content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def sum_naturals(n): """Sum the first N natural numbers >>> sum_naturals(5) 15 """ total = 0 k = 1 while k <= n: total += k k += 1 return total
4c59057cd82083d615c72a59f682dd218a657ea0
706,250
def sort_list_files(list_patches, list_masks): """ Sorts a list of patches and masks depending on their id. :param list_patches: List of name of patches in the folder, that we want to sort. :param list_masks: List of name of masks in the folder, that we want to sort. :return: List of sorted lists, respectively of patches and masks. """ return sorted(list_patches, key=lambda x: int(x[1])), sorted(list_masks, key=lambda x: int(x[1]))
91557475bf145862ea88ad9f86cef82135eddd6c
706,251
def xor(*args): """True if exactly one of the arguments of the iterable is True. >>> xor(0,1,0,) True >>> xor(1,2,3,) False >>> xor(False, False, False) False >>> xor("kalimera", "kalinuxta") False >>> xor("", "a", "") True >>> xor("", "", "") False """ return sum([bool(i) for i in args]) == 1
86bbe0350dd18a2508120cec9672661e1aa56ce0
706,252
import copy def dfa2nfa(dfa): """Copy DFA to an NFA, so remove determinism restriction.""" nfa = copy.deepcopy(dfa) nfa.transitions._deterministic = False nfa.automaton_type = 'Non-Deterministic Finite Automaton' return nfa
eed8e651a51e71599a38288665604add3d8a0a3d
706,253
from typing import List def parse_text(text): """ Parse raw text format playlists, each line must contain a single. track with artist and title separated by a single dash. eg Queen - Bohemian Rhapsody :param str text: :return: A list of tracks """ tracks: List[tuple] = [] for line in text.split("\n"): line = line.strip() if not line or line.startswith("#"): continue parts = line.split("-", 1) if len(parts) != 2: continue artist, track = list(map(str.strip, parts)) if not artist or not track or (artist, track) in tracks: continue tracks.append((artist, track)) return tracks
1307d7ced966aa388e570456964c5921ac54ccca
706,257
from typing import List def ordered_list_item_to_percentage(ordered_list: List[str], item: str) -> int: """Determine the percentage of an item in an ordered list. When using this utility for fan speeds, do not include "off" Given the list: ["low", "medium", "high", "very_high"], this function will return the following when when the item is passed in: low: 25 medium: 50 high: 75 very_high: 100 """ if item not in ordered_list: raise ValueError list_len = len(ordered_list) list_position = ordered_list.index(item) + 1 return (list_position * 100) // list_len
2aa1b0574664e53da6080ae4bc99d1f3c93fad96
706,260
def dirty(graph): """ Return a set of all dirty nodes in the graph. """ # Reverse the edges to get true dependency return {n: v for n, v in graph.node.items() if v.get('build') or v.get('test')}
06835b52d7741716f1c67d951c0ab74758f476b4
706,261
def _ibp_sub(lhs, rhs): """Propagation of IBP bounds through a substraction. Args: lhs: Lefthand side of substraction. rhs: Righthand side of substraction. Returns: out_bounds: IntervalBound. """ return lhs - rhs
45ed06feea14275ddd64e1ec60727123db52a5cd
706,262
def get_type_name_value(obj): """ Returns object type name from LLDB value. It returns type name with asterisk if object is a pointer. :param lldb.SBValue obj: LLDB value object. :return: Object type name from LLDB value. :rtype: str | None """ return None if obj is None else obj.GetTypeName()
c87a5acf7d8ef794eab97c90b82bbd9574fb0e2b
706,267
def capacity_rule(mod, g, p): """ The capacity of projects of the *gen_ret_bin* capacity type is a pre-specified number for each of the project's operational periods multiplied with 1 minus the binary retirement variable. """ return mod.gen_ret_bin_capacity_mw[g, p] \ * (1 - mod.GenRetBin_Retire[g, p])
ba4ccad8d620da084912a65a80793f54fb84b374
706,271
def _get_prefixed_values(data, prefix): """Collect lines which start with prefix; with trimming""" matches = [] for line in data.splitlines(): line = line.strip() if line.startswith(prefix): match = line[len(prefix):] match = match.strip() matches.append(match) return matches
d0fe7ff11321ccbf06397963a303f0e79181ebba
706,273
def bytes_to_msg(seq, standard="utf-8"): """Decode bytes to text.""" return seq.decode(standard)
5664d97b3fec5d119daa2171bcb431ca5a4b5f33
706,274
def bonferroni_correction(pvals): """ Bonferroni correction. Reference: http://en.wikipedia.org/wiki/Bonferroni_correction """ n = len(pvals) return [min(x * n , 1.0) for x in pvals]
f57ffd6b77a0a74a61904334604d1cb0eb08f8ff
706,275
def normalize_v(v): """ Normalize velocity to [-1, 1]. Ref: https://github.com/microsoft/AirSim-Drone-Racing-VAE-Imitation/blob/e651be52ff8274c9f595e88b13fe42d51302403d/racing_utils/dataset_utils.py#L20 """ # normalization of velocities from whatever to [-1, 1] range v_x_range = [-1, 7] v_y_range = [-3, 3] v_z_range = [-3, 3] v_yaw_range = [-1, 1] if len(v.shape) == 1: # means that it's a 1D vector of velocities v[0] = 2.0 * (v[0] - v_x_range[0]) / (v_x_range[1] - v_x_range[0]) - 1.0 v[1] = 2.0 * (v[1] - v_y_range[0]) / (v_y_range[1] - v_y_range[0]) - 1.0 v[2] = 2.0 * (v[2] - v_z_range[0]) / (v_z_range[1] - v_z_range[0]) - 1.0 v[3] = 2.0 * (v[3] - v_yaw_range[0]) / (v_yaw_range[1] - v_yaw_range[0]) - 1.0 elif len(v.shape) == 2: # means that it's a 2D vector of velocities v[:, 0] = 2.0 * (v[:, 0] - v_x_range[0]) / (v_x_range[1] - v_x_range[0]) - 1.0 v[:, 1] = 2.0 * (v[:, 1] - v_y_range[0]) / (v_y_range[1] - v_y_range[0]) - 1.0 v[:, 2] = 2.0 * (v[:, 2] - v_z_range[0]) / (v_z_range[1] - v_z_range[0]) - 1.0 v[:, 3] = 2.0 * (v[:, 3] - v_yaw_range[0]) / (v_yaw_range[1] - v_yaw_range[0]) - 1.0 else: raise Exception('Error in data format of V shape: {}'.format(v.shape)) return v # Note: The version used in Shuang's code base is below, which should be equivalent to the above version. # self.targets[:, 0] = 2. * (self.targets[:, 0] + 1.) / (7. + 1.) - 1. # self.targets[:, 1] = 2. * (self.targets[:, 1] + 3.) / (3. + 3.) - 1. # self.targets[:, 2] = 2. * (self.targets[:, 2] + 3.) / (3. + 3.) - 1. # self.targets[:, 3] = 2. * (self.targets[:, 3] + 1.) / (1. + 1.) - 1.
