content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def rivers_with_station(stations):
"""rivers_with_station(stations) returns a sorted list of the rivers stations are on without repeats"""
stationRivers = set()
for station in stations:
stationRivers.add(station.river)
stationRivers = sorted(stationRivers)
return stationRivers | d13044fef2a824d0d08e4419a13a2b22f1732175 | 12,322 |
def _format_media_type(endpoint, version, suffix):
"""
Formats a value for a cosmos Content-Type or Accept header key.
:param endpoint: a cosmos endpoint, of the form 'x/y',
for example 'package/repo/add', 'service/start', or 'package/error'
:type endpoint: str
:param version: The version of the request
:type version: str
:param suffix: The string that will be appended to
endpoint type, most commonly 'request' or 'response'
:type suffix: str
:return: a formatted value for a Content-Type or Accept header key
:rtype: str
"""
prefix = endpoint.replace('/', '.')
separator = '-' if suffix else ''
return ('application/vnd.dcos.{}{}{}'
'+json;charset=utf-8;version={}').format(prefix,
separator,
suffix,
version) | 993e178fc2a91490544936e019342e6ab8f928ce | 12,325 |
def fill_result_from_objective_history(result, history):
"""
Overwrite function values in the result object with the values recorded in
the history.
"""
# counters
result.n_fval = history.n_fval
result.n_grad = history.n_grad
result.n_hess = history.n_hess
result.n_res = history.n_res
result.n_sres = history.n_sres
# initial values
result.x0 = history.x0
result.fval0 = history.fval0
# best found values
result.x = history.x_min
result.fval = history.fval_min
# trace
result.trace = history.trace
return result | a2f1388c5d71a06f45369098039a3fa623a25735 | 12,326 |
def Armijo_Rule(f_next,f_initial,c1,step_size,pg_initial):
"""
:param f_next: New value of the function to be optimized wrt/ step size
:param f_initial: Value of the function before line search for optimum step size
:param c1: 0<c1<c2<1
:param step_size: step size to be tested
:param pg: inner product of step direction, p, with the gradient before stepping, g_initial
:return: True if condition is satisfied
"""
return (f_next <= f_initial+c1*step_size*pg_initial) | 90462eda94244c10afdf34e1ad042118d793c4fd | 12,328 |
import socket
def connect(host, port):
"""Connect to remote host."""
# Create socket
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error as msg:
return (None, msg)
# Get remote IP
try:
addr = socket.gethostbyname(host)
except socket.gaierror as msg:
s.close()
return (None, msg)
# Connect
try:
s.connect((addr, port))
except socket.error as msg:
s.close()
return (None, msg)
return (s, None) | ab03e5551f0fbf92c6e2417635bc753d5b77eae2 | 12,332 |
import pprint
def pfomart(obj):
"""格式化输出某对象
:param obj: obj对象
:return: 格式化出处的字符串
"""
return pprint.pformat(obj) | 2f2c7d7df9de9bb65c72634e8ba9386365408445 | 12,335 |
import re
def rle2cells(rle_str: str) -> str:
"""Convert lifeform string in RLE encoding to PlainText
Args:
rle_str (str): single line of RLE commands
Returns:
str: valid PlainText-encoded lifeform
"""
# drop the last part
if "!" in rle_str:
rle_str = rle_str[: rle_str.index("!")]
else:
raise ValueError('Incorrect input: no "!"')
if not set(rle_str).issubset("0123456789bo$"):
raise ValueError("Incorrect input: wrong character set")
commands = re.findall("([0-9]*)(b|o|\\$)", rle_str)
if len(commands) == 0:
raise ValueError("Incorrect input: wrong pattern format")
layout_string = ""
parse_dict = {"b": ".", "o": "O", "$": "\n"}
for com in commands:
n = int(com[0]) if com[0] else 1
layout_string += parse_dict[com[1]] * n
return layout_string | e48ea40bd9032445e1aabe4753b7fbdcc62191ed | 12,338 |
def pow_sq(x, y):
"""
Compute x^y, without calling its pow,
using exponentiation by squaring.
"""
r = 1
while y:
if y & 1:
r = r * x
x = x * x
y >>= 1
return r | f6d82257ff909d9c890360dcd9408db0d742b13d | 12,345 |
def get_point(values, pct):
"""
Pass in array values and return the point at the specified top percent
:param values: array: float
:param pct: float, top percent
:return: float
"""
assert 0 < pct < 1, "percentage should be lower than 1"
values = sorted(values)
return values[-int(len(values)*pct)] | 11474d804e0845284a864a5cb8de23299999a5e7 | 12,351 |
def check_columns(df):
"""
Checks wether dataframe contains the required columns.
:param df: the data frame with track data.
:return: whether or not df contains all the required columns.
required columns: refName, start, end, name, score (is optional)
:rtype: boolean
"""
required = ["refName", "start", "end", "name"]
return all(col in df for col in required) | 3ddc53fc0e2caad74b3218f7f47134aed258cba9 | 12,354 |
def accuracy_inf_sol(inferred,cliques_solution):
"""
'inferred' should be a set of vertices
'cliques_solution' an iterable of all the solution cliques (as sets)
"""
assert len(cliques_solution)!=0, "No solution provided!"
max_overlap = 0
best_clique_sol = cliques_solution[0]
clique_size = len(cliques_solution[0])
for cur_clique in cliques_solution:
temp_inter = cur_clique.intersection(inferred)
cur_overlap = len(temp_inter)
if cur_overlap > max_overlap:
max_overlap = cur_overlap
best_clique_sol = cur_clique
return max_overlap, clique_size, best_clique_sol | d2d38d7f3470520058f90699dab6b7eb59cbd5cf | 12,355 |
def _ziprange(alist, ix):
"""
returns zip of the list, and the one with ix added at the end and first element dropped
Example
-------
::
alist = [2,4,7]
_ziprange (alist, 10)
-->
zip([2,4,7], [4,7,10]) -> (2,4), (4,7), (7,10)
"""
blist = alist.copy()
blist.append(ix)
del blist[0]
return zip(alist, blist) | e816ad20e8c193487d8483cdfd3ee27d77fef814 | 12,356 |
import re
def title_output_replace(input_title_output, metadata_dict, data_dict, rel_channels_dict, is_title = False, custom_vars = None):
"""Substitute %VAR% variables with provided values and constants.
Given a title (or output path) string template, replace %VAR%
variables with the appropriate value or constant.
Variables supported include:
* %EXPERIMENT_ID% - Experiment ID, sourced from metadata_dict.
* %INSTRUMENT_SAT% - Instrument/satellite ID, sourced from
metadata_dict.
* %CHANNEL% - Channel number, sourced from metadata_dict.
* %RELCHANNEL% - Relative channel number, indirectly sourced from
rel_channels_dict.
