content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def _extractRGBFromHex(hexCode): """ Extract RGB information from an hexadecimal color code Parameters: hexCode (string): an hexadecimal color code Returns: A tuple containing Red, Green and Blue information """ hexCode = hexCode.lstrip('#') # Remove the '#' from the string # Convert each byte into decimal, store it in a tuple and return return tuple(int(hexCode[i:i+2], 16) for i in (0, 2, 4))
e1d67b4f2004e5e2d4a646a3cc5dc49a1e8cd890
705,723
def get_user_partition_groups(course_key, user_partitions, user, partition_dict_key='name'): """ Collect group ID for each partition in this course for this user. Arguments: course_key (CourseKey) user_partitions (list[UserPartition]) user (User) partition_dict_key - i.e. 'id', 'name' depending on which partition attribute you want as a key. Returns: dict[partition_dict_key: Group]: Mapping from user partitions to the group to which the user belongs in each partition. If the user isn't in a group for a particular partition, then that partition's ID will not be in the dict. """ partition_groups = {} for partition in user_partitions: group = partition.scheme.get_group_for_user( course_key, user, partition, ) if group is not None: partition_groups[getattr(partition, partition_dict_key)] = group return partition_groups
3bb2f76f4a48ce0af745637810903b8086b2fc02
705,725
import collections def factory_dict(value_factory, *args, **kwargs): """A dict whose values are computed by `value_factory` when a `__getitem__` key is missing. Note that values retrieved by any other method will not be lazily computed; eg: via `get`. :param value_factory: :type value_factory: A function from dict key to value. :param *args: Any positional args to pass through to `dict`. :param **kwrags: Any kwargs to pass through to `dict`. :rtype: dict """ class FactoryDict(collections.defaultdict): @staticmethod def __never_called(): raise AssertionError('The default factory should never be called since we override ' '__missing__.') def __init__(self): super().__init__(self.__never_called, *args, **kwargs) def __missing__(self, key): value = value_factory(key) self[key] = value return value return FactoryDict()
f7d4898e62377958cf9d9c353ed12c8d381f042f
705,727
def build_or_passthrough(model, obj, signal): """Builds the obj on signal, or returns the signal if obj is None.""" return signal if obj is None else model.build(obj, signal)
bee9c8557a89a458cf281b42f968fe588801ed46
705,728
import requests import json def warc_url(url): """ Search the WARC archived version of the URL :returns: The WARC URL if found, else None """ query = "http://archive.org/wayback/available?url={}".format(url) response = requests.get(query) if not response: raise RuntimeError() data = json.loads(response.text) snapshots = data["archived_snapshots"] if not snapshots: return None return snapshots["closest"]["url"]
afc24876f72915ba07233d5fde667dd0ba964f5a
705,729
def set_attrib(node, key, default): """ Parse XML key for a given node If key does not exist, use default value """ return node.attrib[key] if key in node.attrib else default
0e21b6b0e5a64e90ee856d4b413084a8c395b070
705,732
def is_order_exist(context, symbol, side) -> bool: """判断同方向订单是否已经存在 :param context: :param symbol: 交易标的 :param side: 交易方向 :return: bool """ uo = context.unfinished_orders if not uo: return False else: for o in uo: if o.symbol == symbol and o.side == side: context.logger.info("同类型订单已存在:{} - {}".format(symbol, side)) return True return False
42363c8b3261e500a682b65608c27537b93bcfb1
705,733
import math def gvisc(P, T, Z, grav): """Function to Calculate Gas Viscosity in cp""" #P pressure, psia #T temperature, °R #Z gas compressibility factor #grav gas specific gravity M = 28.964 * grav x = 3.448 + 986.4 / T + 0.01009 * M Y = 2.447 - 0.2224 * x rho = (1.4926 / 1000) * P * M / Z / T K = (9.379 + 0.01607 * M) * T ** 1.5 / (209.2 + 19.26 * M + T) return K * math.exp(x * rho ** Y) / 10000
5ff1ad63ef581cea0147348104416913c7b77e37
705,738
def is_base(base_pattern, str): """ base_pattern is a compiled python3 regex. str is a string object. return True if the string match the base_pattern or False if it is not. """ return base_pattern.match(str, 0, len(str))
d0b0e3291fdbfad49698deffb9f57aefcabdce92
705,741
def predicate(line): """ Remove lines starting with ` # ` """ if "#" in line: return False return True
ff7d67c1fd7273b149c5a2148963bf898d6a3591
705,752
def sort_list_by_list(L1,L2): """Sort a list by another list""" return [x for (y,x) in sorted(zip(L2,L1), key=lambda pair: pair[0])]
04b7c02121620be6d9344af6f56f1b8bfe75e9f3
705,755
def unpack_singleton(x): """Gets the first element if the iterable has only one value. Otherwise return the iterable. # Argument: x: A list or tuple. # Returns: The same iterable or the first element. """ if len(x) == 1: return x[0] return x
cf551f242c8ea585c1f91eadbd19b8e5f73f0096
705,756
from typing import List from typing import Dict def make_car_dict(key: str, data: List[str]) -> Dict: """Organize car data for 106 A/B of the debtor :param key: The section id :param data: Content extract from car data section :return: Organized data for automobile of debtor """ return { "key": key, "make": data[0], "model": data[1], "year": data[2], "mileage": data[3], "other_information": data[5], "property_value": data[6], "your_property_value": data[7], }
671cb2f82f15d14345e34e9823ea390d72cf040a
705,757
import struct def get_array_of_float(num, data): """Read array of floats Parameters ---------- num : int Number of values to be read (length of array) data : str 4C binary data file Returns ------- str Truncated 4C binary data file list List of floats """ length = 4 results = struct.unpack('f' * num, data[:num * length]) pos = num * length new_data = data[pos:] return new_data, list(results)
92a0a4cc653046826b14c2cd376a42045c4fa641
705,762