cd47c8d3498e677a1f566b64199224f23a4b5896
706,278
def second_smallest(numbers): """Find second smallest element of numbers.""" m1, m2 = float('inf'), float('inf') for x in numbers: if x <= m1: m1, m2 = x, m1 elif x < m2: m2 = x return m2
0ca7b297da68651e4a8b56377e08f09d4d82cfb7
706,279
import hmac import hashlib def hmac_sha512(key: bytes, data: bytes) -> bytes: """ Return the SHA512 HMAC for the byte sequence ``data`` generated with the secret key ``key``. Corresponds directly to the "HMAC-SHA512(Key = ..., Data = ...)" function in BIP32 (https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#conventions). :param key: The secret key used for HMAC calculation. :param data: The data for which an HMAC should be calculated. :return: A byte sequence containing the HMAC of ``data`` generated with the secret key ``key``. """ h = hmac.new(key, data, hashlib.sha512) return h.digest()
64850ea2d5e921138d8e0ebc2d021f8eaf5a7357
706,282
def validate(data): """Validates incoming data Args: data(dict): the incoming data Returns: True if the data is valid Raises: ValueError: the data is not valid """ if not isinstance(data, dict): raise ValueError("data should be dict") if "text" not in data or not isinstance(data["text"], str) or len(data["text"]) < 1: raise ValueError("text field is required and should not be empty") if "markdown" in data and not isinstance(data["markdown"], bool): raise ValueError("markdown field should be bool") if "attachments" in data: if not isinstance(data["attachments"], list): raise ValueError("attachments field should be list") for attachment in data["attachments"]: if "text" not in attachment and "title" not in attachment: raise ValueError("text or title is required in attachment") return True
ae8b7e74bd7607a7c8f5079014a0f5e3af5bc011
706,283
def stripExtra(name): """This function removes paranthesis from a string *Can later be implemented for other uses like removing other characters from string Args: name (string): character's name Returns: string: character's name without paranthesis """ startIndexPer=name.find('(') start = 0 if(startIndexPer!=-1): start = startIndexPer if(start==0): return name else: return name[0:start-1]
fd9b8c2d6f513f06d8b1df067520c7f05cff023d
706,284
def voltage(raw_value, v_min=0, v_max=10, res=32760, gain=1): """Converts a raw value to a voltage measurement. ``V = raw_value / res * (v_max - v_min) * gain`` """ return (float(raw_value) / res * (v_max - v_min) * gain, "V")
b4ea7d2521e1fa856a21b98ace2a9490f8a3b043
706,287
def extract_characteristics_from_string(species_string): """ Species are named for the SBML as species_name_dot_characteristic1_dot_characteristic2 So this transforms them into a set Parameters: species_string (str) = species string in MobsPy for SBML format (with _dot_ instead of .) """ return set(species_string.split('_dot_'))
abfcc0d3e425e8f43d776a02254a04b0e85dc6d1
706,288
def _diff_bearings(bearings, bearing_thresh=40): """ Identify kinked nodes (nodes that change direction of an edge) by diffing Args: bearings (list(tuple)): containing (start_node, end_node, bearing) bearing_thresh (int): threshold for identifying kinked nodes (range 0, 360) Returns: list[str] of kinked nodes """ kinked_nodes = [] # diff bearings nodes = [b[0] for b in bearings] bearings_comp = [b[2] for b in bearings] bearing_diff = [y - x for x, y in zip(bearings_comp, bearings_comp[1:])] node2bearing_diff = list(zip(nodes[1:-1], bearing_diff)) # id nodes to remove for n in node2bearing_diff: # controlling for differences on either side of 360 if min(abs(n[1]), abs(n[1] - 360)) > bearing_thresh: kinked_nodes.append(n[0]) return kinked_nodes
a29c3cdd009065d7a73dd993ae66f81853d5e2bc
706,289
def _convert_steplist_to_string(step_data): """Converts list of step data into a single string. Parameters ---------- step_data : list List of step data Returns ------- str A space delimited string where every 6th value is followed by a newline. """ text = '' for i, datum in enumerate(step_data): if i == 0: text += f'\n{datum}\n' else: if i%6 == 0: text += f'{datum}\n' else: text += f'{datum} ' return text
112495edbafc3db39946d7abeefff6466e2dff94
706,290
def format_time(data, year): """Format any time variables in US. Parameters ---------- data : pd.DataFrame Data without time formatting. year : int The `year` of the wave being processed. Returns ------- data : pd.DataFrame Data with time formatting. """ # See to do messages at the top of the file. # Theres some wierd overlap in the pidp data. Theres essentially a gap in September 2008 with noone in it from # BHPS which makes transition models fail. # Following 2 lines are a stupid work around. # if self.year <= 2008: # self.year += 1 data["time"] = year return data
858d7e48143a16e644d4f1241cd8918385dc7c5f
706,295
def plot(plot, x, y, **kwargs): """ Adds series to plot. By default this is displayed as continuous line. Refer to matplotlib.pyplot.plot() help for more info. X and y coordinates are expected to be in user's data units. Args: plot: matplotlib.pyplot Plot to which series should be added. x: (float,) Collection of x-coordinates in user units. y: (float,) Collection of y-coordinates in user units. title: str Series legend. """ # add series return plot.plot(x, y, **kwargs)
1e861243a87b61461fb49dcadf19ec9099fa5a1f
706,296
def interval_to_errors(value, low_bound, hi_bound): """ Convert error intervals to errors :param value: central value :param low_bound: interval low bound :param hi_bound: interval high bound :return: (error minus, error plus) """ error_plus = hi_bound - value error_minus = value - low_bound return error_minus, error_plus
ffee403968ddf5fd976df79a90bdbb62474ede11
706,297
import re def _newline_to_ret_token(instring): """Replaces newlines with the !RET token. """ return re.sub(r'\n', '!RET', instring)
4fcf60025f79811e99151019a479da04f25ba47c
706,300