* %FREQUENCY% - Frequency of the selected channel, sourced from the
frequency field in data_dict.
* %ASSIMILATION_STATUS% - Placeholder for the assimilation status,
which is determined from the iuse field in data_dict (not done
here).
* %START_DATE% - Start date in YYYYMMDD format, sourced from
metadata_dict.
* %END_DATE% - End date in YYYYMMDD format, sourced from
metadata_dict.
* Additional custom %VARS% sourced from custom_vars, if specified.
Args:
input_title_output (str): The string with the title (or output
path) template.
metadata_dict (dict): The metadata dictionary containing data
source information.
data_dict (dict): The data dictionary to retrieve values from
for certain %VAR% variables. See get_data() help (in
data.py) for more information on its format.
rel_channels_dict (dict): The relative channels dictionary to
map relative channels to actual data channels. Its keys are
the relative channels, and its values are the actual data
channels. (In this case, the mapping is reversed later to
allow easy conversion from data channel to relative
channel.)
is_title (bool): Boolean indicating whether the string templace
is a title or not. This affects how and what variables are
replaced. By default, this is set to False.
custom_vars (dict): Dictionary containing custom variables to
be replaced. Its keys are %VAR% variables without the
percent sign, and its values are what should take their
places. For instance, given { "TESTVAR": "test123" }, the
template "%TESTVAR%" should be replaced with "test123". By
default, this is set to None - this argument is optional if
there are no custom variables.
Returns:
str: A string with %VAR% variables replaced with the
appropriate value or constant. Some %VAR% variables may not be
replaced if they do not exist, or certain conditions are not
met.
"""
# Replace experiment ID variable
input_title_output = input_title_output.replace("%EXPERIMENT_ID%", metadata_dict["experiment_id"])
# Capitalize %INSTRUMENT_SAT% if we're using it in a title.
if is_title:
input_title_output = input_title_output.replace("%INSTRUMENT_SAT%", metadata_dict["instrument_sat"].upper())
else:
input_title_output = input_title_output.replace("%INSTRUMENT_SAT%", metadata_dict["instrument_sat"])
# Replace data channel variable
input_title_output = input_title_output.replace("%CHANNEL%", str(metadata_dict["channel"]))
# Reverse the channel map
# Original: rel_channel -> actual data channel
# Inverted: actual data channel -> rel_channel
rel_channels_inv_map = dict(zip(rel_channels_dict.values(), rel_channels_dict.keys()))
input_title_output = input_title_output.replace("%RELCHANNEL%", str(rel_channels_inv_map[metadata_dict["channel"]]))
# Ensure that we have adequate data to determine frequency.
# If we do, replace the frequency variable!
if data_dict and "frequency" in data_dict:
input_title_output = input_title_output.replace("%FREQUENCY%", str(data_dict["frequency"]))
# Replace assimilation status placeholder... only if it's a title.
if is_title:
input_title_output = input_title_output.replace("%ASSIMILATION_STATUS%", " .......................")
# Replace date variables
input_title_output = input_title_output.replace("%START_DATE%", str(metadata_dict['start_year']).zfill(4) + str(metadata_dict['start_month']).zfill(2) + str(metadata_dict['start_day']).zfill(2))
input_title_output = input_title_output.replace("%END_DATE%", str(metadata_dict['end_year']).zfill(4) + str(metadata_dict['end_month']).zfill(2) + str(metadata_dict['end_day']).zfill(2))
# Custom vars
if custom_vars:
for custom_var in custom_vars:
# Do a case insensitive replace
replace_re = re.compile(re.escape('%'+custom_var+'%'), re.IGNORECASE)
input_title_output = replace_re.sub(custom_vars[custom_var], input_title_output)
return input_title_output | 83102c1557643b67ce1c52f0c69154bcfac4ac72 | 12,358 |
def format_data(data, es_index):
"""
Format data for bulk indexing into elasticsearch
"""
unit = data["unit"]
rate_unit = data["rateUnit"]
egvs = data["egvs"]
docs = []
for record in egvs:
record["unit"] = unit
record["rate_unit"] = rate_unit
record["@timestamp"] = record.pop("systemTime")
record.pop("displayTime")
record["realtime_value"] = record.pop("realtimeValue")
record["smoothed_value"] = record.pop("smoothedValue")
record["trend_rate"] = record.pop("trendRate")
docs.append({"_index": es_index, "_type": "document", "_source": record})
return docs | 094af427daaf4922371e17fca70a2b8c8539d54c | 12,359 |
def paste_filename(search):
"""
Function that will create a name for the files to be saved to using the search
"""
# Removes any spaces
cleaned_keyword = search.replace(' ', '_')
# Adds 'videos.csv' at the end
filename = cleaned_keyword + "_videos.csv"
return filename | 3279ef21e039b7a63a728a6d02714086a61f3e0e | 12,361 |
import torch
def repeat_column(column: torch.Tensor, times: int) -> torch.Tensor:
"""
Repeats the given column the given number of times.
:param column: the column to repeat. Size [H].
:param times: the number of repetitions = W.
:return: the given column repeated the given number of times. Size [H, W].
"""
return column.unsqueeze(1).repeat(1, times) | dfa955fbff0c4b87a7f5cef729a454eb99c93760 | 12,364 |
def parse_markers(f):
"""
Parse markers from mrk file f. Each marker determines a time point
and an according class-label of the movement that was imagined.
Args:
f (String) - an mrk file
Returns:
tuple of lists of ints - one list for the markers, one for
the labels
"""
mrks = list()
y = list()
with open(f) as f_m:
for line in f_m:
mrk, cls = line.strip('\n').split('\t')
mrks.append(int(float(mrk)))
y.append(int(float(cls)))
return mrks, y | 670ce43529a7aae4f4ed4341938a90eb6e714fb3 | 12,367 |
def dp_key(relations):
"""
generates a unique key for the dptable dictionary
:param relations: set of relations
:return: str
"""
return '-'.join(sorted([r.name for r in relations])) | e415778193d5a5c90ba7574bccc7e82d0d95c2e8 | 12,369 |
def extract_sectors(pred_df, thres):
"""Extracts labels for sectors above a threshold
Args:
pred_df (df): predicted sector
thres (float): probability threshold
"""
long_df = (
pred_df.reset_index(drop=False)
.melt(id_vars="index", var_name="division", value_name="probability")
.query(f"probability > {thres}")
)
out = long_df.groupby("index")["division"].apply(lambda x: list(x))
return out | a772e965685ca8ac8cd6a52861c36e9cf7faf887 | 12,377 |
import bisect
def find_closest(numeric_list, query_number):
"""
Given a list of numbers, and a single query number, find the number in the sorted list that is numerically
closest to the query number. Uses list bisection to do so, and so should be O(log n)
"""
sorted_numeric_list = sorted(numeric_list)
pos = bisect.bisect_left(sorted_numeric_list, query_number)
if pos == 0:
return sorted_numeric_list[0]
if pos == len(sorted_numeric_list):
return sorted_numeric_list[-1]
before = sorted_numeric_list[pos - 1]
after = sorted_numeric_list[pos]
if after - query_number < query_number - before:
return after
else:
return before | ae2dad58162f38f7c1e4d7149943488a96c3c8dc | 12,378 |
def count_features_type(types, include_binary=False):
""" Counts two or three different types of features
(binary (optional), categorical, continuous).
