radius:
# Only return results that have non-zero distance
result = [(int(i), int(timestep), float(d))
for i, d in idx_dists
if d > 0]
else:
# Remove query object from results
result = [(int(i), int(timestep), float(d))
for i, d in idx_dists
if i != aso_idx]
return result | d2dc4f7912aafc903782c21ec374bdd4d24475bc | 15,925 |
def _poynting(field):
"""Computes poynting vector from the field vector"""
tmp1 = (field[0].real * field[1].real + field[0].imag * field[1].imag)
tmp2 = (field[2].real * field[3].real + field[2].imag * field[3].imag)
return tmp1-tmp2 | 55c334b5c2e5df87d13ad0c000e5e599d6e8b948 | 15,929 |
import socket
def tcp_port_reachable(addr, port, timeout=5):
"""
Return 'True' if we could establish a TCP connection with the given
addr:port tuple and 'False' otherwise.
Use the optional third argument to determine the timeout for the connect()
call.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(timeout)
try:
s.connect((addr, port))
s.shutdown(socket.SHUT_RDWR)
return True
except:
return False | 22c530cdbccf6c19ffe60b5e1904e797f7d059ea | 15,930 |
def scale_wind_speed(spd, scale_factor: float):
"""
Scales wind speed by the scale_factor
:param spd: Series or data frame or a single value of wind speed to scale
:param scale_factor: Scaling factor in decimal, if scaling factor is 0.8 output would be (1+0.8) times wind speed,
if it is -0.8 the output would be (1-0.8) times the wind speed
:return: Series or data frame with scaled wind speeds
"""
return spd * scale_factor | a55b76aee3e3ab2718db2714b6be0915c24e1631 | 15,931 |
def transform_dict(img):
"""
Take a raster data source and return a dictionary with geotranform values
and keys that make sense.
Parameters
----------
img : gdal.datasource
The image datasource from which the GeoTransform will be retrieved.
Returns
-------
dict
A dict with the geotransform values labeled.
"""
geotrans = img.GetGeoTransform()
ret_dict = {
'originX': geotrans[0],
'pixWidth': geotrans[1],
'rotation1': geotrans[2],
'originY': geotrans[3],
'rotation2': geotrans[4],
'pixHeight': geotrans[5],
}
return ret_dict | 8817028adfce28ae7f7ae787d4256d52fee095bc | 15,933 |
def read_list(filename):
"""
Read file line by line, ignoring lines starting with '#'
Parameters
----------
filename : str or pathlib.Path
Returns
-------
list
"""
with open(filename, 'r') as f:
lines = f.readlines()
return [line.rstrip('\n') for line in lines if not line.startswith('#')] | e4957425f1c2ff99e9e16ad8fe22e57ffa6e38a9 | 15,936 |
def get_trunc_minute_time(obstime):
"""Truncate obstime to nearest minute"""
return((int(obstime)/60) * 60) | 1a1a6ba47573442f0e98ca9aeaa8a5506e7ab081 | 15,942 |
def process_proc_output(proc, print_output=True):
"""Print output of process line by line. Returns the whole output."""
def _print(s):
if print_output:
print(s)
lines = []
for line in iter(proc.stdout.readline, b''):
_print('| %s' % line.rstrip())
lines.append(line)
return ''.join(lines) | 5af5d3355a7d588806120da625894fcbe93bdca0 | 15,944 |
def make_subtitle(rho_rms_aurora, rho_rms_emtf,
phi_rms_aurora, phi_rms_emtf,
matlab_or_fortran, ttl_str=""):
"""
Parameters
----------
rho_rms_aurora: float
rho_rms for aurora data differenced against a model. comes from compute_rms
rho_rms_emtf:
rho_rms for emtf data differenced against a model. comes from compute_rms
phi_rms_aurora:
phi_rms for aurora data differenced against a model. comes from compute_rms
phi_rms_emtf:
phi_rms for emtf data differenced against a model. comes from compute_rms
matlab_or_fortran: str
"matlab" or "fortran". A specifer for the version of emtf.
ttl_str: str
string onto which we add the subtitle
Returns
-------
ttl_str: str
Figure title with subtitle
"""
ttl_str += (
f"\n rho rms_aurora {rho_rms_aurora:.1f} rms_{matlab_or_fortran}"
f" {rho_rms_emtf:.1f}"
)
ttl_str += (
f"\n phi rms_aurora {phi_rms_aurora:.1f} rms_{matlab_or_fortran}"
f" {phi_rms_emtf:.1f}"
)
return ttl_str | 7569e658785e571a4dcd4428e76a13b8b10e3327 | 15,947 |
from typing import List
def find_substring_by_pattern(
strings: List[str], starts_with: str, ends_before: str
) -> str:
"""
search for a first occurrence of a given pattern in a string list
>>> some_strings = ["one", "two", "three"]
>>> find_substring_by_pattern(some_strings, "t", "o")
'tw'
>>> find_substring_by_pattern(some_strings, "four", "five")
Traceback (most recent call last):
...
