content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
from datetime import datetime
import itertools
def satisfies(query, **kwargs):
"""Check whether a given datetime object satisfies day and time predicates
Keyword Args:
month: The month predicate (January, February, ...)
day: The day of month predicate [1 31)
weekday: The day of week predicate (Sunday, Monday, ...)
hour: The hour of day predicate [0 24)
minute: The minute of hour predicate [0 60)
"""
formatters = {
'month': lambda: datetime.strftime(query, '%B'),
'weekday': lambda: datetime.strftime(query, '%A'),
'day': lambda: query.day,
'hour': lambda: query.hour,
'minute': lambda: query.minute
}
attributes = kwargs.keys()
predicates = itertools.product(*kwargs.values())
for values in predicates:
if all([formatters[attr]() == value for attr,value in zip(attributes,values)]):
return True
return False | e36ff908a31e71eab242b9ff6cf4df6721a1fbf7 | 11,604 |
import requests
import json
def duckduckgo(search, appName=""):
"""Gives instant answers from DuckDuckGo (https://duckduckgo.com/).
Keyword arguments:
search -- <str>; what you are searching for (case sensitive)
appName -- <str>; the name of your app
Return value:
{
"AbstractText": <str>; topic summary,
"AbstractSource": <str>; name of <AbstractText> source,
"Heading": <str>; name of topic that goes with
<AbstractText>,
"Answer": <str>; instant answer,
"Definition": <str>; dictionary definition (may differ from
<AbstractText>),
"DefinitionSource": <str>; name of <Definition> source,
"DefinitionURL": <str>; deep link to expanded definition
page in <DefinitionSource>
"URL": <str>; URL associated with <AbstractText>,
"URLText": <str>; text from <FirstURL>
}
"""
url = "http://api.duckduckgo.com/?q={}&format=json&t={}"
url = url.format(search, appName)
data = requests.get(url).text
data = json.loads(data)
items = {"AbstractText": data["AbstractText"],
"AbstractSource": data["AbstractSource"],
"Heading": data["Heading"],
"Answer": data["Answer"],
"Definition": data["Definition"],
"DefinitionSource": data["DefinitionSource"],
"DefinitionURL": data["DefinitionURL"]}
exists = data["Results"]
items["URL"] = data["Results"][0]["FirstURL"] if exists else ""
items["URLText"] = data["Results"][0]["Text"] if exists else ""
return items | 7bb2958986b0e1b0219e7d1a63e475ff840f0136 | 11,607 |
def binary_to_decimal(number):
"""
Calculates the decimal of the given binary number.
:param number: decimal number in string or integer format
:return integer of the equivalent decimal number
"""
decimal = []
number = list(str(number)[::-1])
for i in range(len(number)):
decimal.append(int(number[i]) * (2 ** i))
return sum(decimal) | 6d615b9bc5a50cc9d2a970fa77c989fa95d0d77e | 11,608 |
def get_dom_attr_value(dom, tag_name, attr_name):
"""
Return value of a tag's attribute from dom (XML file).
Arguments:
tag_name -- name of dom tag in which the attribute is found.
attr_name -- name of dom attribute for which the value should be returned.
"""
tag=dom.getElementsByTagName(tag_name)
value=tag[0].attributes[attr_name].value
return value | 26f31fd7db526bb5503b7ce156b19a99705041d1 | 11,609 |
import torch
def word_to_one_hot(word, word2idx):
"""Return the one hot encoding of the word given to this function.
Args:
word (str): The word for which one hot representation is required.
word2idx (Dict): The dictionary mapping from word to indices.
Returns:
x (torch.Tensor): The one hot representation for the word.
"""
# Create a vector or zeros equal to the length of the vocab
x = torch.zeros(len(word2idx)).float()
# Setting the value corresponding to the index of word 1
x[word2idx[word]] = 1.0
return x | 6628f25695cacb202dd51be070ff03f9a594654d | 11,618 |
def rev_comp(seq: str) -> str:
"""
Generates the reverse complement of a sequence.
"""
comp = {
"A": "T",
"C": "G",
"G": "C",
"T": "A",
"B": "N",
"N": "N",
"R": "N",
"M": "N",
"Y": "N",
"S": "N",
"W": "N",
"K": "N",
"a": "t",
"c": "g",
"g": "c",
"t": "a",
"n": "n",
" ": "",
}
rev_seq = "".join(comp.get(base, base) for base in reversed(seq))
return rev_seq | cb6b95d2d3f15910ff3ad793d99bb56de898026e | 11,619 |
def codeblock(text):
"""
Returns text in a Markdown-style code block
:param text: Str
:return: Str
"""
return "```\n" + text + "\n```" | fb8fd7314273b47ace577a72c705742d6646aa0d | 11,626 |
def generate_ensemble(num_layers, *activations):
"""Given a set of string names and a number of target layers, generate
a list of ensemble architectures with those activations
Args:
num_layers: int
the number of hidden layers in the neural network, and also
the number of activation functions
activations: list of str
a list of strings that indicates the candidates for activation
functions at for every layer
Returns:
ensemble: list of list of str
a list of architectures, where an architecture is given by a
list of activation function names
"""
if num_layers == 0:
return []
if num_layers == 1:
return [[act] for act in activations]
return [[act, *o] for act in activations
for o in generate_ensemble(num_layers - 1, *activations)] | 42bce2fc861122938d2e5da54e4538b0e6a285bc | 11,627 |
def match_server_args_factory(tick_rate: int, realtime: bool, observations_only: bool, env_config_string: str):
""" Helper factory to make a argument dictionary for servers with varying ports """
def match_server_args(port):
arg_dict = {
"tick_rate": tick_rate,
"port": port,
"realtime": realtime,
"observations_only": observations_only,
"config": env_config_string
}
return arg_dict
return match_server_args | 5059d0a4224067f485455a54f4e6d1f83ba68531 | 11,633 |
from typing import Iterable
from typing import Any
def parametrize(arg_names: Iterable[str], arg_values: Iterable[Iterable[Any]]):
"""
Decorator to create parameterized tests.
# Parameters
arg_names : `Iterable[str]`, required.
Argument names to pass to the test function.
arg_values : `Iterable[Iterable[Any]]`, required.
Iterable of values to pass to each of the args.
The decorated test will be run for each inner iterable.