:param types: list of types from get_type
:returns a tuple (binary (optional), categorical, continuous)
"""
if include_binary:
return (
types.count('binary'),
types.count('categorical'),
types.count('continuous')
)
else:
return (
types.count('categorical'),
types.count('continuous')
) | 4158122256c9a407f58987d278657e4a006e6a13 | 12,386 |
def is_pandas_module(fullname: str) -> bool:
"""Check if a fully qualified name is from the pandas module"""
return fullname.startswith("pandas.") | 0becdbfd7c1c4f5b7990cbc0466a6e45f25acb14 | 12,387 |
def squeeze_first(inputs):
"""Remove the first dimension in case it is singleton."""
if len(inputs) == 1:
inputs = inputs[0]
return inputs | c2c0cabc873baf88ce7673f2c8889fedce0f05da | 12,390 |
def is_part_of_word(word_fragment, wordlist):
"""Returns True if word_fragment is the beginning of a word in wordlist.
Returns False otherwise. Assumes word_fragment is a string."""
for word in wordlist:
is_part_of_list = word_fragment == word[:len(word_fragment)]
if is_part_of_list == True:
return True
return False | 54f572655fe7bb383cb00d732b57d85156b5f528 | 12,395 |
def render_output(data):
"""Print the formatted output for the list
"""
output = ['[Dataduct]: ']
output.extend(data)
return '\n'.join(output) | 5e3bee31890f682eca6aa03128dbf8d51e2fe473 | 12,396 |
def get_parent_doc(__type: type, /) -> str | None:
"""Get the nearest parent documentation using the given :py:class:`type`'s mro.
:return The closest docstring for an object's class, None if not found.
"""
doc = None
for parent in __type.__mro__:
doc = parent.__doc__
if doc:
break
return doc | efe61d30a82e08ccdf5411ffc9feb4252fdb53e2 | 12,397 |
def drop_multiple_col(col_names_list, df):
"""AIM -> Drop multiple columns based on their column names.
INPUT -> List of column names, df.
OUTPUT -> updated df with dropped columns"""
df.drop(col_names_list, axis=1, inplace=True)
return df | 991144349d383b79e1510fa5c106226254f8329b | 12,398 |
def replstring(string, i, j, repl):
"""
Replace everything in string between and including indices i and j with repl
>>> replstring("abc", 0, 0, "c")
'cbc'
>>> replstring("abc def LOL jkl", 8, 10, "ghi")
'abc def ghi jkl'
"""
# Convert to list since strings are immutable
strlist = list(string)
# Delete characters between given indices
for k in range(j - i + 1):
del strlist[i] # i instead of k, since deleting an element makes list smaller
# Insert new chars
for l in range(len(repl)):
strlist = strlist[:i + l] + [repl[l]] + strlist[i + l:]
return "".join(strlist) | 97eee8912a6c8fd9e29a5784af1f3853b714cf0b | 12,399 |
def cli(ctx, workflow_id):
"""Delete a workflow identified by `workflow_id`.
Output:
A message about the deletion
.. warning::
Deleting a workflow is irreversible - all workflow data
will be permanently deleted.
"""
return ctx.gi.workflows.delete_workflow(workflow_id) | 9ee3aa82a9577f9b20574f821f4a9e226665740d | 12,402 |
def int2bit(x, w=20):
"""
Generates a binary representation of an integer number (as a tuple)
>>> bits = int2bit(10, w=4)
>>> bits
(1, 0, 1, 0)
>>> bit2int( bits )
10
"""
bits = [ ]
while x:
bits.append(x%2)
x /= 2
# a bit of padding
bits = bits + [ 0 ] * w
bits = bits[:w]
bits.reverse()
return tuple(bits) | b65cd8f7c6232896eb2aef9f9d69b6ac4fd97bc6 | 12,405 |
def to_tuple(x):
"""Converts lists to tuples.
For example::
>>> from networkx.utils import to_tuple
>>> a_list = [1, 2, [1, 4]]
>>> to_tuple(a_list)
(1, 2, (1, 4))
"""
if not isinstance(x, (tuple, list)):
return x
return tuple(map(to_tuple, x)) | 29586512b336ae5079e991bb13c1ac904e5eefe9 | 12,408 |
def mean_residue_ellipticity(phi, n, c, l):
"""
Calculate mean residue ellipticity (millideg cm2 / decimol) from
ellipticity (mdeg)
Args:
phi (float): a ellipticity (milli deg)
n (int): the number of residues
c (float): the molar concentration of the polymer (mol/L)
l (float): the length of the cuvette (cm)
Returns:
a mean residue ellipticity (deg cm2 decimol^{-1} residue^{-1})
"""
return phi / (10 * l * n * c) | a51a90e3a12b921b2e12fb75160929d60652dcca | 12,409 |
from typing import List
from typing import Tuple
import random
def generate_round_robin_matches(bots: List[str]) -> List[Tuple[str, str]]:
"""
Returns a list of pairs of bots that should play against each other for a round robin.
"""
# This makes the list of matches consistent over multiple calls. E.g. the --list option will always so same order
random.seed(bots[0] + bots[-1])
# Create all possible pairs of bots with bots from the given list
matches = []
count = len(bots)
for i in range(count):
for j in range(i + 1, count):
matches.append((bots[i], bots[j]))
random.shuffle(matches)
return matches | 1d29e36613210d8d1198fe5943c035c0e435b8dc | 12,414 |
def bin2dec(string_num):
"""Turn binary into decimal."""
return str(int(string_num, 2)) | 5c8ba774f1a749947e64a00c86e6cb4054b44d97 | 12,415 |
def get_config_dict(robustness_tests, base_config_dict):
"""
Combines robustness_test and train_config_dict into a single config_dict.
