content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def phedex_url(api=''): """Return Phedex URL for given API name""" return 'https://cmsweb.cern.ch/phedex/datasvc/json/prod/%s' % api
a642cd138d9be4945dcbd924c7b5c9892de36baa
706,490
import torch def format_attn(attention_tuples: tuple): """ Input: N tuples (N = layer num) Each tuple item is Tensor of shape Batch x num heads x from x to Output: Tensor of shape layer x from x to (averaged over heads) """ # Combine tuples into large Tensor, then avg return torch.cat([l for l in attention_tuples], dim=0).mean(dim=1)
8d25d081992099835a21cdbefb406f378350f983
706,493
def _sp_sleep_for(t: int) -> str: """Return the subprocess cmd for sleeping for `t` seconds.""" return 'python -c "import time; time.sleep({})"'.format(t)
20ac8022a2438ceb62123f534ba5911b7c560502
706,497
def is_serial_increased(old, new): """ Return true if serial number was increased using RFC 1982 logic. """ old, new = (int(n) for n in [old, new]) diff = (new - old) % 2**32 return 0 < diff < (2**31 - 1)
44a33a1c7e8caebe3b74284002c7c4be6ac29b40
706,499
import decimal def split_amount(amount, splits, places=2): """Return list of ``splits`` amounts where sum of items equals ``amount``. >>> from decimal import Decimal >>> split_amount(Decimal('12'), 1) Decimal('12.00') >>> split_amount(Decimal('12'), 2) [Decimal('6.00'), Decimal('6.00')] Amounts have a max of ``places`` decimal places. Last amount in the list may not be the same as others (will always be lower than or equal to others). >>> split_amount(Decimal('100'), 3) [Decimal('33,34'), Decimal('33,34'), Decimal('33,32')] >>> split_amount(Decimal('100'), 3, 4) [Decimal('33,3334'), Decimal('33,3334'), Decimal('33,3332')] >>> split_amount(Decimal('12'), 7) # Doctest: +ELLIPSIS [Decimal('1.72'), ..., Decimal('1.72'), ..., Decimal('1.68')] >>> split_amount(Decimal('12'), 17) # Doctest: +ELLIPSIS [Decimal('0.71'), ..., Decimal('0.71'), Decimal('0.64')] """ one = decimal.Decimal(10) ** -places amount = amount.quantize(one) with decimal.localcontext() as decimal_context: decimal_context.rounding = decimal.ROUND_UP upper_split = (amount / splits).quantize(one) splitted_amounts = [upper_split] * (splits - 1) lower_split = amount - sum(splitted_amounts) splitted_amounts.append(lower_split) return splitted_amounts
8c8a17ed9bbcab194550ea78a9b414f51ca5610d
706,500
def format_alleles(variant): """Gets a string representation of the variant's alleles. Args: variant: nucleus.genomics.v1.Variant. Returns: A string ref_bases/alt1,alt2 etc. """ return '{}/{}'.format(variant.reference_bases, ','.join( variant.alternate_bases))
775fe3e112ff0b7e73780600e0621a8695fa5ad0
706,502
def parse_dict(input_data): """Return a rules dict of the format: { 'light red': [(1, 'bright white'), (2, 'muted yellow')], 'dark orange': [(3, bright white), (4, muted yellow)], 'faded blue': [(0, 'bags')] } """ bags = dict() for line in input_data.split('\n'): outer, inner = line.strip().split(' bags contain ') inner = [i.split(' ') for i in inner.split(", ")] if 'no' in inner[0]: bags[outer] = [(0, 'bags')] else: bags[outer] = [(int(i[0]), ' '.join(i[1:3])) for i in inner] return bags
a1aad66a16e4754c35c9b3518d5641096e393530
706,503
def map(v, ds, de, ts, te): """\ Map the value v, in range [ds, de] to the corresponding value in range [ts, te] """ d1 = de - ds d2 = te - ts v2 = v - ds r = v2 / d1 return ts + d2 * r
2c2ba49b2acc283ca25b07c10b7ad717ad6a280d
706,507
def splitBinNum(binNum): """Split an alternate block number into latitude and longitude parts. Args: binNum (int): Alternative block number Returns: :tuple Tuple: 1. (int) Latitude portion of the alternate block number. Example: ``614123`` => ``614`` 2. (int) Longitude portion of the alternate block number. Example: ``614123`` => ``123`` """ latBin = int(binNum / 1000) longBin = binNum - (latBin * 1000) return (latBin, longBin)
da9b9cc67d592e73da842f4b686c0d16985f3457
706,514
def split_in_pairs(s, padding = "0"): """ Takes a string and splits into an iterable of strings of two characters each. Made to break up a hex string into octets, so default is to pad an odd length string with a 0 in front. An alternative character may be specified as the second argument. """ if not isinstance(padding, str) or len(padding) != 1: raise TypeError("Padding must be a single character.") s = padding + s if len(s) % 2 else s v = iter(s) return (a+b for a,b in zip(v,v))
8807448bb8125c80fa78ba32f887a54ba9bab1dd
706,515
def has_global(node, name): """ check whether node has name in its globals list """ return hasattr(node, "globals") and name in node.globals
7a2ef301cb25cba242d8544e2c191a537f63bf19
706,516
from typing import Iterable def negate_objective(objective): """Take the negative of the given objective (converts a gain into a loss and vice versa).""" if isinstance(objective, Iterable): return (list)((map)(negate_objective, objective)) else: return -objective
e24877d00b7c84e04c0cb38b5facdba85694890f
706,517
def parse_plot_set(plot_set_string): """ Given one of the string arguments to the --plot-sets option, parse out a data structure representing which conditions ought to be compared against each other, and what those comparison plots/tables should be called. The syntax of a plot set is [title:]condition[,condition[,condition...]]. The first condition is the comparison baseline, when applicable. Returns a tuple of a plot set title, or None if unspecified, and a list of condition names. """ colon_pos = plot_set_string.find(':') if colon_pos != -1: # Pull out the title before the colon title = plot_set_string[0:colon_pos] # And the rest of the specifier after it plot_set_string = plot_set_string[colon_pos + 1:] else: # No title given title = None # Return the title and condition list tuple return (title, plot_set_string.split(','))
1df83681aa3110dfd9302bd7918f15dfbfa497ab
706,518
