content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import uuid
def get_uuid(s):
"""Return UUID for the string passed in."""
return str(uuid.uuid5(uuid.NAMESPACE_OID, str(s))) | f034e235ff3e673152216fbb84f9fc0ca85cfc41 | 16,405 |
import click
def detect_config_version(config):
"""Return version of an slo-generator config based on the format.
Args:
config (dict): slo-generator configuration.
Returns:
str: SLO config version.
"""
if not isinstance(config, dict):
click.secho(
'Config does not correspond to any known SLO config versions.',
fg='red')
return None
api_version = config.get('apiVersion', '')
kind = config.get('kind', '')
if not kind: # old v1 format
return 'v1'
return api_version.split('/')[-1] | 26cb4d7ae7eba981e456dc8f9201df719f720896 | 16,407 |
def o_to_matsubara_idx_b(o):
"""
Convert index in "o" convension to bosonic Matsubara index
Parameters
----------
o 2*n
Returns n
-------
"""
assert o%2 == 0
return int(o/2) | 347313ac016033360910d94e19c7d3ef8bc3f7e3 | 16,408 |
def _get_warmup_factor_at_iter(method: str, curr_iter: int, warmup_iters: int, warmup_factor: float) -> float:
"""Return the learning rate warmup factor at a specific iteration.
Parameters
----------
method: str
Warmup method; either "constant" or "linear".
curr_iter: int
Iteration at which to calculate the warmup factor.
warmup_iters: int
The length of the warmup phases.
warmup_factor: float
The base warmup factor (the meaning changes according to the method used).
Returns
-------
float: The effective warmup factor at the given iteration.
"""
if curr_iter >= warmup_iters:
return 1.0
if method == "constant":
return warmup_factor
if method == "linear":
alpha = curr_iter / warmup_iters
return warmup_factor * (1 - alpha) + alpha
raise ValueError(f"Unknown warmup method: {method}") | 5d53b32746450189eeca116f0599dbe00c05d82b | 16,411 |
def pierce(t: float) -> float:
"""Calculates Pierce.
Args:
t (float): Air temperature [K].
Returns:
float: Pierce.
"""
return 0.0658 * t**3 - 53.7558 * t**2 + 14703.8127 * t - 1345485.0465 | 94dd4ccf4de79ba9f91aa37578b68c1b6d462c05 | 16,412 |
def instrument_trial_pairs(df):
"""
Extract a list of all unique instrument/trial pairs.
"""
df_iter = df.groupby(['instrument', 'trial']).size().reset_index()
return [(r['instrument'], r['trial']) for _, r in df_iter.iterrows()] | 600e2a96e2bd64f3dc1128fbdbb881b3b1790719 | 16,413 |
def compare(pipeline1, pipeline2):
"""
Compare if two dataset pipelines are the same.
Args:
pipeline1 (Dataset): a dataset pipeline.
pipeline2 (Dataset): a dataset pipeline.
Returns:
Whether pipeline1 is equal to pipeline2.
Examples:
>>> pipeline1 = ds.MnistDataset(mnist_dataset_dir, 100)
>>> pipeline2 = ds.Cifar10Dataset(cifar_dataset_dir, 100)
>>> ds.compare(pipeline1, pipeline2)
"""
return pipeline1.to_json() == pipeline2.to_json() | dacd93eabc63f6b51502f437fa625a14314e0740 | 16,416 |
def vec_subvec(a, r):
"""
Extracts a sub-vector from a given vector
Parameters
----------
a: list[]
A vector of scalar values
r: tuple
A pair (ps, pe) indicating the start and end points of the
sub-vector dimension. If ps>pe then the sub-vector will be
reversed. Values must be positive.
Returns
-------
list[]
The sub-vector
"""
assert len(r) == 2
assert min(r) >= 0
step = 1 if r[0] <= r[1] else -1
return (a[r[0]:: step] if r[0] > r[1] == 0 else
a[r[0]: r[1] + step: step]) | d704f50c6269bf5a593ccdba5cdce67542a462d7 | 16,420 |
import re
def detectMetadataFormat(xmldoc):
""" Detect the format of the metadata in `xmldoc`.
"""
root = xmldoc
if re.search("eml$", root.tag):
return "eml"
elif re.search("Dryad", root.tag):
return "dryad"
elif re.search("metadata", root.tag):
return "fgdc"
else:
return "unknown" | 6534f0f9c4bb3b2905be6a924ae8ceb0ce39ab1b | 16,422 |
def astz(dt, tz):
"""
Given a datetime object and a timezone object, return a new
datetime object that represents the same moment, but written
in terms of the new timezone.
:param dt: a datetime object
:param tz: a timezone object
:return: a datetime object
"""
# See http://pythonhosted.org/pytz/ for why this is
# not as trivial as it might first appear.
return tz.normalize(dt.astimezone(tz)) | af98a3e9e6fccc21f09302b5f7e655149904e196 | 16,423 |
def image_generator_from_dataframe(dataframe,
img_size,
batch_size,
cls_labels,
datagen,
color_mode='rgb'):
"""
Creates a generator that loads images from information in a pandas dataframe.
The dataframe must have at least two columns:
- "filename" with the absolute path to the file
- "cls" with the class label of each image (text)
Images will be preprocessed using an ImageDataGenerator, resized to a fixed shape and converted to grayscale if desired.