Args:
robustness_tests (dict): robustness test config dict
base_config_dict (dict): train/data/eval/model/hyperparam config dict
Returns:
config_dict (dict): config dict
"""
config_dict = {}
if robustness_tests is not None:
if base_config_dict is not None:
config_dict = {**robustness_tests, **base_config_dict}
else:
config_dict = robustness_tests
else:
if base_config_dict is not None:
config_dict = base_config_dict
return config_dict | 593a2307849fa27b895f18d8b9eacd679eeab04a | 12,416 |
def distance_vector_between(point_1, point_2):
"""Compute and return the vector distance between two points."""
return [point_2[0] - point_1[0], point_2[1] - point_1[1]] | 397d3191cc4c214bb0d4b474db2efe7c63e8a10f | 12,417 |
def split_names(data, names, fosa_types, drop):
"""Separates facility type prefix from facility name
inputs
data: data frame containing source data from IASO
names: column name to split
fosa_types: list of facility types
drop: list of prefixes indicating row should be dropped from data
outputs
data frame with name column separated into fosa type and fosa name columns
"""
type_pattern = '|'.join(fosa_types)
data.loc[:, "fosa_type"] = data.loc[:, names].str.extract('('+type_pattern+')', expand=True)
data.loc[:, "fosa_name"] = data.loc[:, names].str.replace(type_pattern, "")
data = data[~(data[names].isin(drop))]
data = data[~(data.fosa_name.isin(drop))]
return data | 4842756abd8b332d22548382f56a7c03d43609c2 | 12,421 |
def _NamesNotIn(names, mapping):
"""Returns a list of the values in |names| that are not in |mapping|."""
return [name for name in names if name not in mapping] | ec91dcb6e29b0a9c1aa66f04e1b61d715ded3266 | 12,422 |
import re
def natural_sort(l):
"""
Takes in a list of strings and returns the list sorted in "natural" order.
(e.g. [test1, test10, test11, test2, test20] -> [test1, test2, test10, test11, test20])
Source: https://stackoverflow.com/questions/4836710/is-there-a-built-in-function-for-string-natural-sort
Parameters
----------
l : list of str
Unsorted list of strings
Returns
-------
sorted_l : list of str
Sorted list of strings
"""
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key) | 7db22ee5f75703f52b25eecd888847eb35590e65 | 12,423 |
def get_extensions(list_of_files):
"""Function take a list of Path file objects and adds the file extenstion/suffix to a set. The set of extensions
is returned"""
extensions = set()
for file in list_of_files:
if len(file.suffix) < 6:
extensions.add((file.suffix).lstrip('.'))
return extensions | 654b893c148535a99dd112dc3711ea9005ae96b7 | 12,424 |
def org_rm_payload(org_default_payload):
"""Provide an organization payload for removing a member."""
rm_payload = org_default_payload
rm_payload["action"] = "member_removed"
return rm_payload | e976396f6fe5de1073f2235aac36b300f129867a | 12,427 |
def get_progress_rate(k, c_species, v_reactants):
"""Returns the progress rate for a reaction of the form: va*A+vb*B --> vc*C.
INPUTS
=======
k: float
Reaction rate coefficient
c_species: 1D list of floats
Concentration of all species
v_reactants: 1D list of floats
Stoichiometric coefficients of reactants
RETURNS
========
w: float
prgress rate of this reaction
NOTES
=====
PRE:
- k, each entry of c_species and v_reactants have numeric type
- c_species and v_reactants have the same length
POST:
- k, c_species and v_reactants are not changed by this function
- raises a ValueError if k <= 0
- raises an Exception if c_species and v_reactants have different length
- returns the prgress rate w for the reaction
EXAMPLES
=========
>>> get_progress_rate(10, [1.0, 2.0, 3.0], [2.0, 1.0, 0.0])
20.0
"""
if k <= 0:
raise ValueError('k must be positive.')
if len(c_species) != len(v_reactants):
raise Exception('List c_species and list v_reactants must have same length.')
w = k
for c, v in zip(c_species, v_reactants):
w *= pow(c, v)
return w | 6baaaa07fe0814dbc50516b29ba55087c4ec23fd | 12,431 |
import json
def get_key(filepath, key, default=None):
"""
Opens the file and fetches the value at said key
:param str filepath: The path to the file
:param str key: The key to fetch
:param default: The value to return if no key is found
:return: The value at the key (or the default value)
"""
with open(filepath, "r") as f:
file_content = json.load(f)
return file_content.get(key, default) | 9f720f33373ceec9a9a1a4b46c0e9257d3a55787 | 12,435 |
def commonprefix(l):
"""Return the common prefix of a list of strings."""
if not l:
return ''
prefix = l[0]
for s in l[1:]:
for i, c in enumerate(prefix):
if c != s[i]:
prefix = s[:i]
break
return prefix | 235636c207c89a7128295fb5aa5b0cba732f50a1 | 12,441 |
def get_qtypes(dataset_name, part):
"""Return list of question-types for a particular TriviaQA-CP dataset"""
if dataset_name not in {"location", "person"}:
raise ValueError("Unknown dataset %s" % dataset_name)
if part not in {"train", "dev", "test"}:
raise ValueError("Unknown part %s" % part)
is_biased = part in {"train", "dev"}
is_location = dataset_name == "location"
if is_biased and is_location:
return ["person", "other"]
elif not is_biased and is_location:
return ["location"]
elif is_biased and not is_location:
return ["location", "other"]
elif not is_biased and not is_location:
return ["person"]
else:
raise RuntimeError() | 0aa1a186ebf4fcfe5820ecbb697d8cb166114310 | 12,443 |
import re
def get_numbers_from_file(path, skip_lines=2):
"""
Function to read a file line-wise and extract numbers.
Parameters
----------
path: str
Path to the file including the filename.
skip_lines: int
Number of lines to skipp at the beginning of the file.
Returns
-------
lst: list
A list with sepereated entries for found numbers.
"""
with open(path, "r") as data_file:
lst = []
for string in data_file:
line = re.findall(
"[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", string
)
lst.append(line)
del lst[0:skip_lines]
return lst | 64026a6c5cf9aa16076a3c8872663ab7996c1add | 12,445 |
def describe_list_indices(full_list):
"""
Describe the indices of the given list.
Parameters
----------
full_list : list
The list of items to order.
Returns
-------
unique_elements : list
A list of the unique elements of the list, in the order in which
they first appear.
element_indices : dict
A dictionary of lists for each unique element, giving all the
indices in which they appear in the original list.
"""
unique_elements = []
element_indices = {}
for i in range(len(full_list)):
item = full_list[i]
# new item
if item not in unique_elements:
unique_elements.append(item)
element_indices[item] = [i]
# previously seen item
else:
element_indices[item].append(i)
return unique_elements, element_indices | 664bcfd63dd0d5d5114ce24a4c7b2850b61364c5 | 12,447 |
def load_metadata_txt(file_path):
"""
Load distortion coefficients from a text file.
Parameters
----------
file_path : str
Path to a file.
Returns
-------
tuple of floats and list
Tuple of (xcenter, ycenter, list_fact).