def _ComputeLineCounts(old_lines, chunks): """Compute the length of the old and new sides of a diff. Args: old_lines: List of lines representing the original file. chunks: List of chunks as returned by patching.ParsePatchToChunks(). Returns: A tuple (old_len, new_len) representing len(old_lines) and len(new_lines), where new_lines is the list representing the result of applying the patch chunks to old_lines, however, without actually computing new_lines. """ old_len = len(old_lines) new_len = old_len if chunks: (_, old_b), (_, new_b), old_lines, _ = chunks[-1] new_len += new_b - old_b return old_len, new_len
ba99714016b69d87f260c8e7b8793468a2f7b04d
706,301
def _read_int(file_handle, data_size): """ Read a signed integer of defined data_size from file. :param file_handle: The file handle to read from at current position :param data_size: The data size in bytes of the integer to read :returns: The integer read and decoded """ return int.from_bytes(file_handle.read(data_size), byteorder="little", signed=True)
4d2a7e82e9daa828c0e5b180250834f2fa9977d5
706,302
def list_check(lst): """Are all items in lst a list? >>> list_check([[1], [2, 3]]) True >>> list_check([[1], "nope"]) False """ t = [1 if isinstance(x, list) else 0 for x in lst] return len(lst) == sum(t)
9e2c55cb6e15f89ff2b73a78d5f15310d3cac672
706,304
import json def all_cells_run(event_str: str, expected_count: int) -> bool: """Wait for an event signalling all cells have run. `execution_count` should equal number of nonempty cells. """ try: event = json.loads(event_str) msg_type = event["msg_type"] content = event["content"] execution_count = content["execution_count"] status = content["status"] except (TypeError, KeyError): return False return all( ( msg_type == "execute_reply", execution_count == expected_count, status == "ok", ) )
c3e1bb23f38ffdd09d4cc2ea3326d40b7cf54034
706,306
import json def jsonify(value): """ Convert a value into a JSON string that can be used for JSONB queries in Postgres. If a string happens to contain the character U+0000, which cannot be represented in a PostgreSQL value, remove the escape sequence representing that character, effectively stripping out that character from all strings. """ return json.dumps(value, ensure_ascii=False).replace("\\u0000", "")
7fff497b302822f8f79f0e68b2576c26458df99c
706,308
def getAsciiFileExtension(proxyType): """ The file extension used for ASCII (non-compiled) proxy source files for the proxies of specified type. """ return '.proxy' if proxyType == 'Proxymeshes' else '.mhclo'
cb2b27956b3066d58c7b39efb511b6335b7f2ad6
706,310
def col_index_list(info, key, value): """Given a list of dicts 'info', return a list of indices corresponding to columns in which info[key] == value. Use to build lists of default columns, non-exportable columns, etc.""" index_list = list() if info != None: for i in range(0, len(info)): if info[i].get(key) == value: index_list.append(i) return index_list
af46b03c2fe5bce2ceb7305fd670ce1f0f52ae38
706,313
def profiling_csv(stage, phases, durations): """ Dumps the profiling information into a CSV format. For example, with stage: `x` phases: ['a', 'b', 'c'] durations: [1.42, 2.0, 3.4445] The output will be: ``` x,a,1.42 x,b,2.0 x,c,3.444 ``` """ assert all(hasattr(p, "name") for p in phases), "expected to have name attribute." return "\n".join( [f"{stage},{p.name},{round(t, 3)}" for (p, t) in zip(phases, durations)] )
d40ee5601aa201904741870ce75c4b5bfde0f9bc
706,315
def fib(n): """Returns the nth Fibonacci number.""" if n == 0: return 1 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
397d5714f45491dde68c13379fe2a6acafe55002
706,318
def split_sample(labels): """ Split the 'Sample' column of a DataFrame into a list. Parameters ---------- labels: DataFrame The Dataframe should contain a 'Sample' column for splitting. Returns ------- DataFrame Updated DataFrame has 'Sample' column with a list of strings. """ sample_names = labels["Sample"].str.split(" ", n=1, expand=False) labels['Sample'] = sample_names return labels
483f1b78e07a2156aa3e48ae6c1f5ce41f5e60fe
706,320
def escape_env_var(varname): """ Convert a string to a form suitable for use as an environment variable. The result will be all uppercase, and will have all invalid characters replaced by an underscore. The result will match the following regex: [a-zA-Z_][a-zA-Z0-9_]* Example: "my.private.registry/cat/image" will become "MY_PRIVATE_REGISTRY_CAT_IMAGE" """ varname = list(varname.upper()) if not varname[0].isalpha(): varname[0] = "_" for i, c in enumerate(varname): if not c.isalnum() and c != "_": varname[i] = "_" return "".join(varname)
c1e57ff3b9648e93a540202f00d0325f91bccde1
706,323
def is_in(a_list): """Returns a *function* that checks if its argument is in list. Avoids recalculation of list at every comparison.""" def check(arg): return arg in a_list return check
34afbc269c164f0e095b1cbbf4e9576bafc7a9e1
706,324
def get_decay_fn(initial_val, final_val, start, stop): """ Returns function handle to use in torch.optim.lr_scheduler.LambdaLR. The returned function supplies the multiplier to decay a value linearly. """ assert stop > start def decay_fn(counter): if counter <= start: return 1 if counter >= stop: return final_val / initial_val time_range = stop - start return 1 - (counter - start) * (1 - final_val / initial_val) / time_range assert decay_fn(start) * initial_val == initial_val assert decay_fn(stop) * initial_val == final_val return decay_fn
d84c0f0305d239834429d83ba4bd5c6d6e945b69
706,328