def cver(verstr): """Converts a version string into a number""" if verstr.startswith("b"): return float(verstr[1:])-100000 return float(verstr)
1ad119049b9149efe7df74f5ac269d3dfafad4e2
705,765
def _replace_oov(original_vocab, line): """Replace out-of-vocab words with "UNK". This maintains compatibility with published results. Args: original_vocab: a set of strings (The standard vocabulary for the dataset) line: a unicode string - a space-delimited sequence of words. Returns: a unicode string - a space-delimited sequence of words. """ return u" ".join( [word if word in original_vocab else u"UNK" for word in line.split()])
2e2cb1464484806b79263a14fd32ed4d40d0c9ba
705,768
def geq_indicate(var, indicator, var_max, thr): """Generates constraints that make indicator 1 iff var >= thr, else 0. Parameters ---------- var : str Variable on which thresholding is performed. indicator : str Identifier of the indicator variable. var_max : int An upper bound on var. the : int Comparison threshold. Returns ------- List[str] A list holding the two constraints. """ lb = "- %s + %d %s <= 0" % (var, thr, indicator) ub = "- %s + %d %s >= -%d" % (var, var_max - thr + 1, indicator, thr - 1) return [lb, ub]
319f18f5343b806b7108dd9c02ca5d647e132dab
705,773
import torch def compute_accuracy(logits, targets): """Compute the accuracy""" with torch.no_grad(): _, predictions = torch.max(logits, dim=1) accuracy = torch.mean(predictions.eq(targets).float()) return accuracy.item()
af15e4d077209ff6e790d6fdaa7642bb65ff8dbf
705,779
def gm_put(state, b1, b2): """ If goal is ('pos',b1,b2) and we're holding b1, Generate either a putdown or a stack subtask for b1. b2 is b1's destination: either the table or another block. """ if b2 != 'hand' and state.pos[b1] == 'hand': if b2 == 'table': return [('a_putdown', b1)] elif state.clear[b2]: return [('a_stack', b1, b2)]
c9076ac552529c60b5460740c74b1602c42414f2
705,780
def get_child(parent, child_index): """ Get the child at the given index, or return None if it doesn't exist. """ if child_index < 0 or child_index >= len(parent.childNodes): return None return parent.childNodes[child_index]
37f7752a4a77f3d750413e54659f907b5531848c
705,782
def get_renaming(mappers, year): """Get original to final column namings.""" renamers = {} for code, attr in mappers.items(): renamers[code] = attr['df_name'] return renamers
33197b5c748b3ecc43783d5f1f3a3b5a071d3a4e
705,784
async def clap(text, args): """ Puts clap emojis between words. """ if args != []: clap_str = args[0] else: clap_str = "👏" words = text.split(" ") clappy_text = f" {clap_str} ".join(words) return clappy_text
09865461e658213a2f048b89757b75b2a37c0602
705,785
def remove_extra_two_spaces(text: str) -> str: """Replaces two consecutive spaces with one wherever they occur in a text""" return text.replace(" ", " ")
d8b9600d3b442216b1fbe85918f313fec8a5c9cb
705,786
def load_utt_list(utt_list): """Load a list of utterances. Args: utt_list (str): path to a file containing a list of utterances Returns: List[str]: list of utterances """ with open(utt_list) as f: utt_ids = f.readlines() utt_ids = map(lambda utt_id: utt_id.strip(), utt_ids) utt_ids = filter(lambda utt_id: len(utt_id) > 0, utt_ids) return list(utt_ids)
6a77e876b0cc959ac4151b328b718ae45522448b
705,787
def compute_flow_for_supervised_loss( feature_model, flow_model, batch, training ): """Compute flow for an image batch. Args: feature_model: A model to compute features for flow. flow_model: A model to compute flow. batch: A tf.tensor of shape [b, seq, h, w, c] holding a batch of triplets. training: bool that tells the model to use training or inference code. Returns: A tuple consisting of the images, the extracted features, the estimated flows, and the upsampled refined flows. """ feature_dict = feature_model(batch[:, 0], batch[:, 1], training=training) return flow_model(feature_dict, training=training)
a74f392c1d4e234fdb66d18e63d7c733ec6669a7
705,788
import itertools def labels_to_intervals(labels_list): """ labels_to_intervals() converts list of labels of each frame into set of time intervals where a tag occurs Args: labels_list: list of labels of each frame e.g. [{'person'}, {'person'}, {'person'}, {'surfboard', 'person'}] Returns: tags - set of time intervals where a tag occurs: { (label, start, end) }, a video from time 0 (inclusive) to time T (exclusive) e.g. {('cat', 3, 9), ('dog', 5, 8), ('people', 0, 6)} e.g. {('cat', 0, 1), ('cat', 2, 4), ('cat', 6, 8), ('dog', 0, 3), ('dog', 6, 8), ('people', 0, 2), ('people', 4, 6)} """ labels_dict = dict() for frame, labels in enumerate(labels_list): for label in labels: if label in labels_dict: labels_dict[label].add(frame) else: labels_dict[label] = {frame} output = set() for key, value in labels_dict.items(): frame_list = sorted(value) for interval in [(t[0][1], t[-1][1]) for t in (tuple(g[1]) for g in itertools.groupby(enumerate(frame_list), lambda x: x[0]-x[1]))]: output.add((key, interval[0], interval[1]+1)) return output
65b63ea3e6f097e9605e1c1ddb8dd434d7db9370
705,791
def get_wolfram_query_url(query): """Get Wolfram query URL.""" base_url = 'www.wolframalpha.com' if not query: return 'http://{0}'.format(base_url) return 'http://{0}/input/?i={1}'.format(base_url, query)
0122515f1a666cb897b53ae6bd975f65da072438
705,792
def compute_diff(old, new): """ Compute a diff that, when applied to object `old`, will give object `new`. Do not modify `old` or `new`. """ if not isinstance(old, dict) or not isinstance(new, dict): return new diff = {} for key, val in new.items(): if key not in old: diff[key] = val elif old[key] != val: diff[key] = compute_diff(old[key], val) for key in old: if key not in new: diff[key] = "$delete" return diff
f6e7674faa2a60be17994fbd110f8e1d67eb9886
705,798