def prior_min_field(field_name, field_value): """ Creates prior min field with the :param field_name: prior name (field name initial) :param field_value: field initial properties :return: name of the min field, updated field properties """ name = field_name value = field_value.copy() value.update({ 'label': 'Min', 'required': False, }) return name + '_min', value
9f331ee58e699318e678d881c0028486b746c05c
706,521
def mean_zero_unit_variance(arr, mean_vector=None, std_vector=None, samples_in='row'): """ Normalize input data to have zero mean and unit variance. Return the normalized data, the mean, and the calculated standard deviation which was used to normalize the data [normalized, meanvec, stddev] = mean_zero_unit_variance(data) or [normalized, meanvec, stddev] = mean_zero(data, mean_vector=provided_mean_vector) etc. """ samplesIn = 1 if samples_in == 'col' else 0 dimsIn = int(not samplesIn) nSamples = arr.shape[samplesIn] nDims = arr.shape[dimsIn] theshape = [1, 1] theshape[dimsIn] = nDims if not mean_vector: mean_vector = arr.mean(axis=samplesIn).reshape(theshape) if not std_vector: std_vector = arr.std(axis=samplesIn).reshape(theshape) # If you have a row with absolutely no information, you will divide by zero. Hence... std_vector[std_vector < 1e-6] = 1 norma = (arr - mean_vector) / std_vector return norma, mean_vector, std_vector
38a1ca262362b3f04aed06f3f0d21836eca8d5ad
706,523
def renorm_flux_lightcurve(flux, fluxerr, mu): """ Normalise flux light curves with distance modulus.""" d = 10 ** (mu/5 + 1) dsquared = d**2 norm = 1e18 # print('d**2', dsquared/norm) fluxout = flux * dsquared / norm fluxerrout = fluxerr * dsquared / norm return fluxout, fluxerrout
97f2606d54b106d2051983dfc29d942112e7a1e3
706,525
def is_valid_sudoku(board): """ Checks if an input sudoku board is valid Algorithm: For all non-empty squares on board, if value at that square is a number, check if the that value exists in that square's row, column, and minor square. If it is, return False. """ cols = [set() for _ in range(9)] squares = [[set() for _ in range(3)] for x in range(3)] for row in range(9): rows = set() for col in range(9): if board[row][col] == ".": continue # Check row if board[row][col] in rows: return False else: rows.add(board[row][col]) # Check col if board[row][col] in cols[col]: return False else: cols[col].add(board[row][col]) # Check square if board[row][col] in squares[row // 3][col // 3]: return False else: squares[row // 3][col // 3].add(board[row][col]) return True
001a02a47acbaa192215d985f3d743c42a9fb42b
706,526
def no_transform(image): """Pass through the original image without transformation. Returns a tuple with None to maintain compatability with processes that evaluate the transform. """ return (image, None)
25b45a5c77d3c2864ebc7a046e0f47b2fafb067b
706,528
def NodeToString(xml_node): """Returns an XML string. Args: xml_node: xml.dom.Node object Returns: String containing XML """ return xml_node.toxml()
043072bbb40f33947febedf967679e3e39931834
706,534
def difference(data, interval): """ difference dataset parameters: data: dataset to be differenced interval: the interval between the two elements to be differenced. return: dataset: with the length = len(data) - interval """ return [data[i] - data[i - interval] for i in range(interval, len(data))]
611f4ad36935000ae7dc16f76aef7cbb494b36ac
706,535
def get_mongo_database(connection, database_name): """ Access the database Args: connection (MongoClient): Mongo connection to the database database_name (str): database to be accessed Returns: Database: the Database object """ try: return connection.get_database(database_name) except: return None
9299cbe0b697dec2e548fb5e26e2013214007575
706,538
def find_u_from_v(matrix, v, singular_value): """ Finds the u column vector of the U matrix in the SVD UΣV^T. Parameters ---------- matrix : numpy.ndarray Matrix for which the SVD is calculated v : numpy.ndarray A column vector of V matrix, it is the eigenvector of the Gramian of `matrix`. singular_value : float A singular value of `matrix` corresponding to the `v` vector. Returns ------- numpy.ndarray u column vector of the U matrix in the SVD. """ return matrix @ v / singular_value
ef2871c86bf7ddc4c42446a54230068282ad85df
706,539
from typing import List def double(items: List[str]) -> List[str]: """ Returns a new list that is the input list, repeated twice. """ return items + items
9e4b6b9e84a80a9f5cbd512ca820274bb8cad924
706,540
def tolist(obj): """ Convert given `obj` to list. If `obj` is not a list, return `[obj]`, else return `obj` itself. """ if not isinstance(obj, list): return [obj] return obj
f511f4ebb86977b2db8646e692abc9840c2ae2d1
706,547
def khinalug_input_normal(field, text): """ Prepare a string from one of the query fields for subsequent processing: replace common shortcuts with valid Khinalug characters. """ if field not in ('wf', 'lex', 'lex2', 'trans_ru', 'trans_ru2'): return text text = text.replace('c1_', 'č̄') text = text.replace('c1\'', 'č̣') text = text.replace('7', 'ˁ') text = text.replace('g1', 'ǧ') text = text.replace('s1', 'š') text = text.replace('z1', 'ž') text = text.replace('c1', 'č') text = text.replace('j1', 'ǯ') text = text.replace('a1', 'ä') text = text.replace('u1', 'ü') text = text.replace('o1', 'ö') text = text.replace('i1', 'ı') text = text.replace('k_', 'k̄') text = text.replace('t_', 't̄') text = text.replace('q_', 'q̄') text = text.replace('c_', 'c̄') text = text.replace('c\'', 'c̣') text = text.replace('k\'', 'ḳ') text = text.replace('q\'', 'q̇') text = text.replace('x\'', 'x̣') text = text.replace('t\'', 'ṭ') text = text.replace('h\'', 'ḥ') return text
b9b9413ae461b6a03aa8c0db4396658dbe242c91
706,549
def receiver(signal, **kwargs): """ A decorator for connecting receivers to signals. Used by passing in the signal and keyword arguments to connect:: @receiver(signal_object, sender=sender) def signal_receiver(sender, **kwargs): ... """ def _decorator(func): signal.connect(func, **kwargs) return func return _decorator
dbbde0855b2a657adaff9fa688aa158053e46579
706,551