"""
if ("\\" in file_path):
raise ValueError(
"Please use a file path following the Unix convention")
with open(file_path, 'r') as f:
x = f.read().splitlines()
list_data = []
for i in x:
list_data.append(float(i.split()[-1]))
xcenter = list_data[0]
ycenter = list_data[1]
list_fact = list_data[2:]
return xcenter, ycenter, list_fact | d1220c39fd9e69b76b1aa6f3e73cd9eef708c451 | 12,448 |
from typing import OrderedDict
def gen_top(service_uri, no_pages, num_mem, label=None):
"""
Generate the top level collection page.
:param service_uri: base uri for the AS paged site.
:param no_pages:
:param num_mem:
:param label:
:return: dict
"""
top = OrderedDict()
top['@context'] = [
"http://iiif.io/api/presentation/2/context.json",
"https://www.w3.org/ns/activitystreams"
]
top['id'] = service_uri
top['type'] = 'OrderedCollection'
if label:
top['label'] = label
top['total'] = num_mem
top['first'] = {'id': service_uri + str(1), 'type': 'OrderedCollectionPage'}
top['last'] = {'id': service_uri + str(no_pages), 'type': 'OrderedCollectionPage'}
return top | 14b330e0ad57b08462b3854eba2771e859344df2 | 12,449 |
def a_simple_function(a: str) -> str:
"""
This is a basic module-level function.
For a more complex example, take a look at `a_complex_function`!
"""
return a.upper() | a511eb8577e0440d0026c4762628fdb6de9be643 | 12,454 |
def paginated_list(full_list, max_results, next_token):
"""
Returns a tuple containing a slice of the full list
starting at next_token and ending with at most the
max_results number of elements, and the new
next_token which can be passed back in for the next
segment of the full list.
"""
sorted_list = sorted(full_list)
list_len = len(sorted_list)
start = sorted_list.index(next_token) if next_token else 0
end = min(start + max_results, list_len)
new_next = None if end == list_len else sorted_list[end]
return sorted_list[start:end], new_next | 99a20e3af4ff64d3de52eccbc00aea9fda735e00 | 12,455 |
def celsius_to_kelvin(deg_C):
"""Convert degree Celsius to Kelvin."""
return deg_C + 273.15 | 45eb2dd781adbab2db44f5a8ce5042b2834c7c00 | 12,456 |
def params_linear_and_squares(factors):
"""Index tuples for the linear_and_squares production function."""
names = factors + [f"{factor} ** 2" for factor in factors] + ["constant"]
return names | 8f7505cb2a07e08d3ad2686d52960d631cd7b458 | 12,461 |
def tuple_as_atom(atom:tuple) -> str:
"""Return readable version of given atom.
>>> tuple_as_atom(('a', (3,)))
'a(3)'
>>> tuple_as_atom(('bcd', ('bcd',12)))
'bcd(bcd,12)'
"""
assert len(atom) == 2
return '{}({})'.format(atom[0], ','.join(map(str, atom[1]))) | 5c18f34733d839865eef35509f95c2d4d198a903 | 12,465 |
import struct
def Fbytes(f):
"""
Return bytes representation of float
"""
return struct.pack("f", f) | 117fb86216ad6983851923ac9dbd0196cc29b92d | 12,466 |
def clamp(value, low, high):
"""Clamp the given value in the given range."""
return max(low, min(high, value)) | 48303b27d78f8d532b1e74db052457ae19b9f10d | 12,469 |
def fmt_n(large_number):
"""
Formats a large number with thousands separator, for printing and logging.
Param large_number (int) like 1_000_000_000
Returns (str) like '1,000,000,000'
"""
return f"{large_number:,.0f}" | 7b23e902a1c9600f1421b45b27623abaa1930f05 | 12,470 |
def inner_product(L1, L2):
"""
Take the inner product of the frequency maps.
"""
result = 0.
for word1, count1 in L1:
for word2, count2 in L2:
if word1 == word2:
result += count1 * count2
return result | 65ede8eddcf86d75a1b130a76381416c2a272f61 | 12,472 |
def x_point_wgt_av(df_agg, x_var):
"""
Set the x_point to be the weighted average of x_var within the bucket,
weighted by stat_wgt.
"""
if not (x_var + '_wgt_av') in df_agg.columns:
raise ValueError(
"\n\tx_point_wgt_av: This method can only be used when"
"\n\tthe weighted average has already been calculated."
)
res = df_agg.assign(
x_point=lambda df: df[x_var + '_wgt_av']
)
return(res) | 15d8515efceb67e1dc9062d7fd79250c5935b549 | 12,474 |
from typing import Mapping
from typing import Optional
def _rename_nodes_on_tree(
node: dict,
name_map: Mapping[str, str],
save_key: Optional[str] = None,
) -> dict:
"""Given a tree, a mapping of identifiers to their replacements, rename the nodes on
the tree. If `save_key` is provided, then the original identifier is saved using
that as the key."""
name = node["name"]
renamed_value = name_map.get(name, None)
if renamed_value is not None:
# we found the replacement value! first, save the old value if the caller
# requested.
if save_key is not None:
node[save_key] = name
node["name"] = renamed_value
for child in node.get("children", []):
_rename_nodes_on_tree(child, name_map, save_key)
return node | b8d3df2f2247b27c614b767b28eda7b91e380524 | 12,478 |
def ignore(name):
"""
Files to ignore when diffing
These are packages that we're already diffing elsewhere,
or files that we expect to be different for every build,
or known problems.
"""
# We're looking at the files that make the images, so no need to search them
if name in ['IMAGES']:
return True
# These are packages of the recovery partition, which we're already diffing
if name in ['SYSTEM/etc/recovery-resource.dat',
'SYSTEM/recovery-from-boot.p']:
return True
# These files are just the BUILD_NUMBER, and will always be different
if name in ['BOOT/RAMDISK/selinux_version',
'RECOVERY/RAMDISK/selinux_version']:
return True
# b/26956807 .odex files are not deterministic
if name.endswith('.odex'):
return True
return False | d5f64616480fa14c03b420165d2c89040a8cc768 | 12,481 |
def power(work, time):
"""
Power is the rate at which the work is done.
Calculates the amountof work done divided by
the time it takes to do the work
Parameters
----------
work : float
time : float
Returns
-------
float
"""
return work / time | 48eb476658fa19a6002b428993bfa58c81634638 | 12,482 |
def find(*patterns):
"""Decorate a function to be called for each time a pattern is found in a line.
:param str patterns: one or more regular expression(s)
Each argument is a regular expression which will trigger the function::
@find('hello', 'here')
# will trigger once on "hello you"
# will trigger twice on "hello here"
# will trigger once on "I'm right here!"
This decorator can be used multiple times to add more rules::
@find('here')
@find('hello')
# will trigger once on "hello you"
# will trigger twice on "hello here"
# will trigger once on "I'm right here!"
If the Sopel instance is in a channel, or sent a ``PRIVMSG``, the function
will execute for each time a received message matches an expression. Each
match will also contain the position of the instance it found.
