content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def mlist(self, node1="", node2="", ninc="", **kwargs):
"""Lists the MDOF of freedom.
APDL Command: MLIST
Parameters
----------
node1, node2, ninc
List master degrees of freedom from NODE1 to NODE2 (defaults
toNODE1) in steps of NINC (defaults to 1). If NODE1 = ALL
(default), NODE2 and NINC are ignored and masters for all selected
nodes [NSEL] are listed. If NODE1 = P, graphical picking is
enabled and all remaining command fields are ignored (valid only in
the GUI). A component name may also be substituted for NODE1
(NODE2 and NINC are ignored).
Notes
-----
Lists the master degrees of freedom.
"""
command = f"MLIST,{node1},{node2},{ninc}"
return self.run(command, **kwargs) | 611cd462d34cd4de0e34cb262549fc6cff40127d | 11,292 |
def formatstr(text):
"""Extract all letters from a string and make them uppercase"""
return "".join([t.upper() for t in text if t.isalpha()]) | 749aeec962e3e39760c028bfb3e3a27ad8c10188 | 11,294 |
def form2_list_comprehension(items):
"""
Remove duplicates using list comprehension.
:return: list with unique items.
"""
return [i for n, i in enumerate(items) if i not in items[n + 1:]] | 02d095c86de1b7d52d53cdb4bfe77db08523ea3a | 11,296 |
def calcMass(volume, density):
"""
Calculates the mass of a given volume from its density
Args:
volume (float): in m^3
density (float): in kg/m^3
Returns:
:class:`float` mass in kg
"""
mass = volume * density
return mass | 38f0ef780704c634e572c092eab5b92347edccd3 | 11,297 |
def rescale(arr, vmin, vmax):
""" Rescale uniform values
Rescale the sampled values between 0 and 1 towards the real boundaries
of the parameter.
Parameters
-----------
arr : array
array of the sampled values
vmin : float
minimal value to rescale to
vmax : float
maximum value to rescale to
"""
arrout = (vmax - vmin)*arr + vmin
return arrout | d6debc0eeccd9fe19ed72d869d0de270559c9ce8 | 11,298 |
import socket
def check_port_occupied(port, address="127.0.0.1"):
"""
Check if a port is occupied by attempting to bind the socket
:return: socket.error if the port is in use, otherwise False
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.bind((address, port))
except socket.error as e:
return e
finally:
s.close()
return False | 5919e228c835ceb96e62507b9891c6a1ce5948fa | 11,301 |
import csv
def write_rows(rows, filename, sep="\t"):
"""Given a list of lists, write to a tab separated file"""
with open(filename, "w", newline="") as csvfile:
writer = csv.writer(
csvfile, delimiter=sep, quotechar="|", quoting=csv.QUOTE_MINIMAL
)
for row in rows:
writer.writerow(row)
return filename | 41e04ee6203baf7db2d08722aed76dfacbc9e838 | 11,309 |
def HKL2string(hkl):
"""
convert hkl into string
[-10.0,-0.0,5.0] -> '-10,0,5'
"""
res = ""
for elem in hkl:
ind = int(elem)
strind = str(ind)
if strind == "-0": # removing sign before 0
strind = "0"
res += strind + ","
return res[:-1] | 325ddfcb2243ce9a30328c5b21626a4c93a219de | 11,313 |
from typing import List
def should_expand_range(numbers: List[int], street_is_even_odd: bool) -> bool:
"""Decides if an x-y range should be expanded."""
if len(numbers) != 2:
return False
if numbers[1] < numbers[0]:
# E.g. 42-1, -1 is just a suffix to be ignored.
numbers[1] = 0
return True
# If there is a parity mismatch, ignore.
if street_is_even_odd and numbers[0] % 2 != numbers[1] % 2:
return False
# Assume that 0 is just noise.
if numbers[0] == 0:
return False
# Ranges larger than this are typically just noise in the input data.
if numbers[1] > 1000 or numbers[1] - numbers[0] > 24:
return False
return True | fcd5a8e027120ef5cc52d23f67de4ab149b19a2c | 11,316 |
def zyx_to_yxz_dimension_only(data, z=0, y=0, x=0):
"""
Creates a tuple containing the shape of a conversion if it were to happen.
:param data:
:param z:
:param y:
:param x:
:return:
"""
z = data[0] if z == 0 else z
y = data[1] if y == 0 else y
x = data[2] if x == 0 else x
return (y, x, z) | 2477976f795f5650e45214c24aaf73e40d9fa4eb | 11,317 |
def gen_anonymous_varname(column_number: int) -> str:
"""Generate a Stata varname based on the column number.
Stata columns are 1-indexed.
"""
return f'v{column_number}' | f0e150300f7d767112d2d9e9a1b139f3e0e07878 | 11,318 |
def create_city_map(n: int) -> set:
"""
Generate city map with coordinates
:param n: defines the size of the city that Bassi needs to hide in,
in other words the side length of the square grid
:return:
"""
return set((row, col) for row in range(0, n) for col in range(0, n)) | fd30b936647bae64ccf2894ffbb68d9ad7ec9c6b | 11,320 |
def nullable(datatype):
"""Return the signature of a scalar value that is allowed to be NULL (in
SQL parlance).
Parameters
----------
datatype : ibis.expr.datatypes.DataType
Returns
-------
Tuple[Type]
"""
return (type(None),) if datatype.nullable else () | fe5935d1b4b1df736933455e97da29a901d6acb1 | 11,322 |
from typing import Dict
def make_country_dict(
csv_file:str = 'data/country_list.csv') -> Dict[str, str]:
"""Make a dictionary containing the ISO 3166 two-letter code
as the key and the country name as the value. The data is read
from a csv file.
"""
country_dict = {}
with open(csv_file, encoding='utf-8') as country_csv:
for line in country_csv:
key, value = line.strip().split(',')
country_dict[key] = value
return country_dict | 0334a2b2c918f407d1df682f56c14943f1e66c43 | 11,325 |
from typing import List
def get_reputation_data_statuses(reputation_data: List) -> List[str]:
"""
collects reported statuses of reputation data
Args:
reputation_data: returned data list of a certain reputation command
Returns: a list of reported statuses
"""
reputation_statuses = [status for data_entry in reputation_data if (status := data_entry.get('status'))]
return reputation_statuses | 2c41344f2970243af83521aecb8a9374f74a40ac | 11,328 |
def is_number(val):
"""Check if a value is a number by attempting to cast to ``float``.
Args:
val: Value to check.
