content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def _bytes_chr_py3(i):
"""
Returns a byte string of length 1 whose ordinal value is i in Python 3.
Do not call directly, use bytes_chr instead.
"""
return bytes([i]) | b6cd1e5e7214d02c29a594e639fbddac901a1362 | 12,593 |
def guess_type(v, consumer='python'):
"""Guess the type of a value (None, int, float or string) for different types of consumers
(Python, SQLite etc.).
For Python, use isinstance() to check for example if a number is an integer.
>>> guess_type('1')
1
>>> guess_type('1', 'sqlite')
'integer'
>>> guess_type('1.0')
1.0
>>> guess_type('1.0', 'sqlite')
'real'
>>> guess_type('abc')
'abc'
>>> guess_type('abc', 'sqlite')
'text'
>>>
>>> value_type = lib.base3.guess_type(value)
>>> if isinstance(value_type, int) or isinstance(value_type, float):
>>> ...
"""
if consumer == 'python':
if v is None:
return None
try:
return int(v)
except ValueError:
try:
return float(v)
except ValueError:
return str(v)
if consumer == 'sqlite':
if v is None:
return 'string'
try:
int(v)
return 'integer'
except ValueError:
try:
float(v)
return 'real'
except ValueError:
return 'text' | a9361d5ce7f070f09dca267afb4ffcae866040eb | 12,595 |
import torch
def array_from_skew_matrix(x, device=torch.device("cpu"), dtype=torch.float32):
"""
Receives a skew matrix and returns its associated 3-element vector (array).
:param x: Skew matrix (3x3)
:return: Associated array (3-element).
:param device: Device to allocate new tensors. Default: torch.device("cpu").
:param dtype: Data type for new tensors. Default: torch.float32.
"""
# We are only slicing the last index in order to keep last dimension.
return torch.hstack((x[:, 2, 1:2], x[:, 0, 2:], x[:, 1, 0:1])) | 54dcb699db154e8c995dc324888b633451cfb7fc | 12,596 |
def binary(img,th=128):
"""generate binary image
Args:
img : image array
th : threshold
"""
img[img<th] = 0
img[img>=th] = 255
return img | 627c3fc928886facbae8ca4cf692f543f4cbca40 | 12,597 |
import json
def hello(event, context): # pylint: disable=unused-argument
"""Hello lambda function.
Args:
event (dict): Contains information from the invoking service
(service defines the event structure)
context (obj): Contains methods and properties that provide information
about the invocation, function, and runtime environmenti.
(function name, version, memory limits, request id and etc.)
Returns:
response (dict): Contains request response from the handler
(200 status code and event data)
"""
body = {
"message": "Go Serverless v2.0! Your function executed successfully!",
"input": event,
}
response = {"statusCode": 200, "body": json.dumps(body)}
return response | fabe319ab98cfcdd9208b021a6b4e42d6aa46a05 | 12,599 |
from typing import List
from typing import Dict
def single__intent_topk_precision_score(
intent_prediction: List[Dict[str, str]],
y_true: List[str],
k: int = 1,
) -> float:
"""Compute the Precision of a single utterance with multi-intents
Precision of a single utterance is defined as the proportion of
correctly predicted labels to the total number of the true label.
It can be formulated as
.. math::
\\text{Precision of single utterance}=\\frac{|\\text{pred}_i \\cap \\text{true}_i|}{|\\text{true}_i|}
Args:
intent_prediction (a list of dictionaries):
A sorted intent prediction (by score) of a single utterance.
y_true (a list of strings):
The corresponding true intent of that utterance.
Note that it can be more than one intents.
k (an integer):
The top k prediction of intents we take for computing precision.
Returns:
precision score (a float):
precision of a single utterance given top k prediction.
Examples:
>>> intent_prediction, _ = model.predict("I like apple.")
>>> print(intent_prediction)
[
{"intent": "blabla", "score": 0.7},
{"intent": "ohoh", "score": 0.2},
{"intent": "preference", "score": 0.1},
]
>>> precision = single__intent_topk_precision_score(
intent_prediction=intent_prediction,
y_true=["preference", "ohoh", "YY"],
k=2,
)
>>> print(precision)
0.333333
""" # noqa
top_k_pred = [pred["intent"] for pred in intent_prediction[: k]]
precision_score = (
len(set(y_true) & set(top_k_pred)) /
len(y_true)
)
return precision_score | 3b67849670f80a3fa148249a6fe41ce4627546e5 | 12,602 |
def _deal_with_axis(obj, axis):
"""Handle the `axis` parameter
Parameters
----------
obj: DimArray object
axis: `int` or `str` or `tuple` or None
Returns
-------
newobj: reshaped obj if axis is tuple otherwise obj
idx : axis index
name : axis name
"""
# before applying the function on the collapsed array
if type(axis) in (tuple, list):
idx = 0
newobj = obj.flatten(axis, insert=idx)
#idx = obj.dims.index(axis[0]) # position where the new axis has been inserted
#ax = newobj.axes[idx]
ax = newobj.axes[0]
name = ax.name
else:
newobj = obj
idx, name = obj._get_axis_info(axis)
return newobj, idx, name | ae0eec4bdf7f172f9617e9f9d1330d75b08f8e97 | 12,610 |
def simple_bet(pressure, n_monolayer, c_const):
"""A simple BET equation returning loading at a pressure."""
return (n_monolayer * c_const * pressure / (1 - pressure) / (1 - pressure + c_const * pressure)) | 601701b608a48fe634d028023068fcadc636499b | 12,613 |
from typing import Container
from typing import Iterable
def match_tags(search: Container[str], tags: Iterable[str]):
"""Check if the search constraints satisfy tags.
The search tags should be uppercased.
All !tags or -tags cannot be present, all +tags must be present, and
at lest one normal tag must be present (if they are) to pass.
"""
if not tags:
return True
has_all = '<ALL>' in search
# None = no normal tags, True = matched one, False = not matched one.
matched = None
for tag in tags:
tag = tag.upper()
start = tag[0:1]
if start == '!' or start == '-':
if tag[1:] in search:
return False
elif start == '+':
if tag[1:] not in search:
return False
else:
if matched is None:
matched = False
if has_all or tag in search:
matched = True
return matched is not False | 0a6ee5f233900eb50ad72613aa73f227a836b4dd | 12,617 |
from typing import Dict
from typing import Any
from typing import Iterator
from typing import Tuple
def flatten(dictionary: Dict[str, Any]) -> Dict[str, Any]:
"""
>>> flatten({'foo':{'bar':{'baz': 0}, 'deadbeef': 1}, '42': 3})
{'foo.bar.baz': 0, 'foo.deadbeef': 1, '42': 3}
"""
def iterate(data: Dict[str, Any], prefix: str) -> Iterator[Tuple[str, Any]]:
for key, value in data.items():
prefixed_key = prefix + key
if isinstance(value, dict):
for prefixed_subkey, val in iterate(value, prefixed_key + '.'):
yield prefixed_subkey, val
else:
yield prefixed_key, value
return dict(iterate(dictionary, "")) | 401f2f8894690a0c1171d26378ac4a5178dd705a | 12,621 |
def subdivide_stats(data):
"""
If a key contains a ., create a sub-dict with the first part as parent key
"""
ret = {}
for key, value in data.items():
if '.' in key:
parent, subkey = key.split('.', 2)
if parent not in ret:
ret[parent] = {}
ret[parent][subkey] = value
else:
ret[key] = value
return ret | 65e47db5c75118c1939a8ecdd3ad581a053da893 | 12,625 |
import re
def parentdir(file_path):
"""
Get the parent directory of a file or directory.