Inside the regular expression, some special directives can be used.
``$nick`` will be replaced with the nick of the bot and ``,`` or ``:``, and
``$nickname`` will be replaced with the nick of the bot::
@find('$nickname')
# will trigger for each time the bot's nick is in a trigger
.. versionadded:: 7.1
.. note::
The regex rule will match once for each non-overlapping match, from left
to right, and the function will execute for each of these matches.
To match only once from anywhere in the line, use the :func:`search`
decorator instead. To match only once from the start of the line,
use the :func:`rule` decorator instead.
"""
def add_attribute(function):
function._sopel_callable = True
if not hasattr(function, "find_rules"):
function.find_rules = []
for value in patterns:
if value not in function.find_rules:
function.find_rules.append(value)
return function
return add_attribute | 884005008791baba3a9949e9d2c02aee0f985552 | 12,484 |
import re
def validate_container_name(name):
"""Make sure a container name accordings to the naming convention
https://docs.openstack.org/developer/swift/api/object_api_v1_overview.html
https://lists.launchpad.net/openstack/msg06956.html
> Length of container names / Maximum value 256 bytes / Cannot contain the / character.
"""
validate_name = re.compile('^[^/]+$')
return (
len(name) <= 256 and bool(validate_name.match(name))
) | 5bef8b304c004dc3169b6984b49a0d669fc9b7b3 | 12,490 |
def function(values):
"""A simple fitness function, evaluating the sum of squared parameters."""
return sum([x ** 2 for x in values]) | ee96b0948e43eec1e86ffeeca681567d2a0afa53 | 12,491 |
def create_redis_compose_node(name):
"""
Args:
name(str): Name of the redis node
Returns:
dict: The service configuration for the redis node
"""
return {
"container_name": name,
"image": "redis:3.2.8",
"command": "redis-server --appendonly yes",
"deploy": {
"placement": {
"constraints": ["node.role == worker"]
}
},
"volumes": ["./volumes/{:s}/:/data/".format(name)]
} | e6d01acc8b0c5c324ad3e0f6e5f527e2a6433705 | 12,493 |
def sun_rot_elements_at_epoch(T, d):
"""Calculate rotational elements for Sun.
Parameters
----------
T: float
Interval from the standard epoch, in Julian centuries i.e. 36525 days.
d: float
Interval in days from the standard epoch.
Returns
-------
ra, dec, W: tuple (float)
Right ascension and declination of north pole, and angle of the prime meridian.
"""
ra = 286.13
dec = 63.87
W = 84.176 + 14.1844000 * d
return ra, dec, W | 9a74edc686869eebd851200687fe4d10d38d550a | 12,497 |
def NameAndAttribute(line):
"""
Split name and attribute.
:param line: DOT file name
:return: name string and attribute string
"""
split_index = line.index("[")
name = line[:split_index]
attr = line[split_index:]
return name, attr | 7595f51d728c5527f76f3b67a99eccd82fb9e8b7 | 12,500 |
import torch
import copy
def clones(module: torch.nn.Module, n: int):
"""
Produce N identical copies of module in a ModuleList
:param module: The module to be copied.
The module itself is not part of the output module list
:param n: Number of copies
"""
return torch.nn.ModuleList([copy.deepcopy(module) for _ in range(n)]) | e4807cda87c90af415555606e3308f07ff9ddf49 | 12,504 |
def is_sorted(array):
""" Check if array of numbers is sorted
:param array: [list] of numbers
:return: [boolean] - True if array is sorted and False otherwise
"""
for i in range(len(array) - 1):
if array[i] > array[i + 1]:
return False
return True | 8542e162aa96f7035d33f1eb7b7159031a8a41b8 | 12,506 |
def FormatDescriptorToPython(i):
"""
Format a descriptor into a form which can be used as a python attribute
example::
>>> FormatDescriptorToPython('(Ljava/lang/Long; Ljava/lang/Long; Z Z)V')
'Ljava_lang_LongLjava_lang_LongZZV
:param i: name to transform
:rtype: str
"""
i = i.replace("/", "_")
i = i.replace(";", "")
i = i.replace("[", "")
i = i.replace("(", "")
i = i.replace(")", "")
i = i.replace(" ", "")
i = i.replace("$", "")
return i | 8d217883603ae9e9c8f282985b456aa97494beba | 12,507 |
def layer_severity(layers, layer):
"""Return severity of layer in layers."""
return layers[layer]['severity'] | e8a7a95268ddd2d4aa6b5f7fa66d5828016517eb | 12,509 |
def _parse_alt_title(html_chunk):
"""
Parse title from alternative location if not found where it should be.
Args:
html_chunk (obj): HTMLElement containing slice of the page with details.
Returns:
str: Book's title.
"""
title = html_chunk.find(
"input",
{"src": "../images_buttons/objednat_off.gif"}
)
assert title, "Can't find alternative title!"
title = title[0]
assert "title" in title.params, "Can't find alternative title source!"
# title is stored as Bleh bleh: Title
title = title.params["title"].split(":", 1)[-1]
return title.strip() | bd5df0edfc174653731256d50e0a8f84a6f84880 | 12,512 |
def prompt_worker_amount(cpu_cores: int):
"""Prompt the user for the amount of Celery workers they want to run.
Start 2 less workers than amount of CPU cores by default."""
answer = 0
safe_cores_suggestion = cpu_cores - 2
def invalid_answer():
"""Restart prompt if answer invalid"""
print(f"[red]Invalid number! Please enter a whole number.[/]")
prompt_worker_amount(cpu_cores)
try:
# Input doesn't like parsing colours
print(
f"[yellow]How many workers would you like to start?[/]\n"
+ f"Press ENTER for default: {safe_cores_suggestion}\n"
)
answer = int(input() or safe_cores_suggestion)
except ValueError:
invalid_answer()
if answer == 0:
print(f"[yellow]Using suggested amount: {safe_cores_suggestion}[/]")
answer = safe_cores_suggestion
return answer | 2f2e4d423eb94d0bf709feda09c5c45ca8cc481a | 12,513 |
def tab_delimited(list_to_write):
"""Format list of elements in to a tab-delimited line"""
list_to_write = [str(x) for x in list_to_write]
return '\t'.join(list_to_write) + '\n' | 921a3316f01aecaba1efb43c524b1ad5cca89546 | 12,523 |
def get_sorted_indices(some_list, reverse=False):
"""Get sorted indices of some_list
Parameters
----------
some_list : list
Any list compatible with sorted()
reverse : bool
Reverse sort if True
"""
return [
i[0]
for i in sorted(
enumerate(some_list), key=lambda x: x[1], reverse=reverse
)
] | 6e207f4079cd3800fd26269725f5385250b76112 | 12,529 |
def excel_index(column):
""" Takes a string and returns what column it would be in Excel. """
# Not needed but will insure the right values. There are different
# ASCII values for uppercase and lowercase letters.
letters = list(column.upper())
# This works like this: LOL = 8514
# 26^2 * 12(L) + 26^1 * 15(O) + 26^0 * 12 = 8514
rev = list(reversed(letters))
return sum([26**i * (ord(x) - 64) for i, x in enumerate(rev)]) | 224d7f370468e232a68a8205cf101e8dcb959829 | 12,531 |
def gp_tuple_to_dict(gp_tuple):
"""Convert a groupings parameters (gp) tuple into a dict suitable
to pass to the ``grouping_parameters`` CompoundTemplate.__init__
kwarg.