"""
def decorator(func):
def wrapper(*args, **kwargs):
for arg_value in arg_values:
kwargs_extra = {name: value for name, value in zip(arg_names, arg_value)}
func(*args, **kwargs, **kwargs_extra)
return wrapper
return decorator | e385d2449a2572d89a055d7cbdcc2475b00b2942 | 11,634 |
import math
def get_distance(lat_1, lng_1, lat_2, lng_2):
"""calculates the distance between two coordinates
Args:
lat_1 (float): start latitude
lng_1 (float): start longitude
lat_2 (float): end latitude
lng_2 (float): end longitude
Returns:
float: distance in meter
"""
# transform coordinates to radians
lat_1, lng_1, lat_2, lng_2 = map(math.radians, [lat_1, lng_1, lat_2, lng_2])
# calculate the distance
d_lat = lat_2 - lat_1
d_lng = lng_2 - lng_1
temp = (
math.sin(d_lat / 2) ** 2
+ math.cos(lat_1)
* math.cos(lat_2)
* math.sin(d_lng / 2) ** 2
)
return 6373.0 * 1000 * (2 * math.atan2(math.sqrt(temp), math.sqrt(1 - temp))) | 3e09826a4b556e897f2c39d792ed2f1d8da6109c | 11,639 |
import math
def spherical_to_cartesian(r, theta, phi):
"""
:param r: Radius.
:param theta: in radians.
:param phi: azimuth angle in radians
:return: x=[x1, x2, x3] coordinates.
"""
return [r*math.sin(phi)*math.cos(theta), r*math.sin(phi)*math.sin(theta), r*math.cos(phi)] | 08d0748d5acd9dab4e74a19879b2f8ac7858bb31 | 11,640 |
import copy
def flat_ingredients_list_DFS(product):
"""
Recursive function to search the ingredients graph by doing a Depth First Search and return it as a flat list of
all nodes.
Sub ingredients are placed right after their parents.
Args:
product (dict): Dict corresponding to a product or a compound ingredient.
Returns:
list: List containing all the ingredients graph nodes.
"""
if 'ingredients' in product:
product_without_ingredients = copy.deepcopy(product)
del product_without_ingredients['ingredients']
if '_id' in product: # It is a product and not a compound ingredient:
return [y for x in product['ingredients'] for y in flat_ingredients_list_DFS(x)]
else:
return [product_without_ingredients] + [y for x in product['ingredients'] for y in
flat_ingredients_list_DFS(x)]
else:
return [product] | d2b3ada88963d3967fa8fffc4aa294bed4b1fe31 | 11,641 |
def parse_raw(output):
"""Just return `output` as a single string assigned to dict key '_'
for reference in assertion expressions.
Returns {'_': output}
"""
return dict(_=output) | 7fe463b997687bedad6d77d4bca4718037f18069 | 11,651 |
import re
def http_header_link_regex(relation_type):
"""Create a regex matching the http header links of the given type."""
return re.compile(r'.*;+\s*rel="{}"\s*(;.*)?'.format(
re.escape(relation_type))) | 4085e9258c0f6d5d1de33f82318aa9006fbe40bc | 11,652 |
def read_txt(path):
"""Read a mass spectrum from a text file.
Args:
path (str): Path to the spectrum.
Returns:
tuple: Lists with m/z and intensities.
"""
mz = []
i = []
with open(path) as f:
for line in f:
line = line.split()
mz.append(float(line[0]))
i.append(float(line[1]))
return mz, i | e0efe8549596ec2bf312967ecf265d8eb8b3372c | 11,655 |
def find_parent(
child: str,
parent_of: dict,
recursive=False):
"""
Find the parent or great-great-...-great-parent of a child
Required Parameters
-------------------
child: str
If this is already the greatest-parent, will return itself
otherwise, raise KeyError
parent_of: dict
dictionary with key = child and value = parent, eg:
parent_of = {}
parent_of["child"] = "parent"
Other Parameters
----------------
recursive: bool (default: False)
if True, look for greatest-parent of a child.
Returns
-------
itself, the Parent or the greatest-parent
"""
try:
parent = parent_of[child]
except KeyError:
if child in parent_of.values():
return child
raise
if recursive:
return find_parent(parent, parent_of)
else:
return parent | 429f91160f6abc8710ced71b07e5e2e5c0a97cfc | 11,656 |
def _TimeToString(datetime):
"""Converts a datetime object into a string
adapted from M-LOOP: mloop.utilities
Args:
datetime (datetime): datetime object (e.g. datetime.datetime.now())
Returns:
str: date time as 'yyyy-mm-dd_hh-mm'
"""
return datetime.strftime("%Y-%m-%d_%H-%M") | 3f778b8b15f19bdfe5238799cb248316772380b4 | 11,659 |
def array(string):
"""Converts string to a list, split on whitespace
:param:
string(str): The string to split
:return
string.split()(list): The string split into a list on the white space."""
return string.split() | c48c35d321848f3e997931c5ab9f9357842b9228 | 11,661 |
def label_mapper(raw_labels, new_labels):
"""Map some raw labels into new labels.
When dealing with GEO DataSets it is very common that each GSM sample has
a different phenotye (e.g. 'Brain - 001', 'Brain - 002', ...). This
function maps these raw labels into new homogeneous labels.
Parameters
-----------
raw_labels : list of strings
list of unpreprocessed labels
new_labels : list of strings
list of labels to map
Returns
-----------
y : array of float, shape : n_samples
the modified label vector
Examples
-----------
>>> raw_labels = ['Brain - 001', 'Brain - 002', 'Muscle - 001', 'Muscle - 002']
>>> label_mapper(raw_labels, ['Brain', 'Muscle'])
['Brain', 'Brain', 'Muscle', 'Muscle']
"""
y = []
for rl in raw_labels:
for nl in new_labels:
if nl in rl:
y.append(nl)
break
else:
y.append(rl)
# print('No mapping rule for %s', rl)
return y | 67aaa329374169f61414032b0949344437d16022 | 11,663 |
from typing import Optional
def validate_self_discharge(self_discharge: Optional[float]) -> Optional[float]:
"""
Validates the self discharge of an object.
Self discharge is always optional.
:param self_discharge: The self discharge of the object.
:return: The validated self discharge.
"""
if self_discharge is None:
return None
if self_discharge < 0 or self_discharge > 1:
raise ValueError("Self discharge must be between 0 and 1.")
return self_discharge | 4d1d6c3ddb6530fc6fc6e03809a4320b0b50033f | 11,664 |
import pickle
import base64
def unbp(data):
"""Un-(Base64-Pickle)."""
return pickle.loads(base64.b64decode(data)) | d1338e2d877ac84c78cd67e2b5b425c173011331 | 11,665 |
def l_min(s, m):
""" Minimum allowed value of l for a given s, m.