Goes by the path alone, so it doesn't follow symlinks.
On Windows, paths must be converted to use / before passing.
This function is not the same as os.path.dirname(); for example,
dirname will not give us the correct answer for any of:
. ./ .. ../
Note: still doesn't always correctly handle paths starting with /
and containing . or .., e.g., parentdir('/foo/..')
Dependencies:
modules: re
"""
# remove trailing /'s
parentdir = re.sub('/*$', '', file_path)
# are there no /'s left?
if '/' not in parentdir:
if parentdir == '':
return '/' # it was /, and / is its own parent
if parentdir == '.':
return '..'
if parentdir == '..':
return '../..'
return '.'
# remove the last component of the path
parentdir = re.sub('/*[^/]*$', '', parentdir)
if parentdir == '':
return '/'
return parentdir | baec28e9b6f0017566b91cd2b442a9eb783a144f | 12,627 |
def _Int(s):
"""Try to convert s to an int. If we can't, just return s."""
try:
return int(s)
except ValueError:
assert '.' not in s # dots aren't allowed in individual element names
return s | 8f7fcf70717fe30ba991c8cff63cecefe5c01daf | 12,628 |
def strlist_with_or (alist):
"""Return comma separated string, and last entry appended with ' or '."""
if len(alist) > 1:
return "%s or %s" % (", ".join(alist[:-1]), alist[-1])
return ", ".join(alist) | 1202e76d34f84618bb6b310bbc43c835f3c94104 | 12,629 |
def values_dict(items):
"""Given a list of (key, list) values returns a dictionary where
single-element lists have been replaced by their sole value.
"""
return {k: v[0] if len(v) == 1 else v for k, v in items} | 7abcf62ab334cecc6e6996bad73ff10e5eecdf89 | 12,636 |
def DetermineServiceFromUrl(url):
"""Takes a DFA service's URL and returns the service name.
Args:
url: string The DFA service's URL.
Returns:
string The name of the service this URL points to.
"""
return url.split('/')[-1] | 213e1a4dbb5eb3ed643e0ace300b4ac5b6c6c745 | 12,640 |
def scrub_response(response):
"""
Drop irrelevant headers.
"""
headers = response["headers"]
for header in [
"CF-Cache-Status",
"CF-RAY",
"Cache-Control",
"Connection",
"Date",
"Expect-CT",
"NEL",
"Report-To",
"Server",
"Transfer-Encoding",
"cf-request-id",
"Set-Cookie",
]:
headers.pop(header, None)
return response | 8f1a9f9499df1fbaf7147ccdda8c7854c4c638ec | 12,646 |
def check_necessary_conds(val_inf, muls):
"""
The necessary conditions for a rational solution
to exist are as follows -
i) Every pole of a(x) must be either a simple pole
or a multiple pole of even order.
ii) The valuation of a(x) at infinity must be even
or be greater than or equal to 2.
Here, a simple pole is a pole with multiplicity 1
and a multiple pole is a pole with multiplicity
greater than 1.
"""
return (val_inf >= 2 or (val_inf <= 0 and val_inf%2 == 0)) and \
all(mul == 1 or (mul%2 == 0 and mul >= 2) for mul in muls) | 58463ac2855d07eb36e1850cec3208d69d5a545c | 12,647 |
def get_rect_footprint(l_m=4.8, w_m=1.83):
"""
Get rectangular footprint of length (x, longitudinal direction) and width (y, lateral direction)
l_m : length (default 4.8)
w_m : width (default 1.83)
Return Values
=============
footprint_x : tuple of x coordinates of the footprint
footprint_y : tuple of y coordinates of the footprint
"""
l_half_m = l_m * 0.5
w_half_m = w_m * 0.5
footprint_x, footprint_y = zip((l_half_m, w_half_m), (-l_half_m, w_half_m), (-l_half_m, -w_half_m), (l_half_m, -w_half_m), (l_half_m, w_half_m))
return footprint_x, footprint_y | dd40304c404226543023c1f81bca5aac81e70eec | 12,649 |
def _parse_source_file_list_blob_key(blob_key):
"""Parse the BLOB key for source file list.
Args:
blob_key: The BLOB key to parse. By contract, it should have the format:
`${SOURCE_FILE_LIST_BLOB_TAG}.${run_id}`
Returns:
- run ID
"""
return blob_key[blob_key.index(".") + 1 :] | a7f5c7ccee1404e17b90cb6cd58922ec162d33e3 | 12,652 |
def prop_FC(csp, newVar=None):
"""
Do forward checking. That is check constraints with
only one uninstantiated variable. Remember to keep
track of all pruned variable,value pairs and return
"""
constraints = csp.get_cons_with_var(newVar) if newVar else csp.get_all_cons()
pruned = []
for constraint in constraints:
if constraint.get_n_unasgn() != 1:
continue # skip to the next constraint
# If we get here, get the single unassigned variable
var = constraint.get_unasgn_vars()[0]
for val in var.cur_domain():
# Check if the var = val satisfies the constraint
if not constraint.has_support(var, val):
if (var, val) not in pruned:
# Then prune this value from var's domain
var.prune_value(val)
pruned.append((var, val))
# After looking at all values in the var's domain, check if it is now empty
if var.cur_domain_size() == 0:
return False, pruned
return True, pruned | 3956cf0ae03a03c0dbc3504ab2ed2a20b8343d90 | 12,654 |
def pad(val: str) -> str:
"""Pad base64 values if need be: JWT calls to omit trailing padding."""
padlen = 4 - len(val) % 4
return val if padlen > 2 else (val + "=" * padlen) | 3ab1c91fde1522f15a766730f73e44c97dbeda1a | 12,664 |
def word_remove(text, wordlist):
"""
This function takes a list of text strings and a list of words. It returns the list of text strings
with the words appearing in the wordlist removed.