Returns:
True if the value was successfully cast to ``float``; False otherwise.
"""
try:
float(val)
return True
except (ValueError, TypeError):
return False | 89728d3d199c3ef5885529da5a2d13dd94fa590f | 11,329 |
def format_rfc3339(datetime_instance):
"""Formats a datetime per RFC 3339."""
return datetime_instance.isoformat("T") + "Z" | ad60a9e306e82554601efc1ae317296a59b009b0 | 11,331 |
def get_metadata_keys(options):
""" Return a list of metadata keys to be extracted. """
keyfile = options.get("keyfile")
if (keyfile):
with open(keyfile, "r") as mdkeys_file:
return mdkeys_file.read().splitlines()
else:
return None | 2451d54ae49690691e5b0ce019178fd119e3d269 | 11,332 |
def _remove_self(d):
"""Return a copy of d without the 'self' entry."""
d = d.copy()
del d['self']
return d | a80eca3886d0499d1871998501c19e9cdae93673 | 11,338 |
def deltanpq(phino, phinoopt=0.2):
"""Calculate deltaNPQ
deltaNPQ = (1/phinoopt) - (1/phino)
:param phino: PhiNO
:param phinoopt: Optimum PhiNO (default: 0.2)
:returns: deltaNPQ (float)
"""
return (1/phinoopt) - (1/phino) | 34d44a732bd87eb78e8ddee92b4555bea67789be | 11,339 |
def opt_in_argv_tail(argv_tail, concise, mnemonic):
"""Say if an optional argument is plainly present"""
# Give me a concise "-" dash opt, or a "--" double-dash opt, or both
assert concise or mnemonic
if concise:
assert concise.startswith("-") and not concise.startswith("--")
if mnemonic:
assert mnemonic.startswith("--") and not mnemonic.startswith("---")
# Detect the plain use of the concise or mnemonic opts
# Drop the ambiguities silently, like see "-xh" always as "-x '-h'" never as "-x -h"
for arg in argv_tail:
if mnemonic.startswith(arg) and (arg > "--"):
return True
if arg.startswith(concise) and not arg.startswith("--"):
return True
return False | 17333a2a526799d6db5e78746d3ecb7111cd8cd6 | 11,343 |
def split_by_unicode_char(input_strs):
"""
Split utf-8 strings to unicode characters
"""
out = []
for s in input_strs:
out.append([c for c in s])
return out | 290bb5ec82c78e9ec23ee1269fe9227c5198405e | 11,347 |
def get_lr(optimizer):
"""get learning rate from optimizer
Args:
optimizer (torch.optim.Optimizer): the optimizer
Returns:
float: the learning rate
"""
for param_group in optimizer.param_groups:
return param_group['lr'] | fc8293cc29c2aff01ca98e568515b6943e93ea50 | 11,358 |
def find_changes(vals, threshold=None, change_pct=0.02, max_interval=None):
"""Returns an array of index values that point at the values in the 'vals'
array that represent signficant changes. 'threshold' is the absolute amount
that a value must change before being included. If 'threshold' is None,
'change_pct' is used to determine a threshold change by multiplying
'change_pct' by the difference between the minimum and maximum value. If
'max_interval' is provided, it will be the maximum allowed separation between
returned index values. This forces some some points to be returned even if
no signficant change has occurred.
Index 0, pointing at the first value is always returned.
"""
# special case of no values passed
if len(vals) == 0:
return []
if threshold is None:
# compute the threshold difference that constitutes a change
# from the change_pct parameter
threshold = (max(vals) - min(vals)) * change_pct
if threshold == 0.0:
threshold = 0.01 # keep it from showing every point
# Start with the first value
final_ixs = [0]
last_val = vals[0]
last_ix = 0
for ix in range(1, len(vals)):
v = vals[ix]
include_this_index = False
if abs(v - last_val) >= threshold:
# if the prior value was not included, include it
if last_ix != ix - 1:
final_ixs.append(ix - 1)
include_this_index = True
elif max_interval is not None and ix - last_ix >= max_interval:
include_this_index = True
if include_this_index:
final_ixs.append(ix)
last_val = v
last_ix = ix
return final_ixs | e6c66d3636f80ee310dcb7ae790bb30a27598aaa | 11,366 |
def data_value(value: str) -> float:
"""Convert to a float; some trigger values are strings, rather than
numbers (ex. indicating the letter); convert these to 1.0."""
if value:
try:
return float(value)
except ValueError:
return 1.0
else:
# empty string
return 0.0 | 24087c1733be5932428a63811abbb54686836036 | 11,370 |
from typing import Tuple
import logging
async def mark_next_person(queue_array: list) -> Tuple[list, int]:
"""Mark next person in the queue (transfers current_turn to them).
Parameters
----------
queue_array : list
This array represents the queue
Returns
-------
Tuple[list, int]
The modified queue_array & the id of the person marked
"""
for index, member in enumerate(queue_array):
if member["current_turn"]:
queue_array[index]["current_turn"] = False
# shouldnt fail when next person is at the beginning of the
# queue
next_person_pos = (index + 1) % len(queue_array)
queue_array[next_person_pos]["current_turn"] = True
return (queue_array, queue_array[next_person_pos]["user_id"])
logging.error("Failed to find next person in the queue")
return ([], 0) | e792dbf2ac10f44bda53a6429ba43180bdefd144 | 11,371 |
from typing import Dict
from typing import Any
def map_key(dictionary: Dict, search: Any) -> Any:
"""Find and return they key for given search value."""
for key, value in dictionary.items():
if value == search:
return key
return None | c9e200bb352b68c7468ae0511f11f7eff5e46b52 | 11,379 |
def get_requirements(filename):
"""
Get requirements file content by filename.
:param filename: Name of requirements file.
:return: Content of requirements file.
"""
return open("requirements/" + filename).read().splitlines() | 3dab39352bb69798e076a9d97077902580f50640 | 11,380 |
def is_operator(token):
"""Checks if token is an operator '-+/*'."""
return token in '-+/*' | 24b57d2a299df263c900cc94e2e18a9fc7d026b1 | 11,382 |
def add_date_end(record: dict):
"""
Function to make ``date_end`` ``date_start`` if ``measure_stage`` is "Lift"
Parameters
----------
record : dict
Input record.
Returns
-------
type
Record with date_end changed conditionally, or original record.
"""
if record['measure_stage'] == 'Lift':
record['date_end'] = record['date_start']
return(record) | 67f6ae063aabdf7a7d456ed0ce9660a75b37b6c2 | 11,385 |
def multy(b: int) -> int:
"""2**b via naive recursion.