def unnormalise_x_given_lims(x_in, lims): """ Scales the input x (assumed to be between [-1, 1] for each dim) to the lims of the problem """ # assert len(x_in) == len(lims) r = lims[:, 1] - lims[:, 0] x_orig = r * (x_in + 1) / 2 + lims[:, 0] return x_orig
1d4cd35f45ab8594e297eb64e152a481c01905cd
706,553
def file2bytes(filename: str) -> bytes: """ Takes a filename and returns a byte string with the content of the file. """ with open(filename, 'rb') as f: data = f.read() return data
f917a265c17895c917c3c340041586bef0c34dac
706,558
def mock_dataset(mocker, mock_mart, mart_datasets_response): """Returns an example dataset, built using a cached response.""" mocker.patch.object(mock_mart, 'get', return_value=mart_datasets_response) return mock_mart.datasets['mmusculus_gene_ensembl']
bb9a8b828f0ac5bfa59b3faee0f9bcc22c7d954e
706,559
def info2lists(info, in_place=False): """ Return info with: 1) `packages` dict replaced by a 'packages' list with indexes removed 2) `releases` dict replaced by a 'releases' list with indexes removed info2list(info2dicts(info)) == info """ if 'packages' not in info and 'releases' not in info: return info if in_place: info_lists = info else: info_lists = info.copy() packages = info.get('packages') if packages: info_lists['packages'] = list(packages.values()) releases = info.get('releases') if releases: info_lists['releases'] = list(releases.values()) return info_lists
313fda757d386332e16a0a91bb4408fe3cb8c070
706,560
def is_chitoi(tiles): """ Returns True if the hand satisfies chitoitsu. """ unique_tiles = set(tiles) return (len(unique_tiles) == 7 and all([tiles.count(tile) == 2 for tile in unique_tiles]))
c04149174bb779cd07616d4f419fc86531ab95dd
706,561
def flop_gemm(n, k): """# of + and * for matmat of nxn matrix with nxk matrix, with accumulation into the output.""" return 2*n**2*k
b217b725e2ac27a47bc717789458fd20b4aa56c1
706,564
def index() -> str: """Rest endpoint to test whether the server is correctly working Returns: str: The default message string """ return 'DeChainy server greets you :D'
ce0caeb9994924f8d6ea10462db2be48bbc126d0
706,565
from typing import AnyStr from typing import List import json def load_json_samples(path: AnyStr) -> List[str]: """ Loads samples from a json file :param path: Path to the target file :return: List of samples """ with open(path, "r", encoding="utf-8") as file: samples = json.load(file) if isinstance(samples, list): return samples else: raise RuntimeError(f"File's content must be list-like")
b735e7265a31f6bc6d19381bfe9d0cbe26dcf170
706,566
import struct import lzma def decompress_lzma(data: bytes) -> bytes: """decompresses lzma-compressed data :param data: compressed data :type data: bytes :raises _lzma.LZMAError: Compressed data ended before the end-of-stream marker was reached :return: uncompressed data :rtype: bytes """ props, dict_size = struct.unpack("<BI", data[:5]) lc = props % 9 props = props // 9 pb = props // 5 lp = props % 5 dec = lzma.LZMADecompressor( format=lzma.FORMAT_RAW, filters=[ { "id": lzma.FILTER_LZMA1, "dict_size": dict_size, "lc": lc, "lp": lp, "pb": pb, } ], ) return dec.decompress(data[5:])
247c3d59d45f3f140d4f2c36a7500ff8a51e45b0
706,567
def get_case_number(caselist): """Get line number from file caselist.""" num = 0 with open(caselist, 'r') as casefile: for line in casefile: if line.strip().startswith('#') is False: num = num + 1 return num
b1366d8e4a0e2c08da5265502d2dd2d72bf95c19
706,568
def splitDataSet(dataSet, index, value): """ 划分数据集,取出index对应的值为value的数据 dataSet: 待划分的数据集 index: 划分数据集的特征 value: 需要返回的特征的值 """ retDataSet = [] for featVec in dataSet: if featVec[index] == value: reducedFeatVec = featVec[:index] reducedFeatVec.extend(featVec[index+1:]) retDataSet.append(reducedFeatVec) # 返回index列为value的数据集(去除index列) return retDataSet
814a54fe13d832e69d8df32af52d882d4a15c4ba
706,570
def in_skill_product_response(handler_input): """Get the In-skill product response from monetization service.""" """ # type: (HandlerInput) -> Union[InSkillProductsResponse, Error] """ locale = handler_input.request_envelope.request.locale ms = handler_input.service_client_factory.get_monetization_service() return ms.get_in_skill_products(locale)
9452ac1498ff0e6601df9fc419df0cfdd6b9171e
706,572
def stat_mtime(stat): """Returns the mtime field from the results returned by os.stat().""" return stat[8]
1f7fec9a54a97bb63141d63db706b2885913dadb
706,573
def calc_very_restricted_wage_distribution(df): """Compute per-period mean and std of wages for agents under two choice restrictions.""" return ( df.query("Policy == 'veryrestricted' and Choice == 'a' or Choice == 'b'") .groupby(["Period"])["Wage"] .describe()[["mean", "std"]] )
3ca8a2f0061e456a3158b4ee8a128a5a7439af3f
706,574
def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): """ Forward pass: prepare inputs and run the net forward. Take blobs: list of blobs to return in addition to output blobs. kwargs: Keys are input blob names and values are blob ndarrays. For formatting inputs for Caffe, see Net.preprocess(). If None, input is taken from data layers. start: optional name of layer at which to begin the forward pass end: optional name of layer at which to finish the forward pass (inclusive) Give outs: {blob name: blob ndarray} dict. """ if blobs is None: blobs = [] if start is not None: start_ind = list(self._layer_names).index(start) else: start_ind = 0 if end is not None: end_ind = list(self._layer_names).index(end) outputs = set([end] + blobs) else: end_ind = len(self.layers) - 1 outputs = set(self.outputs + blobs) if kwargs: if set(kwargs.keys()) != set(self.inputs): raise Exception('Input blob arguments do not match net inputs.') # Set input according to defined shapes and make arrays single and # C-contiguous as Caffe expects. for in_, blob in kwargs.items(): if blob.ndim != 4: raise Exception('{} blob is not 4-d'.format(in_)) if blob.shape[0] != self.blobs[in_].num: raise Exception('Input is not batch sized') self.blobs[in_].data[...] = blob self._forward(start_ind, end_ind) # Unpack blobs to extract return {out: self.blobs[out].data for out in outputs}