"""
# Create new emoty list for the cleaned text
clean_text = []
# Seperate ALL words from each other and write them with lower case
wordlist = ' '.join(wordlist).lower().split()
# Loop over every chunk and remove the words from the wordlist
for i in range(len(text)):
chunk = text[i] # take chunk
chunkwords = chunk.split() # split into single words
resultwords = [word for word in chunkwords if word.lower() not in wordlist] # remove words from wordlist
chunkclean = ' '.join(resultwords) # gather all words into a string again
clean_text.append(chunkclean) # append the chunk to the list outside the loop
return(clean_text) | 8dac46d54345efedf7bb117af3e4eb67704c0f85 | 12,666 |
def fs_write(obj, file_path):
"""
Convenience function to write an Object to a FilePath
Args:
obj (varies): The Object to write out
file_path (str): The Full path including filename to write to
Returns: The object that was written
"""
try:
with open(str(file_path), 'w') as f:
f.write(obj)
return obj
except TypeError as e:
raise e | c94db2399283a26529bf4416f5b05a93fafb4e07 | 12,667 |
import json
def get_json(inp_dict):
"""Converts a given dictionary to prettified JSON string.
Parameters
----------
inp_dict: map
Input dictionary to be converted to JSON.
Returns
-------
Prettified JSON string
"""
return json.dumps(inp_dict, indent=4) | 9404064536a12595fe9b601363eee07b09a97bc8 | 12,668 |
import calendar
def month_delta(date, months):
"""Add or subtract months from date."""
day = date.day
# subtract one because months are not zero-based
month = date.month + months - 1
year = date.year + month // 12
# now add it back
month = month % 12 + 1
days_in_month = calendar.monthrange(year, month)[1]
if day >= days_in_month:
day = days_in_month
try:
return date.replace(year, month, day)
except ValueError:
raise OverflowError('date value out of range') | afa064af13c67be776a7f01ce48fc6ed2f33f581 | 12,672 |
def get_attribute(obj, key):
"""
Get an attribute from an object, regardless of whether it is a dict or an object
"""
if not isinstance(obj, dict):
return getattr(obj, key)
return obj[key] | bb20ac5809cf89b8043ff1fc60b9e4775ca95d18 | 12,673 |
from typing import List
def compute_sigma_for_given_alpha(bundles:List[float],alpha:float)->float:
"""
This is a helper function to compute_alpha5_using_binary_search.
the function computes one side of the inequality .
:param bundles: valuations of the bags from B1 to Bk, were k is number of agents
:param alpha: the potential alpha5- sigma is computed with it
:return sigma: one side of the inequality
>>> bundles=[0.74,0.75,0.50,1.02]
>>> alpha = 0.92
>>> round(compute_sigma_for_given_alpha(bundles=bundles,alpha=alpha),6)
0.331522
>>> bundles=[0.74,0.75,0.72]
>>> alpha = 0.9
>>> compute_sigma_for_given_alpha(bundles=bundles,alpha=alpha)
0.0
>>> bundles=[0.74,0.73]
>>> alpha = 0.99
>>> round(compute_sigma_for_given_alpha(bundles=bundles,alpha=alpha),6)
0.265152
"""
sum=0
count=0
for bundle in bundles:
if(bundle/alpha)<0.75:
count+=1
sum+=0.75-bundle/alpha
return sum+(1/8)*count | 08ae1c84f13de03b5404158de146b05b9efbfdce | 12,681 |
def _makeScriptOrder(gpos):
"""
Run therough GPOS and make an alphabetically
ordered list of scripts. If DFLT is in the list,
move it to the front.
"""
scripts = []
for scriptRecord in gpos.ScriptList.ScriptRecord:
scripts.append(scriptRecord.ScriptTag)
if "DFLT" in scripts:
scripts.remove("DFLT")
scripts.insert(0, "DFLT")
return sorted(scripts) | 6c67698c3d084c8e8f038e05a8d8e53811220a15 | 12,684 |
import torch
from typing import Tuple
from typing import List
def concat_enc_outs(
input: torch.LongTensor,
enc_out: torch.Tensor,
mask: torch.BoolTensor,
embedding_size: int,
padding_idx: int,
) -> Tuple[torch.Tensor, torch.BoolTensor]:
"""
Concatenate Encoder Outputs.
Does the whole "FiD" thing; each query/document pair is independently encoded in the
Encoder, so we need to concatenate all the outputs prior to sending to the decoder.
:param input:
[bsz, seqlen] original input to the encoder
:param enc_out:
[bsz * n_docs, seqlen] output representations from the encoder
:param mask:
encoder mask
:param embedding_size:
emb/hidden size of the enc representations
:param padding_idx:
pad token index; used for mask purposes.
:return (new_out, new_mask):
return the encoder output and encoder mask, appropriately concatenated.
"""
bsz, n_docs = input.size(0), enc_out.size(0) // input.size(0)
split_enc_out = enc_out.split([n_docs] * bsz, dim=0)
split_mask = mask.split([n_docs] * bsz, dim=0)
concat_outs: List[torch.Tensor] = []
concat_lengths = []
for i in range(bsz):
mask_i = split_mask[i].view(-1)
out_i = split_enc_out[i].reshape(-1, embedding_size)[mask_i]
concat_outs.append(out_i)
concat_lengths.append(out_i.size(0))
new_out = enc_out.new(bsz, max(concat_lengths), embedding_size)
new_mask: torch.BoolTensor = mask.new(bsz, max(concat_lengths)) # type: ignore
new_out.fill_(padding_idx)
new_mask.fill_(False)
for i, (out_i, length_i) in enumerate(zip(concat_outs, concat_lengths)):
new_out[i, :length_i] = out_i
new_mask[i, :length_i] = True
return new_out, new_mask | 6b1794966229a8f7658afcb70a5e91a652e6b1c5 | 12,685 |
import math
def poids_attirance(p, dist):
"""
Calcule le poids d'attraction d'une neurone vers une ville.
"""
d = p[0] * p[0] + p[1] * p[1]
d = math.sqrt(d)
d = dist / (d + dist)
return d | 4a997566d19dc7e436a3a1704be7b5ac74424266 | 12,688 |
def dedup(records):
"""Remove any identical records from the list.
Args:
records (list(dict)): the list of dicts to be filtered.
Returns:
list(dict): the list of records with any duplicates removed.
The list returned contains records in the same order as the original list.
"""
seen = set()
filtered = []
for record in records:
key = tuple(sorted(record.items()))
if key not in seen:
seen.add(key)
filtered.append(record)
return filtered | f3aadddf1458a08d36331a74722e12057d8ab8f9 | 12,689 |
import inspect
def is_functional_member(member):
"""
Check whether a class member from the __dict__ attribute is a method.
This can be true in two ways:
- It is literally a Python function
- It is a method descriptor (wrapping a function)
Args:
member (object): An object in the class __dict__.
Returns:
bool: `True` if the member is a function (or acts like one).