>>> multy(17)-1
131071
"""
if b == 0:
return 1
return 2*multy(b-1) | 272cd138de2209093c0a32e1c7b2f1c08d0dc2be | 11,386 |
def get_ens(sets):
"""
Puts all entities appeared in interpretation sets in one set.
:param sets: [{en1, en2, ...}, {en3, ..}, ...]
:return: set {en1, en2, en3, ...}
"""
ens = set()
for en_set in sets:
for en in en_set:
ens.add(en)
return ens | 7f5b59d6f5786ee9506bda72a4ee3f8cdf787c33 | 11,387 |
def is_in_group(user, group_name):
"""
Check if a user in a group named ``group_name``.
:param user User:
The auth.User object
:param group_name str:
The name of the group
:returns: bool
"""
return user.groups.filter(name__exact=group_name).exists() | 25e51e483b0c18c03f8e897725f07e9e63cc160a | 11,389 |
def strip_email(s: str) -> str:
"""
Filter which extracts the first part of an email to make an shorthand
for user.
:param s: Input email (or any string).
:type s: str
:return: A shorthand extracted.
:rtype: str
"""
return s.split('@', 1)[0] | 36ea94b9eb12e0e64b78965c66233578790e6a13 | 11,395 |
def name_item_info(mosaic_info, item_info):
"""
Generate the name for a mosaic metadata file in Azure Blob Storage.
This follows the pattern `metadata/quad/{mosaic-id}/{item-id}.json`.
"""
return f"metadata/quad/{mosaic_info['id']}/{item_info['id']}.json" | db78eb175f6530ace2037ed89cb090591c82147f | 11,396 |
def ptfhost(testbed_devices):
"""
Shortcut fixture for getting PTF host
"""
return testbed_devices["ptf"] | 25fdbc9520c4cda9719887ff213ccb2b88918dcc | 11,397 |
from datetime import datetime
def add_current_time_to_state(state):
"""Annotate state with the latest server time"""
state['currentTime'] = datetime.now().timestamp()
return state | f61fa2d7b127fbebb22fc277e16f2f79cdd4acd3 | 11,398 |
import re
def normalize_rgb_colors_to_hex(css):
"""Convert `rgb(51,102,153)` to `#336699`."""
regex = re.compile(r"rgb\s*\(\s*([0-9,\s]+)\s*\)")
match = regex.search(css)
while match:
colors = map(lambda s: s.strip(), match.group(1).split(","))
hexcolor = '#%.2x%.2x%.2x' % tuple(map(int, colors))
css = css.replace(match.group(), hexcolor)
match = regex.search(css)
return css | e3650f525d1d9c1e7bbf7d5b4161712a7439b529 | 11,401 |
def shape_to_spacing(region, shape, pixel_register=False):
"""
Calculate the spacing of a grid given region and shape.
Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
shape : tuple = (n_north, n_east) or None
The number of points in the South-North and West-East directions,
respectively.
pixel_register : bool
If True, the coordinates will refer to the center of each grid pixel
instead of the grid lines. In practice, this means that there will be
one less element per dimension of the grid when compared to grid line
registered (only if given *spacing* and not *shape*). Default is False.
Returns
-------
spacing : tuple = (s_north, s_east)
The grid spacing in the South-North and West-East directions,
respectively.
Examples
--------
>>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 11))
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 1.0
>>> spacing = shape_to_spacing([0, 10, -5, 1], (14, 11))
>>> print("{:.1f}, {:.1f}".format(*spacing))
0.5, 1.0
>>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 21))
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 0.5
>>> spacing = shape_to_spacing(
... [-0.5, 10.5, -5.5, 1.5], (7, 11), pixel_register=True,
... )
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 1.0
>>> spacing = shape_to_spacing(
... [-0.25, 10.25, -5.5, 1.5], (7, 21), pixel_register=True,
... )
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 0.5
"""
spacing = []
for i, n_points in enumerate(reversed(shape)):
if not pixel_register:
n_points -= 1
spacing.append((region[2 * i + 1] - region[2 * i]) / n_points)
return tuple(reversed(spacing)) | bc943f55330c17295bdb078d732c6ebc9f8cecfe | 11,410 |
import math
def choose_grid_size(train_inputs, ratio=1.0, kronecker_structure=True):
"""
Given some training inputs, determine a good grid size for KISS-GP.
:param x: the input data
:type x: torch.Tensor (... x n x d)
:param ratio: Amount of grid points per data point (default: 1.)
:type ratio: float, optional
:param kronecker_structure: Whether or not the model will use Kronecker structure in the grid
(set to True unless there is an additive or product decomposition in the prior)
:type kronecker_structure: bool, optional
:return: Grid size
:rtype: int
"""
# Scale features so they fit inside grid bounds
num_data = train_inputs.numel() if train_inputs.dim() == 1 else train_inputs.size(-2)
num_dim = 1 if train_inputs.dim() == 1 else train_inputs.size(-1)
if kronecker_structure:
return int(ratio * math.pow(num_data, 1.0 / num_dim))
else:
return ratio * num_data | 1d3e30a6b7b419a1e2fcdc245830aa00d1ba493d | 11,411 |
def parameter_tuple_parser(parameter_tuple, code_list, relative_base):
"""
Accepts parameter_tuple, code_list, and relative_base. Returns parameter for use in intcode operation.
"""
if parameter_tuple[0] == 0:
return code_list[parameter_tuple[1]]
elif parameter_tuple[0] == 1:
return parameter_tuple[1]
elif parameter_tuple[0] == 2:
return code_list[parameter_tuple[1] + relative_base]
else:
print('And I oop.... parameter_tuple_parser') | f869240666f2adca0551a3620644023b88930a5a | 11,417 |
def _compute_padding_to_prevent_task_description_from_moving(unfinished_tasks):
"""Compute the padding to have task descriptions with the same length.
Some task names are longer than others. The tqdm progress bar would be constantly
adjusting if more space is available. Instead, we compute the length of the longest
task name and add whitespace to the right.
Example
-------
>>> unfinished_tasks = ["short_name", "long_task_name"]
>>> _compute_padding_to_prevent_task_description_from_moving(unfinished_tasks)
14
"""
len_task_names = list(map(len, unfinished_tasks))
padding = max(len_task_names) if len_task_names else 0
return padding | 82a2fffa0a35036901affe11fdf98d875445ffea | 11,420 |
import math
def float_in_range(value: float, lower: float, upper: float) -> bool:
"""Checks if a float is within a range.