ValueError: pattern four.*five not found
:param strings: a list of strings where the pattern is searched for
:param starts_with: the first letters of a pattern
:param ends_before: a substring which marks the beginning of something different
:returns: a pattern which starts with ``starts_with`` and ends before ``ends_before``
"""
for package_name in strings:
starting_index = package_name.find(starts_with)
if starting_index >= 0:
ending_index = package_name.find(ends_before)
return package_name[starting_index:ending_index]
raise ValueError(f"pattern {starts_with}.*{ends_before} not found") | 4bc0abe6fcdbf81350b575dd9834b9c646fda81e | 15,948 |
def noramlize_data(df):
"""
Normalizes the data by subtracting the mean and dividing by the max - min.
:param df: the dataframe that we are normalizing
:return: the normalized dataframe
"""
df_normalized = (df - df.mean()) / (df.max() - df.min())
return df_normalized | 13adfc79876f989d6983f74e57c7372c9dc00000 | 15,952 |
def filter_packets_by_filter_list(packets, filter_list):
"""
:param packets: Packet list
:param filter_list: Filters with respect to packet field
:type filter_list: list of pyshark_filter_util.PySharkFilter
:return: Filtered packets as list
"""
filtered_packets = [packet for packet in packets
if all(single_filter.apply_filter_to_packet(packet) for single_filter in filter_list)]
return filtered_packets | 61106178dca039498c4fec1239bd7d251b69f812 | 15,955 |
from datetime import datetime
def _get_date(element):
""" This function extracts the date the image was taken from the image element
and converts it to a datetime format.
Args:
element: A dict cuntianing all the image attributes.
Returns:
Date the image was taken in the format of datatime.
"""
date_taken = element.get('datetaken')
datetime_date_taken = datetime.strptime(date_taken, '%Y-%m-%d %H:%M:%S')
return datetime_date_taken | b42f6b24ce3545571bf1025b5b984386fde20208 | 15,958 |
def make_predictions(data, model, weights):
"""Predict the labels of all points in a data set for a given model.
Args:
data (array[float]): Input data. A list with shape N x 2
representing points on a 2D plane.
model (qml.QNode): A QNode whose output expectation value will be
used to make predictions of the labels of data.
weights (array[float]): The trainable model parameters for the QNode.
Returns:
array[int]: The array of predictions for each data point made by
the model QNode.
"""
preds = []
for idx in range(len(data)):
estimated_expval = model(data[idx], weights)
if estimated_expval > 0:
preds.append(1)
else:
preds.append(-1)
return preds | 4ac2ba85a12d56f0128ba518e8a7d030c0eb5734 | 15,968 |
def get_major_minor(stat_inst):
"""get major/minor from a stat instance
:return: major,minor tuple of ints
"""
return ( stat_inst.st_rdev >> 8 ) & 0xff, stat_inst.st_rdev & 0xff | ec623deb66d1e95f5ec9744ffbefc03c52ebf6a9 | 15,970 |
def _resources_json_version_required() -> str:
"""
Specifies the version of resources.json to obtain.
"""
return "develop" | 7f9eaff50b3a03ec50501e7ae125f4daab462325 | 15,971 |
import hashlib
def get_metadata_hash_for_attachments(attachments):
"""
Calculate a metadata hash from a collection of attachments.
The hash will change if any of the attachments changes.
"""
hashes = [attachment.metadata_hash for attachment in attachments]
# Sort the hashes to make the hash deterministic regardless of order
hashes.sort()
data = b"".join([hash_.encode("utf-8") for hash_ in hashes])
return hashlib.sha256(data).hexdigest() | fb56306c611a1aa1d87e897650142375a69f26e3 | 15,976 |
import torch
def rmspe(pred, true):
"""Computes RMSPE"""
return torch.mean(((true - pred) / true)**2)**0.5 | 2a83c9c10fb0547b4d90c805d94db871eb1b9e11 | 15,977 |
def get_xr_resolution(ds):
"""
Read dataset and get pixel resolution from attributes. If
attributes don't exist, fall back to rough approach of minus
one pixel to another.
Parameters
----------
ds: xarray dataset, dataarray
A single xarray dataset with variables and x and y dims.
Returns
----------
res : float
A float containing the cell resolution of xarray dataset.
"""
# check if x and y dims exist
if 'x' not in list(ds.dims) and 'y' not in list(ds.dims):
raise ValueError('No x, y dimensions in dataset.')