"""
params = [{'min': 1}, {'max': 1}, {'name': None}, {'possible_types': None},
{'is_separator': False}, {'inner_sep_type': None}]
d = {}
for i, param in enumerate(params):
if i < len(gp_tuple):
d[list(param.keys())[0]] = gp_tuple[i]
else:
d[list(param.keys())[0]] = list(param.values())[0]
return d | 5db98d0530dc177685e0bcfefad94a1f6718aed9 | 12,537 |
from typing import Optional
def convert_int_or_none(val: Optional[int]) -> Optional[int]:
"""Convert to an int or None."""
return int(val) if val is not None else val | 1920243d7465df6f2f3f9e6fdbd2424bbad165b4 | 12,539 |
def parse_object(repo, objectish):
"""Parse a string referring to an object.
:param repo: A `Repo` object
:param objectish: A string referring to an object
:return: A git object
:raise KeyError: If the object can not be found
"""
return repo[objectish] | 6606eb58a1aab94a6071bf18221dbec63e2ef6da | 12,545 |
def elision_normalize(s):
"""Turn unicode characters which look similar to 2019 into 2019."""
return s.replace("\u02BC", "\u2019").replace("\u1FBF", "\u2019").replace("\u0027", "\u2019").\
replace("\u1FBD", "\u2019") | a7b0f2ba14d0fcbb2cd1cc97b8ce858051d35709 | 12,548 |
def constrain_to_range(s, min_val, max_val):
"""
Make sure that a value lies in the given (closed) range.
:param s: Value to check.
:param min_val: Lower boundary of the interval.
:param max_val: Upper boundary of the interval.
:return: Point closest to the input value which lies in the given range.
:rtype: float
"""
return max(min(s, max_val), min_val) | d2017580bab60ba444cbf40f570b16763de81969 | 12,550 |
def find_piece_size(total_size):
""" Determine the ideal piece size for a torrent based on the total
size of the data being shared.
:param total_size: Total torrent size
:type total_size: int
:return: Piece size (KB)
:rtype: int
"""
if total_size <= 2 ** 19:
return 512
elif total_size <= 2 ** 20:
return 1024
elif total_size <= 2 ** 21:
return 2048
elif total_size <= 2 ** 22:
return 4096
elif total_size <= 2 ** 23:
return 8192
elif total_size <= 2 ** 24:
return 16384
else:
raise ValueError("Total size is unreasonably large") | 532adc41448ce5dfb11f02699c987936e1abda0a | 12,555 |
def fake_file(filename, content="mock content"):
"""
For testing I sometimes want specific file request to return
specific content. This is to make creation easier
"""
return {"filename": filename, "content": content} | 5b342edf9dec65987223fbbc8b670402513ae4ed | 12,557 |
def flatten(sequence):
"""Given a sequence possibly containing nested lists or tuples,
flatten the sequence to a single non-nested list of primitives.
>>> flatten((('META.INSTRUMENT.DETECTOR', 'META.SUBARRAY.NAME'), ('META.OBSERVATION.DATE', 'META.OBSERVATION.TIME')))
['META.INSTRUMENT.DETECTOR', 'META.SUBARRAY.NAME', 'META.OBSERVATION.DATE', 'META.OBSERVATION.TIME']
"""
flattened = []
for elem in sequence:
if isinstance(elem, (list, tuple)):
elem = flatten(elem)
else:
elem = [elem]
flattened.extend(elem)
return flattened | 6ca3fe470757dc4081c4387d917d5e285c2a3f06 | 12,560 |
def relevant_rule(rule):
"""Returns true if a given rule is relevant when generating a podspec."""
return (
# cc_library only (ignore cc_test, cc_binary)
rule.type == "cc_library" and
# ignore empty rule
(rule.hdrs + rule.textual_hdrs + rule.srcs) and
# ignore test-only rule
not rule.testonly) | 3e1a45d222128e0065eb585135806a0f8bb787d9 | 12,561 |
def _decrement_version(lambda_config):
"""Decrement the Lambda version, if possible.
Args:
lambda_config (dict): Lambda function config with 'current_version'
Returns:
True if the version was changed, False otherwise
"""
current_version = lambda_config['current_version']
if current_version == '$LATEST':
return False
int_version = int(current_version)
if int_version <= 1:
return False
lambda_config['current_version'] = int_version - 1
return True | a06ed14e0abaa68a809bdb49c2d4f2cc59ce6db2 | 12,564 |
import collections
def rollout(env, agent, max_steps):
"""Collects a single rollout of experience.
Args:
env: The environment to interact with (adheres to gym interface).
agent: The agent acting in the environment.
max_steps: The max number of steps to take in the environment.
Returns:
A dictionary of lists containing information from the trajectory.
"""
assert max_steps > 0
traj = collections.defaultdict(list)
def add_step(**kwargs):
for k, v in kwargs.items():
traj[k].append(v)
s = env.reset()
num_steps = 0
while num_steps < max_steps:
a, a_info = agent.step(s)
sp, r, t, _ = env.step(a)
add_step(s=s, a=a, r=r, t=t, a_info=a_info)
s = sp
num_steps += 1
if t:
break
# Handle certain edge cases during sampling.
# 1. Ensure there's always a next state.
traj["s"].append(s)
# 2. Ensure that the agent info (importantly containing the next-state-value) always exists.
_, a_info = agent.step(s)
traj["a_info"].append(a_info)
return traj | eb9a9f41b9c37e1c5f8ebdbbec13650dd7665622 | 12,566 |
def tms_mpsse(bits):
"""convert a tms bit sequence to an mpsee (len, bits) tuple"""
n = len(bits)
assert (n > 0) and (n <= 7)
x = 0
# tms is shifted lsb first
for i in range(n - 1, -1, -1):
x = (x << 1) + bits[i]
# only bits 0 thru 6 are shifted on tms - tdi is set to bit 7 (and is left there)
# len = n means clock out n + 1 bits
return (n - 1, x & 127) | 25d2dc3b1edd5494e82295fe50889565246c2ae5 | 12,567 |
def _aggregate(query, func, by=None):
"""
Wrap a query in an aggregation clause.