790baa0fc8529e3cad45bd8236060bad591ab4a4
706,577
from datetime import datetime def create_nav_btn(soup,date,text): """ Helper functions for month_calendar, generates a navigation button for calendar :param soup: BeautifulSoup parser of document :param date: Date to create nav button :param text: Text for button """ nav_th = soup.new_tag('th',attrs=[('colspan','2')]) nav_th['class'] = 'month' nav_a = soup.new_tag('a',href='/apps/orders/%s/%s' % (date.year, date.month)) nav_a.string = text if date > datetime.today(): nav_a['class'] = "btn btn-mini btn-info disabled" nav_a['href'] = '#' else: nav_a['class'] = "btn btn-mini btn-info" nav_th.insert(0,nav_a) return nav_th
6f49e5173980a9da01e4d92e2f5adfeb73a4a4d0
706,582
import re def parse_name(content): """ Finds the name of the man page. """ # Create regular expression name_regex = re.compile(r"^([\w\.-]*)") # Get name of manual page just_name = name_regex.search(content) name_str = "" if just_name is not None: name_str = just_name.group(1) return name_str
c3a1f32beb96d39d4490681bf90d54115597ffe5
706,584
def albanian_input_normal(field, text): """ Prepare a string from one of the query fields for subsequent processing: replace common shortcuts with valid Albanian characters. """ if field not in ('wf', 'lex', 'lex2', 'trans_ru', 'trans_ru2'): return text text = text.replace('ё', 'ë') text = text.replace('e:', 'ë') return text
6bd4e7a1e764feada04ae5e95465fb4d7cbb29fb
706,585
import re def extract_share_id_from_url(public_base_url: str) -> str: """ Extracts the Airtable share id from the provided URL. :param public_base_url: The URL where the share id must be extracted from. :raises ValueError: If the provided URL doesn't match the publicly shared Airtable URL. :return: The extracted share id. """ result = re.search(r"https:\/\/airtable.com\/shr(.*)$", public_base_url) if not result: raise ValueError( f"Please provide a valid shared Airtable URL (e.g. " f"https://airtable.com/shrxxxxxxxxxxxxxx)" ) return f"shr{result.group(1)}"
5aad99b5bf022a2b957f10fcb09793188051340c
706,586
def get_all_ann_index(self): """ Retrieves all annotation ids """ return list(self.ann_infos.keys())
4375c9dbc14bf50575c8a5e42ce0ae8749820dfb
706,589
def get_quoted_text(text): """Method used to get quoted text. If body/title text contains a quote, the first quote is considered as the text. :param text: The replyable text :return: The first quote in the text. If no quotes are found, then the entire text is returned """ lines = text.split('\n\n') for line in lines: if line.startswith('>'): return line[1:] return text
3ac1801edcaf16af45d118918cb548f41d9a08fb
706,591
def get_username_for_os(os): """Return username for a given os.""" usernames = {"alinux2": "ec2-user", "centos7": "centos", "ubuntu1804": "ubuntu", "ubuntu2004": "ubuntu"} return usernames.get(os)
579ebfa4e76b6660d28afcc010419f32d74aa98c
706,592
from typing import List def is_negative_spec(*specs: List[List[str]]) -> bool: """ Checks for negative values in a variable number of spec lists Each spec list can have multiple strings. Each string within each list will be searched for a '-' sign. """ for specset in specs: if specset: for spec in specset: if '-' in spec: return True return False
216e6db2e63a657ac95a31896b9b61329a10a3db
706,593
from datetime import datetime import json import hashlib def map_aircraft_to_record(aircrafts, message_now, device_id): """ Maps the `aircraft` entity to a BigQuery record and its unique id. Returns `(unique_ids, records)` """ def copy_data(aircraft): result = { 'hex': aircraft.get('hex'), 'squawk': aircraft.get('squawk'), 'flight': aircraft.get('flight'), 'lat': aircraft.get('lat'), 'lon': aircraft.get('lon'), 'nucp': aircraft.get('nucp'), 'seen_pos': aircraft.get('seen_pos'), 'altitude': aircraft.get('altitude'), 'vert_rate': aircraft.get('vert_rate'), 'track': aircraft.get('track'), 'speed': aircraft.get('speed'), 'messages': aircraft.get('messages'), 'seen': aircraft.get('seen'), 'rssi': aircraft.get('rssi'), 'device_id': device_id, 'timestamp': datetime.utcfromtimestamp(float(message_now)).isoformat() } result_json = json.dumps(result) result_hash = hashlib.sha512(result_json.encode('utf-8')).hexdigest() unique_id = f'{message_now}_{result_hash}' result['created_at'] = datetime.now().isoformat() return (unique_id, result) return zip( *map( copy_data, aircrafts ) )
d423b87e2018486de076cc94a719038c53c54602
706,596
def sub(xs, ys): """ Computes xs - ys, such that elements in xs that occur in ys are removed. @param xs: list @param ys: list @return: xs - ys """ return [x for x in xs if x not in ys]
8911bb2c79919cae88463a95521cf051828038e8
706,597
def get_colors(k): """ Return k colors in a list. We choose from 7 different colors. If k > 7 we choose colors more than once. """ base_colors = ['b', 'r', 'g', 'c', 'm', 'y', 'k'] colors = [] index = 1 for i in range(0, k): if index % (len(base_colors) + 1) == 0: index = 1 colors.append(base_colors[index - 1]) index += 1 return colors
6c4a38eb394254f57d8be9fca47e0b44f51f5f04
706,599
def ConvertToTypeEnum(type_enum, airflow_executor_type): """Converts airflow executor type string to enum. Args: type_enum: AirflowExecutorTypeValueValuesEnum, executor type enum value. airflow_executor_type: string, executor type string value. Returns: AirflowExecutorTypeValueValuesEnum: the executor type enum value. """ return type_enum(airflow_executor_type)
04162b04719031ba6b96d981a7ffe8a82691bc31
706,602
def is_member(musicians, musician_name): """Return true if named musician is in musician list; otherwise return false. Parameters: musicians (list): list of musicians and their instruments musician_name (str): musician name Returns: bool: True if match is made; otherwise False. """ i = 0 # counter while i < len(musicians): # guard against infinite loop musician = musicians[i].split(', ')[0].lower() if musician_name.lower() == musician: return True # preferable to break statement i += 1 # MUST INCREMENT return False