The formula is l_min = max(\|m\|,\|s\|).
Parameters
----------
s: int
Spin-weight of interest
m: int
Magnetic quantum number
Returns
-------
int
l_min
"""
return max(abs(s), abs(m)) | 9eec996df3b8e026c8b58649fddbbbcc05c38372 | 11,672 |
def threshold_means(df, thresh_name, thresholds, comp_df=None, error_fac=1.0,
use_percents=True):
"""Computes the means (and standard deviations) along a set of threshold
values. This is handy for doing the Threshold v.s. Robustness plots
when in comparison to DREA.
Args:
df (DataFrame): DataFrame of the data we want to plot. Often, this
needs to be filtered to be only one algorithm.
thresh_name (str): String representing the column name for thresholds
comp_df (DataFrame, optional): Data frame to compare to, percent wise.
error_fac (float, optional): Multiply error sizes by this number.
Particularly useful if we want to use confidence intervals. Default
is 1.0.
use_percents (float, optional): Return results in percents.
Returns:
Returns an object with properties:
robs -> returns a list of robustness means
robs_err -> returns list of robustness errors.
sends -> returns a list of send frequencies.
sends_err -> returns a list of errors of send frequencies.
res -> returns a list of reschedule frequencies
res_err -> returns a list of reschedule frequencies errors
runtimes -> returns a list of runtimes.
"""
if comp_df is not None:
comp_rob = comp_df["robustness"].mean()
comp_res = comp_df["reschedule_freq"].mean()
comp_run = comp_df["runtime"].mean()
comp_send = comp_df["send_freq"].mean()
else:
comp_rob = 1.0
comp_res = 1.0
comp_run = 1.0
comp_send = 1.0
rob_means = []
stderrs = []
sends = []
sends_err = []
reschedules = []
reschedules_err = []
runtimes = []
runtimes_err = []
if use_percents:
p = 100
else:
p = 1
for t in thresholds:
point = df.loc[df[thresh_name] == t]
mean = point["robustness"].mean() / comp_rob * p
rob_means.append(mean)
se = point["robustness"].sem() * p
stderrs.append(se * error_fac)
send_dat = point["send_freq"].mean() / comp_send * p
sends.append(send_dat)
send_err = point["send_freq"].sem() * p
sends_err.append(send_err * error_fac)
res = point["reschedule_freq"].mean() / comp_res * p
reschedules.append(res)
res_err = point["reschedule_freq"].sem() * p
reschedules_err.append(res_err * error_fac)
runtime = point["runtime"].mean() / comp_run * p
runtimes.append(runtime)
runtime_err = point["runtime"].sem() * p
runtimes_err.append(runtime_err * error_fac)
class ThreshResponse(object):
def __init__(self, robs, robs_err, sends, sends_err, res, res_err,
runtimes):
self.robs = robs
self.robs_err = robs_err
self.sends = sends
self.sends_err = sends_err
self.res = res
self.res_err = res_err
self.runtimes = runtimes
self.runtimes_err = runtimes_err
return ThreshResponse(rob_means, stderrs, sends, sends_err, reschedules,
reschedules_err, runtimes) | 99f7855f457a2aec71a1454ac08fb656745f84d1 | 11,674 |
from typing import Iterable
from typing import Any
from functools import reduce
def concat(*it: Iterable[Any]) -> Any:
"""
Concatenation of iterable objects
Args:
it: Iterable object
Examples:
>>> fpsm.concat([1, 2, 3], [4, 5, 6])
[1, 2, 3, 4, 5, 6]
"""
return reduce(lambda x, y: x + y, map(list, it)) | e2b9d1604630198486fa0649d62784078547031a | 11,675 |
def plot(domain, solution=None, solution_exact=None, **kwargs):
"""Plots a solution (and optionally a reference solution) onto the given
DiscreteDomain instance.
**kwargs are the same as the ones in the DiscreteDomain's visualize() method.
Parameters
----------
domain : DiscreteDomain
Discrete domain instance to plot the solution onto. The solution must have
as many values as the number of vertices in the domain.
solution : numpy.ndarray, optional
Values to plot at each vertex of the domain. If None, then the domain
is plot as is with the z-component of each vertex as value.
solution_exact : numpy.ndarray, optional
Value references to plot at each vertex of the domain. If None, only the
graph of the computed solution is shown; else two graphs are created to
show the computed and exact solutions side by side.
"""
if solution is None: return domain.visualize(**kwargs)
else: return domain.visualize(z=solution, z_ex=solution_exact, **kwargs) | 003f55c54a19145e847b3baf97266f301b09ddaf | 11,676 |
import shutil
def check_java() -> bool:
""" Check if Java is installed on the system."""
return shutil.which('java') is not None | 44c19db5c9b72c6904e01b09797009cd8f2079b0 | 11,691 |
def data_ref_type_str(dref_enum):
"""
Translate an ``enum DataRefTypes`` value into a string representation.
"""
if dref_enum == 0x9000:
return 'unknown'
elif dref_enum == 0x9001:
return 'integer'
elif dref_enum == 0x9002:
return 'fp'
else:
return 'INVALID' | 28f3c493c1f927e8286be5d00b695ecb399210c5 | 11,692 |
def takewhile(pred, *args):
"""Produce a sequence with the same elements as the input sequence
until pred returns false for some element; that element and all
those following are discarded. The filter predicate is passed an
element of the input sequence plus extra arguments, if provided.
"""
def taker(input):
for elt in input:
if pred(elt, *args):
yield elt
else:
break
return taker | 74503e290b31d263964e532851a90a74d09f3568 | 11,694 |
def escape_html(message):
"""Escapes HTML characters in the given message."""
# Only the following characters need to be escaped
# (https://wiki.ubuntu.com/NotificationDevelopmentGuidelines).
message = message.replace('&', '&')
message = message.replace('<', '<')
message = message.replace('>', '>')
return message | 1fdbfa9b972ad6057e97967c61644b1c2e0994d0 | 11,702 |
def crop_image(img, ymin, ymax, xmin, xmax):
"""Crop image with given size
Args:
img: image as numpy array
ymin: start cropping position along height in pixels
ymax: end cropping position along height in pixels
xmin: end cropping position along width in pixels
xmax: end cropping position along width in pixels
Returns:
Image as numpy array
"""
return img[int(ymin) : int(ymax), int(xmin) : int(xmax), :] | 929be89de22b5aa129f17459d53f34b335803813 | 11,706 |
def rect_overlap(r1, r2):
"""Return the area of the intersection of two rectangles.