# try getting max res option 1
try:
res = abs(max(ds.res))
except:
res = None
# try getting max res option 2
try:
if not res:
res = max(ds.geobox.resolution)
except:
res = None
# try getting max res the dirty way
try:
if not res:
x_res = abs(float(ds['x'].isel(x=0))) - abs(float(ds['x'].isel(x=1)))
y_res = abs(float(ds['y'].isel(y=0))) - abs(float(ds['y'].isel(y=1)))
res = abs(float(max(x_res, y_res)))
except:
res = None
# check if something exists
if not res:
raise ValueError('Could not extract cell resolution from dataset.')
# return
return res | 3d87ff33190078753a496fd5f14854fa98eb1017 | 15,985 |
from typing import List
from typing import Dict
def match_relationships(relationships: List):
"""Creates a dict that connects object_id to all objects_ids it has a relationship with.
Args:
relationships (List): A list of relationship objects.
Returns:
Dict. Connects object_id to all objects_ids it has a relationship with. In the form of `id: [related_ids]`
"""
matches: Dict[str, set] = {}
for relationship in relationships:
source = relationship.get('source_ref')
target = relationship.get('target_ref')
if not source or not target:
continue
if source in matches:
matches[source].add(target)
else:
matches[source] = {target}
if target in matches:
matches[target].add(source)
else:
matches[target] = {source}
return matches | 870db3b324f340a7f632251ebe22bfae6e693076 | 15,989 |
def makeChromTiles(db):
"""
Make a region for each chromosome
"""
out = []
for (k, v) in db.chromsTuple:
out.append([k, 0, v])
return out | ca887035f05047bf7172c4e120fc7623a0fcb3e5 | 15,990 |
def data2mesh(data):
"""
Extracts from a given torch_geometric Data object the mesh elements
Parameters
----------
data : Data
a torch_geometric Data object
Returns
-------
(Tensor,LongTensor,Tensor)
the points set, the topology and the vertex normals tensor
"""
return data.pos, data.face, data.norm | 781489d95db76d106c910efda9bbc5f348e9d7ed | 15,994 |
def prime_generator(maxi):
"""
Generate all the prime numbers below maxi. maxi is not included.
The method uses Aristotle's sieve algorithm.
>>> prime_generator(10)
[2, 3, 5, 7]
"""
li = []
for _ in range(maxi):
li.append(1)
li[0] = li[1] = 0
for pos, val in enumerate(li):
if val:
for index in range(pos+pos, maxi, pos):
li[index] = 0
primes = []
for pos, val in enumerate(li):
if val:
primes.append(pos)
return primes | f2829ed995f0f289b22960fad706cf3ec0371446 | 15,998 |
def filter_content(contents, rules, mode=any):
"""
Filter contents by given rule.
Args:
contents `list`
List of illust, the content may vary from source to source.
Besure you know the data hierachy of object.
rules `list`
A list of function takes one content and returns boolean value,
indicating the content is selected.
mode `any` or `all`
Choose wether satisfy all rules or any of them.
Returns:
list of filtered contents.
Raises:
None
"""
if not (mode in (any, all)):
raise ValueError("Accept only one of 'any' or 'all'.")
res = []
for i in contents:
if mode(r(i) for r in rules):
res.append(i)
return res | a875ee3d8523a29043b576c9d19ef8a09589ed91 | 15,999 |
def get_dict_key_by_value(source_dict: dict, dict_value):
"""Return the first key of the ``source_dict`` that has the ``dict_value`` as value."""
for k, v in source_dict.items():
if v == dict_value:
return k
return | 0ae198c7d07fe57898779f0b75b75bdb590f5a3d | 16,000 |
from pathlib import Path
def get_cases(f, sep="---"):
"""
Extracts inputs and outputs for each test/verification case within f, where f is a folder.
Params
======
f: str
The folder containing the cases to be extracted.
sep: str
The substring separating comments from the input from the output in each case file.
Returns
=======
cases: []
Array of dictionaries containing each case
Each case is a dictionary with the following fields:
- "filename": The name of the file
- "comments": Any comments in the folder
- "inputs": The inputs
- "outputs": The expected outputs
Raises
======
AssertionError:
If the given path is not a folder.