def _vars_to_add(new_query_variables, current_query_variables): """ Return list of dicts representing Query Variables not yet persisted Keyword Parameters: new_query_variables -- Dict, representing a new inventory of Query Variables, to be associated with a DWSupport Query current_query_variables -- Dict, representing the Query Variables currently associated with the 'new_query_variables' Query mapped by tuple(table_name, column_name) >>> from pprint import pprint >>> test_new_vars = { 'great_fact': ['measure_a', 'measure_b'] ... ,'useful_dim': ['field_one'] ... ,'occasionally_useful_dim': ['field_two']} >>> persisted_vars = { ('great_fact', 'measure_a'): object() #fake ... ,('useful_dim', 'field_one'): object()#objects ... ,('useful_dim', 'field_two'): object()} >>> out = _vars_to_add(test_new_vars, persisted_vars) >>> pprint(out) # check detected additions {'great_fact': ['measure_b'], 'occasionally_useful_dim': ['field_two']} """ additional_fields_by_table_name = {} # Values to return # detect additions for new_variable_table_name, table_columns in new_query_variables.items(): for column_name in table_columns: key = (new_variable_table_name, column_name) #table+column tuple if key not in current_query_variables: # New Query Variable - add variable name to table's list table_variables = additional_fields_by_table_name.setdefault( new_variable_table_name ,list()) #default to new, empty list (if none exists yet) table_variables.append(column_name) return additional_fields_by_table_name
fd5ea2209b374ab9987a05c139ba1f28805f3eff
706,329
def Ak(Y2d, H, k): """ Calculate Ak for Sk(x) Parameters ---------- Y2d : list list of y values with the second derived H : list list of h values from spline k : int index from Y2d and H Returns ------- float Ak from cubic spline """ return (Y2d[k] - Y2d[k - 1]) / (6 * H[k - 1])
baea453b9c7b023b78c1827dc23bacbd8fd6b057
706,330
def cycle_list_next(vlist, current_val): """Return the next element of *current_val* from *vlist*, if approaching the list boundary, starts from begining. """ return vlist[(vlist.index(current_val) + 1) % len(vlist)]
48e2ac31178f51f981eb6a27ecf2b35d44b893b4
706,331
def get_secondary_connections(network, user): """ Finds all the secondary connections (i.e. connections of connections) of a given user. Arguments: network: the gamer network data structure. user: a string containing the name of the user. Returns: A list containing the secondary connections (connections of connections). - If the user is not in the network, returns None. - If a user has no primary connections to begin with, returns an empty list. NOTE: It is OK if a user's list of secondary connections includes the user himself/herself. It is also OK if the list contains a user's primary connection that is a secondary connection as well. """ if user not in network: return None if network[user][0] == []: return [] return [person for group in [network[connection][0] for connection in network[user][0]] for person in group]
4e53f6e43f2fb132932381370efa4b3a3cd4793c
706,333
def get_regression_function(model, model_code): """ Method which return prediction function for trained regression model :param model: trained model object :return: regression predictor function """ return model.predict
fca4a0767b1e741952534baf59ac07cece2c9342
706,334
def RefundablePayrollTaxCredit(was_plus_sey_p, was_plus_sey_s, RPTC_c, RPTC_rt, rptc_p, rptc_s, rptc): """ Computes refundable payroll tax credit amounts. """ rptc_p = min(was_plus_sey_p * RPTC_rt, RPTC_c) rptc_s = min(was_plus_sey_s * RPTC_rt, RPTC_c) rptc = rptc_p + rptc_s return (rptc_p, rptc_s, rptc)
e282139921045fe8e286abbde6bb4ae44151a50d
706,339
def wavelength_to_energy(wavelength): """ Converts wavelength (A) to photon energy (keV) """ return 12.39842/wavelength
4e2d11f2de8ed4890df5d885801cd492644817d8
706,343
def totaled_no_review_url(cc, sql_time_specification): # pragma: no cover """Counts the number of commits with no review url in a given timeframe Args: cc(cursor) sql_time_specification(str): a sql command to limit the dates of the returned results Return: count(int): a count of all commits with no review_url results(list): a list of lists with all tbr'ed commits with no lgtm in the format [rietveld_url, git_timestamp, git_subject, git_hash] """ cc.execute("""SELECT git_commit.review_url, git_commit.timestamp, git_commit.subject, git_commit.hash FROM git_commit WHERE git_commit.review_url = '' AND %s""" % sql_time_specification) result = cc.fetchall() count = len(result) formatted_data = [] for data in result: subject = data[2] formatted_data.append([data[0], data[1].strftime("%Y-%m-%d %H:%M:%S"), subject.replace('-', ' '), data[3]]) results = sorted(formatted_data, key=lambda x: x[1], reverse=True) return count, results
027f49b13316ecb36eed3e7dde880848b261e3b4
706,348
import random def random_point_of_triangle(vertices): """Compute a random point of the triangle with given vertices""" p, q, r = vertices pq = q-p pr = r-p while True: x = random.random() y = random.random() if x + y <= 1: return p + pq*x + pr*y
ba3bf9183ddae4a16561a06b6f2455ce0ede6c8f
706,350
import time def get_minutes(hour:str) -> int: """ Get total number of minutes from time in %H:%M . Args: hour (str): String containing time in 24 hour %H:%M format Returns: int: Returns total number of minutes """ t = time.strptime(hour, '%H:%M') minutes = t[3] * 60 + t[4] return minutes
069835bdb6b0919d6206e0379a1933986ad2d5bd
706,351
def snr2Ivar(flux, snr): """ Estimate the inverse variance given flux and S/N. Parameters ---------- flux : scalar or array of float Flux of the obejct. snr : scalar or array of float Signal to noise ratio """ return 1.0 / ((flux / snr) ** 2.0)
91c76cd942a8f37f57a227ccb35cf4968a16193b
706,353
def preprocess_dataframe(data): """Helper method to preprocess the dataframe. Creates new columns for year,month,recalls and percentage change. Limits the date range for the experiment (these data are trustworthy).""" data['recalls'] = data['doc_count'] + 1 data.drop(columns=['product', 'Unnamed: 0', 'key', 'key_as_string', 'doc_count'], inplace=True) data = data.resample("M").sum() mask = (data.index > '2007-05-31') & (data.index < '2019-09-30') data = data.loc[mask] data['pct'] = data['recalls'].pct_change() return data
f6670cac1319108c88ee9ee409ce0ecdd1eca746
706,356