:param dataframe: Pandas dataframe with the image information
:param img_size: Shape of to resize the images to, e.g. (128, 128)
:param batch_size: Size of the generator batch
:param cls_labels: List containing each class label
:param datagen: The ImageDataGenerator for preprocessing
:param color_mode: 'rgb' or 'grayscale' to produce 3 or 1 channel images, respectively
:return:
"""
return datagen.flow_from_dataframe(
dataframe,
x_col="filenames",
y_col="cls",
classes=cls_labels,
target_size=img_size,
batch_size=batch_size,
color_mode=color_mode,
interpolation='bilinear',
class_mode='categorical') | d208b1e6ba36df1cee9d35c718431c110ab08304 | 16,425 |
def get_object_class(configvalue):
""" Formats the objectclass line from the config into a list """
objclass = configvalue.split('|')
return objclass | 3cb4c9370d5e711fcadbbd4d0583b2967e9ebe6d | 16,426 |
def find_default_dataset_and_split_names(datasets, default_dataset_name=None, default_split_name=None, train_split_name=None):
"""
Return a good choice of dataset name and split name, possibly not the train split.
Args:
datasets: the datasets
default_dataset_name: a possible dataset name. If `None`, find a suitable dataset, if not, the dataset
must be present
default_split_name: a possible split name. If `None`, find a suitable split, if not, the dataset
must be present. if `train_split_name` is specified, the selected split name will be different from `train_split_name`
train_split_name: if not `None`, exclude the train split
Returns:
a tuple (dataset_name, split_name)
"""
if default_dataset_name is None:
default_dataset_name = next(iter(datasets))
else:
if default_dataset_name not in datasets:
return None, None
if default_split_name is None:
available_splits = datasets[default_dataset_name].keys()
for split_name in available_splits:
if split_name != train_split_name:
default_split_name = split_name
break
else:
if default_split_name not in datasets[default_dataset_name]:
return None, None
return default_dataset_name, default_split_name | 6a1c844109afb2fcd3fd9f85bc966377fa7b7bc2 | 16,432 |
def pearsoncc(x, y):
""" Compute Pearson Correlation Coefficient. """
x = (x - x.mean(0)) / x.std(0)
y = (y - y.mean(0)) / y.std(0)
return (x * y).mean() | 145471d2007feaef0c285312b645d07e6922d4c2 | 16,435 |
def get_projects_by_4(p):
""" The frontend displays a list of projects in 4 columns. This function
splits the list of the projects visible by the user in chunks of size 4
and returns it."""
# Split the list of visible projects by chunks of size 4
projects = sorted([e['id'] for e in p['projects']])
n = 4 # split projects in chunks of size 4
projects_by_4 = [projects[i * n:(i + 1) * n]
for i in range((len(projects) + n - 1) // n)]
return projects_by_4 | c44e45c96a0d0869f0b8c2e6b61779feda59e4ee | 16,438 |
def sdetectBatch(sess, image_tensor, tensor_dict, images):
"""
Detects objects on an already-configured session and tensor dict with a set of images
"""
output = sess.run(tensor_dict, feed_dict={image_tensor: images})
return output | a0d289df27dbfe8c20553d0362e9c6f0e5d5c1c4 | 16,440 |
def add_NA_indicator_variables(df, inplace=False):
"""
Add indicator variables for each column to indicate missingness.
"""
df_ = df if inplace else df.copy()
for i, c in enumerate(df_.columns):
x = df_[c].isna()
if x.any():
df_.insert(i + 1, '{}_NA'.format(c), x)
return df_ | 834b72f4df820d520cc2e2c1fb3605ad846a9f2f | 16,443 |
import hashlib
def gen_server_hash(server_id, shared_secret, public_key):
"""Generates the server hash for use in authentication.
Parameters
----------
server_id : :class:`str`
The server id found in :class:`~.EncryptionRequestPacket`.
shared_secret
The shared secret gotten from :func:`gen_shared_secret`.
public_key
The public key found in :class:`~.EncryptionRequestPacket`.
Returns
-------
:class:`str`
The server hash.
"""
h = hashlib.sha1()
h.update(server_id.encode("ascii"))
h.update(shared_secret)
h.update(public_key)
return f"{int.from_bytes(h.digest(), byteorder='big', signed=True):x}" | f6294f68fa94a92fca1e1942d280a07535ce7abb | 16,448 |
import base64
def PngFile_to_Base64(file_name):
"""Converts a png file to a base 64 encoded string"""
in_file=open(file_name, "rb")
encoded=base64.b64encode(in_file.read()).decode()
return encoded | 018aed2f85584ce4c585236afb58996b6952e852 | 16,450 |
def dicecoeff_precount(e1, e2, count):
"""
Dice coefficient measures the similarity of two bit patterns
:param e1: bitarray1
:param e2: bitarray2
:param count: float bitcount1 + bitcount2
:return: real 0-1 similarity measure
"""
if count == 0:
return 0
return 2*(e1 & e2).count()/count | d35658e5d369b7c36ee422d5b30980236c7112fb | 16,452 |
def find_tts(prices):
"""Returns a list containing the buy day, sell day and resulting profit - finds the best days on which to buy and sell."""
buyday = 0
sellday = 0
profit = 0
for x in range(len(prices)):
for y in range(x+1, len(prices)):
if prices[x] < prices [y]:
if prices[y] - prices[x] > profit:
profit = prices[y] - prices[x]
buyday = x
sellday = y
return [buyday, sellday, profit] | efa5bcf672d58b0f1a0562afb33fe9881668dd2b | 16,456 |
def get_clusters_as_list(df):
"""Return a list of list of Event
Args:
df (DataFrame): see get_dataframe()
Returns:
list ot list of Event: list of event clusters
"""
return df.groupby('label')['event'].apply(list).values.tolist() | b49a8efeaef0506659a483cb9cb8431d284557a5 | 16,464 |
def saml_assertion_to_ldap_style_name(assertion_attributes):
"""
Return string, approximating a NOAA LDAP-style name for SAML user
Keyword Parameters:
assertion_attributes -- Dict, representing SAML assertion
attributes for a logged in user
>>> test_attributes = {'mail': ['[email protected]']}
>>> saml_assertion_to_ldap_style_name(test_attributes)
'uid=pat.ng,ou=People,o=noaa.gov'
"""
# Adapt SAML user email assertion, into a LDAP-style name
user_name, user_domain = assertion_attributes['mail'].pop().split('@')
generated_ldap_id = 'uid={},ou=People,o={}'.format(user_name.lower(), user_domain)
return generated_ldap_id | c21c1f461e5ad06721417fb51284e82b7b5128d7 | 16,466 |
import pathlib
def _get_institution(path: pathlib.Path) -> str:
"""Returns the institution. As per docstring, this is index -3."""