Args:
r1: an object with attributes left, top, width, height
r2: an object with attributes left, top, width, height
Returns:
float
"""
left = float(max(r1.left, r2.left))
right = float(min(r1.left + r1.width, r2.left + r2.width))
top = float(max(r1.top, r2.top))
bottom = float(min(r1.top + r1.height, r2.top + r2.height))
if left >= right or top >= bottom:
return 0.
return (right - left) * (bottom - top) | cba6c109fe7e9cdc3532781ebb9abbae7088754d | 11,710 |
def is_title_case(line):
"""Determine if a line is title-case (i.e. the first letter of every
word is upper-case. More readable than the equivalent all([]) form."""
for word in line.split(u' '):
if len(word) > 0 and len(word) > 3 and word[0] != word[0].upper():
return False
return True | e769d589d0f84030768c901a5b5b2285788bdc97 | 11,718 |
import random
def random_hex_seeded(length, seed):
"""Get a random hex string of a given lenth with a specific seed."""
random.seed(seed)
return bytearray(random.getrandbits(8) for _ in range(length)).hex() | 5737057a33063cd9c62bc6071f0ef98552001117 | 11,721 |
import re
def parse_define(line):
"""Check if the specified line contains an #define directive"""
pattern = r'#(?:\s)*define\s*([\w_]+)(?:\s)*["\']?(.*)["\']'
match = re.match(pattern, line, re.IGNORECASE)
if match:
return (match.group(1), match.group(2)) | 5fc15e792e1f457c7466d9ff0a97241cbdf0873f | 11,723 |
def format_iter(body: list) -> str:
"""
Formats an iterable into a multi-line bulleted string of its values.
"""
return "\n".join(sorted([f" - {getattr(v, 'value', v)}" for v in body])) | 0f55b06276c45ef652e89df3dfd24d1fe9a4e844 | 11,724 |
import click
def n_protocols_option(required=True, **kwargs):
"""Get option for number of protocols."""
def custom_n_protocols_option(func):
def callback(ctx, param, value):
value = abs(value)
ctx.meta["protocols_number"] = value
return value
return click.option(
"-pn",
"--protocols-number",
type=click.INT,
show_default=True,
required=required,
help="The number of protocols of cross validation.",
callback=callback,
**kwargs
)(func)
return custom_n_protocols_option | bcdd204ea9b9cd7d09e159ba45ea54b349c648b6 | 11,729 |
def load_trace(logfile, root_dir, api, blacklist):
"""Loads a trace file and returns the Results instance.
Arguments:
- logfile: File to load.
- root_dir: Root directory to use to determine if a file is relevant to the
trace or not.
- api: A tracing api instance.
- blacklist: Optional blacklist function to filter out unimportant files.
"""
data = api.parse_log(logfile, (blacklist or (lambda _: False)))
assert len(data) == 1, 'More than one trace was detected!'
if 'exception' in data[0]:
# It got an exception, raise it.
raise data[0]['exception']
results = data[0]['results']
if root_dir:
results = results.strip_root(root_dir)
return results | e51ad3e61ee4206e74800f1c24b14fd20f51e477 | 11,732 |
def splitUIAElementAttribs(attribsString):
"""Split an UIA Element attributes string into a dict of attribute keys and values.
An invalid attributes string does not cause an error, but strange results may be returned.
@param attribsString: The UIA Element attributes string to convert.
@type attribsString: str
@return: A dict of the attribute keys and values, where values are strings
@rtype: {str: str}
"""
attribsDict = {}
tmp = ""
key = ""
inEscape = False
for char in attribsString:
if inEscape:
tmp += char
inEscape = False
elif char == "\\":
inEscape = True
elif char == "=":
# We're about to move on to the value, so save the key and clear tmp.
key = tmp
tmp = ""
elif char == ";":
# We're about to move on to a new attribute.
if key:
# Add this key/value pair to the dict.
attribsDict[key] = tmp
key = ""
tmp = ""
else:
tmp += char
# If there was no trailing semi-colon, we need to handle the last attribute.
if key:
# Add this key/value pair to the dict.
attribsDict[key] = tmp
return attribsDict | db472d90b2dacdda4606b39e2e1f1d959ae056ca | 11,736 |
def apply_filter_include_exclude(
filename, include_filters, exclude_filters):
"""Apply inclusion/exclusion filters to filename
The include_filters are tested against
the given (relative) filename.
The exclude_filters are tested against
the stripped, given (relative), and absolute filenames.
filename (str): the file path to match, should be relative
include_filters (list of regex): ANY of these filters must match
exclude_filters (list of regex): NONE of these filters must match
returns: (filtered, exclude)
filtered (bool): True when filename failed the include_filter
excluded (bool): True when filename failed the exclude_filters
"""
filtered = not any(f.match(filename) for f in include_filters)
excluded = False
if filtered:
return filtered, excluded
excluded = any(f.match(filename) for f in exclude_filters)
return filtered, excluded | 12d1f56436bfbee606d5a75f8aab5ad34e930981 | 11,737 |
def filter_none(data, split_by_client=False):
"""This function filters out ``None`` values from the given list (or list of lists, when ``split_by_client`` is enabled)."""
if split_by_client:
# filter out missing files and empty clients
existing_data = [
[d for d in client_data if d is not None] for client_data in data
]
existing_data = [client_data for client_data in existing_data if client_data]
else:
# filter out missing files
existing_data = [d for d in data if d is not None]
return existing_data | 7cc88ecdf7aba245f56598ee1094fed7c1f9f4f7 | 11,746 |
from bs4 import BeautifulSoup
import re
import logging
def skip_team(soup: BeautifulSoup) -> bool:
"""Skip team if no players meet the minimum
:param soup: BeautifulSoup object for a team
:returns: True if the team should be skipped, False otherwise
"""
pattern = re.compile("No players meet the minimum")
skip = len(soup.find_all(string=pattern)) > 0
if skip:
logging.warning("No players meet the minimum. Skipping team")
return skip | 023a0a0076f8751f5447acd30e09ac239736e751 | 11,751 |
def sieve(limit):
"""
Returns a list of prime numbers up to but not including the given number.