6ef5b9bbccb17d9b97a85e3af7789e059829184b
706,608
def process_domain_assoc(url, domain_map): """ Replace domain name with a more fitting tag for that domain. User defined. Mapping comes from provided config file Mapping in yml file is as follows: tag: - url to map to tag - ... A small example domain_assoc.yml is included """ if not domain_map: return url for key in domain_map: if url in domain_map[key]: return key return url
29c0f81a4959d97cd91f839cbe511eb46872b5ec
706,616
import random def shuffled(iterable): """Randomly shuffle a copy of iterable.""" items = list(iterable) random.shuffle(items) return items
cd554d4a31e042dc1d2b4c7b246528a5184d558e
706,617
def parse_discontinuous_phrase(phrase: str) -> str: """ Transform discontinuous phrase into a regular expression. Discontinuity is interpreted as taking place at any whitespace outside of terms grouped by parentheses. That is, the whitespace indicates that anything can be in between the left side and right side. Example 1: x1 (x2 (x3"x4")) becomes x1.+(x2 (x3|x4)) """ level = 0 parsed_phrase = "" for index, char in enumerate(phrase): if char == "(": level += 1 elif char == ")": level -= 1 elif char == " " and level == 0: char = ".+" parsed_phrase += char return parsed_phrase
58fe394a08931e7e79afc00b9bb0e8e9981f3c81
706,618
def getChildElementsListWithTagAttribValueMatch(parent, tag, attrib, value): """ This method takes a parent element as input and finds all the sub elements (children) containing specified tag and an attribute with the specified value. Returns a list of child elements. Arguments: parent = parent element tag = tag value of the sub-element(child) to be searched for. attrib = attribute name for the sub-element with above given tag should have. value = attribute value that the sub-element with above given tag, attribute should have. """ child_elements = parent.findall(".//%s[@%s='%s']" % (tag, attrib, value)) return child_elements
cae87e6548190ad0a675019b397eeb88289533ee
706,620
def recursive_dict_of_lists(d, helper=None, prev_key=None): """ Builds dictionary of lists by recursively traversing a JSON-like structure. Arguments: d (dict): JSON-like dictionary. prev_key (str): Prefix used to create dictionary keys like: prefix_key. Passed by recursive step, not intended to be used. helper (dict): In case d contains nested dictionaries, you can specify a helper dictionary with 'key' and 'value' keys to specify where to look for keys and values instead of recursive step. It helps with cases like: {'action': {'type': 'step', 'amount': 1}}, by passing {'key': 'type', 'value': 'amount'} as a helper you'd get {'action_step': [1]} as a result. """ d_o_l = {} if helper is not None and helper['key'] in d.keys() and helper['value'] in d.keys(): if prev_key is not None: key = f"{prev_key}_{helper['key']}" else: key = helper['key'] if key not in d_o_l.keys(): d_o_l[key] = [] d_o_l[key].append(d[helper['value']]) return d_o_l for k, v in d.items(): if isinstance(v, dict): d_o_l.update(recursive_dict_of_lists(v, helper=helper, prev_key=k)) else: if prev_key is not None: key = f'{prev_key}_{k}' else: key = k if key not in d_o_l.keys(): d_o_l[key] = [] if isinstance(v, list): d_o_l[key].extend(v) else: d_o_l[key].append(v) return d_o_l
c615582febbd043adae6788585d004aabf1ac7e3
706,623
def same_shape(shape1, shape2): """ Checks if two shapes are the same Parameters ---------- shape1 : tuple First shape shape2 : tuple Second shape Returns ------- flag : bool True if both shapes are the same (same length and dimensions) """ if len(shape1) != len(shape2): return False for i in range(len(shape1)): if shape1[i] != shape2[i]: return False return True
9452f7973e510532cee587f2bf49a146fb8cc46e
706,624
def is_extended_markdown(view): """True if the view contains 'Markdown Extended' syntax'ed text. """ return view.settings().get("syntax").endswith( "Markdown Extended.sublime-syntax")
5c870fd277910f6fa48f2b8ae0dfd304fdbddff0
706,626
def is_point_in_rect(point, rect): """Checks whether is coordinate point inside the rectangle or not. Rectangle is defined by bounding box. :type point: list :param point: testing coordinate point :type rect: list :param rect: bounding box :rtype: boolean :return: boolean check result """ x0, y0, x1, y1 = rect x, y = point if x0 <= x <= x1 and y0 <= y <= y1: return True return False
d0c7a64138899f4e50b42dc75ea6030616d4dfec
706,628
def convert_timestamp(ts): """Converts the timestamp to a format suitable for Billing. Examples of a good timestamp for startTime, endTime, and eventTime: '2016-05-20T00:00:00Z' Note the trailing 'Z'. Python does not add the 'Z' so we tack it on ourselves. """ return ts.isoformat() + 'Z'
6b8d19671cbeab69c398508fa942e36689802cdd
706,630
def boolean(input): """Convert the given input to a boolean value. Intelligently handles boolean and non-string values, returning as-is and passing to the bool builtin respectively. This process is case-insensitive. Acceptable values: True * yes * y * on * true * t * 1 False * no * n * off * false * f * 0 :param input: the value to convert to a boolean :type input: any :returns: converted boolean value :rtype: bool """ try: input = input.strip().lower() except AttributeError: return bool(input) if input in ('yes', 'y', 'on', 'true', 't', '1'): return True if input in ('no', 'n', 'off', 'false', 'f', '0'): return False raise ValueError("Unable to convert {0!r} to a boolean value.".format(input))
09c09206d5487bf02e3271403e2ba67358e1d148
706,634
def create_provisioned_product_name(account_name: str) -> str: """ Replaces all space characters in an Account Name with hyphens, also removes all trailing and leading whitespace """ return account_name.strip().replace(" ", "-")
743e7438f421d5d42c071d27d1b0fa2a816a9b4d
706,635
def release_branch_name(config): """ build expected release branch name from current config """ branch_name = "{0}{1}".format( config.gitflow_release_prefix(), config.package_version() ) return branch_name