In addition to checking if lower < value < upper, checks if value is close to the end points;
if so, returns True. This is to account for the vageries of floating point precision.
args:
value: The value to check.
lower: The lower bound of the range.
upper: The upper bound of the range.
return:
_: The value is in the range.
"""
return (
(lower <= value <= upper)
or math.isclose(value, lower)
or math.isclose(value, upper)
) | e971c082e8019f545c9ccc1024f37d3bab61b64e | 11,421 |
def flat_list(source):
"""Make sure `source` is a list, else wrap it, and return a flat list.
:param source: source list
:returns: flat list
"""
if not isinstance(source, (list, tuple)):
source = [source]
r = []
list(map(lambda x: r.extend(x)
if isinstance(x, (list, tuple))
else r.append(x), source))
return r | d118388794cdef72200ad43ab88d9f964b633851 | 11,426 |
def git_ref_from_eups_version(version: str) -> str:
"""Given a version string from the EUPS tag file, find something that
looks like a Git ref.
"""
return version.split("+")[0] | c6a429878c2150ce58b262e9f1fb187226336b0b | 11,427 |
def collapse(iter_flow_result:dict)->list:
""" Return iter_flow dict result as a single flat list"""
nested_lists = [iter_flow_result[k] for k in iter_flow_result.keys()]
flat_list = [item for sublist in nested_lists for item in sublist]
return(flat_list) | ada0d654ed36df8168b4835fbde3b91b7f56fb72 | 11,431 |
from typing import Union
from pathlib import Path
def relative_to(
path: Union[str, Path], source: Union[str, Path], include_source: bool = True
) -> Union[str, Path]:
"""Make a path relative to another path.
In contrast to :meth:`pathlib.Path.relative_to`, this function allows to keep the
name of the source path.
Examples
--------
The default behavior of :mod:`pathlib` is to exclude the source path from the
relative path.
>>> relative_to("folder/file.py", "folder", False).as_posix()
'file.py'
To provide relative locations to users, it is sometimes more helpful to provide the
source as an orientation.
>>> relative_to("folder/file.py", "folder").as_posix()
'folder/file.py'
"""
source_name = Path(source).name if include_source else ""
return Path(source_name, Path(path).relative_to(source)) | 26caa33770617361406915c9b301b5fe1a0ba9ef | 11,437 |
def get_creds(filename):
"""
Read credentials from a file. Format is:
URL
USERNAME
PASSWORD
Parameters
----------
filename: string
path to the file with the credentials
Returns
-------
list as [URL, USERNAME, PASSWORD]
"""
f = open(filename, "r")
lines = f.readlines()
if len(lines) != 3:
raise ValueError("Not a valid credentials file.")
# strip out newline chars
content = [x.rstrip() for x in lines]
return content | 7b308a2e140a809e0bb11804750370bb4326796d | 11,441 |
def uri_base(uri):
"""
Get the base URI from the supplied URI by removing any parameters and/or fragments.
"""
base_uri = uri.split("#", 1)[0]
base_uri = base_uri.split("?", 1)[0]
return base_uri | 8655b8717261dcd419f1c3ac0153ec51d348ca57 | 11,443 |
def sequalsci(val, compareto) -> bool:
"""Takes two strings, lowercases them, and returns True if they are equal, False otherwise."""
if isinstance(val, str) and isinstance(compareto, str):
return val.lower() == compareto.lower()
else:
return False | 5e96233ead44608ce70ad95e936c707af8bcb130 | 11,444 |
def n_rots(request):
"""Number of rotations in random layer."""
return request.param | 93d55281a83be9e4acba951d1de8a9e7d5081182 | 11,445 |
from typing import Any
def try_to_cuda(t: Any) -> Any:
"""
Try to move the input variable `t` to a cuda device.
Args:
t: Input.
Returns:
t_cuda: `t` moved to a cuda device, if supported.
"""
try:
t = t.cuda()
except AttributeError:
pass
return t | 9b6643f169c1eb8fc65de8b1bff55668f8cba950 | 11,446 |
def group(seq, groupSize, noneFill=True):
"""Groups a given sequence into sublists of length groupSize."""
ret = []
L = []
i = groupSize
for elt in seq:
if i > 0:
L.append(elt)
else:
ret.append(L)
i = groupSize
L = []
L.append(elt)
i -= 1
if L:
if noneFill:
while len(L) < groupSize:
L.append(None)
ret.append(L)
return ret | a7314803cb3b26c9bd69a2dbc2c0594181085c2c | 11,451 |
def not_safe_gerone(a, b, c):
"""
Compute triangle area from valid sides lengths
:param float a: first side length
:param float b: second side length
:param float c: third side length
:return: float -- triangle area
>>> not_safe_gerone(3, 4, 5)
6.0
"""
p = (a+b+c)/2
return (p*(p-a)*(p-b)*(p-c))**(1/2) | 499cf398158d170363ea22096b44ea16e402a23a | 11,465 |
def sqs_lookup_url(session, queue_name):
"""Lookup up SQS url given a name.
Args:
session (Session) : Boto3 session used to lookup information in AWS.
queue_name (string) : Name of the queue to lookup.
Returns:
(string) : URL for the queue.
Raises:
(boto3.ClientError): If queue not found.
"""
client = session.client('sqs')
resp = client.get_queue_url(QueueName=queue_name)
return resp['QueueUrl'] | 4f7bfb98d10a372b3b07f270e2a25e3227732f41 | 11,474 |
def get_government_factions(electoral_term):
"""Get the government factions for the given electoral_term"""
government_electoral_term = {
1: ["CDU/CSU", "FDP", "DP"],
2: ["CDU/CSU", "FDP", "DP"],
3: ["CDU/CSU", "DP"],
4: ["CDU/CSU", "FDP"],
5: ["CDU/CSU", "SPD"],
6: ["SPD", "FDP"],
7: ["SPD", "FDP"],
8: ["SPD", "FDP"],
9: ["SPD", "FDP"],
10: ["CDU/CSU", "FDP"],
11: ["CDU/CSU", "FDP"],
12: ["CDU/CSU", "FDP"],
13: ["CDU/CSU", "FDP"],
14: ["SPD", "BÜNDNIS 90/DIE GRÜNEN"],
15: ["SPD", "BÜNDNIS 90/DIE GRÜNEN"],
16: ["CDU/CSU", "SPD"],
17: ["CDU/CSU", "FDP"],
18: ["CDU/CSU", "SPD"],
19: ["CDU/CSU", "SPD"],
}
return government_electoral_term[electoral_term] | cfd502f81ebb0536432da4974ab9f25724dc83df | 11,475 |
def VectorVector_scalar(vectorA, vectorB):
""" N diemnsional. Return a float as a scalar resulting from vectorA * vectorB"""
result = 0
for i in range(0, len(vectorA)):
result += vectorA[i] * vectorB[i]
return result | c7f0448a05573b8ddba63ed7a8262072ffcda38f | 11,476 |
def eval_shift_distance(shift, reg_matches):
"""
Compute the distance in characters a match has been shifted over.