def default_rollout_step(policy, obs, step_num): """ The default rollout step function is the policy's compute_action function. A rollout step function allows a developer to specify the behavior that will occur at every step of the rollout--given a policy and the last observation from the env--to decide what action to take next. This usually involves the rollout's policy and may perform learning. It also, may involve using, updating, or saving learning related state including hyper-parameters such as epsilon in epsilon greedy. You can provide your own function with the same signature as this default if you want to have a more complex behavior at each step of the rollout. """ return policy.compute_action(obs)
a6e9dff784e46b9a59ae34334a027b427e8d230a
705,801
import glob def find_file(filename): """ This helper function checks whether the file exists or not """ file_list = list(glob.glob("*.txt")) if filename in file_list: return True else: return False
42895e66e258ba960c890f871be8c261aec02852
705,802
def true_fov(M, fov_e=50): """Calulates the True Field of View (FOV) of the telescope & eyepiece pair Args: fov_e (float): FOV of eyepiece; default 50 deg M (float): Magnification of Telescope Returns: float: True Field of View (deg) """ return fov_e/M
7735135d326f3000ac60274972263a8a71648033
705,808
def air_density(temp, patm, pw = 0): """ Calculates the density of dry air by means of the universal gas law as a function of air temperature and atmospheric pressure. m / V = [Pw / (Rv * T)] + [Pd / (Rd * T)] where: Pd: Patm - Pw Rw: specific gas constant for water vapour [Rw = 461.495 MJ/kg/K] Rv: specific gas constant for dry air [Rv = 287.058 MJ/kg/K] T: air temperature [K] m/V: density of air [kg/m³] Parameters ---------- temp : float Air temperature [K]. patm : float Atmospheric pressure [Pa]. pw : float Vapour pressure [Pa]. Default to 0 Pa (dry air). Returns ------- float Air density [kg/m³]. """ rd, rw = 287.058, 461.495 # specific gas constant for dry air and water vapour [J / (kg K)] pd = patm - pw return (pd / (rd * temp)) + (pw / (rw * temp))
1af7afbf562fec105566a2c934f83c73f0be1173
705,812
def getblock(lst, limit): """Return first limit entries from list lst and remove them from the list""" r = lst[-limit:] del lst[-limit:] return r
8d230dec59fe00375d92b6c6a8b51f3e6e2d9126
705,815
import functools import warnings def ignore_python_warnings(function): """ Decorator for ignoring *Python* warnings. Parameters ---------- function : object Function to decorate. Returns ------- object Examples -------- >>> @ignore_python_warnings ... def f(): ... warnings.warn('This is an ignored warning!') >>> f() """ @functools.wraps(function) def wrapped(*args, **kwargs): """ Wrapped function. """ with warnings.catch_warnings(): warnings.simplefilter('ignore') return function(*args, **kwargs) return wrapped
438e54fe927f787783175faacf4eb9608fd27cf0
705,816
def get_requirements(extra=None): """ Load the requirements for the given extra from the appropriate requirements-extra.txt, or the main requirements.txt if no extra is specified. """ filename = f"requirements-{extra}.txt" if extra else "requirements.txt" with open(filename) as fp: # Parse out as one per line return [l.strip() for l in fp.readlines() if l.strip()]
7ce9e348357925b7ff165ebd8f13300d849ea0ee
705,817
def _format_mojang_uuid(uuid): """ Formats a non-hyphenated UUID into a whitelist-compatible UUID :param str uuid: uuid to format :return str: formatted uuid Example: >>> _format_mojang_uuid('1449a8a244d940ebacf551b88ae95dee') '1449a8a2-44d9-40eb-acf5-51b88ae95dee' Must have 32 characters: >>> _format_mojang_uuid('1') Traceback (most recent call last): ... ValueError: Expected UUID to have 32 characters """ if len(uuid) != 32: raise ValueError('Expected UUID to have 32 characters') return uuid[:8] + '-' + uuid[8:12] + '-' + uuid[12:16] + '-' + uuid[16:20] + '-' + uuid[20:]
517071b28f1e747091e2a539cd5d0b8765bebeba
705,818
def get_word(path): """ extract word name from json path """ return path.split('.')[0]
e749bcdaaf65de0299d35cdf2a2264568ad5051b
705,821
import json def readJsonFile(filePath): """read data from json file Args: filePath (str): location of the json file Returns: variable: data read form the json file """ result = None with open(filePath, 'r') as myfile: result = json.load(myfile) return result
cf15e358c52edcfb00d0ca5257cf2b5456c6e951
705,825
def get_namespace_leaf(namespace): """ From a provided namespace, return it's leaf. >>> get_namespace_leaf('foo.bar') 'bar' >>> get_namespace_leaf('foo') 'foo' :param namespace: :return: """ return namespace.rsplit(".", 1)[-1]
0cb21247f9d1ce5fa4dd8d313142c4b09a92fd7a
705,826
def sort(list_): """ This function is a selection sort algorithm. It will put a list in numerical order. :param list_: a list :return: a list ordered by numerial order. """ for minimum in range(0, len(list_)): for c in range(minimum + 1, len(list_)): if list_[c] < list_[minimum]: temporary = list_[minimum] list_[minimum] = list_[c] list_[c] = temporary return list_
99007e4b72a616ae73a20358afc94c76e0011d3e
705,827
def __charge_to_sdf(charge): """Translate RDkit charge to the SDF language. Args: charge (int): Numerical atom charge. Returns: str: Str representation of a charge in the sdf language """ if charge == -3: return "7" elif charge == -2: return "6" elif charge == -1: return "5" elif charge == 0: return "0" elif charge == 1: return "+1" elif charge == 2: return "+2" elif charge == 3: return "+4" else: return "0"
1bfda86ee023e8c11991eaae2969b87a349b7f7e
705,833
def get_volumetric_scene(self, data_key="total", isolvl=0.5, step_size=3, **kwargs): """Get the Scene object which contains a structure and a isosurface components Args: data_key (str, optional): Use the volumetric data from self.data[data_key]. Defaults to 'total'. isolvl (float, optional): The cuoff for the isosurface to using the same units as VESTA so e/bhor and kept grid size independent step_size (int, optional): step_size parameter for marching_cubes_lewiner. Defaults to 3. **kwargs: kwargs for the Structure.get_scene function Returns: [type]: [description] """ struct_scene = self.structure.get_scene(**kwargs) iso_scene = self.get_isosurface_scene( data_key=data_key, isolvl=isolvl, step_size=step_size, origin=struct_scene.origin, ) struct_scene.contents.append(iso_scene) return struct_scene