"""
return (
inspect.isfunction(member)
or (
inspect.ismethoddescriptor(member)
and isinstance(member, (classmethod, staticmethod))
)
) | 268068600689a7935c9a8b26aa14ca09f9679228 | 12,690 |
def convert_x1y1x2y2_to_XcYcWH(box):
"""
Convert box from dictionary of {"x1":,"y1":,"x2":,"y2"} to {"x_centre":,"y_centre":,"width":,"height":}
Assumption 1: point 1 is the top left and point 2 is the bottom right hand corner
"""
assert box["x1"] <= box["x2"]
assert box["y1"] <= box["y2"]
width = box["x2"] - box["x1"]
height = box["y2"] - box["y1"]
x_centre = round(box["x1"] + width/2)
y_centre = round(box["y1"] + height/2)
return {"x_centre":x_centre,"y_centre":y_centre,"width":width,"height":height} | e7da7353b64b969b4c51dc7ece06729b05bad31e | 12,691 |
def edit_distance(s1: str, s2: str) -> int:
"""The minimum number of edits required to make s1 equal to s2.
This is also known as the Levenshtein distance.
An edit is the addition, deletion, or replacement of a character.
"""
if not s1:
return len(s2)
if not s2:
return len(s1)
M = [[0 for _ in range(len(s2) + 1)] for _ in range(len(s1) + 1)]
# M[i1][i2] is the edit distance between s1[:i1] and s2[:i2].
for i1 in range(len(s1) + 1):
M[i1][0] = i1
for i2 in range(len(s2) + 1):
M[0][i2] = i2
for i1 in range(1, len(s1) + 1):
for i2 in range(1, len(s2) + 1):
cost = 0 if s1[i1 - 1] == s2[i2 - 1] else 1
M[i1][i2] = min(
[
1 + M[i1 - 1][i2],
1 + M[i1][i2 - 1],
cost + M[i1 - 1][i2 - 1],
])
return M[len(s1)][len(s2)] | bd433f8b52dd9826032ced7ece0fb7df8b5ad8cc | 12,697 |
def _remap_cortex_out(cortex_out, region, out_file):
"""Remap coordinates in local cortex variant calls to the original global region.
"""
def _remap_vcf_line(line, contig, start):
parts = line.split("\t")
if parts[0] == "" or parts[1] == "":
return None
parts[0] = contig
try:
parts[1] = str(int(parts[1]) + start)
except ValueError:
raise ValueError("Problem in {0} with \n{1}".format(
cortex_out, parts))
return "\t".join(parts)
def _not_filtered(line):
parts = line.split("\t")
return parts[6] == "PASS"
contig, start, _ = region
start = int(start)
with open(cortex_out) as in_handle:
with open(out_file, "w") as out_handle:
for line in in_handle:
if line.startswith("##fileDate"):
pass
elif line.startswith("#"):
out_handle.write(line)
elif _not_filtered(line):
update_line = _remap_vcf_line(line, contig, start)
if update_line:
out_handle.write(update_line) | 03357f276c6733508f17197a3300f1d55271e486 | 12,699 |
def _album_is_reviewed(album, user_key):
"""Check if an album has been reviewed.
Args:
album: An Album entity
user_key: A stringified user key, or None.
Returns:
If user_key is None, returns True if and only if the album has
any reviews at all.
If user_key is not None, returns True if and only if the album
has been reviewed by the specified user.
"""
if user_key is None or user_key == "":
return len(album.reviews) > 0
for review in album.reviews:
if str(review.author.key()) == user_key:
return True
return False | fd3b495ccdbc7a61398bc63a28fd5ab8378152f0 | 12,701 |
import sqlite3
def load_history_db(history_db):
""" Load simulation history from provided db.
In case no db is given, returns an empty history
:param history_db:
:return:
"""
history = {}
if history_db is not None:
conn = sqlite3.connect(history_db)
cursor = conn.cursor()
for robot_string, fitness in cursor.execute('SELECT * FROM history'):
history[robot_string] = (float(fitness),)
cursor.close()
conn.close()
return history | 06055c6c48f8757513808e44d85f802ab0acd456 | 12,702 |
def upload_location(instance, filename, **kwargs):
"""Upload location for profile image"""
return f"accounts/{instance.username}/{filename}" | c662bbb095f8180aa330a2566c9d9aaf372712b0 | 12,704 |
import collections
from typing import Mapping
def namedtuple(typename, field_names, default_values=()):
"""
Overwriting namedtuple class to use default arguments for variables not passed in at creation of object
Can manually set default value for a variable; otherwise None will become default value
"""
T = collections.namedtuple(typename, field_names)
T.__new__.__defaults__ = (None,) * len(T._fields)
if isinstance(default_values, Mapping):
prototype = T(**default_values)
else:
prototype = T(*default_values)
T.__new__.__defaults__ = tuple(prototype)
return T | b0fba5ba73037e7bdb5db05d10a8b96f953fc829 | 12,708 |
def length_along_path(pp, index):
""" Get the lenth measured along the path up to the given index.
"""
index = min(index, len(pp) - 1) # beware of the end
diff_squared = (pp[:index] - pp[1:index+1]) ** 2
distances = diff_squared.sum(1)
return (distances ** 0.5).sum()
# == sum(pp[j].distance(pp[j+1]) for j in range(index)) | a7eea4b411860c51fb5f64a690a9d4832c8b98a9 | 12,709 |
def isWithin(rect1, rect2):
"""Checks whether rectangle 1 is within rectangle 2
Parameters:
rect1: list of coordinates [minx, maxy, maxx, miny]
rect2: list of coordinates [minx, maxy, maxx, miny]
Returns:
True if rect1 within rect2 else False
"""
minx1, maxy1,maxx1, miny1 = rect1
minx2, maxy2,maxx2, miny2 = rect2
if minx1 < minx2 or maxx1 > maxx2 or miny1 < miny2 or maxy1 > maxy2:
return False
return True | d7adca34b7cfb4294316090e18c164db0a34e818 | 12,714 |
def doolittle(matrix_a):
""" Doolittle's Method for LU-factorization.
:param matrix_a: Input matrix (must be a square matrix)
:type matrix_a: list, tuple
:return: a tuple containing matrices (L,U)
:rtype: tuple
"""
# Initialize L and U matrices
matrix_u = [[0.0 for _ in range(len(matrix_a))] for _ in range(len(matrix_a))]
matrix_l = [[0.0 for _ in range(len(matrix_a))] for _ in range(len(matrix_a))]
# Doolittle Method
for i in range(0, len(matrix_a)):
for k in range(i, len(matrix_a)):
# Upper triangular (U) matrix
matrix_u[i][k] = float(matrix_a[i][k] - sum([matrix_l[i][j] * matrix_u[j][k] for j in range(0, i)]))
# Lower triangular (L) matrix
if i == k:
matrix_l[i][i] = 1.0
else:
matrix_l[k][i] = float(matrix_a[k][i] - sum([matrix_l[k][j] * matrix_u[j][i] for j in range(0, i)]))
# Handle zero division error
try:
matrix_l[k][i] /= float(matrix_u[i][i])
except ZeroDivisionError:
matrix_l[k][i] = 0.0
return matrix_l, matrix_u | 03ba90c29dfb67ffe1edf939b49f3ab537931831 | 12,715 |
def getRequest(request):
"""
Get an openid request from the session, if any.