"""
# Initialise path
p = Path(f)
# Assert that target folder is a folder
assert p.is_dir()
# List of cases in the folder
cases = []
# Loop through all cases within the folder
for f in p.iterdir():
# Open each case file
with open(f) as fr:
# Obtain the contents of the case file
contents = fr.read()
# The case files are structured such that it has COMMENTS, followed by the separator substring, followed by the INPUTS, followed by the separator substring, and finally followed by the OUTPUTS
# Instantiate case dictionary
c = {}
# Separate the contents by the separator, and then clean each individual element of newline/whitespace
contents = contents.split(sep)
contents = [c.strip() for c in contents]
# Populate dictionary
c["filename"] = f.with_suffix("").name
c["inputs"] = contents[0]
c["outputs"] = contents[1]
if len(contents) == 3:
c["comments"] = contents[2]
# Add dictionary to list of cases
cases.append(c)
# After all cases have been looped through, return cases
return cases | bedcc7cedd791505dbed886a539df92aa0fa3f87 | 16,001 |
import requests
def create_empty_zenodo_upload(access_token):
"""
Create an empty upload using Zenodo API.
:param access_token: Zenodo access token.
:return: requests.models.Response from Zenodo API
"""
headers = {"Content-Type": "application/json"}
r = requests.post('https://zenodo.org/api/deposit/depositions',
params={'access_token': access_token}, json={},
headers=headers)
return r | 14a26a07a08b2dab1ccf55ddea8c3d4cb3d9a2d6 | 16,002 |
def slurp(name):
"""
Read the file
:param name: read the named file
:return: the content
"""
with open(name, "r") as f:
return f.read() | 2edb241b5cbb0c9298dbdc9dd5f1f89786fff036 | 16,004 |
def vec_is_void(a):
"""
Check whether a given vector is empty
A vector is considered "void" if it is None or has no
elements.
Parameters
----------
a: list[]
The vector to be checked
Returns
-------
bool
True if the vector is empty, False otherwise
"""
return a is None or len(a) == 0 | 9a9b6f78ec2ddb81990fe54a5b429413c0472742 | 16,006 |
import calendar
def _sort_order(count_items):
"""Key for sorting day counts in days of the week order."""
return list(calendar.day_name).index(count_items[0]) | 9fa5a3f37ee034a99c2c6ed428655261661210aa | 16,012 |
def download_input(storage_provider, parsed_event, input_dir_path):
"""Receives the event where the file information is and
the tmp_dir_path where to store the downloaded file.
Returns the file path where the file is downloaded."""
return storage_provider.download_file(parsed_event, input_dir_path) | 887ca61a40a658d172b4b77833132b73933a14ce | 16,015 |
def get_bit(val: int, bitNo: int) -> int:
"""
Get bit from int
"""
return (val >> bitNo) & 1 | 19d49512387da66e5889fc1bacc014be240be4a9 | 16,016 |
def GetChildNodesWhereTrue(node_id, tree, stop_function):
"""walk down in tree and stop where stop_function is true
The walk finishes at the leaves.
returns a list of tuples of nodes and distance.
"""
result = []
def __getChildNodes(node_id, distance):
node = tree.node(node_id)
distance += node.data.branchlength
if not node.succ:
result.append((node_id, distance))
elif stop_function(node_id):
result.append((node_id, distance))
else:
for x in node.succ:
__getChildNodes(x, distance)
node = tree.node(node_id)
__getChildNodes(node_id, -node.data.branchlength)
return result | 9837a8ac294b8202a6e17deecd213d25599f575b | 16,017 |
def get_full_version(package_data):
"""
Given a mapping of package_data that contains a version and may an epoch and
release, return a complete version.
For example::
>>> get_full_version(dict(version='1.2.3'))
'1.2.3'
>>> get_full_version(dict(version='1.2.3', epoch='2'))
'2~1.2.3'
>>> get_full_version(dict(version='1.2.3', epoch='2', release='23'))
'2~1.2.3-23'
"""
version = package_data['version']
release = package_data.get('release', '')
if release:
release = f'-{release}'
epoch = package_data.get('epoch', '')
if epoch:
epoch = f'{epoch}~'
version = f'{epoch}{version}{release}'
return version | 3a8cc3731da2ef3f99e3e9f203e084c9478f48c8 | 16,020 |
def knight_tour(n, path, u, limit):
"""
Conduct a knight's tour using DFS.
Args:
n: current depth of the search tree.
path: a list of vertices visited up to this point.
u: the vertex we wish to explore.
limit: the number of nodes in the path.
Returns:
done (bool)
"""
visited = set(u)
path.append(u)
if n < limit:
nbrList = list(u.get_connections())
i = 0
done = False
while i < len(nbrList) and not done:
if nbrList[i] in visited:
done = knight_tour(n + 1, path, nbrList[i], limit)
i = i + 1
if not done: # prepare to backtrack
path.pop()
visited.remove(u)
else:
done = True
return done | f11a2da4e740183a85dbd2f281c65dda77237dad | 16,021 |
def read_tags_and_datablocks(text):
""" read a file consisting of blocks of numbers which are
separated by tag lines. separate tag lines from data lines
return two lists
e.g. for pp.data file:
Atomic number and pseudo-charge
14 4.00
Energy units (rydberg/hartree/ev):
rydberg
Angular momentum of local component (0=s,1=p,2=d..)