return str(path).split('/')[-3] | 4c42e40bc19dbe7c7e45f5984a6ff5cf940d4fd7 | 16,467 |
def calc_per_difference(dev_per_dict:dict) -> dict:
"""
Calculates the differecence between the speak testset PER and the training-dev sets. This
difference is a measure of data mismatch.
"""
per_diff_dict = dict()
for name, per in dev_per_dict.items():
if not name=='speak':
diff_name = name + "-speak"
per_diff_dict[diff_name] = dev_per_dict.get('speak', 0.0) - dev_per_dict.get(name, 0.0)
return per_diff_dict | 25f1b331e9b8ba0346422000a6cf3e68061dd8a2 | 16,468 |
def hash_diff(old_hash, new_hash):
"""
Returns the keys in new_hash that have different values
in old_hash. Also returns keys that are in new_hash but not
in old_hash.
Keyword arguments:
old_hash -- the dictionary of hashes for the old directory
new_hash -- the dictionary of hashes for the new directory
"""
paths_changed = []
new_paths = []
for key, value in new_hash.items():
if key in old_hash:
if value != old_hash[key]:
paths_changed.append(key)
else:
new_paths.append(key)
return (paths_changed, new_paths) | 7c9c650c64371385843f8f7604eaa07209e9149f | 16,474 |
def str2ints(stat_id_str: str) -> list:
"""Convert stat_id string e.g. 'account_id:tank_id' to list of ints"""
return [ int(x) for x in stat_id_str.split(':') ] | 15def7276ac9cfea86a5a8010b95de189f7750d5 | 16,479 |
def get_category(line1):
"""Collects breach category from the line.
Args:
line1 (str): 1.st line of data block
Returns:
str: breach category
"""
line1 = line1.split(' ')
return line1[-2] | 49da3f6efef3ed72dd8ba43795d297d04b8c20c8 | 16,483 |
import random
def generate_random_offset(background_shape: tuple, object_shape: tuple) -> tuple:
"""
Generate a safe random offset for the background.
:param background_shape: tuple
:param object_shape: tuple
:return: tuple - offset in x, y
"""
b_height, b_width = background_shape
o_height, o_width = object_shape
random_x = random.randrange(0, b_width - o_width, 1)
random_y = random.randrange(0, b_height - o_height, 1)
return random_x, random_y | c3d015f3be7add5ee1a472e8c73f0a32abca898e | 16,485 |
def get_ad_sublist(adlist, names):
"""
Select a sublist of AstroData instances from the input list using a list
of filename strings. Any filenames that don't exist in the AstroData list
are just ignored.
"""
outlist = []
for ad in adlist:
if ad.filename in names:
outlist.append(ad)
return outlist | 61af4ebb3c4c7cd93af1576a6906c612aae5872d | 16,486 |
def unaligned_words(f_words, e_words, biphrases):
"""Find unaligned words
:param f_words: source words
:param e_words: target words
:param biphrases: list of phrase pairs (check `minimal_biphrases`)
:returns: set of unaligned source words, set of unaligned target words
"""
fs = set()
es = set()
for fp, ep in biphrases:
fs.update(fp)
es.update(ep)
return frozenset(range(len(f_words))) - fs, frozenset(range(len(e_words))) - es | dbee429e9f72b17d3e3ba311fdd4c17d2938bca1 | 16,490 |
def toTf(f):
"""
:param f: input pose
:type f: :class:`PyKDL.Frame`
Return a tuple (position, quaternion) for the pose.
"""
return ((f.p[0], f.p[1], f.p[2]), f.M.GetQuaternion()) | 3fe386803804b1c27919c47f1a1cf4a59b20b1ed | 16,491 |
def predict_model(dataset, model):
"""
Method to predict reliability of dataset using the provided model
:param dataset: dataset whose reliability is to be predicted
:param model: model to be used to predict reliability
:return: the reliabilities of the dataset
"""
for drop_column in ["is_reliable", "vic_x", "vix_y", "latitude", "longitude"]:
if drop_column in dataset.columns:
dataset = dataset.drop(columns=[drop_column])
return model.predict(dataset) | 081f2fa73663c46b9f0018ba037acd0ce1d2d086 | 16,493 |
def nobrackets(v):
"""
Remove brackets
"""
return v.replace('[', '').replace(']', '') | 807dafa83a743a94ca81666e979857ba8481eab9 | 16,494 |
def _set_args(args, line_args, file_name):
"""
Sets the arg list to contain all of the original CL
arguments and the arguments provided in the file.
:list args: copy of sys.argv command line args
:list args_list: ordered list of key, value args from file
:str file_name: name file to remove from args list
"""
args = args + line_args
args.remove(file_name)
return args | 1c38acd5e34f7ee2e27f2396ec6c917ecfde996a | 16,500 |
import csv
def read_csv(input_file_path, verbose=False, delimiter=','):
"""
Function reads csv file and returns list of records
:param input_file_path: path to csv file
:param verbose: defines if verbose mode
:param delimiter: fields separator in csv file
:return: list of records
"""
result = []
with open(input_file_path) as csv_file:
for row in csv.reader(csv_file, delimiter=delimiter):
result.append(row)
if verbose:
print(result)
return result | 57597e820750b11382cd27e31135fa8b6f45153e | 16,501 |
def get_metric_name_from_task(task: str) -> str:
"""Get the name of the metric for the corresponding GLUE task.