"""
array = [True] * limit
array[0] = array[1] = False
primes = []
for (number, prime) in enumerate(array):
if prime:
primes.append(number)
for index in range(number * number, limit, number):
array[index] = False
return primes | 2b31d824cf8058044fa58de62d88cadf2f473c17 | 11,753 |
from typing import List
from typing import Tuple
def key_exists(key: str, list_keys: List) -> Tuple[int, bool]:
"""
Finds a dict which has `key` defined from a list `list_keys`
Args:
key: the key to find
list_keys: list of dicts
Returns:
index of key if found, whether the key was found
"""
for i, x in enumerate(list_keys):
if key in x:
return i, True
return -1, False | 65d0dbb35be5773a6435d639ab218ebe05638c7b | 11,754 |
import random
def death_with_chance(p_death: float) -> bool:
"""
Takes a float between 0 and 1 and returns a boolean
if the player has survived (based on random chance)
Returns True if death, False if survived
"""
return p_death > random.random() | ad2a88727369e703cee6c345882c873db2104827 | 11,757 |
def makeReturn(items: dict) -> dict:
"""
Format output for alfred
"""
out = {'items': items}
return out | 114866d9fb142e072f77bb8bb1a7417a58fc76b6 | 11,760 |
import json
def read_json(file):
"""
Read JSON file
"""
try:
with open(file, 'r') as f:
data = json.load(f)
except FileNotFoundError:
data = None
return data | 92842612769ae122a46fe90179c58d830534ff84 | 11,761 |
import pickle
import codecs
def pickle_string_to_obj(string: str):
"""Pickle string to object
Arguments:
s {str} -- String object to pickle
Returns:
[pickle] -- base64 encoded pickled object
"""
unmarshal = pickle.loads(codecs.decode(string.encode(), "base64"))
return unmarshal | 79b547dd8981a67786dc38adeab96a95f07fc911 | 11,763 |
def pad_number(number, bits):
"""Pad integer number to bits after converting to binary."""
return f'{bin(number)[2:]:0>{bits}}' | 73353469bad9bfb26b9e9c41f37d88f92e09aa6a | 11,765 |
from datetime import datetime
def time_string_one(float_time=None, fmt=None):
"""
Transform a single float daytime value to string.
Parameters
----------
float_time : float, optional
Input time.
The default is None, which returns the time now.
fmt : float, optional
Time format.
The default is None, which uses '%Y-%m-%d %H:%M:%S.%f'.
Returns
-------
str
Datetime as string.
"""
if fmt is None:
fmt = '%Y-%m-%d %H:%M:%S.%f'
if float_time is None:
str_time = datetime.now().strftime(fmt)
else:
str_time = datetime.utcfromtimestamp(float_time).strftime(fmt)
return str_time | aa74d63300100ae6a6d1225c36269d4029b5b26d | 11,770 |
def _indent(level):
"""Returns leading whitespace corresponding to the given indentation `level`.
"""
indent_per_level = 4
return ' ' * (indent_per_level * level) | 4391c308b59db321ef3f810c73b66e35d44566fa | 11,771 |
def get_hover_data(df):
"""
Creates and formats the hover string over the map data points
:param df: Pandas dataframe
:return: list: A string of dataframe row information formatted for hover.
"""
details_labels = ["needothers","detailmed", "detailrescue"]
hover_string_list = []
for index, row in df.iterrows():
info_string = row['location'] + "<br>" + "Phone:" +row['requestee_phone'] + "<br>"
details_string_list = []
for i in details_labels:
if row[i]:
details_string_list.append(i + ":" + str(row[i]).strip())
details_string = "<br>".join(details_string_list)
hover_string_list.append(info_string + details_string)
return hover_string_list | cab8f2a08a3b16e254c8ebfa76196fcdcff06170 | 11,781 |
def find_stim_channel(raw):
""" Finds the appropriate stim channel from raw.
Heuristically just looks for STI101 or STI014.
Parameters
----------
raw : mne.io.Raw
The raw object
Returns
-------
str
Channel name of the stimulus channel.
"""
channels = raw.info.get('ch_names')
if 'STI101' in channels:
return 'STI101'
elif 'STI 101' in channels:
return 'STI 101'
elif 'STI 014' in channels:
return 'STI 014'
elif 'STI014' in channels:
return 'STI014' | 1a4014a09ef7050e90f29151b1ff56ac4d5abe89 | 11,784 |
def parse_chunk_header_file_range(file_range):
"""Parses a chunk header file range.
Diff chunk headers have the form:
@@ -<file-range> +<file-range> @@
File ranges have the form:
<start line number>,<number of lines changed>
Args:
file_range: A chunk header file range.
Returns:
A tuple (range_start, range_end). The endpoints are adjusted such that
iterating over [range_start, range_end) will give the changed indices.
"""
if ',' in file_range:
file_range_parts = file_range.split(',')
start = int(file_range_parts[0])
amount = int(file_range_parts[1])
if amount == 0:
return (start, start)
return (start - 1, start + amount - 1)
else:
return (int(file_range) - 1, int(file_range)) | 1af8c8750707c29171373ff4ed03de155d8a1cf1 | 11,785 |
import re
def remove_puncatuation(review_str:str)->str:
"""remove puncatuation of a string
"""
return re.sub(r'[^\w\s]', '', review_str) | 99381b5b6573f0a20466c5de21d7a3b3c65f6ef8 | 11,792 |
from typing import Dict
from typing import Any
from typing import Optional
from typing import Callable
def try_get_from_dict(data: Dict[str, Any], key: str, original_value: Any, conversion: Optional[Callable[[Any], Any]] = None) -> Any:
"""Try to get value from dict, otherwise set default value"""
if not key in data:
return None
value = data[key]
if value is None:
return original_value
if conversion is None:
return value
return conversion(value) | 354be2365af69dd5169aa3d74bf45cf8d095ed4d | 11,794 |
def as_float(s):
"""Returns a float from a string
"""
if not s: return 0.0
return float(s) | de5e2074b19f723b36c676f20904fa53a4878aa5 | 11,801 |
def get_handler_filename(handler):
"""Shortcut to get the filename from the handler string.
:param str handler:
A dot delimited string representing the `<module>.<function name>`.
"""
module_name, _ = handler.split('.')
return '{0}.py'.format(module_name) | 4e6d464e83e4a6557d03ebabbb4f275fc4784d8f | 11,814 |
def parseEPSGCode(string, parsers):
""" parse EPSG code using provided sequence of EPSG parsers """
for parser in parsers:
epsg = parser(string)
if epsg is not None:
return epsg
return None | b85e2d69952cc16d7f5f3b9e22009d14432a014f | 11,816 |
import re
def get_value_for_key(text_buffer, key):
"""Parsing value from a line with key=value"""
for match in re.finditer("%s=(?P<value>.*)" % key, text_buffer):
return match.group('value')
return "" | 86865f806adc3fa5f78671d8a686389cc5f0f353 | 11,817 |
import pathlib
def _is_valid_doc_version(folder: pathlib.Path) -> bool:
"""
Test if a version folder contains valid documentation.