2
NLRULE override (1) VMC/DMC (2) config gen (0 ==> input/default value)
0 0
Number of grid points
1603
R(i) in atomic units
0.000000000000000E+00
0.719068853804059E-09
0.144778949458300E-08
will be parsed into:
['Atomic number and pseudo-charge', ...
['14 4.00', ...
Args:
text (str): file content
Return:
tuple: (tags, blocks), both are a list of strings
"""
lines = text.split('\n')
tags = []
blocks = []
block = ''
for line in lines:
try:
map(float, line.split())
block += line
except:
tags.append(line)
blocks.append(block)
block = ''
blocks.append(block)
return tags, blocks[1:] | 372512010198aa401552302d45f0a0745477bec1 | 16,022 |
def convert_sensor_type(v):
"""
converts the sensor type value into something
more meaningful.
"""
if v is 0:
return "None"
elif v is 1:
return "RealPower"
elif v is 2:
return "ApparentPower"
elif v is 3:
return "Voltage"
elif v is 4:
return "Current"
else:
return "Unknown" | 7f5bd77db7a240d21728b526daae7729b0871143 | 16,023 |
import bz2
def bunzip2(fileobj):
""" bunzip2 the file object. """
return bz2.decompress(fileobj) | 7da3f9b64cd0f6765860678b18be661fd42b813e | 16,034 |
def observatory_from_string(string):
"""If "jwst" or "hst" is in `string`, return it, otherwise return None."""
if "jwst" in string:
return "jwst"
elif "hst" in string:
return "hst"
else:
return None | 217cc3cf3c5b802799c0db73563f6d11b7ab4c4d | 16,035 |
def get_letters_pep(peptides_lst):
"""
Get letters list and letter-index dictionaries
"""
word_to_ix_ = dict((i, j) for j, i in enumerate(['<PAD>']+list(set(x for l in peptides_lst for x in l))))
ix_to_word_ = dict((j, i) for j, i in enumerate(['<PAD>']+list(set(x for l in peptides_lst for x in l))))
return word_to_ix_, ix_to_word_ | 5c341a9cdd99a874a34c1ed967a5e95ad1c7ed6f | 16,037 |
def _get_lat_lon(df):
"""Get latitude and longitude from geometries."""
col = df._geometry_column_name
df["latitude"] = [latlon.y for latlon in df[col]]
df["longitude"] = [latlon.x for latlon in df[col]]
return df | 9ab4b1cb469ae88444de97ec0cb0cec008643c4a | 16,040 |
def fix_fp(sequence, parallel):
"""
Fix footprints
Parameters
--------------
sequence
Sequence
parallel
Parallel
Returns
-------------
sequence
Sequence
parallel
Parallel
"""
sequence = sequence.difference(parallel)
return sequence, parallel | 721021af7d9f4b07ee25861788cde878a31b6135 | 16,044 |
def apply_ratio(o_w, o_h, t_w, t_h):
"""Calculate width or height to keep aspect ratio.
o_w, o_h -- origin width and height
t_w, t_h -- target width or height, the dimension
to be calculated must be set to 0.
Returns: (w, h) -- the new dimensions
"""
new_w = t_h * o_w / o_h
new_h = t_w * o_h / o_w
return new_w+t_w, new_h+t_h | f3143e5a5ad8aeafbb913e73aab40e8e8990ddd6 | 16,045 |
def maybe_append(usa_facts, jhu):
"""
Append dataframes if available, otherwise return USAFacts.
If both data frames are available, append them and return.
If only USAFacts is available, return it.
If USAFacts is not available, return None.
"""
if usa_facts is None:
return None
if jhu is None:
return usa_facts
return usa_facts.append(jhu) | 4f0831a09ac36caaec6f825036e69d0f5b62b19f | 16,050 |
def evaluate(clauses, sol):
"""
evaluate the clauses with the solution
"""
sol_vars = {} # variable number -> bool
for i in sol:
sol_vars[abs(i)] = bool(i > 0)
return all(any(sol_vars[abs(i)] ^ bool(i < 0) for i in clause)
for clause in clauses) | be50aa2c8f04b6d1ac76a17aea86beedc7abff4c | 16,053 |
import json
def _load_iam_data(path):
"""Builds a dictionary containing the information about all the
AWS IAM resources and the actions they relate to (for more information look
at the README.md in this directory). The keys of the dictionary are all the
possible IAM policy actions and the values are sets containing the
resources they allow access to. For instance:
{'ec2:allocateaddres':{'elastic-ip', 'ipv4pool-ec2'}}"""
data = None
with open(path, "r") as file:
data = json.load(file)
actions = {}
for service in data:
prefix = service["prefix"]
for privilege in service["privileges"]:
action = privilege["privilege"].lower()
action = f"{prefix}:{action}"
resources = set()
for resource_type in privilege["resource_types"]:
if "resource_type" not in resource_type:
continue
resource = resource_type["resource_type"].replace("*", "")
if resource == "":