836fb5f3158ed5fe55a2975ce05eb21636584a95
705,838
def reduce_aet_if_dry(aet, wat_lev, fc): """ Reduce actual evapotranspiration if the soil is dry. If the water level in a cell is less than 0.7*fc, the rate of evapo-transpiration is reduced by a factor. This factor is 1 when wat_lev = 0.7*fc and decreases linearly to reach 0 when wat_lev = 0 i.e. where wat_lev < 0.7*fc, apply a correction factor of wat_lev/(0.7*fc) to the aet grid. Args: aet: "Raw" actual evapotranspiration grid. wat_lev: Water level grid fc: Soil field capacity grid. Returns: Array (modified AET grid with AET reduced where necessary). """ # Get a boolean array showing which cells need correcting bool_array = wat_lev < (0.7*fc) # Calculate a correction factor for all cells, but subtract 1 from answer cor_facts_minus1 = (wat_lev / (0.7*fc)) - 1 # Multiplying bool_array by cor_facts_minus1 gives a grid with values of # (cor_fact - 1) for cells which need correcting and zero otherwise. Add 1 # to this to get a grid of cor_facts and ones cor_facts = (bool_array * cor_facts_minus1) + 1 return aet*cor_facts
170462a23c3903a390b89963aa6ce21839e5d44b
705,839
def get_python3_status(classifiers): """ Search through list of classifiers for a Python 3 classifier. """ status = False for classifier in classifiers: if classifier.find('Programming Language :: Python :: 3') == 0: status = True return status
b4bf347dc0bbf3e9a198baa8237f7820cbb86e0b
705,845
def ratings_std(df): """calculate standard deviation of ratings from the given dataframe parameters ---------- df (pandas dataframe): a dataframe cotanis all ratings Returns ------- standard deviation(float): standard deviation of ratings, keep 4 decimal """ std_value = df['ratings'].std() std_value = round(std_value,4) return std_value
b1bf00d25c0cee91632eef8248d5e53236dd4526
705,847
import hashlib def _hash(file_name, hash_function=hashlib.sha256): """compute hash of file `file_name`""" with open(file_name, 'rb') as file_: return hash_function(file_.read()).hexdigest()
463d692116fbb85db9f1a537cbcaa5d2d019ba05
705,848
def _get_perf_hint(hint, index: int, _default=None): """ Extracts a "performance hint" value -- specified as either a scalar or 2-tuple -- for either the left or right Dataset in a merge. Parameters ---------- hint : scalar or 2-tuple of scalars, optional index : int Indicates whether the hint value is being extracted for the left or right Dataset. 0 = left, 1 = right. _default : optional Optional default value, returned if `hint` is None. Returns ------- Any The extracted performance hint value. """ if hint is None: return _default elif isinstance(hint, tuple): return hint[index] else: return hint
d67a70d526934dedaa9f571970e27695404350f2
705,849
def sentences_from_doc(ttree_doc, language, selector): """Given a Treex document, return a list of sentences in the given language and selector.""" return [bundle.get_zone(language, selector).sentence for bundle in ttree_doc.bundles]
d9c09249171d5d778981fb98a8a7f53765518479
705,855
def file_to_list(filename): """ Read in a one-column txt file to a list :param filename: :return: A list where each line is an element """ with open(filename, 'r') as fin: alist = [line.strip() for line in fin] return alist
33bee263b98c4ff85d10191fa2f5a0f095c6ae4b
705,857
def gen_model_forms(form, model): """Creates a dict of forms. model_forms[0] is a blank form used for adding new model objects. model_forms[m.pk] is an editing form pre-populated the fields of m""" model_forms = {0: form()} for m in model.objects.all(): model_forms[m.pk] = form(instance=m) return model_forms
28bf3f007a7f8f971c18980c84a7841fd116898f
705,858
def cleanFAAText(origText): """Take FAA text message and trim whitespace from end. FAA text messages have all sorts of trailing whitespace issues. We split the message into lines and remove all right trailing whitespace. We then recombine them into a uniform version with no trailing whitespace. The final line will not have a newline character at the end. Args: origText (str): Message text as it comes from the FAA. Returns: str: Cleaned up text as described above. """ lines = origText.split('\n') numLines = len(lines) # Remove empty line at end if present if lines[-1] == '': numLines -= 1 for i in range(0, numLines): lines[i] = lines[i].rstrip() newText = '\n'.join(lines).rstrip() return newText
ea9882e24c60acaa35cae97f8e95acb48f5fd2a6
705,861
def _read_hyperparameters(idx, hist): """Read hyperparameters as a dictionary from the specified history dataset.""" return hist.iloc[idx, 2:].to_dict()
b2a036a739ec3e45c61289655714d9b59b2f5490
705,863
def disassemble_pretty(self, addr=None, insns=1, arch=None, mode=None): """ Wrapper around disassemble to return disassembled instructions as string. """ ret = "" disas = self.disassemble(addr, insns, arch, mode) for i in disas: ret += "0x%x:\t%s\t%s\n" % (i.address, i.mnemonic, i.op_str) return ret
39bddf246b880decbc84015ef20c5664f88d917e
705,870
def IOU(a_wh, b_wh): """ Intersection over Union Args: a_wh: (width, height) of box A b_wh: (width, height) of box B Returns float. """ aw, ah = a_wh bw, bh = b_wh I = min(aw, bw) * min(ah, bh) area_a = aw * ah area_b = bw * bh U = area_a + area_b - I return I / U
92580147eac219d77e6c8a38875c5ee809783790
705,872
import re def check_pre_release(tag_name): """ Check the given tag to determine if it is a release tag, that is, whether it is of the form rX.Y.Z. Tags that do not match (e.g., because they are suffixed with someting like -beta# or -rc#) are considered pre-release tags. Note that this assumes that the tag name has been validated to ensure that it starts with something like rX.Y.Z and nothing else. """ release_re = re.compile('^r[0-9]+\\.[0-9]+\\.[0-9]+') return False if release_re.match(tag_name) else True