0d97c515aca8412882c8b260405a63d20b4b0f63
706,636
def torch2numpy(data): """ Transfer data from the torch tensor (on CPU) to the numpy array (on CPU). """ return data.numpy()
c7ca4123743c4f054d809f0e307a4de079b0af10
706,637
def edges_to_adj_list(edges): """ Transforms a set of edges in an adjacency list (represented as a dictiornary) For UNDIRECTED graphs, i.e. if v2 in adj_list[v1], then v1 in adj_list[v2] INPUT: - edges : a set or list of edges OUTPUT: - adj_list: a dictionary with the vertices as keys, each with a set of adjacent vertices. """ adj_list = {} # store in dictionary for v1, v2 in edges: if v1 in adj_list: # edge already in it adj_list[v1].add(v2) else: adj_list[v1] = set([v2]) if v2 in adj_list: # edge already in it adj_list[v2].add(v1) else: adj_list[v2] = set([v1]) return adj_list
683f10e9a0a9b8a29d63b276b2e550ebe8287a05
706,638
def _hexsplit(string): """ Split a hex string into 8-bit/2-hex-character groupings separated by spaces""" return ' '.join([string[i:i+2] for i in range(0, len(string), 2)])
672e475edeaafaa08254845e620b0a771b294fa8
706,643
from typing import List def hello_world(cities: List[str] = ["Berlin", "Paris"]) -> bool: """ Hello world function. Arguments: - cities: List of cities in which 'hello world' is posted. Return: - success: Whether or not function completed successfully. """ try: [print("Hello {}!".format(c)) for c in cities] # for loop one-liner return True except KeyboardInterrupt: return False finally: pass
a24f0f47c9b44c97f46524d354fff0ed9a735fe3
706,644
def team_to_repos(api, no_repos, organization): """Create a team_to_repos mapping for use in _add_repos_to_teams, anc create each team and repo. Return the team_to_repos mapping. """ num_teams = 10 # arrange team_names = ["team-{}".format(i) for i in range(num_teams)] repo_names = ["some-repo-{}".format(i) for i in range(num_teams)] for name in team_names: organization.create_team(name, permission="pull") for name in repo_names: organization.create_repo(name) team_to_repos = { team_name: [repo_name] for team_name, repo_name in zip(team_names, repo_names) } return team_to_repos
390da146c3f96c554f9194f8551a066eec535533
706,646
import struct def padandsplit(message): """ returns a two-dimensional array X[i][j] of 32-bit integers, where j ranges from 0 to 16. First pads the message to length in bytes is congruent to 56 (mod 64), by first adding a byte 0x80, and then padding with 0x00 bytes until the message length is congruent to 56 (mod 64). Then adds the little-endian 64-bit representation of the original length. Finally, splits the result up into 64-byte blocks, which are further parsed as 32-bit integers. """ origlen = len(message) padlength = 64 - ((origlen - 56) % 64) # minimum padding is 1! message += b"\x80" message += b"\x00" * (padlength - 1) message += struct.pack("<Q", origlen * 8) assert (len(message) % 64 == 0) return [ [ struct.unpack("<L", message[i + j:i + j + 4])[0] for j in range(0, 64, 4) ] for i in range(0, len(message), 64) ]
ea06a3fc91e19ed0dbea6ddcc2ee6d554fb5a40f
706,647
def extract_coords(filename): """Extract J2000 coordinates from filename or filepath Parameters ---------- filename : str name or path of file Returns ------- str J2000 coordinates """ # in case path is entered as argument filename = filename.split("/")[-1] if "/" in filename else filename # to check whether declination is positive or negative plus_minus = "+" if "+" in filename else "-" # extracting right acesnsion (ra) and declination(dec) from filename filename = filename.split("_")[0].strip("J").split(plus_minus) ra_extracted = [ "".join(filename[0][0:2]), "".join(filename[0][2:4]), "".join(filename[0][4:]), ] dec_extracted = [ "".join(filename[1][0:2]), "".join(filename[1][2:4]), "".join(filename[1][4:]), ] coordinates = " ".join(ra_extracted) + " " + plus_minus + " ".join(dec_extracted) # return coordinates as a string in HH MM SS.SSS format return coordinates
57f0ca79223116caa770a1dbea2eda84df146855
706,648
def _parse_multi_header(headers): """ Parse out and return the data necessary for generating ZipkinAttrs. Returns a dict with the following keys: 'trace_id': str or None 'span_id': str or None 'parent_span_id': str or None 'sampled_str': '0', '1', 'd', or None (defer) """ parsed = { "trace_id": headers.get("X-B3-TraceId", None), "span_id": headers.get("X-B3-SpanId", None), "parent_span_id": headers.get("X-B3-ParentSpanId", None), "sampled_str": headers.get("X-B3-Sampled", None), } # Normalize X-B3-Flags and X-B3-Sampled to None, '0', '1', or 'd' if headers.get("X-B3-Flags") == "1": parsed["sampled_str"] = "d" if parsed["sampled_str"] == "true": parsed["sampled_str"] = "1" elif parsed["sampled_str"] == "false": parsed["sampled_str"] = "0" if parsed["sampled_str"] not in (None, "1", "0", "d"): raise ValueError("Got invalid X-B3-Sampled: %s" % parsed["sampled_str"]) for k in ("trace_id", "span_id", "parent_span_id"): if parsed[k] == "": raise ValueError("Got empty-string %r" % k) if parsed["trace_id"] and not parsed["span_id"]: raise ValueError("Got X-B3-TraceId but not X-B3-SpanId") elif parsed["span_id"] and not parsed["trace_id"]: raise ValueError("Got X-B3-SpanId but not X-B3-TraceId") # Handle the common case of no headers at all if not parsed["trace_id"] and not parsed["sampled_str"]: raise ValueError() # won't trigger a log message return parsed
2ac3d0cbee196385e970bcc85827c1a467b5bb3b
706,649
def get_ogheader(blob, url=None): """extract Open Graph markup into a dict The OG header section is delimited by a line of only `---`. Note that the page title is not provided as Open Graph metadata if the image metadata is not specified. """ found = False ogheader = dict() for line in blob.split('\n'): if line == '---': found = True break if line.startswith('image: '): toks = line.split() assert len(toks) == 2 ogheader['image'] = toks[1] if not found: ogheader = dict() # Ignore any matches as false positives return ogheader if url is not None: assert 'url' not in ogheader ogheader['url'] = url for line in blob.split('\n'): if line.startswith('# '): ogheader['title'] = line[2:] return ogheader