"reg_matches" is the set of regular matches as returned by find_regular_matches().
The distance is defined as the number of characters between the shifted match
and the closest regular match.
"""
mid_matches = sorted(m for m in reg_matches
if (m[0] < shift[0] and m[1] > shift[1])
or (m[0] > shift[0] and m[1] < shift[1]))
return (-(shift[0] - mid_matches[0][0])
if mid_matches[0][0] < shift[0]
else (mid_matches[-1][0] + len(mid_matches[-1][2])
- (shift[0] + len(shift[2])))) | aceb705d0f89cacb6f7738667e6dfaf803bed85c | 11,478 |
def get_common_basename(paths):
""" Return common "basename" (or "suffix"; is the last component of path)
in list "paths". Or return None if all elements in paths do not share a common last
component. Generate an error if any path ends with a slash."""
if len(paths) == 0:
return None
# get suffix of first element:
first_path = paths[0]
first_suffix = first_path.rsplit('/', 1)[-1]
assert first_suffix !='', "Invalid path, has trailing slash: %s" % first_path
match = True
for path in paths:
prefix, suffix = path.rsplit('/', 1)
assert suffix !='', "Invalid path, has trailing slash: %s" % path
if suffix != first_suffix:
match = False
break
if not match:
# suffixes do not match
return None
# suffixes match
return first_suffix | e2189244ef556038caea24ba6aa85792f34868db | 11,479 |
def contains_all_required_firewalls(firewall, topology):
"""
Check that the list of firewall settings contains all necessary firewall settings
"""
for src, row in enumerate(topology):
for dest, col in enumerate(row):
if src == dest:
continue
if col == 1 and (str((src, dest)) not in firewall or str((dest, src)) not in firewall):
return False
return True | a4dbbb5833909e816c5b7568cf75da68c06d9e4c | 11,487 |
def _get_upload_headers(first_byte, file_size, chunk_size):
"""Prepare the string for the POST request's headers."""
content_range = 'bytes ' + \
str(first_byte) + \
'-' + \
str(first_byte + chunk_size - 1) + \
'/' + \
str(file_size)
return {'Content-Range': content_range} | 3ccfec747ce8f8f31b97489005b1ac421f7c9024 | 11,490 |
def format_uptime(uptime_in_seconds):
"""Format number of seconds into human-readable string.
:param uptime_in_seconds: The server uptime in seconds.
:returns: A human-readable string representing the uptime.
>>> uptime = format_uptime('56892')
>>> print(uptime)
15 hours 48 min 12 sec
"""
m, s = divmod(int(uptime_in_seconds), 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
uptime_values = []
for value, unit in ((d, 'days'), (h, 'hours'), (m, 'min'), (s, 'sec')):
if value == 0 and not uptime_values:
# Don't include a value/unit if the unit isn't applicable to
# the uptime. E.g. don't do 0 days 0 hours 1 min 30 sec.
continue
elif value == 1 and unit.endswith('s'):
# Remove the "s" if the unit is singular.
unit = unit[:-1]
uptime_values.append('{0} {1}'.format(value, unit))
uptime = ' '.join(uptime_values)
return uptime | a6a4544b6754113d0c5ed13a18838770448be6a8 | 11,495 |
def chunker(arrays, chunk_size):
"""Split the arrays into equally sized chunks
:param arrays: (N * L np.array) arrays of sentences
:param chunk_size: (int) size of the chunks
:return chunks: (list) list of the chunks, numpy arrays"""
chunks = []
# sentence length
sent_len = len(arrays[0])
# chunk the arrays over the sentence in chunk sizes
for pos in range(0, sent_len, chunk_size):
chunk = []
for array in arrays:
chunk.append(array[pos: pos+chunk_size])
chunks.append(chunk)
return chunks | 42a6867464e32d59a50927e8e88d067fc86f4fa1 | 11,497 |
import requests
import json
def get_device_response(ctx):
"""Return the deserialized JSON response for /stat/device (devices)"""
r = requests.get(
ctx.obj["URL"] + "stat/device",
verify=ctx.obj["VERIFY"],
cookies=ctx.obj["COOKIES"],
)
return json.loads(r.text) | a763e3a5aedb0b2124244424f44fe7aa56bb8963 | 11,500 |
import math
def calculate_ransac_iterations(min_points_per_sample, outlier_rate, desired_success_probability):
"""Estimates how many RANSAC iterations you should run.
Args:
min_points_per_sample: Minimum number of points to build a model hypothesis.
outlier_rate: Float, 0-1, how often outliers are expected.
desired_success_probability: Float, 0-1 exclusive, desired certainty that the
RANSAC run will find the correct model. Higher certainty requires more iterations.
Returns:
Number of iterations.
"""
if not 0 < desired_success_probability < 1:
raise ValueError('desired_success_probability should fall between 0 and 1, exclusive.')
if not 0 <= outlier_rate <= 1:
raise ValueError('outlier_rate should fall between 0 and 1.')
if min_points_per_sample <= 0:
raise ValueError('min_points_per_sample must be a positive integer.')
assert 0 < desired_success_probability < 1
return math.ceil(math.log(1 - desired_success_probability) /
math.log((1 - (1 - outlier_rate) ** min_points_per_sample))) | cafca93f052770f695f90d5f37e088e880fd0c45 | 11,506 |
def generate_graph(data, course_to_id):
"""
Method to read the JSON and build the directed graph of courses (= DAG of course IDs)
The graph is represented in an adjacency list format
:return: A graph in adjacency list format, with vertices as course IDs and directed edges implying prerequisite relation
:rtype: List[List[int]]
"""
graph = [] * len(course_to_id)
ctr = 0
for obj in data:
graph.append([])
for prereq in obj["prerequisites"]:
graph[ctr].append(course_to_id[prereq.strip()])
ctr += 1
return graph | 0a6fe305e39bd812e000a1d22d2374636a7900b2 | 11,513 |
from typing import Optional
import math
def round_for_theta(
v: float,
theta: Optional[float]
) -> float:
"""
Round a value based on the precision of theta.
