content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def yes_or_no(question, default="no"):
"""
Returns True if question is answered with yes else False.
default: by default False is returned if there is no input.
"""
answers = "yes|[no]" if default == "no" else "[yes]|no"
prompt = "{} {}: ".format(question, answers)
while True:
answer = input(prompt).lower()
if answer == '':
answer = default
if answer in ['no', 'n']:
return False
elif answer in ['yes', 'y']:
return True | 496137bcd3d99a3f0bcc5bb87ab3dc090f8fc414 | 706,965 |
def decode(encoded: list):
"""Problem 12: Decode a run-length encoded list.
Parameters
----------
encoded : list
The encoded input list
Returns
-------
list
The decoded list
Raises
------
TypeError
If the given argument is not of `list` type
"""
if not isinstance(encoded, list):
raise TypeError('The argument given is not of `list` type.')
decoded = []
for x in encoded:
if isinstance(x, list):
decoded.extend(x[0] * [x[1]])
else:
decoded.append(x)
return decoded | 8fb273140509f5a550074c6d85e485d2dc1c79d0 | 706,966 |
def geom_cooling(temp, k, alpha = 0.95):
"""Geometric temperature decreasing."""
return temp * alpha | 4263e4cc8a5de21d94bc560e8ff364d8c07f97fd | 706,971 |
import re
def bytes_to_escaped_str(data, keep_spacing=False, escape_single_quotes=False):
"""
Take bytes and return a safe string that can be displayed to the user.
Single quotes are always escaped, double quotes are never escaped:
"'" + bytes_to_escaped_str(...) + "'"
gives a valid Python string.
Args:
keep_spacing: If True, tabs and newlines will not be escaped.
"""
if not isinstance(data, bytes):
raise ValueError("data must be bytes, but is {}".format(data.__class__.__name__))
# We always insert a double-quote here so that we get a single-quoted string back
# https://stackoverflow.com/questions/29019340/why-does-python-use-different-quotes-for-representing-strings-depending-on-their
ret = repr(b'"' + data).lstrip("b")[2:-1]
if not escape_single_quotes:
ret = re.sub(r"(?<!\\)(\\\\)*\\'", lambda m: (m.group(1) or "") + "'", ret)
if keep_spacing:
ret = re.sub(
r"(?<!\\)(\\\\)*\\([nrt])",
lambda m: (m.group(1) or "") + dict(n="\n", r="\r", t="\t")[m.group(2)],
ret
)
return ret | fe8aa0ed3a8e3f2c7a2cf1aaeebc555b7281bde7 | 706,972 |
from datetime import datetime
def datetime_to_timestamp(dt, epoch=datetime(1970,1,1)):
"""takes a python datetime object and converts it to a Unix timestamp.
This is a non-timezone-aware function.
:param dt: datetime to convert to timestamp
:param epoch: datetime, option specification of start of epoch [default: 1/1/1970]
:return: timestamp
"""
td = dt - epoch
return (td.microseconds + (td.seconds + td.days * 86400)) | 2fbd5b3d6a56bc04066f7aaa8d4bef7c87a42632 | 706,982 |
def connectivity_dict_builder(edge_list, as_edges=False):
"""Builds connectivity dictionary for each vertex (node) - a list
of connected nodes for each node.
Args:
edge_list (list): a list describing the connectivity
e.g. [('E7', 'N3', 'N6'), ('E2', 'N9', 'N4'), ...]
as_edges (bool): whether to return connected vertices / nodes or edges
Returns:
(dict): connectivity dictionary, each node is a key and the
value is a set of connected nodes
e.g. {'N3': {'N6', 'N11', 'N7'}, 'N9': {'N4'}, etc}
"""
connectivity_dict = {}
for b, n1, n2 in edge_list:
n_set = connectivity_dict.get(n1,set())
n_set.add(b if as_edges else n2)
connectivity_dict[n1] = n_set
n_set = connectivity_dict.get(n2,set())
n_set.add(b if as_edges else n1)
connectivity_dict[n2] = n_set
return connectivity_dict | 58f24c6465fa1aaccca92df4d06662b0ce1e1e77 | 706,983 |
def calc_recall(TP, FN):
"""
Calculate recall from TP and FN
"""
if TP + FN != 0:
recall = TP / (TP + FN)
else:
recall = 0
return recall | 8f3513e11f8adad111eee32740c271aad31fbe28 | 706,992 |
def make_segment(segment, discontinuity=False):
"""Create a playlist response for a segment."""
response = []
if discontinuity:
response.append("#EXT-X-DISCONTINUITY")
response.extend(["#EXTINF:10.0000,", f"./segment/{segment}.m4s"]),
return "\n".join(response) | 8419b100409934f902c751734c396bc72d8a6917 | 706,993 |
from typing import Any
def from_dicts(key: str, *dicts, default: Any = None):
"""
Returns value of key in first matchning dict.
If not matching dict, default value is returned.