8e24a0a61bfa6fe84e936f004b4228467d724616
705,875
def _get_target_connection_details(target_connection_string): """ Returns a tuple with the raw connection details for the target machine extracted from the connection string provided in the application arguments. It is a specialized parser of that string. :param target_connection_string: the connection string provided in the arguments for the application. :return: A tuple in the form of (user, password, host, port) if a password is present in the connection string or (user, host, port) if a password is not present """ password = None connection_string_format_error = 'Invalid connection string provided. Expected: user[/password]@host[:port]' if '@' not in target_connection_string: raise TypeError(connection_string_format_error) connection_string_parts = target_connection_string.split('@') if len(connection_string_parts) != 2: raise TypeError(connection_string_parts) authentication_part = connection_string_parts[0] target_part = connection_string_parts[1] if '/' in authentication_part: auth_parts = authentication_part.split('/') if len(auth_parts) != 2: raise TypeError(connection_string_format_error) user, password = auth_parts else: user = authentication_part if ':' in target_part: conn_parts = target_part.split(':') if len(conn_parts) != 2: raise TypeError(connection_string_format_error) host, port = conn_parts try: port = int(port) except ValueError: raise TypeError(connection_string_format_error) else: host = target_part port = 22 if not len(user) or not len(host): raise TypeError(connection_string_format_error) if password: return user, password, host, int(port) else: return user, host, int(port)
5e6ee870c0e196f54950f26ee6e551476688dce9
705,876
import codecs def read(filepath): """Read file content from provided filepath.""" with codecs.open(filepath, encoding='utf-8') as f: return f.read()
bff53fbb9b1ebe85c6a1fa690d28d6b6bec71f84
705,878
import inspect def is_bound_builtin_method(meth): """Helper returning True if meth is a bound built-in method""" return (inspect.isbuiltin(meth) and getattr(meth, '__self__', None) is not None and getattr(meth.__self__, '__class__', None))
a7a45f0f519119d795e91723657a1333eb6714e4
705,879
def vocabulary_size(tokens): """Returns the vocabulary size count defined as the number of alphabetic characters as defined by the Python str.isalpha method. This is a case-sensitive count. `tokens` is a list of token strings.""" vocab_list = set(token for token in tokens if token.isalpha()) return len(vocab_list)
5e26e1be98a3e82737277458758f0fd65a64fe8f
705,882
def get_transit_boundary_indices(time, transit_size): """ Determines transit boundaries from sorted time of transit cut out :param time (1D np.array) sorted times of transit cut out :param transit_size (float) size of the transit crop window in days :returns tuple: [0] list of transit start indices (int) [1] list of sequence lengths (int) of each transit """ sequence_lengths = [] transit_start_indices = [0] for i, t in enumerate(time): if t - time[transit_start_indices[-1]] > transit_size: sequence_lengths.append(i - transit_start_indices[-1]) transit_start_indices.append(i) # last length is from last transit start til the end of the array sequence_lengths.append(len(time) - transit_start_indices[-1]) return transit_start_indices, sequence_lengths
cd3775d72690eb4539e0434b0ac7f715d14374a6
705,883
def _computePolyVal(poly, value): """ Evaluates a polynomial at a specific value. :param poly: a list of polynomial coefficients, (first item = highest degree to last item = constant term). :param value: number used to evaluate poly :return: a number, the evaluation of poly with value """ #return numpy.polyval(poly, value) acc = 0 for c in poly: acc = acc * value + c return acc
0377ba0757439409824b89b207485a99f804cb41
705,885
def odd_desc(count): """ Replace ___ with a single call to range to return a list of descending odd numbers ending with 1 For e.g if count = 2, return a list of 2 odds [3,1]. See the test below if it is not clear """ return list(reversed(range(1,count*2,2)))
2f90095c5b25f8ac33f3bb86d3f46e67932bc78a
705,886
def outside_range(number, min_range, max_range): """ Returns True if `number` is between `min_range` and `max_range` exclusive. """ return number < min_range or number > max_range
dc3889fbabb74db38b8558537413ebc5bc613d05
705,887
from typing import Any def device_traits() -> dict[str, Any]: """Fixture that sets default traits used for devices.""" return {"sdm.devices.traits.Info": {"customName": "My Sensor"}}
1ccaeac4a716706915654d24270c24dac0210977
705,889
def get_parser_args(args=None): """ Transform args (``None``, ``str``, ``list``, ``dict``) to parser-compatible (list of strings) args. Parameters ---------- args : string, list, dict, default=None Arguments. If dict, '--' are added in front and there should not be positional arguments. Returns ------- args : None, list of strings. Parser arguments. Notes ----- All non-strings are converted to strings with :func:`str`. """ if isinstance(args,str): return args.split() if isinstance(args,list): return list(map(str,args)) if isinstance(args,dict): toret = [] for key in args: toret += ['--%s' % key] if isinstance(args[key],list): toret += [str(arg) for arg in args[key]] else: val = str(args[key]) if val: toret += [val] return toret return args
41b607a6ebf12526efcd38469192b398419327bf
705,894
def set_name_line(hole_lines, name): """Define the label of each line of the hole Parameters ---------- hole_lines: list a list of line object of the slot name: str the name to give to the line Returns ------- hole_lines: list List of line object with label """ for ii in range(len(hole_lines)): hole_lines[ii].label = name + "_" + str(ii) return hole_lines
a57667f269dac62d39fa127b2a4bcd438a8a989b
705,895