:param v: Value.
:param theta: Theta.
:return: Rounded value.
"""
if theta is None:
return v
else:
return round(v, int(abs(math.log10(theta)) - 1)) | ef6d18df588df8a80be9dc6c9b7f9104e3109d69 | 11,514 |
from typing import List
def split_badge_list(badges: str, separator: str) -> List[str]:
"""
Splits a string of badges into a list, removing all empty badges.
"""
if badges is None:
return []
return [badge for badge in badges.split(separator) if badge] | 6dc53d45cc8390422e5a511e39475ae969bf37c9 | 11,516 |
def column(matrix, col):
"""Returns a column from a matrix given the (0-indexed) column number."""
res = []
for r in range(len(matrix)):
res.append(matrix[r][col])
return res | f5214b5a41bf265f6892fdfd9422061b02f61c63 | 11,523 |
import re
def parse_scenario_gtest_name(name):
"""Parse scenario name to form acceptable by gtest"""
# strip
name = name.strip()
# space and tab to _
name = name.replace(" ", "_").replace("\t", "_")
# remove dots. commas
name = re.sub('[^a-zA-Z_]+', '', name)
# make lower
name = name.lower()
return name | faca8406a6b033536c3f9e0da21d9dc818fd2a7e | 11,524 |
import json
def load_json(filepath):
"""Load a json file.
Args:
filepath (str): A path to an input json file.
Returns:
dict: A dictionary data loaded from a json file.
"""
with open(filepath, 'r') as f:
ret = json.load(f)
return ret | c64fec0c861d223e28001051906e32d3aa9ffc7a | 11,525 |
def statement(prop, value, source):
"""
Returns a statement in the QuickStatements experted format
"""
return "LAST\t{}\t{}\tS854\t\"{}\"".format(prop, value, source) | 2c0b6ea8f757c8586ca462d85fca3b9d281adb26 | 11,529 |
import json
def get_config_db_json_obj(dut):
"""
Get config_db content from dut
Args:
dut (SonicHost): The target device
"""
config_db_json = dut.shell("sudo sonic-cfggen -d --print-data")["stdout"]
return json.loads(config_db_json) | 92920197b2056d889ffb76ff66e01061f0654032 | 11,530 |
def check_sender(tx: dict, sender: str) -> bool:
"""
:param tx: transaction dictionary
:param sender: string containing sender's address
:return: boolean
"""
if tx["events"][0]["sub"][0]["sender"][0]["account"]["id"] == sender:
return True
return False | 785c8453b876a2ca2b14f374836987c77a01f882 | 11,534 |
def is_prime_det(n):
"""
Returns <True> if <n> is a prime number, returns <False> otherwise. It
uses an (optimized) deterministic method to guarantee that the result
will be 100% correct.
"""
# 2 and 3 are prime numbers
if (n <= 3):
return (n > 1)
# Corner cases to speed up the next loop
if (n % 2 == 0) or (n % 3 == 0):
return False
# Using (6k-1) and (6k+1) optimization
i = 5
while (i * i <= n):
if (n % i == 0) or (n % (i + 2) == 0): # Not a prime number
return False
i += 6
return True | 65ee46364510f45485c7d95ee0973d42ebc81d34 | 11,535 |
def zippify(iterable, len=2, cat=False):
"""
Zips an iterable with arbitrary length pieces
e.g. to create a moving window with len n
Example:
zippify('abcd',2, cat=False)
--> [('a', 'b'), ('b', 'c'), ('c', 'd')]
If cat = True, joins the moving windows together
zippify('abcd',2, cat=True)
--> ['ab', 'bc', 'cd']
"""
iterable_collection = [iterable[i:] for i in range(len)]
res = list(zip(*iterable_collection))
return [''.join(r) for r in res] if cat else res | def01ff9f940009f80c312fe9ee07b282733d99b | 11,540 |
def sanitize_int(value):
"""
Sanitize an input value to an integer.
:param value: Input value to be sanitized to an integer
:return: Integer, or None of the value cannot be sanitized
:rtype: int or None
"""
if isinstance(value, str):
try:
return int(value)
except ValueError:
return None
elif isinstance(value, int):
return value | 5c0481c0c7414f5fdba946f66346b3233ffe6644 | 11,542 |
def _get_dir_names(param):
"""Gets the names of the directories for testing the given parameter
:param param: The parameter triple to be tested.
:returns: A list of directories names to be used to test the given
parameter.
"""
return [
'-'.join([param[0], str(i)])
for i in range(0, 5)
] | 8ef2ad44127402987a26ec0bc6bfffc372f3c64d | 11,548 |
def bool_converter(value: str) -> bool:
"""
:param value: a string to convert to bool.
:return: False if lower case value in "0", "n", "no" and "false", otherwise, returns the value returned
by the bool builtin function.
"""
if value.lower() in ['n', '0', 'no', 'false']:
return False
return bool(value) | 10251dfbb0200297d191dce1eb20237aed9e5ac9 | 11,550 |
def heat_stor(cp, spm, tdif):
"""
Calculate the heat storage
Args:
cp: specific heat of layer (J/kg K)
spm: layer specific mass (kg/m^2)
tdif: temperature change (K)
"""
return cp * spm * tdif | 397736e091a2cea09328cbf7f6e81c99db6fe384 | 11,551 |
from typing import Any
from typing import Optional
from typing import IO
import yaml
def dump_yaml(data: Any, stream: Optional[IO[str]] = None) -> Optional[str]:
"""Dump YAML to stream or return as string."""
if stream is not None:
return yaml.safe_dump(data, stream, default_flow_style=False)
else:
return yaml.safe_dump(data, default_flow_style=False) | 7ff998722e5d7754f83e960127bbed39d4a8d728 | 11,552 |
def get_link_to_referenced_comment(subreddit_name, user_note):
"""Extracts the id of the comment referenced by the usernote and formats it as a reddit-internal link"""
link_code_segments = user_note['l'].split(',')
if len(link_code_segments) == 3:
submission_id = link_code_segments[1]
comment_id = link_code_segments[2]
return '/r/{0}/comments/{1}/x/{2}/?context=3'.format(subreddit_name, submission_id, comment_id)
else:
return None | cb41189bc05962e37fdf91aa3e5c53c64acb9400 | 11,553 |
def _detects_peaks(ecg_integrated, sample_rate):
"""
Detects peaks from local maximum
----------
Parameters
----------
ecg_integrated : ndarray
Array that contains the samples of the integrated signal.
sample_rate : int
Sampling rate at which the acquisition took place.