If using `load_best_model_at_end=True` in TrainingArguments then you need
`metric_for_best_model=metric_name`. Use this method to get the metric_name
for the corresponding GLUE task.
"""
if task == "stsb":
return "pearson"
elif task == "cola":
return "matthews_correlation"
else:
return "accuracy" | 2b911db666e74345a288d1781c2368dfd7a22a74 | 16,503 |
def slice_image(im, dict_obj):
"""Slice the bounding box out of the image and return."""
left = dict_obj['left']
top = dict_obj['top']
right = dict_obj['right']
bottom = dict_obj['bottom']
im = im[top:bottom, left:right, :]
return im | 1c4a14386a6d70a922af6bfc2c7415553a48a52d | 16,505 |
from typing import Optional
def check_n_jobs(n_jobs: Optional[int] = None):
"""Parse the ``n_jobs`` parameter for multiprocessing."""
if n_jobs == -1:
return None
elif n_jobs is None:
return 1
else:
return n_jobs | 0d9c67c2e995df9fb3e497db40466eab9b5041d2 | 16,507 |
from datetime import datetime
def convert_to_date(date):
"""Convert to date with '%B %d, %Y' format."""
return datetime.strptime(date, '%B %d, %Y') | 10db2be45c5cae52365858ed324540486f6e5eff | 16,509 |
def get_dtim(tree, hart):
"""Get the DTIM associated with the hart"""
dtim_ref = hart.get_field("sifive,dtim")
if dtim_ref:
dtim = tree.get_by_reference(dtim_ref)
return dtim
return None | 991351235d4179d1e9ac75c3c9746020a81a9cc9 | 16,511 |
def _check_startyear(cfgs):
"""
Check to see that at most one startyear is defined in the config
Returns
-------
int
startyear
Raises
------
ValueError
if more that one startyear is defined
"""
first_startyear = cfgs[0].pop("startyear", 1750)
if len(cfgs) > 1:
for cfg in cfgs[1:]:
this_startyear = cfg.pop("startyear", 1750)
if this_startyear != first_startyear:
raise ValueError("Can only handle one startyear per scenario ensemble")
return first_startyear | a43932082bcd128a9badf9b26648e96a9a4ef9bd | 16,512 |
def check_if_point_in_extents(point,extents):
"""check if a 2D point lies within the bounding box extents = (xmin,ymin,xmax,ymax)
returns: boolean"""
if (point[0]>=extents[0]) & (point[0]<=extents[2]) & \
(point[1]>=extents[1]) & (point[1]<=extents[3]):
return True
else:
return False
return | f25fe2d8b49a44f1866695c749ce1933d6e998fc | 16,514 |
def has_errors(result):
"""This function checks if a GqlResponse has any errors.
Args:
result (GqlResponse): [data, errors]
Returns:
(boolean): Returns `True` if a transaction has at least one error.
"""
_, errors = result
return len(errors) > 0 | 15fddcf9b2231c946fabb6603edc2635c8b9478f | 16,518 |
def get_dimensions_by_order(dims_in, dataset):
"""get dimension
Parameters
----------
dims_in: int or list of int
the dimensions by numerical order
dataset: sidpy.Dataset
Returns
-------
dims_out: list of dimensions
"""
if isinstance(dims_in, int):
dims_in = [dims_in]
dims_out = []
for item in dims_in:
if isinstance(item, int):
if item in dataset._axes:
dims_out.append([item, dataset._axes[item]])
return dims_out | 3430f045ed57e3d98aec15ffb7298d1c727bee27 | 16,522 |
import pickle
def load_data(pathToPickleFile):
"""
Read in pickled file or dir.
File: ground_truth_dict = load_data('ground_truth.pkl')
Dir: ground_truth_dict = load_data(os.path.join(output_dir, 'ground_truth.pkl'))
:param pathToPickleFile: pickled file to read in, e.g. 'dataset.pkl'
:return: the data from the pickled file
"""
with open(pathToPickleFile, 'rb') as pickle_file:
data = pickle.load(pickle_file)
return data | 26655cadd9ba4130b9280eaaa97cdc0b05563521 | 16,523 |
import contextlib
import socket
def port_available(port):
""" Find if a port is in use
From http://stackoverflow.com/a/35370008
Args:
port: The port to be checked.
Returns:
True if the port is available; False if it is in use.
"""
with contextlib.closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
if sock.connect_ex(("localhost", port)) == 0:
return False
else:
return True | 5a29eb8a252591a5a05deb759e3811bd52a9940d | 16,531 |
def DEFAULT_REPORT_SCRUBBER(raw):
"""Remove breakdown and properties."""
return {k: v for k, v in raw.items() if k not in ("breakdown", "properties")} | 845f1040728b6826ca6f3fe858730085aeb7787d | 16,536 |
def padded_insert(items, index, value, null_val=None):
"""
insert value into the items list at given index
if index is larger than length of list then
extend it up to index and pad the extra space with null_val
"""
if len(items) == index:
items.append(value)
elif len(items) > index:
items[index] = value
else:
items.extend([null_val] * (index - len(items)))
items.append(value)
return items | 725dc2d0e314e1bc76bdb7f6d778e9b13316b2aa | 16,540 |
import re
def _alphanum_key(string):
"""Parse a string into string and integer components."""
parity = int(string[0] in '0123456789')
return [
int(x) if i % 2 != parity else x
for i, x in enumerate(re.split('([0-9]+)', string)[parity:])
] | 12d3f6761a60442327a52c3c60751fe14fa92545 | 16,543 |
from typing import List
def solution(nums: List[int]) -> bool:
"""
Look at the list from backwards.