4edd7c5545ddef241ee2bfd5e316e47a336aaa3f
706,652
def rgb(r=0, g=0, b=0, mode='RGB'): """ Convert **r**, **g**, **b** values to a `string`. :param r: red part :param g: green part :param b: blue part :param string mode: ``'RGB | %'`` :rtype: string ========= ============================================================= mode Description ========= ============================================================= ``'RGB'`` returns a rgb-string format: ``'rgb(r, g, b)'`` ``'%'`` returns percent-values as rgb-string format: ``'rgb(r%, g%, b%)'`` ========= ============================================================= """ def percent(value): value = int(value) if value < 0: value = 0 if value > 100: value = 100 return value if mode.upper() == 'RGB': return "rgb(%d,%d,%d)" % (int(r) & 255, int(g) & 255, int(b) & 255) elif mode == "%": # see http://www.w3.org/TR/SVG11/types.html#DataTypeColor # percentage is an 'integer' value return "rgb(%d%%,%d%%,%d%%)" % (percent(r), percent(g), percent(b)) else: raise ValueError("Invalid mode '%s'" % mode)
563b8fe8273ce4534567687df01cebe79b9f58dc
706,655
def load_csv_translations(fname, pfx=''): """ Load translations from a tab-delimited file. Add prefix to the keys. Return a dictionary. """ translations = {} with open(fname, 'r', encoding='utf-8-sig') as fIn: for line in fIn: line = line.strip('\r\n ') if len(line) <= 2 or line.count('\t') != 1: continue key, value = line.split('\t') key = pfx + key translations[key] = value return translations
e8b4707fe5eeb0f0f4f4859bd9a5f2272387a022
706,656
def refines_constraints(storage, constraints): """ Determines whether with the storage as basis for the substitution map there is a substitution that can be performed on the constraints, therefore refining them. :param storage: The storage basis for the substitution map :param constraints: The constraint list containing the expressions to be substituted. :return: True if the substitution would change the constraint list. """ storage_names = ["storage[" + str(key) + "]" for key, _ in storage.items()] for name in storage_names: for constraint in constraints: if name in constraint.slot_names: return True return False
de82087c41d95240ee9d15bd51810b7c5594ef0f
706,657
def normalize(data, train_split): """ Get the standard score of the data. :param data: data set :param train_split: number of training samples :return: normalized data, mean, std """ mean = data[:train_split].mean(axis=0) std = data[:train_split].std(axis=0) return (data - mean) / std, mean, std
cfc45ac5bd6ae7a30169253a1ae3ed64c1bd1118
706,659
def perimRect(length,width): """ Compute perimiter of rectangle >>> perimRect(2,3) 10 >>> perimRect(4, 2.5) 13.0 >>> perimRect(3, 3) 12 >>> """ return 2*(length+width)
50fdd92430352f443d313d0931bab50ad5617622
706,662
def simple_list(li): """ takes in a list li returns a sorted list without doubles """ return sorted(set(li))
1e36f15cea4be4b403f0a9795a2924c08b2cb262
706,666
import copy def _clean_root(tool_xml): """XSD assumes macros have been expanded, so remove them.""" clean_tool_xml = copy.deepcopy(tool_xml) to_remove = [] for macros_el in clean_tool_xml.getroot().findall("macros"): to_remove.append(macros_el) for macros_el in to_remove: clean_tool_xml.getroot().remove(macros_el) return clean_tool_xml
9df0980265b26a2de1c88d2999f10cd5d1421e0b
706,668
import json import zlib import base64 def convert_gz_json_type(value): """Provide an ArgumentParser type function to unmarshal a b64 gz JSON string. """ return json.loads(zlib.decompress(base64.b64decode(value)))
1cf0300f40c8367b9129f230a7fef0c9b89ba012
706,669
import string import random def get_random_string(length: int) -> str: """ Returns a random string starting with a lower-case letter. Later parts can contain numbers, lower- and uppercase letters. Note: Random Seed should be set somewhere in the program! :param length: How long the required string must be. length > 0 required. :return: a randomly created string :raises: ValueError for zero and negative length """ if length < 1: raise ValueError("Random Strings must have length 1 minimum.") # choose from all lowercase letter letters = string.ascii_letters + string.digits first_letter = random.choice(string.ascii_lowercase) result_str = ''.join(random.choice(letters) for i in range(length - 1)) return first_letter + result_str
6cf20ce7d158ac158ffa49cac427c396cfd840db
706,671
def factorial(n): """ Return n! - the factorial of n. >>> factorial(1) 1 >>> factorial(0) 1 >>> factorial(3) 6 """ if n<=0: return 0 elif n==1: return 1 else: return n*factorial(n-1)
da5bc6f68375c7db03b7b2bdac1fec2b476ba563
706,672
def clean_cells(nb_node): """Delete any outputs and resets cell count.""" for cell in nb_node['cells']: if 'code' == cell['cell_type']: if 'outputs' in cell: cell['outputs'] = [] if 'execution_count' in cell: cell['execution_count'] = None return nb_node
67dce7ecc3590143730f943d3eb07ae7df9d8145
706,675
def username(request): """ Returns ESA FTP username """ return request.config.getoption("--username")
2393884c2c9f65055cd7a14c1b732fccf70a6e28
706,679
import struct def parse_monitor_message(msg): """decode zmq_monitor event messages. Parameters ---------- msg : list(bytes) zmq multipart message that has arrived on a monitor PAIR socket. First frame is:: 16 bit event id 32 bit event value no padding Second frame is the endpoint as a bytestring Returns ------- event : dict event description as dict with the keys `event`, `value`, and `endpoint`. """ if len(msg) != 2 or len(msg[0]) != 6: raise RuntimeError("Invalid event message format: %s" % msg) event = { 'event': struct.unpack("=hi", msg[0])[0], 'value': struct.unpack("=hi", msg[0])[1], 'endpoint': msg[1], } return event
df71541d34bc04b1ac25c6435b1b298394e27362
706,681
import math def atan2(y, x): """Returns angle of a 2D coordinate in the XY plane""" return math.atan2(y, x)