continue
# The actions related to S3 can give access to objects, buckets
# or both (an object is a file in a bucket). Altimeter scans
# buckets, but not objects. So,for us, if an action give access
# to a object, it gives access to whole the bucket.
if prefix == "s3" and resource == "object":
resource = "bucket"
resources.add(resource)
actions[action] = resources
return actions | 7b394285f088ade8042207fdccbb9e6dfec78314 | 16,058 |
def is_field(x):
"""
Return whether or not ``x`` is a field.
Alternatively, one can use ``x in Fields()``.
EXAMPLES::
sage: R = PolynomialRing(QQ, 'x')
sage: F = FractionField(R)
sage: is_field(F)
True
"""
return x.is_field() | 87efa719721d72df5c751d734f2f26d6641190c1 | 16,059 |
from typing import Optional
from typing import Dict
def create_exclusive_start_key(player_id: str, start_key: Optional[str]) -> Optional[Dict[str, str]]:
"""
Create the 'ExclusiveStartKey' parameter for the DynamoDB query, based on the user-provided 'start_key' parameter to
this Lambda function.
"""
if start_key:
return {
'player_id': player_id,
'slot_name': start_key,
}
else:
return None | 7a03434e2d52908eb4f4d68483058183913ac9bb | 16,061 |
def label_id_to_cluster_id(label_id, C, unused_labels):
"""Map the label id to the cluster id according to clustering matrix.
Args:
label_id: the label id.
C: the cluster matrix of shape L x C.
unused_labels: used to adjust the label id.
Returns:
the cluster id.
"""
# count how many unused labels that are smaller than label_id
offset = sum([l < label_id for l in unused_labels])
row_id = label_id - offset
assert C.indptr[row_id] + 1 == C.indptr[row_id + 1]
cluster_id = C.indices[C.indptr[row_id]]
return cluster_id | 61593eb822dbaf88f101b2948c02de3fc07794d1 | 16,062 |
def expand_locations_and_make_variables(ctx, attr, values, targets = []):
"""Expands the `$(location)` placeholders and Make variables in each of the given values.
Args:
ctx: The rule context.
values: A list of strings, which may contain `$(location)`
placeholders, and predefined Make variables.
targets: A list of additional targets (other than the calling rule's
`deps`) that should be searched for substitutable labels.
Returns:
A list of strings with any `$(location)` placeholders and Make
variables expanded.
"""
return_values = []
for value in values:
expanded_value = ctx.expand_location(
value,
targets = targets,
)
expanded_value = ctx.expand_make_variables(
attr,
expanded_value,
{},
)
return_values.append(expanded_value)
return return_values | cb426117582161c5f32034df2cc1db29ebe37205 | 16,065 |
def get_result_or_raise(future):
"""Returns the ``result`` of *future* if it is available, otherwise
raise.
"""
return future.result | 8f6b2b6b6def964d48829f2b63467a6e39e3b853 | 16,071 |
def missing_respondents(reported, observed, identified):
"""Fill in missing respondents for the f1_respondent_id table.
Args:
reported (iterable): Respondent IDs appearing in f1_respondent_id.
observed (iterable): Respondent IDs appearing anywhere in the ferc1 DB.
identified (dict): A {respondent_id: respondent_name} mapping for those
observed but not reported respondent IDs which we have been able to
identify based on circumstantial evidence. See also:
`pudl.extract.ferc1.PUDL_RIDS`
Returns:
list: A list of dictionaries representing minimal f1_respondent_id table
records, of the form {"respondent_id": ID, "respondent_name": NAME}. These
records are generated only for unreported respondents. Identified respondents
get the values passed in through ``identified`` and the other observed but
unidentified respondents are named "Missing Respondent ID"
"""
records = []
for rid in observed:
if rid in reported:
continue
elif rid in identified:
records.append(
{
"respondent_id": rid,
"respondent_name": f"{identified[rid]} (PUDL determined)",
},
)
else:
records.append(
{
"respondent_id": rid,
"respondent_name": f"Missing Respondent {rid}",
},
)
return records | f919a9d398898b06d4442c75cc314a8cb52e1c5f | 16,073 |
def distance(x_0, y_0, x_1, y_1):
"""Return distance between 2 points (x_0, y_0) and (x_1, y_1)
"""
x_dist = x_0 - x_1
y_dist = y_0 - y_1
return(x_dist ** 2 + y_dist ** 2) ** 0.5 | 06c250b09e2a386f1814fe9c748cad574869a741 | 16,077 |
from typing import Callable
from typing import Sequence
def randline(filename: str, randchoice: Callable[[Sequence[str]], str]) -> str:
"""
return a randomly-selected line from the given file
"""
with open(filename, "rt", encoding="utf-8") as fh:
return randchoice(fh.readlines()).rstrip() | 6978158b25a8702e99ee6e7f9461cd391873eee4 | 16,081 |
async def latency(ctx):
"""Returns my gateway latency."""