Use this convenience function if the aggregation parameters are coming from
user input so that they can be validated.
Args:
query (str): Query string to wrap.
func (str): Aggregation function of choice. Valid choices are 'avg'/'mean',
'min', 'max', 'sum'.
by (list of str): Optional list of variables by which to perform the
aggregation.
Returns:
str: New query string.
"""
if func == "mean":
func = "avg"
if func not in ["avg", "min", "max", "sum"]:
raise ValueError("Unsupported aggregation function %r" % func)
query = "{func}({query})".format(func=func, query=query)
if by:
query += " by({by_variables})".format(by_variables=", ".join(by))
return query | e26aa715fadc5a58f5f87cee297fc3e6500120e1 | 12,568 |
from typing import Any
def accept(message: Any) -> bool:
"""
Prompts the user to enter "yes" or "no". Returns True if the
response was "yes", otherwise False. Ctrl-c counts as "no".
"""
message = f"[pretf] {message} [yes/no]: "
response = ""
while response not in ("yes", "no"):
try:
response = input(message).lower()
except KeyboardInterrupt:
response = "no"
print()
return response == "yes" | 884bf321462ef37f02a69925ece012e108fad861 | 12,569 |
def format_seconds(total_seconds: int) -> str:
"""Format a count of seconds to get a [H:]M:SS string."""
prefix = '-' if total_seconds < 0 else ''
hours, rem = divmod(abs(round(total_seconds)), 3600)
minutes, seconds = divmod(rem, 60)
chunks = []
if hours:
chunks.append(str(hours))
min_format = '{:02}'
else:
min_format = '{}'
chunks.append(min_format.format(minutes))
chunks.append('{:02}'.format(seconds))
return prefix + ':'.join(chunks) | c0f79b7f45c32589537b5dbf51a95b4811c50417 | 12,570 |
import six
def rev_comp( seq, molecule='dna' ):
""" DNA|RNA seq -> reverse complement
"""
if molecule == 'dna':
nuc_dict = { "A":"T", "B":"V", "C":"G", "D":"H", "G":"C", "H":"D", "K":"M", "M":"K", "N":"N", "R":"Y", "S":"S", "T":"A", "V":"B", "W":"W", "Y":"R" }
elif molecule == 'rna':
nuc_dict = { "A":"U", "B":"V", "C":"G", "D":"H", "G":"C", "H":"D", "K":"M", "M":"K", "N":"N", "R":"Y", "S":"S", "U":"A", "V":"B", "W":"W", "Y":"R" }
else:
raise ValueError( "rev_comp requires molecule to be dna or rna" )
if not isinstance( seq, six.string_types ):
raise TypeError( "seq must be a string!" )
return ''.join( [ nuc_dict[c] for c in seq.upper()[::-1] ] ) | 2e42ccf5f37992d0fbe3a25afd70a04e6fc0c225 | 12,572 |
def findall_deep(node, selector, ns, depth=0, maxDepth=-1):
"""
recursively find all nodes matching the xpath selector
:param node: the input etree node
:param selector: the xpath selector
:param ns: a dict of namespaces
:param depth: the current depth
:param maxDepth: the maximum number of levels to navigate
:return: a list of matching nodes
"""
results = node.findall(selector, ns) if ns else node.findall(selector)
if maxDepth == -1 or (depth < maxDepth):
children = list(node)
if children and len(children) > 0:
for child in children:
results = results + findall_deep(child, selector, ns, depth+1, maxDepth)
return results | f93d413dd205acf5be0e5f76dd6c599f54bfac57 | 12,577 |
from typing import Union
from typing import List
def table_insert(name: str, field_names: Union[str, List[str]]) -> str:
"""Return command to add a record into a PostgreSQL database.
:param str name: name of table to append
:param field_names: names of fields
:type: str or list
:return: command to append records to a table
:rtype: str
Example:
import psql
cur = psql.connection('db', 'user', 'password')
[cur.execute(psql.table_insert('table', 'field'), (x, )) for x in values]
"""
if isinstance(field_names, str):
field_names = [field_names]
length = len(field_names)
if length > 1:
values = ','.join(['%s'] * length)
else:
values = '%s'
return '''INSERT INTO {table_name} ({fields})
VALUES ({values});'''.format(table_name=name,
fields=', '.join(field_names),
values=values) | a50aadebe655118c255ccb81c3c0852646057ff4 | 12,578 |
def __normalize(variable):
"""
Scale a variable to mean zero and standard deviation 1
Parameters
----------
variable : xarray.DataArray or np.ndarray
Returns
-------
xarray.DataArray or np.ndarray
"""
mean = variable.mean()
std = variable.std()
if std != 0:
result = (variable - mean) / std
else:
result = variable - mean
return result | 7d6329ef6454deb04b041a630a7f1f084f237b57 | 12,580 |
def get_proj(ds):
"""
Read projection information from the dataset.
"""
# Use geopandas to get the proj info
proj = {}
maybe_crs = ds.geometry.crs
if maybe_crs:
maybe_epsg = ds.geometry.crs.to_epsg()
if maybe_epsg:
proj["proj:epsg"] = maybe_epsg
else:
proj["proj:wkt2"] = ds.geometry.crs.to_wkt()
return proj | 4ed68d8733285cdea92c1b167a3d7f59024845db | 12,584 |
def nameFormat(name):
""" Edits the name of the column so that it is properly formatted with a space between the words, and each word capitalized."""
space = name.find("l") + 1
firsthalf = name[:space]
secondhalf = name[space:]
name = firsthalf.capitalize() + " " + secondhalf.capitalize()
return name | d93b54d6a18347aeb32657c1f8880965d01db7f2 | 12,585 |
def invert_cd_path(graph, path, c, d):
"""
Switch the colors of the edges on the cd-path: c to d and d to c.
:param graph: nx.Graph(); each edge should have an attribute "color"
:param path: nx.Graph() representing cd-path
:param c: integer smaller then the degree of "graph" or None; represents a color
:param d: integer smaller then the degree of "graph" or None; represents a color
:return: graph with switched colors
"""
for edge in path.edges:
current_color = graph.get_edge_data(*edge)["color"]
if current_color == c:
graph.add_edge(*edge, color=d)
if current_color == d:
graph.add_edge(*edge, color=c)
return graph | 53455f3e442a10ee403d499fe9c5b6f2e86a6e7f | 12,586 |
def _initialise_notable_eids(db):
"""Returns set of eids corresponding to "notable" entities."""
rows = db.query("""
SELECT eid FROM entity_flags
WHERE political_entity=TRUE;
""")
notable_eids = set(row["eid"] for row in rows)
print('[OK] Received %d notable eIDs.' % len(notable_eids))
return notable_eids | c11306395937fc58dadbd3e9d129f7f6d7b4b576 | 12,589 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.