def is_solution(x:int, y:int) -> bool: """Returns try if (x, y) is a solution.""" # x and y are the values in a sequence of 15 terms of the following form: # xxxxyxxxxxyxxxx # x must be a positive integer if x <= 0: return False # y must be a negative integer if y >= 0: return False # a run of 6 consecutive terms must be positive if 5 * x + y <= 0: return False # a run of 11 consecutive terms must be negative if 9 * x + 2 * y >= 0: return False # x must be <= 16 or y must be >= 16 return x <= 16 or y >= -16
5e620fc390f6a79fd25d00c8c8b51d0af788d48c
706,357
def default_context(plugin, context): """ Return the default context for plugins rendered with a template, which simply is a single variable named ``plugin`` containing the plugin instance. """ return {"plugin": plugin}
5f7a88c02b6c11a150197e50a5be1847cba422b0
706,359
import torch def make_positions(tensor, padding_idx, left_pad): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored, but it is necessary to specify whether padding is added on the left side (left_pad=True) or right side (left_pad=False). """ max_pos = padding_idx + 1 + tensor.size(1) device = tensor.get_device() buf_name = f'range_buf_{device}' if not hasattr(make_positions, buf_name): setattr(make_positions, buf_name, tensor.new()) setattr(make_positions, buf_name, getattr(make_positions, buf_name).type_as(tensor)) if getattr(make_positions, buf_name).numel() < max_pos: torch.arange(padding_idx + 1, max_pos, out=getattr(make_positions, buf_name)) mask = tensor.ne(padding_idx) positions = getattr(make_positions, buf_name)[:tensor.size(1)].expand_as(tensor) if left_pad: positions = positions - mask.size(1) + mask.long().sum(dim=1).unsqueeze(1) new_tensor = tensor.clone() return new_tensor.masked_scatter_(mask, positions[mask]).long()
8e65c68daae2e40710c777d6e74f048b8b0ad547
706,360
def _type_convert(new_type, obj): """ Convert type of `obj` to `force`. """ return new_type(obj)
fc47c100508d41caa7ffc786746b58e3d6f684e2
706,363
def _process_labels(labels, label_smoothing): """Pre-process a binary label tensor, maybe applying smoothing. Parameters ---------- labels : tensor-like Tensor of 0's and 1's. label_smoothing : float or None Float in [0, 1]. When 0, no smoothing occurs. When positive, the binary ground truth labels `y_true` are squeezed toward 0.5, with larger values of `label_smoothing` leading to label values closer to 0.5. Returns ------- torch.Tensor The processed labels. """ assert label_smoothing is not None labels = (1 - label_smoothing) * labels + label_smoothing * 0.5 return labels
5a71ded8ac9d3ef4b389542814a170f35ef18fdd
706,364
import importlib def import_by_path(path): """ Given a dotted/colon path, like project.module:ClassName.callable, returns the object at the end of the path. """ module_path, object_path = path.split(":", 1) target = importlib.import_module(module_path) for bit in object_path.split("."): target = getattr(target, bit) return target
939b3426f36b3a188f7a48e21551807d42cfa254
706,372
def _exceeded_threshold(number_of_retries: int, maximum_retries: int) -> bool: """Return True if the number of retries has been exceeded. Args: number_of_retries: The number of retry attempts made already. maximum_retries: The maximum number of retry attempts to make. Returns: True if the maximum number of retry attempts have already been made. """ if maximum_retries is None: # Retry forever. return False return number_of_retries >= maximum_retries
c434e1e752856f9160d40e25ac20dde0583e50a6
706,373
import torch def bert_text_preparation(text, tokenizer): """Preparing the input for BERT Takes a string argument and performs pre-processing like adding special tokens, tokenization, tokens to ids, and tokens to segment ids. All tokens are mapped to seg- ment id = 1. Args: text (str): Text to be converted tokenizer (obj): Tokenizer object to convert text into BERT-re- adable tokens and ids Returns: list: List of BERT-readable tokens obj: Torch tensor with token ids obj: Torch tensor segment ids """ marked_text = "[CLS] " + text + " [SEP]" tokenized_text = tokenizer.tokenize(marked_text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) segments_ids = [1]*len(indexed_tokens) # Convert inputs to PyTorch tensors tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) return tokenized_text, tokens_tensor, segments_tensors
f9b3de4062fd0cc554e51bd02c750daea0a8250c
706,376
from typing import Union from datetime import datetime import pytz def api_timestamp_to_datetime(api_dt: Union[str, dict]): """Convertes the datetime string returned by the API to python datetime object""" """ Somehow this string is formatted with 7 digits for 'microsecond' resolution, so crop the last digit (and trailing Z) The cropped string will be written into api_dt_str_mod """ api_dt_str_mod = None if isinstance(api_dt, str): api_dt_str_mod = api_dt[:-2] elif isinstance(api_dt, dict): api_dt_str_mod = api_dt["dateTime"][:-2] else: raise dt = datetime.strptime(api_dt_str_mod, "%Y-%m-%dT%H:%M:%S.%f") dt = pytz.utc.localize(dt) return dt
26f4828a19d17c883a8658eb594853158d70fbcf
706,381
def __discount_PF(i, n): """ Present worth factor Factor: (P/F, i, N) Formula: P = F(1+i)^N :param i: :param n: :return: Cash Flow: F | | -------------- | P """ return (1 + i) ** (-n)
b6e7424647921b945a524a22d844925573b6490a
706,384
def FTCS(Uo, diffX, diffY=None): """Return the numerical solution of dependent variable in the model eq. This routine uses the explicit Forward Time/Central Space method to obtain the solution of the 1D or 2D diffusion equation. Call signature: FTCS(Uo, diffX, diffY) Parameters ---------- Uo: ndarray[float], =1d, 2d The dependent variable at time level, n within the entire domain. diffX : float Diffusion number for x-component of the parabolic/diffusion equation. diffY : float, Default=None for 1-D applications Diffusion number for y-component of the parabolic/diffusion equation. Returns ------- U: ndarray[float], =1d, 2d The dependent variable at time level, n+1 within the entire domain. """ shapeU = Uo.shape # Obtain Dimension U = Uo.copy() # Initialize U if len(shapeU) == 1: U[1:-1] = ( Uo[1:-1] + diffX*(Uo[2:] - 2.0*Uo[1:-1] + Uo[0:-2]) ) elif len(shapeU) == 2: U[1:-1, 1:-1] = ( Uo[1:-1, 1:-1] + diffX*(Uo[2:, 1:-1] - 2.0*Uo[1:-1, 1:-1] + Uo[0:-2, 1:-1]) + diffY*(Uo[1:-1, 2:] - 2.0*Uo[1:-1, 1:-1] + Uo[1:-1, 0:-2]) ) return U