def is_reserved(word): """ Determines if word is reserved :param word: String representing the variable :return: True if word is reserved and False otherwise """ lorw = ['define','define-struct'] return word in lorw
0b0e3706bcafe36fc52e6384617223078a141fb2
705,901
import csv def read_csv_from_file(file): """ Reads the CSV data from the open file handle and returns a list of dicts. Assumes the CSV data includes a header row and uses that header row as fieldnames in the dict. The following fields are required and are case-sensitive: - ``artist`` - ``song`` - ``submitter`` - ``seed`` Other fields are ultimately preserved untouched in the output CSV. If the CSV doesn't have a header row, uses the following hardcoded list: - ``order`` - ``seed`` - ``submitter`` - ``year`` - ``song`` - ``artist`` - ``link`` If a tab character is present in the first row, assumes the data is tab-delimited, otherwise assumes comma-delimited. :returns: All parsed data from the already-opened CSV file given, as a list of dicts as generated by `csv.DictReader` """ data = list(file) delimiter = "\t" if "\t" in data[0] else "," # Look for a header row reader = csv.reader([data[0]], delimiter=delimiter) row = next(reader) for col in row: try: int(col) # Found an integer, no headers present headers = ["order", "seed", "submitter", "year", "song", "artist", "link"] break except ValueError: pass else: # Unable to find an integer here, must be a header row # Pop the header row off the data list and create a new reader just to # parse that row data.pop(0) headers = row return list(csv.DictReader(data, fieldnames=headers, delimiter=delimiter))
89cfce0be6270076230051a6e852d1add3f4dcaf
705,904
import hashlib import six def make_hashkey(seed): """ Generate a string key by hashing """ h = hashlib.md5() h.update(six.b(str(seed))) return h.hexdigest()
38d088005cb93fc0865933bbb706be171e72503a
705,905
def fix(x): """ Replaces spaces with tabs, removes spurious newlines, and lstrip()s each line. Makes it really easy to create BED files on the fly for testing and checking. """ s = "" for i in x.splitlines(): i = i.lstrip() if i.endswith('\t'): add_tab = '\t' else: add_tab = '' if len(i) == 0: continue i = i.split() i = '\t'.join(i) + add_tab + '\n' s += i return s
ecd3a4d7f470feae1b697025c8fbf264d5c6b149
705,906
def get_ngram_universe(sequence, n): """ Computes the universe of possible ngrams given a sequence. Where n is equal to the length of the sequence, the resulting number represents the sequence universe. Example -------- >>> sequence = [2,1,1,4,2,2,3,4,2,1,1] >>> ps.get_ngram_universe(sequence, 3) 64 """ # if recurrance is possible, the universe is given by k^t (SSA pg 68) k = len(set(sequence)) if k > 10 and n > 10: return 'really big' return k**n
3dbfe1822fdefb3e683b3f2b36926b4bb066468f
705,907
def cartToRadiusSq(cartX, cartY): """Convert Cartesian coordinates into their corresponding radius squared.""" return cartX**2 + cartY**2
3fb79d2c056f06c2fbf3efc14e08a36421782dbd
705,909
def unique_entity_id(entity): """ :param entity: django model :return: unique token combining the model type and id for use in HTML """ return "%s-%s" % (type(entity).__name__, entity.id)
c58daf9a115c9840707ff5e807efadad36a86ce8
705,910
def variable_to_json(var): """Converts a Variable object to dict/json struct""" o = {} o['x'] = var.x o['y'] = var.y o['name'] = var.name return o
86497a7915e4825e6e2cbcfb110c9bc4c229efed
705,913
def getOrElseUpdate(dictionary, key, opr): """If given key is already in the dictionary, returns associated value. Otherwise compute the value with opr, update the dictionary and return it. None dictionary are ignored. >>> d = dict() >>> getOrElseUpdate(d, 1, lambda _: _ + 1) 2 >>> print(d) {1: 2} @type dictionary: dictionary of A => B @param dictionary: the dictionary @type key: A @param key: the key @type opr: function of A => B @param opr: the function to compute new value from keys @rtype: B @return: the value associated with the key """ if dictionary is None: return opr(key) else: if key not in dictionary: dictionary[key] = opr(key) return dictionary[key]
95454d7ca34d6ae243fda4e70338cf3d7584b827
705,915
def filt_all(list_, func): """Like filter but reverse arguments and returns list""" return [i for i in list_ if func(i)]
72010b483cab3ae95d49b55ca6a70b0838b0a34d
705,920
def _rav_setval_ ( self , value ) : """Assign the valeu for the variable >>> var = ... >>> var.value = 10 """ value = float ( value ) self.setVal ( value ) return self.getVal()
80ad7ddec68d5c97f72ed63dd6ba4a1101de99cb
705,921
def bb_to_plt_plot(x, y, w, h): """ Converts a bounding box to parameters for a plt.plot([..], [..]) for actual plotting with pyplot """ X = [x, x, x+w, x+w, x] Y = [y, y+h, y+h, y, y] return X, Y
10ea3d381969b7d30defdfdbbac0a8d58d06d4d4
705,924
from typing import Counter def count_items(column_list:list): """ Contar os tipos (valores) e a quantidade de items de uma lista informada args: column_list (list): Lista de dados de diferentes tipos de valores return: Retorna dois valores, uma lista de tipos (list) e o total de itens de cada tipo (list) """ counter = Counter(column_list) item_types = list(counter.keys()) count_items = list(counter.values()) return item_types, count_items
06cf25aed4d0de17fa8fb11303c9284355669cf5
705,925
def to_graph(grid): """ Build adjacency list representation of graph Land cells in grid are connected if they are vertically or horizontally adjacent """ adj_list = {} n_rows = len(grid) n_cols = len(grid[0]) land_val = "1" for i in range(n_rows): for j in range(n_cols): if grid[i][j] == land_val: adj_list[(i,j)] = [] if i > 0 and grid[i-1][j] == land_val: adj_list[(i,j)].append((i-1,j)) if i < n_rows-1 and grid[i+1][j] == land_val: adj_list[(i,j)].append((i+1,j)) if j > 0 and grid[i][j-1] == land_val: adj_list[(i,j)].append((i,j-1)) if j < n_cols-1 and grid[i][j+1] == land_val: adj_list[(i,j)].append((i,j+1)) return adj_list
ebdd0406b123a636a9d380391ef4c13220e2dabd