Returns
-------
choosen_peaks : list
List of local maximums that pass the first stage of conditions needed to be considered as
a R peak.
possible_peaks : list
List with all the local maximums in the signal.
"""
# Minimum RR interval = 200 ms
min_rr = (sample_rate / 1000) * 200
# Computes all possible peaks and their amplitudes
possible_peaks = [i for i in range(0, len(ecg_integrated)-1)
if ecg_integrated[i-1] < ecg_integrated[i] and
ecg_integrated[i] > ecg_integrated[i+1]]
possible_amplitudes = [ecg_integrated[k] for k in possible_peaks]
chosen_peaks = []
# Starts with first peak
if not possible_peaks:
raise Exception("No Peaks Detected.")
peak_candidate_i = possible_peaks[0]
peak_candidate_amp = possible_amplitudes[0]
for peak_i, peak_amp in zip(possible_peaks, possible_amplitudes):
if peak_i - peak_candidate_i <= min_rr and peak_amp > peak_candidate_amp:
peak_candidate_i = peak_i
peak_candidate_amp = peak_amp
elif peak_i - peak_candidate_i > min_rr:
chosen_peaks += [peak_candidate_i - 6] # Delay of 6 samples
peak_candidate_i = peak_i
peak_candidate_amp = peak_amp
else:
pass
return chosen_peaks, possible_peaks | ab9dd461f65095f048942ab8b8c069c456ea4933 | 11,554 |
import itertools
def normalise_text(text):
"""
Removes leading and trailing whitespace from each line of text.
Removes leading and trailing blank lines from text.
"""
stripped = text.strip()
stripped_lines = [line.strip() for line in text.split("\n")]
# remove leading and trailing empty lines
stripped_head = list(itertools.dropwhile(lambda s: not s, stripped_lines))
stripped_tail = itertools.dropwhile(lambda s: not s, reversed(stripped_head))
return "\n".join(reversed(list(stripped_tail))) | 52ab40cfa4c39ed194fa71aa28d70f5fa737d70c | 11,560 |
import sqlite3
def sqlite3get_table_names(sql_conn: sqlite3.Connection):
"""For a given sqlite3 database connection object, returns the table names within that database.
Examples:
>>> db_conn = sqlite3.connect('places.sqlite')\n
>>> sqlite3get_table_names(db_conn)\n
['moz_origins', 'moz_places', 'moz_historyvisits', 'moz_inputhistory', 'moz_bookmarks', 'moz_bookmarks_deleted', 'moz_keywords', 'moz_anno_attributes', 'moz_annos', 'moz_items_annos', 'moz_meta', 'sqlite_stat1']
References:
# How to list tables for a given database:\n
https://techoverflow.net/2019/10/14/how-to-list-tables-in-sqlite3-database-in-python/\n
# Firefox forensics - what sqlite databases store which artifacts\n
https://www.foxtonforensics.com/browser-history-examiner/firefox-history-location\n
Args:
sql_conn (sqlite3.Connection): Reference an existing slite3 Connection object.
Returns:
list: Returns a list of the table names in the database.
"""
cursor = sql_conn.execute("SELECT name FROM sqlite_master WHERE type='table';")
table_names = [
name[0] for name in cursor.fetchall() if name[0] != 'sqlite_sequence'
]
cursor.close()
return table_names | 0cb1ba2ba475268d39fef8bdbe044436f51c4f07 | 11,563 |
from typing import List
from typing import Any
def sort(xs: List[Any]) -> List[Any]:
"""
Sort the list `xs` with the python `sort` function
and return the sorted function. The given list is not modified.
Parameters
----------
xs
A list.
Returns
-------
xs_sorted
A sorted copy of `xs`.
"""
xs_copy = xs.copy()
xs_copy.sort()
return xs_copy | 706190a533c19b6a7ea4baf540823ca73406560b | 11,566 |
import pickle
def read_solver(filename):
"""
This function reads a .pk1 file.
Parameters:
filename (str): A file name or path to file excluding file extension.
Returns:
Content of the loaded .pk1 file.
"""
try:
file = open(filename+'.pk1', 'rb')
except IOError:
print('unable to open file')
return False
else:
solver_obj = pickle.load(file)
file.close()
return solver_obj | da7bcfb75af1edde3d43091fdbc5c1829c13e5e0 | 11,570 |
import inspect
def get_argument_help_string(param: inspect.Parameter) -> str:
"""Get a default help string for a parameter
:param param: Parameter object
:type param: inspect.Parameter
:return: String describing the parameter based on the annotation and default value
:rtype: str
"""
help_str = ""
if param.annotation is not param.empty:
help_str = inspect.formatannotation(param.annotation)
if param.default is not param.empty:
if param.annotation is not param.empty:
help_str += ", "
help_str = f"{help_str}defaults to {param.default!r}"
return help_str | 7381591ce45591bf1aef62280fc4b98e57969576 | 11,573 |
def nested_select(d, v, default_selected=True):
"""
Nestedly select part of the object d with indicator v. If d is a dictionary, it will continue to select the child
values. The function will return the selected parts as well as the dropped parts.
:param d: The dictionary to be selected
:param v: The indicator showing which part should be selected
:param default_selected: Specify whether an entry is selected by default
:return: A tuple of two elements, the selected part and the dropped part
Examples:
>>> person = {'profile': {'name': 'john', 'age': 16, 'weight': 85}, \
'relatives': {'father': 'bob', 'mother': 'alice'}}
>>> nested_select(person, True)
({'profile': {'name': 'john', 'age': 16, 'weight': 85}, 'relatives': {'father': 'bob', 'mother': 'alice'}}, {})
>>> nested_select(person, {'profile': False})
({'relatives': {'father': 'bob', 'mother': 'alice'}}, {'profile': {'name': 'john', 'age': 16, 'weight': 85}})
>>> nested_select(person, {'profile': {'name': False}, 'relatives': {'mother': False}})
({'profile': {'age': 16, 'weight': 85}, 'relatives': {'father': 'bob'}},
{'profile': {'name': 'john'}, 'relatives': {'mother': 'alice'}})
"""
if isinstance(v, dict):
assert isinstance(d, dict)
choosed = d.__class__()
dropped = d.__class__()
for k in d:
if k not in v:
if default_selected:
choosed.setdefault(k, d[k])
else:
dropped.setdefault(k, d[k])
continue
if isinstance(v[k], dict):
assert isinstance(d[k], dict)
child_choosed, child_dropped = nested_select(d[k], v[k])
if child_choosed:
choosed.setdefault(k, child_choosed)
if child_dropped:
dropped.setdefault(k, child_dropped)
else:
if v[k]:
choosed.setdefault(k, d[k])
else:
dropped.setdefault(k, d[k])
return choosed, dropped
else:
other = d.__class__() if isinstance(d, dict) else None
return (d, other) if v else (other, d) | 84aa16adfb324fef8452966087cbf446d57893d2 | 11,575 |
def is_trans(reaction):
"""Check if a reaction is a transporter."""