return f'{ctx.client.gateway.latency*1000.:.0f} ms' | f2d088adfa485bfff8da5154ce672232e4d57e1d | 16,082 |
def str2intlist(s, delim=","):
""" create a list of ints from a delimited string
Parameters
----------
s: string
delim: string
Returns
-------
int_list: list of ints
Examples
--------
>>> str2intlist("1,2,3")
[1, 2, 3]
>>> str2intlist("1-3")
[1, 2, 3]
>>> str2intlist("2,3-4,6")
[2, 3, 4, 6]
>>> str2intlist("a")
Traceback (most recent call last):
...
TypeError: not a valid list of ints: "a"
"""
def get_int(n):
try:
return int(n)
except:
raise TypeError('not a valid list of ints: "{}"'.format(s))
return sum(((list(range(*[get_int(j) + k for k, j in enumerate(i.split('-'))]))
if '-' in i else [get_int(i)]) for i in s.split(delim)), []) | ae7a568a9e8b7c55e146515fad4dd810bee4ae46 | 16,084 |
def generate_timestamp_format(date_mapper: dict) -> str:
"""
Description
-----------
Generates a the time format for day,month,year dates based on each's
specified time_format.
Parameters
----------
date_mapper: dict
a dictionary for the schema mapping (JSON) for the dataframe filtered
for "date_type" equal to Day, Month, or Year.
Output
------
e.g. "%m/%d/%Y"
"""
day = "%d"
month = "%m"
year = "%y"
for kk, vv in date_mapper.items():
if vv["date_type"] == "day":
day = vv["time_format"]
elif vv["date_type"] == "month":
month = vv["time_format"]
elif vv["date_type"] == "year":
year = vv["time_format"]
return str.format("{}/{}/{}", month, day, year) | cd535a4fb35917517711cf149430c128e2c46b6d | 16,085 |
def get_command(line, fmt_space):
"""
Given a header line, get the possible command
Parameters
-----------
line : string
Line of the header
fmt_space : boolean
Yes = Novonix format with spaces in the commands
Returns
--------
command : string
Instruction in the header line
Examples
---------
>>> import preparenovonix.novonix_io as prep
>>> command = prep.get_command('[Open circuit storage]',fmt_space=True)
>>> print(command)
Open circuit storage
"""
command = " "
fw = line.strip()
# Find commands ignoring left spaces
if fmt_space:
command = fw[1:-1]
else:
if ":" in fw:
command = fw.split(":")[1].strip()
else:
command = fw[1:-1]
return command | 78642fd6e98817b85ce8431774a34723ed649473 | 16,086 |
import json
def harmonize_credentials(secrets_file=None, cromwell_username=None, cromwell_password=None):
"""
Takes all of the valid ways of providing authentication to cromwell and returns a username
and password
:param str cromwell_password:
:param str cromwell_username:
:param str secrets_file: json file containing fields cromwell_user and cromwell_password
:return tuple: (string of cromwell username, string of cromwell password)
"""
if cromwell_username is None or cromwell_password is None:
if secrets_file is None:
raise ValueError('One form of cromwell authentication must be provided, please pass '
'either cromwell_user and cromwell_password or a secrets_file.')
else:
with open(secrets_file) as f:
secrets = json.load(f)
cromwell_username = secrets['cromwell_user']
cromwell_password = secrets['cromwell_password']
return cromwell_username, cromwell_password | f0802b3e65ebec76393090f608c77abea312867b | 16,087 |
import pathlib
def lambda_filtered_paths(directory: str):
"""
Return list of filepaths for lambda layers and functions. Unecessary
files are filtered out.
"""
paths = pathlib.Path(directory).rglob("*")
return [
f
for f in paths
if not any(pat in str(f) for pat in ["__pycache__", ".mypy_cache", "~"])
] | 1638e821a249244fde95e26a027176d1e6d87491 | 16,089 |
def rescale(values, old_min, old_max, new_min, new_max):
"""Rescale a set of values into a new min and max
"""
output = []
for v in values:
new_v = (new_max - new_min) * (v - old_min) / (old_max - old_min) + new_min
output.append(new_v)
return output | c07173fca2f6ba0d1e1e32c257b9e4f4a39fe5a7 | 16,091 |
def KeyValuePairMessagesToMap(key_value_pair_messages):
"""Transform a list of KeyValuePair message to a map.