705,926
import re def _remove_comments_inline(text): """Removes the comments from the string 'text'.""" if 'auto-ignore' in text: return text if text.lstrip(' ').lstrip('\t').startswith('%'): return '' match = re.search(r'(?<!\\)%', text) if match: return text[:match.end()] + '\n' else: return text
463e29e1237a88e91c13a58ffea1b2ccdafd4a1d
705,929
import fcntl def has_flock(fd): """ Checks if fd has flock over it True if it is, False otherwise :param fd: :return: :rtype: bool """ try: fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB) except BlockingIOError: return True else: return False
9ae997d06a12d73a659958bc2f0467ebdf0142b7
705,937
import json def assertDict(s): """ Assert that the input is a dictionary. """ if isinstance(s,str): try: s = json.loads(s) except: raise AssertionError('String "{}" cannot be json-decoded.'.format(s)) if not isinstance(s,dict): raise AssertionError('Variable "{}" is not a dictionary.'.format(s)) return s
302defb4e1eecc9a6171cda0401947e3251be585
705,942
import ast from typing import Tuple from typing import List from typing import Any def get_function_args(node: ast.FunctionDef) -> Tuple[List[Any], List[Any]]: """ This functon will process function definition and will extract all arguments used by a given function and return all optional and non-optional args used by the function. Args: node: Function node containing function that needs to be analyzed Returns: (non_optional_args, optional_args): named function args """ assert ( type(node) == ast.FunctionDef ), "Incorrect node type. Expected ast.FunctionDef, got {}".format(type(node)) total_args = len(node.args.args) default_args = len(node.args.defaults) optional_args = [] non_optional_args = [] # Handle positional args for i in range(total_args): if i + default_args < total_args: non_optional_args.append(node.args.args[i].arg) else: optional_args.append(node.args.args[i].arg) # Handle named args for arg in node.args.kwonlyargs: optional_args.append(arg.arg) return non_optional_args, optional_args
a4fe9dccedd5684050a7d5e7949e384dd4021035
705,943
def index_containing_substring(list_str, substring): """For a given list of strings finds the index of the element that contains the substring. Parameters ---------- list_str: list of strings substring: substring Returns ------- index: containing the substring or -1 """ for i, s in enumerate(list_str): if substring in s: return i return -1
2816899bc56f6b2c305192b23685d3e803b420df
705,945
def calculate_n_inputs(inputs, config_dict): """ Calculate the number of inputs for a particular model. """ input_size = 0 for input_name in inputs: if input_name == 'action': input_size += config_dict['prior_args']['n_variables'] elif input_name == 'state': input_size += config_dict['misc_args']['state_size'] elif input_name == 'reward': input_size += 1 elif input_name in ['params', 'grads']: if config_dict['approx_post_args']['constant_scale']: input_size += config_dict['prior_args']['n_variables'] else: input_size += 2 * config_dict['prior_args']['n_variables'] return input_size
78d750ff4744d872d696dcb454933c868b0ba41e
705,950
def all_not_none(*args): """Shorthand function for ``all(x is not None for x in args)``. Returns True if all `*args` are not None, otherwise False.""" return all(x is not None for x in args)
2d063f39e253a78b28be6857df08d8f386d8eb4a
705,954
import logging import requests def scrape_page(url): """ scrape page by url and return its html :param url: page url :return: html of page """ logging.info('scraping %s...', url) try: response = requests.get(url) if response.status_code == 200: return response.text logging.error('get invalid status code %s while scraping %s', response.status_code, url) except requests.RequestException: logging.error('error occurred while scraping %s', url, exc_info=True)
a09eb79ce6abe25e4eb740dcfeb7a4debfca0b88
705,959
def get_all_applications(user, timeslot): """ Get a users applications for this timeslot :param user: user to get applications for :param timeslot: timeslot to get the applications. :return: """ return user.applications.filter(Proposal__TimeSlot=timeslot)
40aec747174fa4a3ce81fe2a3a5eee599c81643a
705,961
import importlib def get_dataset(cfg, designation): """ Return a Dataset for the given designation ('train', 'valid', 'test'). """ dataset = importlib.import_module('.' + cfg['dataset'], __package__) return dataset.create(cfg, designation)
3f872d6407110cf735968ad6d4939b40fec9167d
705,962
def RestrictDictValues( aDict, restrictSet ): """Return a dict which has the mappings from the original dict only for values in the given set""" return dict( item for item in aDict.items() if item[1] in restrictSet )
4333c40a38ad3bce326f94c27b4ffd7dc24ae19c
705,963
def abs_length_diff(trg, pred): """Computes absolute length difference between a target sequence and a predicted sequence Args: - trg (str): reference - pred (str): generated output Returns: - absolute length difference (int) """ trg_length = len(trg.split(' ')) pred_length = len(pred.split(' ')) return abs(trg_length - pred_length)
b5baf53609b65aa1ef3b1f142e965fa0606b3136
705,966
import re def parse_msig_storage(storage: str): """Parse the storage of a multisig contract to get its counter (as a number), threshold (as a number), and the keys of the signers (as Micheline sequence in a string).""" # put everything on a single line storage = ' '.join(storage.split('\n')) storage_regexp = r'Pair\s+?([0-9]+)\s+?([0-9]+)\s+?(.*)\s*' match = re.search(storage_regexp, storage) assert match is not None return { 'counter': int(match[1]), 'threshold': int(match[2]), 'keys': match[3], }
6e04091721177cdd3d40b86717eb86ebbb92a8ff
705,967