return len(reaction.metabolites) == 1 | a0b9be30b4a88156e7a89cf48b8ecb76345e4cab | 11,578 |
def format_tile(tile, tile_format, format_str='{x} {y} {z}'):
"""Convert tile to necessary format.
Parameters
----------
tile: pygeotile.tile.Tile
Tile object to be formatted.
tile_format: str
Desired tile format. `google`, `tms`, or `quad_tree`
format_str: str
String to guide formatting. Only used for `google` or `tms`
(as quad_tree is one value).
Default: "{x} {y} {z}". Example: "{z}-{x}-{y}"
"""
if tile_format == 'google':
td = {key: val for key, val
in zip(['x', 'y', 'z'], list(tile.google) + [tile.zoom])}
return format_str.format(**td)
elif tile_format == 'tms':
td = {key: val for key, val
in zip(['x', 'y', 'z'], list(tile.tms) + [tile.zoom])}
return format_str.format(**td)
elif tile_format == 'quad_tree':
return tile.quad_tree
else:
raise ValueError('`tile_format`: {} not recognized'.format(tile_format)) | e7ce2653f49f0c535bb3ea0a0c4bec3b48a74331 | 11,579 |
def percent(a, b):
"""
Given a and b, this function returns a% of b
"""
return (a/100)*b | d8adae353bb1b7aba6eb0149af065182bf752449 | 11,580 |
import math
def filter_none(mongo_dict):
"""Function to filter out Nones and NaN from a dict."""
for key in list(mongo_dict.keys()):
val = mongo_dict[key]
try:
if val is None or math.isnan(val):
mongo_dict.pop(key)
except Exception:
continue
return mongo_dict | 6853a7153f98466dc00d262bfaf4a63db1b0cd5c | 11,581 |
import re
def fetch_geneid(fn):
"""
fetch gene id from GTF records
gene_id "FBgn0267431"; gene_name "Myo81F"; gene_source "FlyBase"; gene_biotype "protein_coding";
"""
assert isinstance(fn, str)
ps = fn.split(';')
dn = {}
for i in fn.split(';'):
if len(i) < 8: # shortest field
continue
id = i.strip().split(' ')
id = re.sub('"', '', id[1])
if 'gene_id' in i:
dn['gene_id'] = id
elif 'gene_name' in i:
dn['gene_name'] = id
elif 'transcript_id' in i:
dn['transcript_id'] = id
elif 'transcript_name' in i:
dn['transcript_name'] = id
elif 'exon_id' in i:
dn['exon_id'] = id
elif 'gene_biotype' in i:
dn['gene_biotype'] = id
else:
pass
return dn | c3ddb9c5c820799800131c6e11dc2ef91d4556c1 | 11,587 |
def fieldsMatch(f0, f1):
"""
Checks whether any entry in one list appears in a second list.
"""
for f in f0:
if f in f1: return True
return False | 172772fca613fe97e32bb6860c3bd217b643fe2d | 11,588 |
def list_to_str(lst):
"""convert list/tuple to string split by space"""
result = " ".join(str(i) for i in lst)
return result | 1e6c59f834b98b1d49ca1c0919d2d976fd1de1de | 11,589 |
def extract_bias_diagonal(module, S, sum_batch=True):
"""Extract diagonal of ``(Jᵀ S) (Jᵀ S)ᵀ`` where ``J`` is the bias Jacobian.
Args:
module (torch.nn.Conv1d or torch.nn.Conv2d or torch.nn.Conv3d): Convolution
layer for which the diagonal is extracted w.r.t. the bias.
S (torch.Tensor): Backpropagated (symmetric factorization) of the loss Hessian.
Has shape ``(V, *module.output.shape)``.
sum_batch (bool, optional): Sum out the batch dimension of the bias diagonals.
Default value: ``True``.
Returns:
torch.Tensor: Per-sample bias diagonal if ``sum_batch=False`` (shape
``(N, module.bias.shape)`` with batch size ``N``) or summed bias
diagonal if ``sum_batch=True`` (shape ``module.bias.shape``).
"""
start_spatial = 3
sum_before = list(range(start_spatial, S.dim()))
sum_after = [0, 1] if sum_batch else [0]
return S.sum(sum_before).pow_(2).sum(sum_after) | b2f8aaefa22d1ae915c59f80f98341059a4d1ad3 | 11,590 |
from gzip import GzipFile
from typing import Any
import json
def gzip_load_var(gzip_file:str) -> Any:
"""
Load variable from .json.gz file (arbitrary extension!)
Parameters
----------
gzip_file : str
Filename containing the gzipped JSON variable
Returns
-------
var : Any
Variable as decoded from gzipped JSON content
"""
# IMPORT DONE HERE TO SAVE TIME AT MODULE INIT
try:
with GzipFile(gzip_file, 'r') as gzip_in:
json_var = json.loads(gzip_in.read().decode('utf-8'))
except:
raise
return json_var | b9f6fbad33b40bb18a1418f3134b0889d5344183 | 11,595 |
def category_table_build(osm_table_name, categorysql):
"""
Returns an SQL OSM category table builder
Args:
osm_table_name (string): a OSM PostGIS table name
Returns:
sql (string): a sql statement
"""
sql = ("INSERT INTO category_%s (osm_id, cat) "
"SELECT DISTINCT osm_id, "
"%s as cat "
"FROM %s as osm")
sql = sql % (osm_table_name, categorysql, osm_table_name)
return sql | 147812bb68845e3fd0dca7e805f610d26428eac3 | 11,601 |
def count_helices(d):
"""Return the helix count from structure freq data."""
return d.get('H', 0) + d.get('G', 0) + d.get('I', 0) | 8469adabac42937009a1f8257f15668d630a7ca8 | 11,603 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.