A version folder contains documentation if:
- is a directory
- contains an `index.html` file
"""
if not folder.is_dir():
return False
if not (folder / "index.html").exists():
return False
return True | 5dadea657b717373e8e84360f1f3a9e8b8adc1f8 | 11,819 |
def strip_comments(l: str) -> str:
"""
Strip any ``#`` comments from a line.
:param str l: A string line, which may contain ``#`` comments
:return str clean_line: The line ``l`` - stripped of any comments and excess whitespace.
"""
return l.split('#', 1)[0].strip() | 0587cb5e2a986c9d0bb4c610c289186b8c184942 | 11,821 |
def shengbte_code(aiida_local_code_factory):
"""Get a shengbte code.
"""
shengbte_code = aiida_local_code_factory(executable='diff',
entry_point='shengbte')
return shengbte_code | de9f6bba763c4bfe7f6a1153927f73542a83dc6a | 11,822 |
import mimetypes
def get_content_type(content, name):
"""
Checks if the content_type is already set. Otherwise uses the mimetypes
library to guess.
"""
if hasattr(content.file, "content_type"):
return content.file.content_type
else:
mime_type, encoding = mimetypes.guess_type(name)
return mime_type | 838d11c2660e0d76c813961498ab0ebcc25c1f3c | 11,823 |
def in_or_none(x, L):
"""Check if item is in list of list is None."""
return (L is None) or (x in L) | bc3e4ef5a8daf7669e7430940e361d4c7ec1a240 | 11,825 |
def apply(R,point):
"""Applies the rotation to a point"""
return (R[0]*point[0]+R[3]*point[1]+R[6]*point[2],
R[1]*point[0]+R[4]*point[1]+R[7]*point[2],
R[2]*point[0]+R[5]*point[1]+R[8]*point[2]) | f6f4e5431e92dac9711f80da9ca0dc75bae793fb | 11,829 |
def has_new_triggerword(predictions, chunk_duration, feed_duration, threshold=0.5):
"""
Function to detect new trigger word in the latest chunk of input audio.
It is looking for the rising edge of the predictions data belongs to the
last/latest chunk.
Argument:
predictions -- predicted labels from model
chunk_duration -- time in second of a chunk
feed_duration -- time in second of the input to model
threshold -- threshold for probability above a certain to be considered positive
Returns:
True if new trigger word detected in the latest chunk
"""
predictions = predictions > threshold
chunk_predictions_samples = int(len(predictions) * chunk_duration / feed_duration)
chunk_predictions = predictions[-chunk_predictions_samples:]
level = chunk_predictions[0]
for pred in chunk_predictions:
if pred > level:
return True
else:
level = pred
return False | 4a3d7b82e94fac7ee26b18dd848da4ef79378d30 | 11,834 |
def _password_repr(val: str) -> str:
"""Change representation of password to hide its content."""
del val
return "'********'" | f7e5d653e874b023888d2f13502fc2ff9d894161 | 11,835 |
def format_cpus(n):
"""Formats n as a number of CPUs"""
return '{:.1f}'.format(n) | f28f8d24826341aab70347679920dc68f0b394b0 | 11,839 |
def _intersect_items(baselist, comparelist):
"""Return matching items in both lists."""
return list(set(baselist) & set(comparelist)) | 393e31d13dc63656167505068bcb6fee199d4c06 | 11,843 |
def bin_to_int(bin_list, inverse=True):
""" Given arbitrary length list of binary values, calculate integer value.
Parameters
----------
bin_list : list of int
List of binary values for calculating integer value.
inverse : bool, optional
If true (default) caluclate integer from bin_list assuming first element
is LSB. If false, integer will be calculated from bin_list assuming first
element is MSB.
Returns
-------
int
Integer value calculated from bin_list.
"""
if inverse:
step = -1
else:
step = 1
bin_list = bin_list[::step]
bin_int = 0
for bit in bin_list:
bin_int = (bin_int << 1) | bit
return int(bin_int) | 0ab74bafe4d045081732f10733704d7bbeb4a9ea | 11,847 |
def get_chem_names(particles):
"""
Create a list of chemical names for the dispersed phase particles
Reads the composition attribute of each particle in a `particles` list
and compiles a unique list of particle names.
Parameters
----------
particles : list of `Particle` objects
List of `SingleParticle`, `PlumeParticle`, or
`bent_plume_model.Particle` objects describing each dispersed phase
in the simulation
Returns
-------
chem_names : str list
List of the chemical composition of particles undergoing dissolution
in the `particles` list
"""
# Initialize a list to store the names
chem_names = []
# Add the chemicals that are part of the particle composition
for i in range(len(particles)):
if particles[i].particle.issoluble:
chem_names += [chem for chem in particles[i].composition if
chem not in chem_names]
# Return the list of chemical names
return chem_names | 7b1a462732b6bdd389fb0d9c2b80aab5a5f385d5 | 11,853 |
def rmask_byte(num_mask_bits,value):
"""
This function applies a right-justified mask of a specified number of bits to an unsigned integer representing a single byte value.
>>> rmask_byte(3,list(b'\\xff')[0])
7
>>> bin(7)
'0b111'
"""
return ((1<<(num_mask_bits))-1) & value | 156fe1797590c5418a28db13b1064dfdb4e7bc4c | 11,861 |
from io import StringIO
def GetLines(data, strip=False):
"""Returns a list of all lines in data.
Args:
strip: If True, each line is stripped.
"""
ret = StringIO(data).readlines()
if strip:
ret = [x.strip() for x in ret]
return ret | 8ce3a3e829eed590ba0978a659ff1d3b063dc50d | 11,866 |
def has_an_update(page_data: dict, tracker_data: dict) -> bool:
"""Checks if there was an update comparing two story mappings of the same
story.
Arguments:
page_data {dict} -- Requested story mapping, from `get_story_data`.
tracker_data {dict} -- Story mapping from the tracked list.
Returns:
bool -- Whether or not there was an update.
"""
for key in ("words", "chapter-amt", "last-update-timestamp"):
if page_data[key] > tracker_data[key]:
return True
return False | a7374a167c368f85bdab6ec68dbea044c801ef90 | 11,869 |
from typing import Callable
from typing import Any
from typing import OrderedDict
def multimap(f: Callable, *xs: Any) -> Any:
"""
Each x in xs is a tree of the same structure.