from functools import reduce from operator import add def assemble_docstring(parsed, sig=None): """ Assemble a docstring from an OrderedDict as returned by :meth:`nd.utils.parse_docstring()` Parameters ---------- parsed : OrderedDict A parsed docstring as obtained by ``nd.utils.parse_docstring()``. sig : function signature, optional If provided, the parameters in the docstring will be ordered according to the parameter order in the function signature. Returns ------- str The assembled docstring. """ parsed = parsed.copy() indent = parsed.pop('indent') pad = ' '*indent # Sort 'Parameters' section according to signature if sig is not None and 'Parameters' in parsed: order = tuple(sig.parameters.keys()) def sort_index(p): key = p[0].split(':')[0].strip(' *') if key == '': return 9999 return order.index(key) parsed['Parameters'] = sorted(parsed['Parameters'], key=sort_index) d = [] for k, v in parsed.items(): if isinstance(v[0], list): flat_v = reduce(add, v) else: flat_v = v if k is not None: d.extend(['', pad + k, pad + '-'*len(k)]) d.extend([(pad + l).rstrip() for l in flat_v]) return '\n'.join(d)
90553c468a2b113d3f26720128e384b0444d5c93
705,968
import torch def log_cumsum(probs, dim=1, eps=1e-8): """Calculate log of inclusive cumsum.""" return torch.log(torch.cumsum(probs, dim=dim) + eps)
7f1ab77fd9909037c7b89600c531173dab80c11e
705,970
def race_from_string(str): """Convert race to one of ['white', 'black', None].""" race_dict = { "White/Caucasian": 'white', "Black/African American": 'black', "Unknown": None, "": None } return race_dict.get(str, 'other')
1d38469537c3f5f6a4a42712f5ec1dbd26a471bd
705,971
from typing import List def normalize(value: str) -> str: """Normalize a string by removing '-' and capitalizing the following character""" char_list: List[str] = list(value) length: int = len(char_list) for i in range(1, length): if char_list[i - 1] in ['-']: char_list[i] = char_list[i].upper() return ''.join(char_list).replace('-', '')
52c1c8b5e950347cf63ed15d1efde47046b07873
705,973
def binary_str(num): """ Return a binary string representation from the posive interger 'num' :type num: int :return: Examples: >>> binary_str(2) '10' >>> binary_str(5) '101' """ # Store mod 2 operations results as '0' and '1' bnum = '' while num > 0: bnum = str(num & 0x1) + bnum num = num >> 1 return bnum
dde400323fccb9370c67197f555d9c41c40084a6
705,979
def compute_phot_error(flux_variance, bg_phot, bg_method, ap_area, epadu=1.0): """Computes the flux errors using the DAOPHOT style computation Parameters ---------- flux_variance : array flux values bg_phot : array background brightness values. bg_method : string background method ap_area : array the area of the aperture in square pixels epadu : float (optional) Gain in electrons per adu (only use if image units aren't e-). Default value is 1.0 Returns ------- flux_error : array an array of flux errors """ bg_variance_terms = (ap_area * bg_phot['aperture_std'] ** 2.) * (1. + ap_area/bg_phot['aperture_area']) variance = flux_variance / epadu + bg_variance_terms flux_error = variance ** .5 return flux_error
4470277ebc41cce0e2c8c41c2f03e3466473d749
705,980
def weighted_sequence_identity(a, b, weights, gaps='y'): """Compute the sequence identity between two sequences, different positions differently The definition of sequence_identity is ambyguous as it depends on how gaps are treated, here defined by the *gaps* argument. For details and examples, see `this page <https://pyaln.readthedocs.io/en/latest/tutorial.html#sequence-identity>`_ Parameters ---------- a : str first sequence, with gaps encoded as "-" b : str second sequence, with gaps encoded as "-" weights : list of float list of weights. Any iterable with the same length as the two input sequences (including gaps) is accepted. The final score is divided by their sum (except for positions not considered, as defined by the gaps argument). gaps : str defines how to take into account gaps when comparing sequences pairwise. Possible values: - 'y' : gaps are considered and considered mismatches. Positions that are gaps in both sequences are ignored. - 'n' : gaps are not considered. Positions that are gaps in either sequences compared are ignored. - 't' : terminal gaps are trimmed. Terminal gap positions in either sequences are ignored, others are considered as in 'y'. - 'a' : gaps are considered as any other character; even gap-to-gap matches are scored as identities. Returns ------- float sequence identity between the two sequences Examples -------- >>> weighted_sequence_identity('ATGCA', ... 'ATGCC', weights=[1, 1, 1, 1, 6]) 0.4 >>> weighted_sequence_identity('ATGCA', ... 'ATGCC', weights=[1, 1, 1, 1, 1]) 0.8 Note ---- To compute sequence identity efficiently among many sequences, use :func:`~pyaln.Alignment.score_similarity` instead. See also -------- pyaln.Alignment.score_similarity, weighted_sequence_identity """ if len(a)!=len(b): raise IndexError('sequence_identity ERROR sequences do not have the same length') if len(weights)!=len(a): raise IndexError('sequence_identity ERROR weights must be the same length as sequences') if gaps=='y': pos_to_remove=[i for i in range(len(a)) if a[i]=='-' and b[i]=='-' ] elif gaps=='n': pos_to_remove=[i for i in range(len(a)) if a[i]=='-' or b[i]=='-' ] elif gaps=='t': pos_to_remove=[i for i in range(len(a)) if a[i]=='-' and b[i]=='-' ] for s in [a,b]: for i,c in enumerate(s): if c=='-': pos_to_remove.append(i) else: break for i, c in reversed(list(enumerate(s))): if c=='-': pos_to_remove.append(i) else: break elif gaps=='a': total_weight= sum( weights ) count_identical=sum([int(ca == b[i])*weights[i] for i,ca in enumerate(a)]) return count_identical/total_weight if total_weight else 0.0 else: raise Exception('sequence_identity ERROR gaps argument must be one of {a, y, n, t}') exclude_pos=set(pos_to_remove) actual_weights=[w for i,w in enumerate(weights) if not i in exclude_pos] total_weight= sum( actual_weights ) count_identical=sum([int(ca == b[i] and ca!='-' )*weights[i] for i,ca in enumerate(a) if not i in exclude_pos]) return count_identical/( total_weight ) if total_weight else 0.0
8face090454e984d0d4b9ea5fe78b6600a6e6b03
705,983