Args:
key_value_pair_messages: a list of KeyValuePair message.
Returns:
a map with a string as key and a string as value
"""
return {msg.key: msg.value for msg in key_value_pair_messages} | 7ab0d9a3dea7da762a559efa00ae50247ee8d2d4 | 16,092 |
def parse_result(results):
"""
Given a string, return a dictionary of the different
key:value pairs separated by semicolons
"""
if not results:
return {}
rlist = results.split(";")
keyvalpairs = [pair.split(":") for pair in rlist]
keydict = {
pair[0].strip(): pair[1].strip() for pair in keyvalpairs if len(pair) == 2
}
return keydict | eca808c2baa0b5c95e6fd052f2afabf53b05bd3a | 16,096 |
def case(bin_spec: str, default: str = "nf") -> str:
""" Return the case specified in the bin_spec string """
c = default
if "NF" in bin_spec:
c = "nf"
elif "ÞF" in bin_spec:
c = "þf"
elif "ÞGF" in bin_spec:
c = "þgf"
elif "EF" in bin_spec:
c = "ef"
return c | b2fdab5d1a48e1d20c3a561707033970cac55356 | 16,097 |
def name_func(testcase_func, _, param):
"""Create a name for the test function."""
return '{}_{}_{}'.format(testcase_func.__name__, param.args[0],
param.args[1].__name__) | 804f593850cff07758a61bd0ae2ccd92b2e46b19 | 16,100 |
def Convert(string):
"""converts string to list"""
li = list(string.split(" "))
return li | a446d46be5d7c2df7139460a461e0825784f5e89 | 16,102 |
import pathlib
def get_paths_to_patient_files(path_to_imgs, append_mask=True):
"""
Get paths to all data samples, i.e., CT & PET images (and a mask) for each patient.
Parameters
----------
path_to_imgs : str
A path to a directory with patients' data. Each folder in the directory must corresponds to a single patient.
append_mask : bool
Used to append a path to a ground truth mask.
Returns
-------
list of tuple
A list wherein each element is a tuple with two (three) `pathlib.Path` objects for a single patient.
The first one is the path to the CT image, the second one - to the PET image. If `append_mask` is True,
the path to the ground truth mask is added.
"""
path_to_imgs = pathlib.Path(path_to_imgs)
#patients = [p for p in os.listdir(path_to_imgs) if os.path.isdir(path_to_imgs / p)]
patients = [f.name.split("_")[0] for f in path_to_imgs.rglob("*_ct*")]
print(str(patients))
paths = []
for p in patients:
path_to_ct = path_to_imgs / (p + '_ct.nii.gz')
path_to_pt = path_to_imgs / (p + '_pt.nii.gz')
if append_mask:
path_to_mask = path_to_imgs / (p + '_gtvt.nii.gz')
paths.append((path_to_ct, path_to_pt, path_to_mask))
else:
paths.append((path_to_ct, path_to_pt))
return paths | 61480fee3e300d2ca97e819fae875cf4c7a637e1 | 16,103 |
def check_chars_in_positions(password, left, right, in_char):
"""
Check if password is valid based on if char count is in exactly one of
position left or position right
returns bool (True = valid password)
"""
is_in_left = password[left-1] == in_char
is_in_right = password[right-1] == in_char
# need to xor the two
return is_in_left != is_in_right | 36a80525307ecf359cf631079e128617c2d22bc3 | 16,104 |
from typing import Dict
def _create_stats_dict_from_values(
total_sum_w: float, total_sum_w2: float, total_sum_wx: float, total_sum_wx2: float
) -> Dict[str, float]:
"""Create a statistics dictionary from the provided set of values.
This is particularly useful for ensuring that the dictionary values are created uniformly.
Args:
total_sum_w: Total sum of the weights (ie. the frequencies).
total_sum_w2: Total sum of the weights squared (ie. sum of Sumw2 array).
total_sum_wx: Total sum of weights * x.
total_sum_wx2: Total sum of weights * x * x.
Returns:
Statistics dict suitable for storing in the metadata.
"""
return {
"_total_sum_w": total_sum_w,
"_total_sum_w2": total_sum_w2,
"_total_sum_wx": total_sum_wx,
"_total_sum_wx2": total_sum_wx2,
} | 4ef02ef12b903a4a0a14f3c5fa9ce7edf11f6380 | 16,107 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.