4b02749f3f50a2cff74abb75146159289d42b99e
706,387
import re def get_filenames(filename): """ Return list of unique file references within a passed file. """ try: with open(filename, 'r', encoding='utf8') as file: words = re.split("[\n\\, \-!?;'//]", file.read()) #files = filter(str.endswith(('csv', 'zip')), words) files = set(filter(lambda s: s.endswith(('.csv', '.zip', '.pdf', '.txt', '.tsv', '.cfg', '.ini')), words)) return list(files) except Exception as e: print(e) return []
a1d8c396245cfc682ecc37edb3e673f87939b6fa
706,390
import requests def get_html_content_in_text(url): """ Grab all the content in webpage url and return it's content in text. Arguments: url -- a webpage url string. Returns: r.text -- the content of webpage in text. """ r = requests.get(url) return r.text
fd8ddc992f34c186051ca8985ffb110c50004970
706,393
def inherits_from(obj, parent): """ Takes an object and tries to determine if it inherits at *any* distance from parent. Args: obj (any): Object to analyze. This may be either an instance or a class. parent (any): Can be either instance, class or python path to class. Returns: inherits_from (bool): If `parent` is a parent to `obj` or not. Notes: What differs this function from e.g. `isinstance()` is that `obj` may be both an instance and a class, and parent may be an instance, a class, or the python path to a class (counting from the evennia root directory). """ if callable(obj): # this is a class obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.mro()] else: obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.__class__.mro()] if isinstance(parent, str): # a given string path, for direct matching parent_path = parent elif callable(parent): # this is a class parent_path = "%s.%s" % (parent.__module__, parent.__name__) else: parent_path = "%s.%s" % (parent.__class__.__module__, parent.__class__.__name__) return any(1 for obj_path in obj_paths if obj_path == parent_path)
9d7e0665b4e4fe2a3f7c136436a2502c8b72527c
706,396
def name(model): """A repeatable way to get the formatted model name.""" return model.__name__.replace('_', '').lower()
3d9ca275bfbfff6d734f49a47459761c559d906e
706,397
import socket def get_hostname(ipv) -> str: """ Get hostname from IPv4 and IPv6. :param ipv: ip address :return: hostname """ return socket.gethostbyaddr(ipv)[0]
e7d660dc3c5e30def646e56fa628099e997145be
706,399
def esc_quotes(strng): """ Return the input string with single and double quotes escaped out. """ return strng.replace('"', '\\"').replace("'", "\\'")
25956257e06901d4f59088dd2c17ddd5ea620407
706,403
def to_numeric(arg): """ Converts a string either to int or to float. This is important, because e.g. {"!==": [{"+": "0"}, 0.0]} """ if isinstance(arg, str): if '.' in arg: return float(arg) else: return int(arg) return arg
e82746e1c5c84b57e59086030ff7b1e93c89a8ec
706,405
def purelin(n): """ Linear """ return n
493c4ae481702194fe32eec44e589e5d15614b99
706,407
import random def shuffle_sequence(sequence: str) -> str: """Shuffle the given sequence. Randomly shuffle a sequence, maintaining the same composition. Args: sequence: input sequence to shuffle Returns: tmp_seq: shuffled sequence """ tmp_seq: str = "" while len(sequence) > 0: max_num = len(sequence) rand_num = random.randrange(max_num) tmp_char = sequence[rand_num] tmp_seq += tmp_char tmp_str_1 = sequence[:rand_num] tmp_str_2 = sequence[rand_num + 1:] sequence = tmp_str_1 + tmp_str_2 return tmp_seq
9e833aed9e5a17aeb419a77176713e76566d2d06
706,414
import torch def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return torch.nn.functional.relu if activation == "gelu": return torch.nn.functional.gelu if activation == "glu": return torch.nn.functional.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
ecc690e9b9ec6148b6ea8df4bd08ff2d0c1c322e
706,416
import math def inverse_gamma(data, alpha=0.1, beta=0.1): """ Inverse gamma distributions :param data: Data value :param alpha: alpha value :param beta: beta value :return: Inverse gamma distributiion """ return (pow(beta, alpha) / math.gamma(alpha)) *\ pow(alpha, data-1) * math.exp(-beta/data)
c13f5e4a05e111ae0082b7e69ef5b31498d2c221
706,425
import statistics def linear_regression(xs, ys): """ Computes linear regression coefficients https://en.wikipedia.org/wiki/Simple_linear_regression Returns a and b coefficients of the function f(y) = a * x + b """ x_mean = statistics.mean(xs) y_mean = statistics.mean(ys) num, den = 0.0, 0.0 for x, y in zip(xs, ys): num += (x - x_mean) * (y - y_mean) den += (x - x_mean) * (x - x_mean) a = num / den b = y_mean - a * x_mean return a, b
6b6ecbd31262e5fe61f9cf7793d741a874327598
706,426
def getCubePixels(cubeImages): """ Returns a list containing the raw pixels from the `bpy.types.Image` images in the list `cubeImages`. Factoring this functionality out into its own function is useful for performance profiling. """ return [face.pixels[:] for face in cubeImages]
cdb2ba02ce9466e1b92a683dbea409e66b60c8da
706,430
import torch def shuffle_tensor(input): """ Returns a new tensor whose elements correspond to a randomly shuffled version of the the elements of the input. Args: input (`torch.Tensor`): input tensor. Returns: (`torch.Tensor`): output tensor. """ return input[torch.randperm(input.nelement())]
e7c3ff4180123de1fe6322296ba08863de9766a4
706,433
import re def proper_units(text: str) -> str: """ Function for changing units to a better form. Args: text (str): text to check. Returns: str: reformatted text with better units. """ conv = { r"degK": r"K", r"degC": r"$^{\circ}$C", r"degrees\_celsius": r"$^{\circ}$C", r"degrees\_north": r"$^{\circ}$N", r"degrees\_east": r"$^{\circ}$E", r"degrees\_west": r"$^{\circ}$W", r"I metric": r"$\mathcal{I}$--metric", } regex = re.compile( "|".join( re.escape(key) for key in sorted(conv.keys(), key=lambda item: -len(item)) ) ) return regex.sub(lambda match: conv[match.group()], text)