Eg: input=[3,2,1,0,4] -> [4,0,1,2,3].
Following the new list,
if we can find an element whose value is greater than its gap between index of this element and index of the target,
then this element will be a new target for the following elements to reach.
Repeating this logic, as long as the last element of the reversed list (the first element based on the input)
can reach the last target, it will be able to reach the end.
"""
nums.reverse()
result = False
target_idx = 0
for idx, num in enumerate(nums):
if num < (idx - target_idx):
result = False
else:
result = True
target_idx = idx
return result | 2d5ce63379c818f1559568dd59082d25b4f03a5d | 16,545 |
def clean_data(df):
"""
This procedure removes rows containing NAs from the dataframe
:param df: dataframe loaded from the flat file
:return: dataframe after removing NAs
"""
return df.dropna() | 2839b19c8aff3ce85eb9f9b0716be6a0b85e74c7 | 16,550 |
def colorwheel(color_value):
"""
A colorwheel. ``0`` and ``255`` are red, ``85`` is green, and ``170`` is blue, with the values
between being the rest of the rainbow.
:param int color_value: 0-255 of color value to return
:return: tuple of RGB values
"""
if color_value < 0 or color_value > 255:
return 0, 0, 0
if color_value < 85:
return 255 - color_value * 3, color_value * 3, 0
if color_value < 170:
color_value -= 85
return 0, 255 - color_value * 3, color_value * 3
color_value -= 170
return color_value * 3, 0, 255 - color_value * 3 | 22a65f7846e32e58365e573c73d37fa1272a1fda | 16,551 |
import random
def _make_random_sequence(length=50):
""" Generate a random string for secret key or password """
chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
return ''.join(random.SystemRandom().choice(chars) for n in range(length)) | d69c213b3c2ebfe8fda82400c69a767e91ed9f35 | 16,552 |
import requests
def get_pypi_info(package="cellpy"):
"""get version number and sha256 for a pypi package
Args:
package (str): name of package
Returns:
[version, sha256]
"""
url = f"https://pypi.org/pypi/{package}/json"
response = requests.get(url)
if not response:
print(f"url {url} not responding")
return None, None
response = response.json()
version = response["info"]["version"]
release = response["releases"][version][-1]
sha256 = release["digests"]["sha256"]
return version, sha256 | 819fa2c0ab0264455ae91225dff0d1f8fb498820 | 16,553 |
def get_res(catalog):
"""
Returns the resolution
"""
return catalog['ishape_hsm_regauss_resolution'] | 43bd30401f77de10a41be6ab720626acff53d643 | 16,555 |
import math
def angle_between_vectors(vector1, vector2):
""" Returns the angle in radians between vectors 'vector1' and 'vector2'::
angle_between((1, 0, 0), (0, 1, 0)): 1.5707963267948966
angle_between((1, 0, 0), (1, 0, 0)): 0.0
angle_between((1, 0, 0), (-1, 0, 0)): 3.141592653589793"""
return math.atan2(vector2[0], vector2[2]) - math.atan2(vector1[0], vector1[2]) | 224965990d6880ea5597b7e2522b24a9f0ef6179 | 16,558 |
import pkg_resources
def load_resource(resource_path): # pragma: NO COVER
"""
Gets the content of a resource
"""
resource_content = pkg_resources.resource_string(__name__, resource_path)
return resource_content.decode('utf-8') | 5afd4c6072f942c865f64dbceb22cf422903c573 | 16,560 |
def list_sample(collection, limit = 3):
"""
given an ordered collection (list, tuple, ...), return a string representation
of the first limit items (or fewer), e.g. "itemA, itemB, itemC and 7 more"
"""
ln = len(collection)
if ln > 1:
if ln <= limit:
return '%s and %s' % (', '.join(str(ws) for ws in collection[:min(limit, ln)]), collection[min(limit, ln)])
return '%s and %d others' % (', '.join(str(ws) for ws in collection[:min(limit, ln)]), ln - limit)
if ln > 0:
return collection[0]
return '' | 3c0926e75fc58ce68ec1919c7b072b067c6749ce | 16,567 |
def _round_down_to_multiple(num, divisor):
"""
Round the number down to a multiple of the divisor.
:param num:
:param divisor:
:return:
"""
return num - (num % divisor) | aefb46ca963924ddbbe0d161e2278af0dbcd665d | 16,568 |
def pull(cards, card):
"""
Pulls the a card from a hand and returns the new hand.
Example:
> pull([4,5,6,7,8], 6)
[4,5,7,8]
"""
rest = cards[:]
rest.remove(card)
return rest | 8cbe3d0178ae886ee44704e07edfd7501216e699 | 16,570 |
import logging
def greenlet_exception_logger(logger, level=logging.CRITICAL):
"""
Return a function that can be used as argument to Greenlet.link_exception() that will log the
unhandled exception to the given logger.
"""
def exception_handler(greenlet):
logger.log(level, "Unhandled exception in greenlet: %s", greenlet, exc_info=greenlet.exc_info)
return exception_handler | 98f413f5f8432214d051f306490014e6927562f2 | 16,577 |
def remove_whitespace_chars(text):
"""
Remove unnecessary (trailing, double, etc.) whitespace characters from a piece of text.
:param text: A piece of text.
:return Text without unnecessary whitespace.
"""
return " ".join(text.split()) | 40640c421bf6e776001e8cfa443dbb2f7148d6f0 | 16,580 |
def is_function(obj):
"""
:param obj: the object to check
:return: whether the object is callable
"""
return hasattr(obj, '__call__') | 0e8c7121ad6477482d94286640e66a79e7d9b375 | 16,590 |
def get_dynamic_hasher_names(HMAC_KEYS):
"""
Return base dynamic hasher names for each entry in HMAC_KEYS (we need to
create one hasher class for each key). Names are sorted to make sure
the HMAC_KEYS are tested in the correct order and the first one is always
the first hasher name returned.