"""
return request.session.get('openid_request') | f6ebcb13e631365f53ae3a362eaf2dba614d7344 | 12,719 |
def flatten_df(df):
"""Flatten the df to an array
Args:
df(pd.DataFrame): a dataframe
Returns:
an array
"""
return df.values.flatten() | 4faedf1059fa60c2ee3af95cd6f01e7d3cadd97e | 12,723 |
from typing import Counter
def duplicated(v):
"""Returns a generator expression of values within v that appear more than
once
"""
return (x for x, y in Counter(v).items() if y > 1) | bf854dfde83c9d998f3f0b5f5553254be6347a4c | 12,727 |
def _readonly_array_copy(x):
"""Return a copy of x with flag writeable set to False."""
y = x.copy()
y.flags["WRITEABLE"] = False
return y | ffd973bb354a642362a7382934f879c9dfa95c3b | 12,728 |
import re
def str_list_to_list_str(str_list, regex_pattern='[A-Z]\d+'):
"""
Turn a string of a list into a list of string tokens.
Tokens determined by regex_pattern
"""
p = re.compile(regex_pattern)
return p.findall(str_list) | 99d3bbccadc0676dac6854ee717f8aef3bb878a6 | 12,729 |
def flagger(value):
"""
Conversion routine for flags. Accepts ints or comma-separated
strings.
:param str value: The value to convert.
:returns: A value of an appropriate type.
"""
try:
# Convert as an integer
return int(value)
except ValueError:
# Convert as a comma-separated list
return [v.strip() for v in value.split(',')] | cdc3fab338fd7f25499e25593302fb209f9be2a4 | 12,732 |
import time
def time_func(func, kwargs):
"""
Time a function. Return the time it took to finish and subsequent result.
"""
start = time.time()
res = func(**kwargs)
finish = time.time() - start
return finish, res | 78f73058a90048f8de24915f1f8ba56bda79cc6a | 12,734 |
def gen_end(first_instruction_address):
""" Generate an end record. """
# specify the size of each column
col2_size = 6
# content for each column
col1 = "E"
col2 = hex(first_instruction_address)[2:].zfill(col2_size).upper()
return col1 + col2 | d5df69b33cfb4f99aa9dbc5e003b713637fa1eff | 12,738 |
def variantMetadata_object(processed_request):
"""
Builds the variantAnnotation object.
Since we only have one model for this object we keep it simple.
"""
beacon_variant_metadata_v1_0 = {
"default": {
"version": "beacon-variant-metadata-v1.0",
"value": {
"geneId": "",
"HGVSId": "",
"transcriptId": "",
"alleleId": "",
"variantClassification": "",
"variantType": "",
"disease": "",
"proteinChange": "",
"clinVarId": "",
"pubmedId": "",
"timestamp": "",
"info": { }
}
},
"alternativeSchemas": []
}
return beacon_variant_metadata_v1_0 | 4bf6dc519fcca02ea63d0f94af55adffe29ad9f8 | 12,744 |
def find_closest_stores(friends, stores):
"""
Finds the closest store to each friend based
on absolute distance from the store.
Parameters:
friends: Dictionary with friend names as keys
and point location as values.
stores: Dictionary with store names as keys
and point locations as values.
Returns:
Dictionary with friends names as keys and the
store closest to them as values.
>>> friends1 = {'rob': 10, 'bob': 12}
>>> stores1 = {'walmart': 11, 'costco': 12}
>>> find_closest_stores(friends1, stores1)
{'rob': 'walmart', 'bob': 'costco'}
>>> friends2 = {'bob': 12}
>>> stores2 = {'target': 12, 'costco': 12}
>>> find_closest_stores(friends2, stores2)
{'bob': 'costco'}
# My doctests
>>> friends3 = {'joe': 10, 'jack': 20}
>>> stores3 = {'target': 5, 'walmart': 16}
>>> find_closest_stores(friends3, stores3)
{'joe': 'target', 'jack': 'walmart'}
>>> friends4 = {'bob': 12}
>>> stores4 = {'target': 12, 'costco': 12, 'apple': 12}
>>> find_closest_stores(friends4, stores4)
{'bob': 'apple'}
>>> friends5 = {'joe': 0, 'jack': 2.5}
>>> stores5 = {'target': 1.25, 'walmart': 1}
>>> find_closest_stores(friends5, stores5)
{'joe': 'walmart', 'jack': 'target'}
"""
return {names: min([(abs(distance - locations), store) \
for store, distance in stores.items()])[1] \
for names, locations in friends.items()} | ca879f6f442a4d734bf9e3c7b0313cd31ea2a026 | 12,748 |
def bash_quote(*args):
"""Quote the arguments appropriately so that bash will understand
each argument as a single word.
"""
def quote_word(word):
for c in word:
if not (c.isalpha() or c.isdigit() or c in '@%_-+=:,./'):
break
else:
if not word:
return "''"
return word
return "'{0}'".format(word.replace("'", "'\"'\"'"))
return ' '.join(quote_word(word) for word in args) | cb25adb60ea98cb6887e89a6a4f5097bb8f4843f | 12,752 |
def get_area(root):
"""Extracts the ash cloud total area
Values returned are in this order"
1. Total ash area
2. Total ash area unit"""
area = root.alert.total_area.attrib.get('value')
area_unit = root.alert.total_area.attrib.get('units')
return area, area_unit | ea5a908e4226359aeb962f66c4ed4691d8d93a1b | 12,754 |
def question_data_path(instance, filename):
"""Returns Questions data path."""
# question data will be uploaded to MEDIA_ROOT/question_<id>/<filename>
return 'question_{0}/{1}'.format(instance.title.replace(" ", "_"),
filename)
# return 'question_{0}/{1}'.format(instance.id, filename) | dc268bb4e3ff0d00ac3bb8ba8299ce0629951487 | 12,757 |
def _compscale(data):
"""
Automatically computes a scaling for the wavefunctions in the plot.
Args:
data (dict): The data neccesarry for computing the scale factor. Needs
to contain 'wfuncs' and 'energies'.
Returns:
scale (float): The computed scale.
"""
wfuncs = data['wfuncs'].T
energies = data['energies']
scale = 1e6 # choose an arbitray large number
for index in range(len(energies) - 1):
new_scale = (energies[index + 1] - energies[index]) / (
abs(min(wfuncs[index + 1])) + max(wfuncs[index]))
if new_scale < scale:
scale = new_scale
return scale | 0c33313c86c38568a1713de28e5f5b44b2b0207c | 12,758 |
from functools import reduce
def equal(list_):
"""
Returns True iff all the elements in a list are equal.