5113d227db1a75ec8fa407c5f9edd5a897960d82
706,440
def does_algorithm_implementation_have_capabilities_to_execute_parameter(parameter_kisao_id, algorithm_specs): """ Determine if an implementation of an algorithm has the capabilities to execute a model langugae Args: parameter_kisao_id (:obj:`str`): KiSAO id for an algorithm parameter algorithm_specs (:obj:`dict` with schema ``https://api.biosimulators.org/openapi.json#/components/schemas/Algorithm``): specifications of the implementation of an algorithm Returns: :obj:`bool`: whether the implementation of the algorithm has the capabilities to execute the SED parameter """ for parameter_specs in algorithm_specs['parameters']: if parameter_specs['kisaoId']['id'] == parameter_kisao_id: return True return False
653712ae621bd014547e04009243cefe4c9eb8e1
706,441
def has_remove_arg(args): """ Checks if remove argument exists :param args: Argument list :return: True if remove argument is found, False otherwise """ if "remove" in args: return True return False
9b07fe70cecfbdf6e6e2274e5b3e715f903331c7
706,442
def convert_to_boolean(value): """Turn strings to bools if they look like them Truthy things should be True >>> for truthy in ['true', 'on', 'yes', '1']: ... assert convert_to_boolean(truthy) == True Falsey things should be False >>> for falsey in ['false', 'off', 'no', '0']: ... assert convert_to_boolean(falsey) == False Other things should be unchanged >>> for value in ['falsey', 'other', True, 0]: ... assert convert_to_boolean(value) == value """ if isinstance(value, str): if value.lower() in ['t', 'true', 'on', 'yes', '1']: return True elif value.lower() in ['f', 'false', 'off', 'no', '0']: return False return value
7cbf7a8fd601904c7aa8b685f6a3b3f5eaaa5c51
706,443
def getSampleBandPoints(image, region, **kwargs): """ Function to perform sampling of an image over a given region, using ee.Image.samp;e(image, region, **kwargs) Args: image (ee.Image): an image to sample region (ee.Geometry): the geometry over which to sample Returns: An ee.FeatureCollection of sampled points along with coordinates """ dargs = { 'numPixels': 1000, 'region': region } dargs.update(kwargs) sample = image.sample(**dargs) return sample
4cfbc3c180b805abe52c718f81cc16c409693922
706,444
def get_text(cell): """ get stripped text from a BeautifulSoup td object""" return ''.join([x.strip() + ' ' for x in cell.findAll(text=True)]).strip()
08037cbe5d2058206de029417f03d211d350820f
706,447
import math def ToMercPosition(lat_deg, num_tiles): """Calculate position of a given latitude on qt grid. LOD is log2(num_tiles) Args: lat_deg: (float) Latitude in degrees. num_tiles: (integer) Number of tiles in the qt grid. Returns: Floating point position of latitude in tiles relative to equator. """ lat_rad = lat_deg / 180.0 * math.pi y_merc = math.log(math.tan(lat_rad / 2.0 + math.pi / 4.0)) return num_tiles / 2.0 * (1 + y_merc / math.pi)
1ae7e7b2da9ec3ee20756ef7ffa13d99485aaea7
706,450
def check_output_filepath(filepath): """ Check and return an appropriate output_filepath parameter. Ensures the file is a csv file. Ensures a value is set. If a value is not set or is not a csv, it will return a default value. :param filepath: string filepath name :returns: a string representing a filepath location. """ if filepath.endswith('.csv'): return filepath return "clean_rules_report.csv"
63fcf697dbde9a62cc39311b4d234955520f6394
706,451
def _single_value_set(target_list, value): """ Return true if this constraint has only one value and it is this one. """ return len(target_list) == 1 and target_list[0] == value
472ebe1aa9726c70642423d05fa55723496e9bc5
706,452
def get_positive_input(message, float_parse=False, allow_zero=False): """ Obtains and returns a positive int from the user. Preconditions: message: non-empty string float_parse: bool defaulted to False allow_zero: bool defaulted to False Parameters: message: The message that is printed when obtaining the input. float_parse: Whether to parse input to float or int allow_zero: Whether to allow zero as an input Postconditions: num: The valid inputted number. """ # use ternary operator to determine the sign to use sign = ">=" if allow_zero else ">" # try to parse input to either a float or int try: if float_parse: num = float(input("(must be " + sign + " 0), " + message).strip()) else: num = int(input("(must be " + sign + " 0), " + message).strip()) # raise a ValueError if input was invalid if (not allow_zero) and (num <= 0): raise ValueError() elif num < 0: raise ValueError() return num # catch any ValueErrors. except ValueError: print("Not a valid input.") # recurse the method until proper input was found return get_positive_input(message, float_parse, allow_zero)
17982ff069907464c70df7b6efb1f42d3811962e
706,453
def flights_preclean(df): """ Input: Raw dataframe of Flights table. Output: Cleaned flights table: - Remove cancelled rows, made available in new dataframe "df_can" - Drop columns ['Unnamed: 0', 'branded_code_share', 'mkt_carrier', 'cancelled', 'cancellation_code', 'flights', 'air_time', 'first_dep_time', 'total_add_gtime', 'longest_add_gtime', 'no_name'] - Fill null values in delay columns - Drop remaining null values """ global df_can df_can = df[df.cancelled == 1].copy() print("Removed cancelled flights - now available in dataframe 'df_can'") df = df[df.cancelled == 0] df = df.drop(columns=['Unnamed: 0', 'branded_code_share', 'mkt_carrier', 'cancelled', 'cancellation_code', 'flights', 'air_time', 'first_dep_time', 'total_add_gtime', 'longest_add_gtime', 'no_name']) for col in ['carrier_delay', 'weather_delay', 'nas_delay', 'security_delay', 'late_aircraft_delay']: df[col] = df[col].fillna(value=0) df = df.dropna() return df