"""
algo_name = lambda hmac_id: 'bcrypt{0}'.format(hmac_id.replace('-', '_'))
return [algo_name(key) for key in sorted(HMAC_KEYS.keys(), reverse=True)] | f2243dfdf7c0f56afbdd366fa190d0736dd94323 | 16,594 |
def gap_frequency(pileup):
"""returns the frequency of gaps (n. gaps divided by total number of reads, including N)"""
tot_pileup = pileup.sum(axis=0)
return tot_pileup[4] / tot_pileup.sum(axis=0) | 9f97e944f06d05dd97517ad80a92dcc235e51bc3 | 16,605 |
def scale_list(list_):
"""
Returns a scaled list with the minimum value
subtracted from each element of the corresponding list.
Parameters
----------
list_ : list
Input list.
Returns
-------
scaled_list : list
Scaled list.
Examples
--------
>>> list_ = [6, 3, 5, 11, 3, 2, 8, 6]
>>> scale_list(list_)
[4, 1, 3, 9, 1, 0, 6, 4]
"""
scaled_list = [i - min(list_) for i in list_]
return scaled_list | ef64ae41ca223bbf6a4b1c8c535bd2072a53a7a1 | 16,608 |
def prob_mass_grey_from_ndvi(ndvi, old_min=0.1, old_max=0.7):
"""
Calculates probability masses for grey from NDVI values
:param ndvi:
:param old_min:
:param old_max:
:return:
"""
# Not Green belief
if ndvi > old_max:
return 0
elif ndvi < old_min:
return 1
else:
new_max = 1
new_min = 0
old_range = old_max - old_min
new_range = new_max - new_min
return 1 - (((ndvi - old_min) * new_range) / old_range) + new_min | d880c392cd5cdf20a08f8a6c6bdf8d2694824587 | 16,618 |
import csv
def write_table_to_csv_file(file_name, lowfi_table):
"""Write the data from a LowFiTable to a .csv file."""
try:
with open(file_name, mode='w') as fp:
csv_writer = csv.writer(fp, dialect=csv.excel, lineterminator='\n')
csv_writer.writerows(lowfi_table.get_headings_and_data_as_list())
return True
except:
return False | 9fbb1def797df95239b1aa5e1198b6fe9f7da26b | 16,619 |
def _construct_name(date, n):
"""Helper method to construct a name including the directory path"""
name = "".join((date, "-img-", "{:03d}".format(n), ".jpg"))
return name | a1ecdbf6968216453c8cae08bdccf714fb7edde1 | 16,622 |
def hasValidKey(dict, key):
""" Return True if key is in dict and not None, False otherwise.
"""
return key in dict and dict[key] is not None | 438ca30f1b133be80389abf8304cd24b09fce1d8 | 16,624 |
def clang_find_attributes(node):
"""Finds attributes one level below the Clang node."""
return [n for n in node.get_children() if n.kind.is_attribute()] | a18483d8f5b19ce1b66abdbef76af5a98e420e21 | 16,627 |
import six
def rows_from_table(table):
"""Given a tinyquery.Table, build an API-compatible rows object."""
result_rows = []
for i in six.moves.xrange(table.num_rows):
field_values = [{'v': str(col.values[i])}
for col in table.columns.values()]
result_rows.append({
'f': field_values
})
return result_rows | e8aef81702eb4ce5a89a3c9bc4b0d3389c17ad54 | 16,628 |
import socket
import struct
def inet_aton(s):
"""Like `socket.inet_aton()` but returns an int."""
packed = socket.inet_aton(s)
return struct.unpack('!I', packed)[0] | 965388ca49c9f8472fc00f08af810e81bc7f0ff1 | 16,629 |
from typing import Dict
from typing import List
import json
def _pluck_listen_ids(aws_event: Dict) -> List[str]:
"""Pluck the listen ids from a batched sqs event.
>>> _pluck_listen_ids({'Records': [{'body': '{"listen_id": "5"}'}]})
['5']
"""
message_bodies = [json.loads(record['body']) for record in aws_event['Records']]
return [message_body['listen_id'] for message_body in message_bodies] | e7440915ab23207ae82d3cc3878037df7c8a00d1 | 16,632 |
def _unpack_index(i):
"""Unpack index and return exactly four elements.
If index is more shallow than 4, return None for trailing
dimensions. If index is deeper than 4, raise a KeyError.
"""
if len(i) > 4:
raise KeyError(
"Tried to index history with {} indices but only "
"4 indices are possible.".format(len(i)))
# fill trailing indices with None
i_e, k_e, i_b, k_b = i + tuple([None] * (4 - len(i)))
return i_e, k_e, i_b, k_b | 323a819107ac7c53c2b2abdabb46e573b620c7e9 | 16,633 |
def does_intersect_rect(p, particles, padding, rect, is_3d = False):
"""
Returns true if particle p is sufficiently close or outside the rectangle (in 2d) or cuboid (in 3d)
Parameters
----------
p : list
Coordinates of center and radius of particle [x,y,z,r]
particles : list
List of center + radius of multiple particles. E.g. particles[0] is a list containing coordinates of center and radius.