>>> equal([1,1,1])
True
"""
return reduce(
lambda a, x: a and (x[0] == x[1]),
zip(list_[1:], list_[:-1]),
True,
) | 65b8a9b5652ecd6b3cc9709dd7e56b4e1258caf4 | 12,760 |
def stocking_event_dict(db):
"""return a dictionary representing a complete, valid upload event.
This dictionary is used directly to represent a stocking event, or
is modified to verify that invalid data is handled appropriately.
"""
event_dict = {
"stock_id": None,
"lake": "HU",
"state_prov": "ON",
"year": 2015,
"month": 4,
"day": 20,
"site": "Barcelona",
"st_site": None,
"latitude": 44.5,
"longitude": -81.5,
"grid": "214",
"stat_dist": "NC2",
"species": "LAT",
"strain": "SLW",
"no_stocked": 18149,
"year_class": 2014,
"stage": "y",
"agemonth": 18,
"mark": "ADCWT",
"mark_eff": 99.5,
"tag_no": 640599,
"tag_ret": 99,
"length": 107.44,
"weight": 563.8153159,
"condition": 1,
"lot_code": "LAT-SLW-13",
"stock_meth": "b",
"agency": "MNRF",
"notes": "FIS ID = 73699",
# new
"hatchery": "CFCS",
"agency_stock_id": "P1234",
}
return event_dict | bed85f03438700754d52a0d858d7a41ee5079406 | 12,762 |
async def consume_aiter(iterable):
"""consume an async iterable to a list"""
result = []
async for item in iterable:
result.append(item)
return result | 897c8e9380f9c631f2dd8721884ec1ccbe462d48 | 12,769 |
import ipaddress
def validate_ip(ip):
"""
Checks if an IP address is valid for lookup.
Will return False if an IP address is reserved or invalid.
Resource: https://en.wikipedia.org/wiki/Reserved_IP_addresses
"""
try:
return not ipaddress.ip_address(ip).is_private
except ValueError:
return False | 5d10a41e6bc6d645cbef24e8e4128baaf67aa997 | 12,772 |
def add_links(self, value):
"""
This creates a Link header from the links
Parameters
----------
self : lib.schema.riak.objects.Link
The Link schema object
value : dict
The headers of the request to add the links to
"""
links = getattr(self, 'links', [])
if links:
value['Link'] = ', '.join(
link._as_dict()['location'] for link in links)
return value | 3d507ce928b227399ca325d5a55cab6b5ae07791 | 12,777 |
import json
def getUrnJson(data):
"""Returns URN to entity in JSON data"""
decodedJson = json.loads(data)
return decodedJson["urn:lri:property_type:id"] | af1761acb9322f295af3500cc4ecc519da16d7b1 | 12,781 |
def type_to_str(_type : type | tuple, sep : str =" or "):
"""
Converts type or tuple of types to string
e. g. <class 'bin_types.functions.Function'> -> function
For tuples will separate types with argument sep, standard sep is " or "
"""
if isinstance(_type, tuple):
types = []
for i in _type:
types.append(type_to_str(i))
return sep.join(types)
if _type is None:
return "none"
res = str(_type)
main_part = str(_type).find("'")+1
end_main_part = str(_type).rfind("'")
res = res[main_part:end_main_part]
res = res.split(".")[-1] # removes modules names
return res.lower() | 04589e24aef9db1d302b8d4d439d7d5e1ba70e49 | 12,782 |
def Imu_I0c1c2c3c4(mu, c):
"""
I(mu, c) where c = (I0, c1, c2, c3, c4)
"""
return c[0]*(1-c[1]*(1-mu**0.5)-c[2]*(1-mu)-c[3]*(1-mu**1.5)-c[4]*(1-mu**2.)) | 6553deaff09f4a3e00364b271095b5e80472b3a1 | 12,789 |
def isinstance_qutip_qobj(obj):
"""Check if the object is a qutip Qobj.
Args:
obj (any): Any object for testing.
Returns:
Bool: True if obj is qutip Qobj
"""
if (
type(obj).__name__ == "Qobj"
and hasattr(obj, "_data")
and type(obj._data).__name__ == "fast_csr_matrix"
):
return True
return False | 3c140e012d0df97852e84c50a37e6464e107fe2e | 12,790 |
def get_color_specifier(basecolor, number):
"""Build an OpenGL color array for the number of specified vertices."""
color = [float(x) for x in basecolor]
if len(color) == 3:
return ("c3d", color * int(number))
elif len(color) == 4:
return ("c4d", color * int(number)) | b7c14272aa393c66fdedc109b90f9c8fce6118b0 | 12,791 |
def _unlParseNodePart(nodePart):
"""
Parse the Node part of a UNL
Arguments:
nodePart: The node part of a UNL
Returns:
unlList: List of node part parameters
in root to position order.
"""
if not nodePart:
if nodePart is None:
return None
else:
return ['']
return nodePart.split('-->') | 443c7f67b5deae47448bf93ff874acfb77cb83c3 | 12,796 |
def calc_raid_partition_sectors(psize, start):
"""Calculates end sector and converts start and end sectors including
the unit of measure, compatible with parted.
:param psize: size of the raid partition
:param start: start sector of the raid partion in integer format
:return: start and end sector in parted compatible format, end sector
as integer
"""
if isinstance(start, int):
start_str = '%dGiB' % start
else:
start_str = start
if psize == -1:
end_str = '-1'
end = '-1'
else:
if isinstance(start, int):
end = start + psize
else:
# First partition case, start is sth like 2048s
end = psize
end_str = '%dGiB' % end
return start_str, end_str, end | a96e442d5915a108fbbf18838e2c4a311677eced | 12,799 |
def chunks(sentences, number_of_sentences):
"""
Split a list into N sized chunks.
"""
number_of_sentences = max(1, number_of_sentences)
return [sentences[i:i+number_of_sentences]
for i in range(0, len(sentences), number_of_sentences)] | a11c06c60e2230b611fd669a1342e17970e27ba5 | 12,800 |
import torch
def pos_def(ws, alpha=0.001, eps=1e-20):
"""Diagonal modification.
This method takes a complex Hermitian matrix represented by its upper
triangular part and adds the value of its trace multiplied by alpha
to the real part of its diagonal. The output will have the format:
(*,2,C+P)
Arguments
---------
ws : tensor
An input matrix. The tensor must have the following format:
(*,2,C+P)
alpha : float
A coefficient to multiply the trace. The default value is 0.001.
eps : float
A small value to increase the real part of the diagonal. The
default value is 1e-20.