Apply f at each leaf of the tree with len(xs) arguments.
Return a tree of the same structure, where each leaf contains f's return value.
"""
first = xs[0]
if isinstance(first, dict) or isinstance(first, OrderedDict):
assert all(isinstance(x, dict) or isinstance(x, OrderedDict) for x in xs)
assert all(x.keys() == first.keys() for x in xs)
return {k: multimap(f, *(x[k] for x in xs)) for k in sorted(first.keys())}
else:
return f(*xs) | 7c81deab0875b2396a2127b504a4ce8773ab356c | 11,873 |
def inside_string(i, j, string_ranges):
"""Returns true if the range described by i and j is contained within a range in the list string_ranges"""
for s, e in string_ranges:
if i >= s and j <= e:
return True
return False | aea2ac8a777914c2e86aea40cf43f4d01b2ef8b0 | 11,877 |
def cast_ext(ext: str) -> str:
"""Convert ext to a unified form."""
ext = ext.lower()
if ext == 'jpeg':
ext = 'jpg'
return ext | 7b4894e035a3b785b017c9794e494ff7b78e7c1b | 11,879 |
def get_reference_output_files(reference_files_dict: dict,
file_type: str) -> list:
""" Returns list of files matching a file_type from reference files
Args:
reference_files_dict: A validated dict model from reference
file_type: a file type string, e.g. vcf, fasta
Returns:
ref_vcf_list: list of file_type files that are found in reference_files_dict
"""
ref_vcf_list = []
for reference_key, reference_item in reference_files_dict.items():
if reference_item['file_type'] == file_type:
ref_vcf_list.append(reference_item['output_file'])
return ref_vcf_list | 7050c39a8116f8874dbc09bcf7ff2908dcd13ff8 | 11,886 |
import hashlib
def testfunc(res, i):
"""Return a hash of the index plus the other results."""
m = hashlib.md5()
m.update(str(i).encode('utf-8'))
for r in res:
m.update(r.encode('utf-8'))
return m.hexdigest() | f19a38d99bf50c33614134dec0d8184f35b27d60 | 11,889 |
def clasificar(a1: float, a2: float, a3: float) -> str:
"""
Retorna 'Equilatero' si el triángulo es equilatero, 'Isóceles'
si es isóceles y 'Escaleno' si es escaleno.
"""
if a1 == a2 and a1 == a3 and a2 == a3:
retorno = "Equilatero"
elif a1 == a2 or a1 == a3 or a2 == a3:
retorno = "Isóceles"
else:
retorno = "Escaleno"
return retorno | e44104b58ab5fa24ab37831920e4d1c855eb25f3 | 11,890 |
def pretty_print_prime_rules(primes):
"""Prints pyboolnet a prime dictionary as Boolean rules
The output format is of the form:
A* = B & C | !D, for example.
Parameters
----------
primes : pyboolnet primes dictionary
Update rules to print.
"""
if primes is None:
return ""
for k,v in primes.items():
s = k + "* = "
sl = []
for c in v[1]:
sll = []
for kk,vv in c.items():
if vv: sli = kk
else: sli = '!'+kk
sll.append(sli)
if len(sll) > 0:
sl.append(' & '.join(sll))
if len(sl) > 0:
s += ' | '.join(sl)
if v[1]==[]:
s = k + "* = 0"
if v[1]==[{}]:
s = k + "* = 1"
print(s) | f72f5b9a2c9b3c90c6682e253dffd1d22f78fa0c | 11,891 |
def cut_list(list, length):
""" This function allows to cut a list into parts of a certain length.
It returns a new list which takes less memory and contains for each index a part of the initial list.
Args :
list : list of the images path of the whole database\n
length (int): the length of the parts\n
Returns :
list containing the images path cut by parts of <length>
"""
listing_parts = []
intervalle_0 = 0
intervalle_1 = length
while intervalle_0 <=(len(list)):
listing_parts.append(list[intervalle_0:intervalle_1])
intervalle_0 = intervalle_1
intervalle_1 = intervalle_1 + length
return listing_parts | 210a1ad7db3058396ad32493a91b5c70176fb77c | 11,896 |
import json
def _convert_vars_to_json(env_dict):
"""Converts 'variables' in the given environment dict into string."""
if ('variables' in env_dict and
isinstance(env_dict.get('variables'), dict)):
env_dict['variables'] = json.dumps(env_dict['variables'])
return env_dict | 8dbf0456fd29833ff42570e011a45b368aa2ac0c | 11,897 |
def reverse_key_value(orig_dict):
"""
DESCRIPTION
-----------
Reverse the key value pairs of a dictionary object.
PARAMETERS
----------
orig_dict : dict
A dictionary object.
RETURNS
-------
rev_dict : dict
A dictionary with the values of the original dictionary stored as keys
and the keys of the oriinal dictionary stored as values.
MODIFICATIONS
-------------
Created : 4/24/19
"""
rev_dict = {}
for j, k in orig_dict.items():
rev_dict[k] = j
return rev_dict | 92599452e511193ce34c4421b13029023fb9c762 | 11,910 |
def PyTmHMSXtoS(h, m, s, x):
"""
Convert hours-minutes-seconds-milliseconds to seconds as float
Parameters
----------
h: int, hours
m: int, minutes
s: int, seconds
x: float, milliseconds
Returns
-------
float, seconds
"""
return h * 3600.0 + m * 60.0 + s + x | 550362fe48d4e6c8c94b0c885611b607c8e39e63 | 11,913 |
def baby_names_collapsed_from_list(a_baby_names_list):
"""
a_baby_names_list is a list of lists, each element [name, rank]
Collapse list element to a string
"""
print('baby_names_collapsed_from_list')
baby_names_collapsed = []
for baby_element in a_baby_names_list:
baby_names_collapsed.append('{} {}'.format(baby_element[0], baby_element[1]))
#print(baby_names_collapsed)
return baby_names_collapsed | f874c1fb205e0a86e46db8a3e2c0002712db82cb | 11,916 |
import re
def commit_message_contains_query(message, query_terms):
"""
Check if the commit message contains the query terms
@param message: The commit message
@param query_terms: The terms that we look for in the message
@return:
"""
tester = r'\b(' + '|'.join(query_terms) + ')'
has_refactor_string = r'\b(refactor)'
return bool(re.search(tester, message, re.IGNORECASE)) and not bool(
re.search(has_refactor_string, message, re.IGNORECASE)) | b701dac00971658be13a6b7207f8685c3388609e | 11,925 |
def get_event_role(bot, guild):
"""Return the event role, if it exists"""
result = bot.db.get_event_role_id(guild.id)
if result:
for role in guild.roles:
if role.id == result.get('event_role_id'):
return role | 85656ee6b65896762197008108c7b09830a5a4a8 | 11,926 |
from typing import Optional
from typing import Dict
from typing import Any
def commit_draft(
access_key: str,
url: str,
owner: str,
dataset: str,
*,
draft_number: int,
title: str,
description: Optional[str] = None,
) -> Dict[str, str]:
"""Execute the OpenAPI `POST /v2/datasets/{owner}/{dataset}/commits`.