padding: float
Minimum distance between circle boundaries such that if two circles
rect: list
Coordinates of left-bottom and right-top corner points of rectangle (2d) or cuboid (3d). E.g. [x1 y1, z1, x2, y2, z2]
is_3d: bool
True if we are dealing with cuboid
Returns
-------
bool
True if particle intersects or is near enough to the rectangle
"""
if len(p) < 4: raise Exception('p = {} must have atleast 4 elements'.format(p))
if len(particles) == 0: raise Exception('particles = {} can not be empty'.format(particles))
if padding < 0.: raise Exception('padding = {} can not be negative'.format(padding))
if len(rect) < 6: raise Exception('rect = {} must have 6 elements'.format(rect))
pr = [p[0] - p[3], p[1] - p[3], p[2], p[0] + p[3], p[1] + p[3], p[2]]
if is_3d:
pr[2] -= p[3]
pr[5] += p[3]
if pr[0] < rect[0] + padding or pr[1] < rect[1] + padding or pr[3] > rect[3] - padding or pr[4] > rect[4] - padding:
if is_3d:
if pr[2] < rect[2] + padding or pr[5] > rect[5] - padding:
return True
else:
return True
return False | a3300c17c6f9bf3d8f47efac0c94a222f6ee34ef | 16,638 |
def alphanumericp(c):
"""Returns true if character is an alphabetic character or a numeric
character; otherwise, returns false. """
return type(c) is str and c.isalpha() or c.isnumeric() | f6870d55471e8a96237c56e916df55c0f81266d9 | 16,639 |
import warnings
def get_link_to_assembly(species_list):
"""
Get the path for assembly download from NCBI
Select the most up-to-date Complete Genome of the each organisms
and returns the FTP path for that one.
-----------------------------------------------------------------
Argument:
species_list--list of dictionary obtained from
get_entries_for_species function
Return:
link_assembly: str, FTP path to the genome assembly page of the
selected model:
e.g ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/010/448/615/GCA_010448615.1_ASM1044861v1
"""
genomes = []
link_assembly = ''
for i in species_list:
if i['status'] == 'Complete Genome' and i['assembly'] not in ('', '-'):
genomes.append(i)
date_list = []
if len(genomes) != 0:
for i in genomes:
if len(genomes) == 1:
link_assembly += i['assembly']
elif len(genomes) >1:
date_list.append(i['date'])
else:
# consider eliminating the options below: if there is no
# genomic information, there isn't any cds_from_genomic file
warnings.warn('There is no complete genome for this species')
if len(date_list) != 0:
latest = max(date_list)
for i in species_list:
if i['date'] == latest:
link_assembly += i['assembly']
break # to pick the first match in case more than one entry have the same date
return link_assembly | 50c086d714786c67335715f4005ecd3eb1338e55 | 16,640 |
def session(request):
"""Load the database session for a given aiohttp request
Internally, it just returns the value that was given as cleanup context by
func:`krake.api.app.db_session`.
Args:
request (aiohttp.web.Request): HTTP request
Returns:
krake.database.Session: Database session for the given request
"""
return request.app["db"] | 897a3fc517d4f4a0773617769c60b9dc8fd29056 | 16,641 |
from typing import Optional
def to_safe_str_or_none(value: Optional[str]) -> Optional[str]:
"""Convert input to cleaned string or None."""
if value is None:
return None
v = str(value.strip()).replace('\r', '').replace('\n', '')
return v or None | 2946183f58aa51deb4deeb450296af95ca41f72e | 16,648 |
def calculate_gc(seq):
"""
Returns percentage of G and C nucleotides in a DNA sequence.
"""
gc = 0
for base in seq:
if base in "GCgc":
gc += 1
else:
gc = 1
return gc/len(seq) * 100 | 51048f70febf7309da1d2b4b8946315bdc31e939 | 16,651 |
def rename_coords_to_lon_and_lat(ds):
""" Rename Dataset spatial coord names to:
lat, lon
"""
if 'latitude' in ds.coords:
ds = ds.rename({'latitude': 'lat'})
if 'longitude' in ds.coords:
ds = ds.rename({'longitude': 'lon'})
elif 'long' in ds.coords:
ds = ds.rename({'long': 'lon'})
if 'z' in ds.coords:
ds = ds.drop('z').squeeze()
return ds | 8ba286e441f2a32a96fbbddc5c1112a6ed890f84 | 16,652 |
def mean(list):
"""
Given a list or tuple, will return the mean.
Usage mean(list)
"""
sum = 0;
for item in list:
sum += item
return(sum / len(list)) | 77d88f7386b53ab79eddfa459fa9c8f907961a9e | 16,653 |
def read_pos_data(filename):
"""
Read data from file which looks like (sec, nsec, x, y, z)
0 8000000 -14 0 0.149843
1 12000000 -13.9997 -1.6e-05 0.117777
2 16000000 -13.9997 -1.9e-05 0.117841
"""
arr = []
for line in open(filename):
sec, nsec, x, y, z = [float(a) for a in line.split()]
arr.append((sec + nsec/1_000_000_000, (x, y, z)))
return arr | 8f1a148e44033184cbd92cbb1f00de7e7d21e73f | 16,654 |
def decode_response_version_from_config(confbytes: bytes) -> str:
"""Decode the string version from the bytearray response from Ledger device"""
return "{}.{}.{}".format(
confbytes[1],
confbytes[2],
confbytes[3],
) | 66dc0b71b2c9a22ca8198fb2a5ecbe69a7a0871b | 16,656 |
import re
import json
def read_json (filename) :
"""
Comments in the form of
# rest of line
are stripped from json before parsing
use like this::
import pprint
pprint.pprint (read_json (sys.argv[1]))
"""
with open (filename) as f:
content = ''
# weed out comments
for line in f.readlines () :
content += re.sub (r'^\s*#.*', '', line)
return json.loads (content) | 8bd89325e8f3b486bb13790fc4c827427a435515 | 16,657 |
def cut_clockwise(positive_offset: bool, spindle_clockwise: bool, climb: bool):
"""
If all 3 are true, then cut must be done clockwise.
Changing one to false, the cut must be done counter-clockwise.
Changing two to false, the cut must be done clockwise.
Changing all three to false, the cut must be done counter-clockwise.
You get the idea..