"""
# Extracting data
D = ws.dim()
P = ws.shape[D - 1]
C = int(round(((1 + 8 * P) ** 0.5 - 1) / 2))
# Finding the indices of the diagonal
ids_triu = torch.triu_indices(C, C)
ids_diag = torch.eq(ids_triu[0, :], ids_triu[1, :])
# Computing the trace
trace = torch.sum(ws[..., 0, ids_diag], D - 2)
trace = trace.view(trace.shape + (1,))
trace = trace.repeat((1,) * (D - 2) + (C,))
# Adding the trace multiplied by alpha to the diagonal
ws_pf = ws.clone()
ws_pf[..., 0, ids_diag] += alpha * trace + eps
return ws_pf | f18cc9087d8ad0cef859b57d524b453ad11dd429 | 12,801 |
def dot_s(inputa,inputb):
"""Dot product for space vectors"""
return inputa[:,0]*inputb[:,0] + inputa[:,1]*inputb[:,1] + inputa[:,2]*inputb[:,2] | 7991192fa07b953cd2e8e3d5439769eebf0e1608 | 12,803 |
import pickle
def pickle_serialize(data):
"""
Serialize the data into bytes using pickle
Args:
data: a value
Returns:
Returns a bytes object serialized with pickle data.
"""
return pickle.dumps(data) | 9c8809ab7bbd0375e9d94d6baae95e26166e6c56 | 12,805 |
def strip_cstring(data: bytes) -> str:
"""Strip strings to the first null, and convert to ascii.
The CmdSeq files appear to often have junk data in the unused
sections after the null byte, where C code doesn't touch.
"""
if b'\0' in data:
return data[:data.index(b'\0')].decode('ascii')
else:
return data.decode('ascii') | c315e84debe7eef239afd4c856d45f4d2a776af2 | 12,810 |
def getTitles(db):
"""
Gets all the books titles in the whole database
:param db: database object
:return: sorted books titles
"""
data = []
for book in db.find('books'):
data.append(book['Title'])
return sorted(data) | f63d2138cef4d2ad51767ad62abacce5169bb3a2 | 12,813 |
def give_coordinates(data):
"""
Get ground-truth coordinates (X,Y,Z, room label) where the measurement was
taken, given the JSOn structure as an input.
"""
message = {}
message['true_coordinate_x'] = data['raw_measurement'][1]['receiver_location']['coordinate_x']
message['true_coordinate_y'] = data['raw_measurement'][1]['receiver_location']['coordinate_y']
try:
message['true_coordinate_z'] = data['raw_measurement'][1]['receiver_location']['coordinate_z']
except:
pass
try:
message['true_room'] = data['raw_measurement'][1]['receiver_location']['room_label']
except:
pass
return message | d412afbe08d4b1660ab9a12d1e567e4c4e4258fc | 12,816 |
def orders_by_dow(data_frame):
""" Gives orders_count by day of week.
:param data_frame: DataFrame containing orders data.
:return: DataFrame of order_ids count by day of week.
"""
grouped = data_frame.groupby(['order_dow'], as_index=False)
# count by column: 'order_id'
count = grouped.agg({'order_id': 'count'}).rename(
columns={'order_id': 'order_id_count'})
count['week_day'] = ['Saturday', 'Sunday', 'Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday']
return count | bfca97ced614fb8c309f8edc482fc2136914759b | 12,818 |
def is_user_logged(app):
"""Check for auth_tkt cookies beeing set to see if user is logged in."""
cookies = app.cookies
if 'auth_tkt' in cookies and cookies['auth_tkt']:
return True
return False | 67e670fd70787b35bc9b8d9a724512bfc4e7bac8 | 12,819 |
import re
def mqtt_wildcard(topic, wildcard):
"""Returns True if topic matches the wildcard string.
"""
regex = wildcard.replace('.', r'\.').replace('#', '.*').replace('+', '[^/]*')
if re.fullmatch(regex, topic):
return True
return False | fd7a3a5e8af1e6172decd62f2ba8294dfe07124c | 12,824 |
def distinct_brightness(dictionary):
"""Given the brightness dictionary returns the dictionary that has
no items with the same brightness."""
distinct, unique_values = {}, set()
for char, brightness in dictionary.items():
if brightness not in unique_values:
distinct[char] = brightness
unique_values.add(brightness)
return distinct | 7f7bb5dba9bab113e15cc4f90ddd4dfda7bb5f01 | 12,826 |
import torch
def norm(x):
"""
Normalize a tensor to a tensor with unit norm (treating first dim as batch dim)
:param x:
:return:
"""
b = x.size()[0]
n = torch.norm(x.view(b, -1), p=2, dim=1)
while len(n.size()) < len(x.size()):
n = n.unsqueeze(1)
n.expand_as(x)
return x/n | b40ba939c80db85e2ac8377b21ea7a17589b1c0f | 12,828 |
def get_unobs_nd_names(gname):
"""
For a graph named gname, this method returns a list of the names of its
unobserved nodes (i.e., either [], or ["U"] or ["U1", "U2"])
Parameters
----------
gname : str
Returns
-------
list[str]
"""
if gname in ["G2", "G3", "G5", "G6", "G10", "G11u", "G15", "G16"]:
li = ["U"]
elif gname in ["G7", "G7up"]:
li = ["U1", "U2"]
else:
li = []
return li | 3450293f464b1e7cc7ab343888a606bd96d0f094 | 12,830 |
from typing import Counter
def getRepeatedList(mapping_argmat, score_mat_size):
"""
Count the numbers in the mapping dictionary and create lists that contain
repeated indices to be used for creating the repeated affinity matrix for
fusing the affinity values.
"""
count_dict = dict(Counter(mapping_argmat))
repeat_list = []
for k in range(score_mat_size):
if k in count_dict:
repeat_list.append(count_dict[k])
else:
repeat_list.append(0)
return repeat_list | fa2449379bf8bf2051c2492d56de11c2ee0191e4 | 12,837 |
def _get_text_alignment(point1, point2):
"""Get the horizontal and vertical text alignment keywords for text placed at the end of a line segment from point1 to point2
args:
point1 - x,y pair
point2 - x,y pair
returns:
ha - horizontal alignment string
va - vertical alignment string"""
x1, x2, y1, y2 = point1[0], point2[0], point1[1], point2[1]
if(x1 < x2):
ha = 'left'
else:
ha = 'right'
if(y1 < y2):
va = 'bottom'
else:
va = 'top'
return(ha, va) | 317860030bf86750207bc891c236ad2618c686b1 | 12,839 |
def normalize_rectangle(rect):
"""Normalizes a rectangle so that it is at the origin and 1.0 units long on its longest axis.
Input should be of the format (x0, y0, x1, y1).