Arguments:
access_key: User's access key.
url: The URL of the graviti website.
owner: The owner of the dataset.
dataset: Name of the dataset, unique for a user.
draft_number: The draft number.
title: The draft title.
description: The draft description.
Returns:
The response of OpenAPI.
Examples:
>>> commit_draft(
... "ACCESSKEY-********",
... "https://api.graviti.com",
... "czhual",
... "MNIST",
... draft_number=2,
... title="commit-2",
... )
{
"commit_id": "85c57a7f03804ccc906632248dc8c359",
"parent_commit_id": "784ba0d3bf0a41f6a7bfd771d8c00fcb",
"title": "upload data",
"description": "",
"committer": "czhual",
"committed_at": "2021-03-03T18:58:10Z"
}
"""
url = f"{url}/v2/datasets/{owner}/{dataset}/commits"
post_data: Dict[str, Any] = {"draft_number": draft_number, "title": title}
if description:
post_data["description"] = description
return open_api_do( # type: ignore[no-any-return]
"POST", access_key, url, json=post_data
).json() | 395070863b678892ca1004de20ac1b163d6e2da8 | 11,929 |
import random
def capnp_id() -> str:
"""
Generates a valid id for a capnp schema.
Returns:
str -- capnp id
"""
# the bitwise is for validating the id check capnp/parser.c++
return hex(random.randint(0, 2 ** 64) | 1 << 63) | 55ae4e112c3ba223168627d7d06fab327a0d4f82 | 11,934 |
def linspace(start,stop,np):
"""
Emulate Matlab linspace
"""
return [start+(stop-start)*i/(np-1) for i in range(np)] | b1be58298ff9983f6e2f6c5156cb4497ef8668d9 | 11,935 |
def generate_wiki_redirect_text(redirect_name: str) -> str:
"""Generate wikitext for redirect."""
return f'#REDIRECT [[{redirect_name}]]' | f6e55fa20004d836ea601a1d3966d070273df237 | 11,938 |
import re
def read_html(htmlfile):
"""
Reads the HTML file to a string.
Removes some potential trouble makers.
"""
with open(htmlfile, "r") as infile:
html = infile.read()
# Clean out some unnecessary stuff
html = re.sub("<div class=\"wp-about-author.*?</div>", "", html, re.S)
html = re.sub("<h4>Sobre la autora</h4>", "", html)
html = re.sub("More Posts</a>", "", html)
html = re.sub("Follow Me:", "", html)
html = re.sub("<em>", "", html)
html = re.sub("</em>", "", html)
html = re.sub("<i>", "", html)
html = re.sub("</i>", "", html)
return html | bb0f724792cd817464a8720199ce7c7035e6b0f1 | 11,941 |
def WENOReconstruct( u_stencil, eps, p ):
"""WENO reconstruction. This reconstructs u_{i+1/2}
given cell averages \\bar{u}_i at each neighboring location.
See `High Order Weighted Essentially Nonoscillatory Schemes for
Convection Dominated Problems'.
Input
-----
u_stencil :
stencil describing current solution
eps :
regularization parameter
p :
power parameter
Returns
-------
uiphf :
u_{i+1/2} after performing the full reconstruction procedure.
"""
uim2, uim1, ui, uip1, uip2 = u_stencil
return uim2/30 - (13*uim1)/60 + 47*(ui/60) + 9*(uip1/20) - uip2/20 | aa49be7b069f09c90c9b350d86575376eb5c9fbb | 11,949 |
from datetime import datetime
def chart_grouping_as_date(value):
"""Transforms a string YYYYMM or YYYY in a date object"""
value = str(value)
for format in ('%Y', '%Y%m'):
try:
return datetime.strptime(str(value), format).date()
except ValueError:
pass | 92f80be0baea30944ebd90e1377dfa953f5fb7fa | 11,954 |
def get_existing_symptoms(journal):
"""Given a journal w/ proper format, aggregates all the symptoms
args:
journal (dict)
returns:
[str]: array of symptom names
"""
symptoms = []
for log in journal['journal']:
symptoms.extend([
symptom['name'] for symptom in log['symptoms'] if symptom["name"] not in symptoms
])
return symptoms | e8f90ff3344318b53ae91e79d29f572110103959 | 11,958 |
import re
def clean(s):
"""Strip leading & trailing space, remove newlines, compress space.
Also expand '{NL}' to a literal newline.
:param str s:
:rtype: str
"""
s = s.strip()
s = re.sub(' +', ' ', s)
s = s.replace('\n', '')
s = s.replace('\r', '')
s = s.replace('{NL}', '\n')
return s | f2c07984de1766b7a1d0258b29ad8030e87896e8 | 11,971 |
from bs4 import BeautifulSoup
def wrap_with_tag(html: str, document_wrapper_class: str) -> str:
"""
Wraps a string of HTML with a div using a given wrapper class
Args:
html (str): The HTML to be wrapped
document_wrapper_class(str): The class with which to wrap the HTML
Returns:
str: Newly wrapped HTML
"""
soup = BeautifulSoup(html, 'html.parser')
new_div = soup.new_tag('div')
new_div['class'] = document_wrapper_class
for element in soup:
new_div.append(element)
return new_div.prettify() | 075cf4ef818eb38f2b0a8a16c76fcc5cc11cdec9 | 11,983 |
def slave_entry(slave, programs, filesystems):
"""
Template tag {% slave_entry slave programms %} is used to display a single
slave.
Arguments
---------
slave: Slave object
programs: Array of programs
Returns
-------
A context which maps the slave object to slave and the array of
programs to programs.
"""
return {
'slave': slave,
'programs': programs,
'filesystems': filesystems,
} | 7449eec9d906bfe74245cbdec2a76fd7a2fc8157 | 11,984 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.