ede5a647c175bebf2800c22d92e396deff6077e2
706,685
def get_column(data, column_index): """ Gets a column of data from the given data. :param data: The data from the CSV file. :param column_index: The column to copy. :return: The column of data (as a list). """ return [row[column_index] for row in data]
3fd5c8c76ccfed145aba0e685aa57ad01b3695a5
706,686
from typing import List import logging def get_vocab(iob2_files:List[str]) -> List[str]: """Retrieve the vocabulary of the iob2 annotated files Arguments: iob2_files {List[str]} -- List of paths to the iob2 annotated files Returns: List[str] -- Returns the unique list of vocabulary found in the files """ vocab = set() for iob2_file in iob2_files: logging.info("Loading file %s for creating corpus embeddings", iob2_file) for line in open(iob2_file): token = line.split("\t")[0] vocab.add(token) return list(vocab)
0dc2a1f969ed6f92b36b1b31875c855d5efda2d9
706,687
def update_schema(schema_old, schema_new): """ Given an old BigQuery schema, update it with a new one. Where a field name is the same, the new will replace the old. Any new fields not present in the old schema will be added. Arguments: schema_old: the old schema to update schema_new: the new schema which will overwrite/extend the old """ old_fields = schema_old["fields"] new_fields = schema_new["fields"] output_fields = list(old_fields) field_indices = {field["name"]: i for i, field in enumerate(output_fields)} for field in new_fields: name = field["name"] if name in field_indices: # replace old field with new field of same name output_fields[field_indices[name]] = field else: # add new field output_fields.append(field) return {"fields": output_fields}
e97827ac0d8ee943b88fc54506af3f6fc8285d71
706,690
def parse_flarelabels(label_file): """ Parses a flare-label file and generates a dictionary mapping residue identifiers (e.g. A:ARG:123) to a user-specified label, trees that can be parsed by flareplots, and a color indicator for vertices. Parameters ---------- label_file : file A flare-label file where each line contains 2-3 columns formatted as - CHAIN:RESN:RESI (e.g. A:ARG:123) - [[TOPLEVEL.]MIDLEVEL.]LABEL (e.g. Receptor.Helix2.2x44) - COLOR (e.g. #FF0000 or white) Returns ------- dict of str : (dict of str : str) Keys are all residue identifiers and values are dicts that hold both the LABEL by itself (key "label", the full tree-path (key "treepath") and a CSS-compatible color string (key "color"). Raises ------ AssertionError if a residue identifier (CHAIN:RESN:RESI) is specified twice in the file, or if a LABEL appears twice. """ if label_file is None: return None ret = {} flarelabels = set() # Only used to check for duplicates for line in label_file: line = line.strip() if not line: continue # Ignore empty lines columns = line.split("\t") residentifier = columns[0] flaretreepath = columns[1] if len(columns) > 1 else columns[0] flarelabel = flaretreepath.split(".")[-1] flarecolor = columns[2] if len(columns) > 2 else "white" if residentifier in ret: raise AssertionError("Residue identifier '"+residentifier+"' appears twice in "+label_file.name) if flarelabel in flarelabels: raise AssertionError("Flare label '"+flarelabel+"' used twice in "+label_file.name) ret[residentifier] = {"label": flarelabel, "treepath": flaretreepath, "color": flarecolor} flarelabels.add(flarelabel) return ret
23df49af14af720311b320f65894e995983365bf
706,691
def get_hmm_datatype(query_file): """Takes an HMM file (HMMer3 software package) and determines what data type it has (i.e., generated from an amino acid or nucleic acid alignment). Returns either "prot" or "nucl". """ datatype = None with open(query_file) as infh: for i in infh: if i.startswith('ALPH'): dname = i.strip().split(' ')[1] if dname == 'amino': datatype = 'prot' elif dname == 'DNA': datatype = 'nucl' break # Check that it worked. assert datatype is not None, """Error: Data type could not be determined for input file: %s""" % query_file # Return the data type. return datatype
27653784b8a9fbae92226f8ea7d7b6e2b647765e
706,692
def none(**_): """ Input: anything Return: 0.0 (float) Descr.: Dummy method to handle no temperature correction""" return 0.0
e06b22f91d5a73450ddb4ca53fbb2569d567dcf1
706,698
def get_custom_headers(manifest_resource): """Generates the X-TAXII-Date-Added headers based on a manifest resource""" headers = {} times = sorted(map(lambda x: x["date_added"], manifest_resource.get("objects", []))) if len(times) > 0: headers["X-TAXII-Date-Added-First"] = times[0] headers["X-TAXII-Date-Added-Last"] = times[-1] return headers
6c3acf2ea330b347387bfec574b4f8edfffa69ab
706,699
import csv def read_pinout_csv(csv_file, keyname="number"): """ read a csv file and return a dict with the given keyname as the keys """ reader = csv.DictReader(open(csv_file)) lst = [] for row in reader: lst.append(row) d = {} for item in lst: d[item[keyname]] = item return d
07a30b1191d311fee315c87773e3b3c1111d7624
706,701
import torch def pick_action(action_distribution): """action selection by sampling from a multinomial. Parameters ---------- action_distribution : 1d torch.tensor action distribution, pi(a|s) Returns ------- torch.tensor(int), torch.tensor(float) sampled action, log_prob(sampled action) """ m = torch.distributions.Categorical(action_distribution) a_t = m.sample() return a_t
ac7ceb0df860876ec209563eaa6bdd3f8bd09189
706,707
from typing import List def word_tokenizer(text: str) -> List[str]: """Tokenize input text splitting into words Args: text : Input text Returns: Tokenized text """ return text.split()
dc6e4736d7a1f564bcfc6fed081a1869db38eea5
706,708
def to_bits_string(value: int) -> str: """Converts unsigned value to a bit string with _ separators every nibble.""" if value < 0: raise ValueError(f'Value is not unsigned: {value!r}') bits = bin(value)[2:] rev = bits[::-1] pieces = [] i = 0 while i < len(rev): pieces.append(rev[i:i + 4]) i += 4 return '0b' + '_'.join(pieces)[::-1]
07dea253378686a1c65c97fad3d0b706e02335c4
706,712