(x0, y0) and (x1, y1) define the lower left and upper right corners
of the rectangle, respectively."""
assert len(rect) == 4, 'Rectangles must contain 4 coordinates'
x0, y0, x1, y1 = rect
assert x0 < x1, 'Invalid X coordinates'
assert y0 < y1, 'Invalid Y coordinates'
dx = x1 - x0
dy = y1 - y0
if dx > dy:
scaled = float(dx) / dy
upper_x, upper_y = 1.0, scaled
else:
scaled = float(dx) / dy
upper_x, upper_y = scaled, 1.0
assert 0 < upper_x <= 1.0, 'Calculated upper X coordinate invalid'
assert 0 < upper_y <= 1.0, 'Calculated upper Y coordinate invalid'
return (0, 0, upper_x, upper_y) | b1a011948adb52bb6dea068116ab3a564ab2a1f8 | 12,840 |
import inspect
import warnings
def valid_func_args(func, *args):
"""
Helper function to test that a function's parameters match the desired
signature, if not then issue a deprecation warning.
"""
keys = inspect.signature(func).parameters.keys()
if set(args) == set(keys):
return True
label = getattr(func, '__name__', str(func))
msg = (
f'{label}({", ".join(keys)}) is deprecated, please override '
f'with {label}({", ".join(args)})'
)
warnings.warn(msg, DeprecationWarning)
return False | 4872817033ea55881442e69711b620b2853407f1 | 12,843 |
import shutil
def binary_available() -> bool:
"""Returns True if the GitHub CLI binary (gh) is
availabile in $PATH, otherwise returns False.
"""
return shutil.which("gh") is not None | e959757ccce6d162b225fd6ef986a7e248c606fa | 12,845 |
def get_file_date_part(now, hour) -> str:
""" Construct the part of the filename that contains the model run date
"""
if now.hour < hour:
# if now (e.g. 10h00) is less than model run (e.g. 12), it means we have to look for yesterdays
# model run.
day = now.day - 1
else:
day = now.day
date = '{year}{month:02d}{day:02d}'.format(
year=now.year, month=now.month, day=day)
return date | 42c2beddccba755f66061364463f8ad759d3c020 | 12,851 |
from pathlib import Path
import tempfile
def get_basetemp() -> Path:
"""Return base temporary directory for tests artifacts."""
tempdir = Path(tempfile.gettempdir()) / "cardano-node-tests"
tempdir.mkdir(mode=0o700, exist_ok=True)
return tempdir | e34ffc5cae1373977f1b46ab4b68106e1bef3313 | 12,852 |
def mutate_string(string, pos, change_to):
"""
Fastest way I've found to mutate a string
@ 736 ns
>>> mutate_string('anthony', 0, 'A')
'Anthony'
:param string:
:param pos:
:param change_to:
:return:
"""
string_array = list(string)
string_array[pos] = change_to
return ''.join(string_array) | c6119076411b57f9ded2e899d40b6b82bb5f7836 | 12,855 |
def with_last_degree(template_layers_config, degree):
"""
Change the degree of the last -- or actually penultimate -- layer in a
layered micro-service application, while keeping the average service time
for a user request constant.
"""
assert len(template_layers_config) >= 2
layers_config = [
layer_config for
layer_config in template_layers_config]
layers_config[-1] = \
layers_config[-1]._replace(average_work=layers_config[-1].average_work/degree)
layers_config[-2] = \
layers_config[-2]._replace(degree=degree)
return layers_config | f09bec9e27586349c679a66070bc4bac0dcba5d1 | 12,859 |
def GetErrorOutput(error, new_error=False):
"""Get a output line for an error in regular format."""
line = ''
if error.token:
line = 'Line %d, ' % error.token.line_number
code = 'E:%04d' % error.code
error_message = error.message
if new_error:
error_message = 'New Error ' + error_message
return '%s%s: %s' % (line, code, error.message) | 4661c74fcef9f13c0aad3d74e827d9eea20f86ef | 12,861 |
def deunicode(s):
"""Returns a UTF-8 compatible string, ignoring any characters that will not convert."""
if not s:
return s
return str(s.decode('utf-8', 'ignore').encode('utf-8')) | baaf99acec746c266059c07e03a1ee4a7e76f46a | 12,862 |
def constructUniformAllelicDistribution(numalleles):
"""Constructs a uniform distribution of N alleles in the form of a frequency list.
Args:
numalleles (int): Number of alleles present in the initial population.
Returns:
(list): Array of floats, giving the initial frequency of N alleles.
"""
divisor = 100.0 / numalleles
frac = divisor / 100.0
distribution = [frac] * numalleles
return distribution | 45e834d2129586cb6ff182e1a8fe6ecb1ae582ae | 12,864 |
def id_record(rec):
"""Converts a record's id to a blank node id and returns the record."""
rec['id'] = '_:f%s' % rec['id']
return rec | 1ee5a9e9600299b56543c92a77cadb1826bb9bb7 | 12,868 |
def obj_ext(value):
"""
Returns extention of an object.
e.g.
For an object with name 'somecode.py' it returns 'py'.
"""
return value.split('.')[-1] | 7ef6f1009145a0acc543130c41d2082a14412b6d | 12,869 |
import torch
def binary_hyperplane_margin(X, Y, w, b, weight=1.0):
""" A potential function based on margin separation according to a (given
and fixed) hyperplane:
v(x,y) = max(0, 1 - y(x'w - b) ), so that V(ρ) = ∫ max(0, y(x'w - b) ) dρ(x,y)
Returns 0 if all points are at least 1 away from margin.
Note that y is expected to be {0,1}
Needs separation hyperplane be determined by (w, b) parameters.
"""
Y_hat = 2*Y-1 # To map Y to {-1, 1}, required by the SVM-type margin obj we use
margin = torch.relu(1-Y_hat*(torch.matmul(X, w) - b))
return weight*margin.mean() | 0f038dc2ae9def9823b3f440a087ede52dcee717 | 12,870 |
def get_homologs(homologs_fname):
"""Extract the list of homolog structures from a list file
:param homologs_fname: file name with the list of homologs
:type homologs_fname: str
:returns homologs_list containing the pdb codes of the homolog structures in the input file
:rtype tuple
"""
homologs_list = []
with open(homologs_fname, 'r') as fhandle:
for line in fhandle:
homologs_list.append(line.rstrip()[:-2].lower())
return tuple(homologs_list) | 1db108f30a3ef274cba918c5e1c056c6797a5bca | 12,874 |
def _GetFields(trace=None):
"""Returns the field names to include in the help text for a component."""
del trace # Unused.
return [
'type_name',
'string_form',
'file',
'line',
'docstring',
'init_docstring',
'class_docstring',
'call_docstring',
'length',
'usage',
] | acf8a1c62853f7648082689002b3ced2689892fe | 12,877 |
def get_valid_values(value, min_value, max_value):
"""Assumes value a string, min_value and max_value integers.
If value is in the range returns True.
Otherwise returns False."""
valid_values = [i for i in range(min_value, max_value + 1)]
try:
value = int(value)
except ValueError:
return False
if value in valid_values:
return True
return False | 4385f8328cfbe6497f7a723be37e54f0a86f9fbf | 12,883 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.