61dcfa6afd6ec7dd0abb5525187938d6ab978996
706,454
import math def distance(s1, s2): """ Euclidean distance between two sequences. Supports different lengths. If the two series differ in length, compare the last element of the shortest series to the remaining elements in the longer series. This is compatible with Euclidean distance being used as an upper bound for DTW. :param s1: Sequence of numbers :param s2: Sequence of numbers :return: Euclidean distance """ n = min(len(s1), len(s2)) ub = 0 for v1, v2 in zip(s1, s2): ub += (v1 - v2)**2 # If the two series differ in length, compare the last element of the shortest series # to the remaining elements in the longer series if len(s1) > len(s2): v2 = s2[n - 1] for v1 in s1[n:]: ub += (v1 - v2)**2 elif len(s1) < len(s2): v1 = s1[n-1] for v2 in s2[n:]: ub += (v1 - v2)**2 return math.sqrt(ub)
61c308da89b98b4bbde1bba690c86559fd5e1400
706,460
def arithmetic_series(a: int, n: int, d: int = 1) -> int: """Returns the sum of the arithmetic sequence with parameters a, n, d. a: The first term in the sequence n: The total number of terms in the sequence d: The difference between any two terms in the sequence """ return n * (2 * a + (n - 1) * d) // 2
168f0b07cbe6275ddb54c1a1390b41a0f340b0a6
706,463
def find_splits(array1: list, array2: list) -> list: """Find the split points of the given array of events""" keys = set() for event in array1: keys.add(event["temporalRange"][0]) keys.add(event["temporalRange"][1]) for event in array2: keys.add(event["temporalRange"][0]) keys.add(event["temporalRange"][1]) return list(sorted(keys))
c52f696caddf35fa050621e7668eec06686cee14
706,467
def is_word(s): """ String `s` counts as a word if it has at least one letter. """ for c in s: if c.isalpha(): return True return False
524ed5cc506769bd8634a46d346617344485e5f7
706,470
def Bern_to_Fierz_nunu(C,ddll): """From semileptonic Bern basis to Fierz semileptonic basis for Class V. C should be the corresponding leptonic Fierz basis and `ddll` should be of the form 'sbl_enu_tau', 'dbl_munu_e' etc.""" ind = ddll.replace('l_','').replace('nu_','') return { 'F' + ind + 'nu': C['nu1' + ind], 'F' + ind + 'nup': C['nu1p' + ind], }
4f08f79d6614c8929c3f42096fac71b04bfe7b4b
706,472
def location_parser(selected_variables, column): """ Parse the location variable by creating a list of tuples. Remove the hyphen between the start/stop positions. Convert all elements to integers and create a list of tuples. Parameters: selected_variables (dataframe): The dataframe containing the location of the variables contained in the cps_selected_variables file column (character): The name of the column containing the start/stop positions Returns: selected_fields: A list of tuples containing the start/stop positions """ fields = [] for field in selected_variables[column]: field = field.split('-') field = [int(i) for i in field] fields.append(field) return fields
106f669269276c37652e92e62eb8c2c52dfe7637
706,476
import torch import math def get_qmf_bank(h, n_band): """ Modulates an input protoype filter into a bank of cosine modulated filters Parameters ---------- h: torch.Tensor prototype filter n_band: int number of sub-bands """ k = torch.arange(n_band).reshape(-1, 1) N = h.shape[-1] t = torch.arange(-(N // 2), N // 2 + 1) p = (-1)**k * math.pi / 4 mod = torch.cos((2 * k + 1) * math.pi / (2 * n_band) * t + p) hk = 2 * h * mod return hk
87e8cf3b0d85a6717cce9dc09f7a0a3e3581e498
706,477
def action_to_upper(action): """ action to upper receives an action in pddl_action_representation, and returns it in upper case. :param action: A action in PddlActionRepresentation :return: PddlActionRepresentation: The action in upper case """ if action: action.name = action.name.upper() action.types = [type.upper() for type in action.types] action.predicates = [pred.upper() for pred in action.predicates] action.requirements = [req.upper() for req in action.requirements] action.action = action.action.upper() return action
e9266ad79d60a58bf61d6ce81284fa2accbb0b8d
706,478
def _get_param_combinations(lists): """Recursive function which generates a list of all possible parameter values""" if len(lists) == 1: list_p_1 = [[e] for e in lists[0]] return list_p_1 list_p_n_minus_1 = _get_param_combinations(lists[1:]) list_p_1 = [[e] for e in lists[0]] list_p_n = [p_1 + p_n_minus_1 for p_1 in list_p_1 for p_n_minus_1 in list_p_n_minus_1] return list_p_n
b4903bea79aebeabf3123f03de986058a06a21f4
706,479
def sanitize_tag(tag: str) -> str: """Clean tag by replacing empty spaces with underscore. Parameters ---------- tag: str Returns ------- str Cleaned tag Examples -------- >>> sanitize_tag(" Machine Learning ") "Machine_Learning" """ return tag.strip().replace(" ", "_")
40ac78846f03e8b57b5660dd246c8a15fed8e008
706,480
def smoothed_epmi(matrix, alpha=0.75): """ Performs smoothed epmi. See smoothed_ppmi for more info. Derived from this: #(w,c) / #(TOT) -------------- (#(w) / #(TOT)) * (#(c)^a / #(TOT)^a) ==> #(w,c) / #(TOT) -------------- (#(w) * #(c)^a) / #(TOT)^(a+1)) ==> #(w,c) ---------- (#(w) * #(c)^a) / #(TOT)^a ==> #(w,c) * #(TOT)^a ---------- #(w) * #(c)^a """ row_sum = matrix.sum(axis=1) col_sum = matrix.sum(axis=0).power(alpha) total = row_sum.sum(axis=0).power(alpha)[0, 0] inv_col_sum = 1 / col_sum # shape (1,n) inv_row_sum = 1 / row_sum # shape (n,1) inv_col_sum = inv_col_sum * total mat = matrix * inv_row_sum mat = mat * inv_col_sum return mat
e2f72c4169aee2f394445f42e4835f1b55f347c9
706,482
def concat(l1, l2): """ Join two possibly None lists """ if l1 is None: return l2 if l2 is None: return l1 return l1 + l2
9e87bead7eedc4c47f665808b9e0222437bc01b5
706,484
def imthresh(im, thresh): """ Sets pixels in image below threshold value to 0 Args: im (ndarray): image thresh (float): threshold Returns: ndarray: thresholded image """ thresh_im = im.copy() thresh_im[thresh_im < thresh] = 0 return thresh_im
180dc1eba6320c21273e50e4cf7b3f28c786b839
706,486