:param positive_offset: Positive offset = outside cut, negative offset = inside cut
:param spindle_clockwise: Spindle spinning clockwise (top->down)
:param climb: climb milling (vs conventional milling)
:return: cut clockwise (or counter-clockwise)
"""
return bool((positive_offset + spindle_clockwise + climb) % 2) | 62a5c70ce723e8fc26e1cc9d8c0e7b167c031dc5 | 16,658 |
import pickle
def read_binary_file(file_name):
"""reads binary file and returns the content"""
with open(str(file_name), "rb") as bin_file:
obj = pickle.load(bin_file)
return obj | 4d350edb97310df963fcd2bf3af67deb184f1cdb | 16,659 |
from typing import Sequence
from typing import Dict
def create_fills_query(start_datetime: str, end_datetime: str, uuids: Sequence[str]) -> Dict:
"""Create a GetFills dictionary request.
Args:
start_datetime: UTC datetime as '%Y%-m%-dTHH:MM:SS'
end_datetime: UTC datetime as '%Y-%m-%dTHH:MM:SS'
uuids: List of user uuids to get fills associated with
Returns: A dictionary representation of a blpapi.Request
"""
return {"GetFills": {"FromDateTime": start_datetime, "ToDateTime": end_datetime, "Scope": {"Uuids": uuids}}} | beb383badbe60d39f72185a8633155f797f98f4f | 16,661 |
def get_request_id(request_json):
"""Get the request_id from the request
"""
request_id = request_json['requestInfo'].get('requestId')
if not request_id:
request_id = request_json['requestInfo'].get('requestID')
return request_id | 68b3e9e8a15d84d1042173b8fc8c480f996d616a | 16,664 |
def parse_playlist_uri(uri):
"""
Takes a playlist uri and splits it to (user_id, playlist_id)
"""
playlistparts = uri.split(':')
# Sample: spotify:user:lmljoe:playlist:0DXoY83tBvgWkd8QH49yAI
if len(playlistparts) != 5:
print('Invalid playlist id')
exit()
user_id = playlistparts[2]
playlist_id = playlistparts[4]
return user_id, playlist_id | 23e7f36d4008f0e361a93e81289f302bf15cee81 | 16,665 |
import inspect
import logging
def verify_parameters(code, kwargs, err_message):
"""
Used to verify the that the parameters in kwarg match the signature of the code.
:param code: The code fragment's that has the signature to check.
:param kwargs: The kwargs to look for
:param err_message: An error message to show if the signature doesn't match.
:return:
"""
params = inspect.signature(code).parameters
verified = True
# The kwargs should all be in the function. Anything left should have a default
param_keys = set(params.keys())
param_keys.discard('self')
# Make sure they have all the ones we asked for.
missing = set(kwargs.keys()) - set(param_keys)
for param_name in missing:
logging.error(f"Missing param '{param_name}' on function {err_message}")
verified = False
remaining = set(param_keys) - set(kwargs.keys())
for param_name in remaining:
if params[param_name].default == inspect.Parameter.empty:
logging.error(f"Param '{param_name}' not passed for {err_message}")
verified = False
return verified | cd3c3542c41bb7ba0d3f8d7f250f44d743acb0a9 | 16,667 |
def merge_dfs_by_index(df1, df2):
"""
Merge two pandas dataframe index-by-index.
The dataframes have to share the same index name. Shared indexes will be
merged without data loss. In case of conflicting entries a ValueError is
raised. The merge operation is symmetric and does not depend on the
order of df1 and df2.
Parameters
----------
df1: dataframe
Pandas dataframe to be extended
df2: dataframe
Pandas dataframe with used for extension
Returns
-------
dataframe:
The merged dataframe
Raises
----------
ValueError
in case of incompatible index names or values
"""
if df1.index.name != df2.index.name:
raise ValueError('Dataframes have incompatible indexes: '
f'{df1.index.name} != {df2.index.name}.')
# check for contradicting values by comparing A+B with B+A
left_combine = df1.combine_first(df2)
right_combine = df2.combine_first(df1)
# ignoring dtypes when checking equality
if not left_combine.astype(object).equals(right_combine.astype(object)):
raise ValueError('Dataframes have incompatible values: '
f'{left_combine.compare(right_combine)}')
return right_combine | fe1558403ab2ee7a01b034788edd6ac413f77eaf | 16,674 |
def bytes_to_little_int(data: bytearray) -> int:
"""Convert bytes to little int."""
return int.from_bytes(data, byteorder="little", signed=False) | bdca6a59b4036cce1bd9bc59a9096556d87b257b | 16,675 |
def resolve_translation(instance, info, language_code):
"""Gets translation object from instance based on language code."""
return instance.translations.filter(language_code=language_code).first() | 79737c123e09760fb1514bbfad7d73c385a4309a | 16,676 |
def tonumber(v):
"""
Convert a value to int if its an int otherwise a float.
"""
try:
v = int(v)
except ValueError as e:
v = float(v)
return v | 8b52ac3385b3ffc721af523799ef3a6da4e29060 | 16,682 |
def _param(param, value):
"""
create 'parameter=value'
"""
return "{0}={1}".format(param, value) | a64cedf88c20b774ffef23bb7caded4ed7975143 | 16,683 |
def array_madness(arr1: list, arr2: list) -> bool:
""" This function returns True if the sum of the squares of each element in arr1 is strictly greater than the sum of the cubes of each element in arr2. """
if len(arr1) and len(arr2) >= 1:
return True if sum([i**2 for i in arr1]) > sum([i**3 for i in arr2]) else False
return False | 67f4d2ca7bb51d0134336993c88928eca29b8383 | 16,684 |
def get_bcrypt_salt(hashed):
"""
Get the salt from on bcrypt hashed string
"""
return hashed[:29] | ce7f632ddb832548841b0daead4e8176899ac21d | 16,685 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.