Return:
Any
"""
for d in dicts:
if key in d:
return d[key]
return default | 508febc48fd22d3a23dc0500b0aa3824c99fdbc3 | 706,994 |
def time_in_words(h, m):
"""Hackerrank Problem: https://www.hackerrank.com/challenges/the-time-in-words/problem
Given the time in numerals we may convert it into words, as shown below:
----------------------------------------------
| 5:00 | -> | five o' clock |
| 5:01 | -> | one minute past five |
| 5:10 | -> | ten minutes past five |
| 5:15 | -> | quarter past five |
| 5:30 | -> | half past five |
| 5:40 | -> | twenty minutes to six |
| 5:45 | -> | quarter to six |
| 5:47 | -> | thirteen minutes to six |
| 5:28 | -> | twenty eight minutes past five |
----------------------------------------------
At minutes = 0, use o' clock. For 1 <= minutes <= 30, use past, and for 30 < minutes use to. Note the space between
the apostrophe and clock in o' clock. Write a program which prints the time in words for the input given in the
format described.
Args:
h (int): hour of the day
m (int): minutes after the hour
Returns:
str: string representation of the time
"""
time = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen",
"fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty", "twenty one", "twenty two",
"twenty three", "twenty four", "twenty five", "twenty six", "twenty seven", "twenty eight", "twenty nine"]
# We check for a certain set of cases:
# Case 1 - we're on the hour, so we use o' clock
if m == 0:
return "{0} o' clock".format(time[h-1])
# Case 2 - we're one minute after, so we use minute (versus minutes later on to describe the time)
if m == 1:
return "{0} minute past {1}".format(time[m-1], time[h-1])
# Case 3 - we're a quarter past the hour
if m == 15:
return "quarter past {0}".format(time[h-1])
# Case 4 - we're half past the hour
if m == 30:
return "half past {0}".format(time[h-1])
# Case 5 - we're a quarter to the next hour
if m == 45:
return "quarter to {0}".format(time[h])
# Case 6 - we check for minutes after the hour, which is until we hit minute 30
if m < 30:
return "{0} minutes past {1}".format(time[m-1], time[h-1])
# Case 7 - this covers the cases where the minutes are after 30 so we're mintues to the next hour
return "{0} minutes to {1}".format(time[59-m], time[h]) | 85f2247f01df36ef499105a9940be63eee189100 | 706,995 |
def concat_files(*files):
"""
Concat some files together. Returns out and err to keep parity with shell commands.
Args:
*files: src1, src2, ..., srcN, dst.
Returns:
out: string
err: string
"""
out = ''
err = ''
dst_name = files[-1]
sources = [files[f] for f in range(len(files)) if f < len(files) - 1]
with open(dst_name, 'w') as dst:
for f in sources:
with open(f, 'r') as src:
for line in src:
dst.write(line)
return out, err | 101c37e5b3955c153c8c2210e7575a62341c768a | 706,998 |
def midi_to_chroma(pitch):
"""Given a midi pitch (e.g. 60 == C), returns its corresponding
chroma class value. A == 0, A# == 1, ..., G# == 11 """
return ((pitch % 12) + 3) % 12 | 25ef72f78269c3f494ca7431f1291891ddea594a | 707,005 |
import re
def _snippet_items(snippet):
"""Return all markdown items in the snippet text.
For this we expect it the snippet to contain *nothing* but a markdown list.
We do not support "indented" list style, only one item per linebreak.
Raises SyntaxError if snippet not in proper format (e.g. contains
anything other than a markdown list).
"""
unformatted = snippet.text and snippet.text.strip()
# treat null text value as empty list
if not unformatted:
return []
# parse out all markdown list items
items = re.findall(r'^[-*+] +(.*)$', unformatted, re.MULTILINE)
# if there were any lines that didn't yield an item, assume there was
# something we didn't parse. since we never want to lose existing data
# for a user, this is an error condition.
if len(items) < len(unformatted.splitlines()):
raise SyntaxError('unparsed lines in user snippet: %s' % unformatted)
return items | bdeb5b5c5e97ef3a8082b7131d46990de02a59af | 707,006 |
import itertools
import re
def parse_cluster_file(filename):
"""
Parse the output of the CD-HIT clustering and return a dictionnary of clusters.
In order to parse the list of cluster and sequences, we have to parse the CD-HIT
output file. Following solution is adapted from a small wrapper script
([source code on Github](https://github.com/Y-Lammers/CD-HIT-Filter/blob/master/CD-HIT-Filter.py),
author: Youri Lammers).
"""
# parse through the .clstr file and create a dictionary
# with the sequences per cluster
# open the cluster file and set the output dictionary
cluster_file, cluster_dic = open(filename), {}
# parse through the cluster file and store the cluster name + sequences in the dictionary
# This is a generator comprehension which groups lines together based of wether the
# line starts with a ">".
cluster_groups = (x[1] for x in itertools.groupby(cluster_file, key=lambda line: line[0] == '>'))
# Now we get alternate groups of cluster name and sequence list.
for cluster in cluster_groups:
# Note: next(cluster) retrieves the first line of the cluster i (>cluster name)
name = next(cluster).strip()
name = re.sub(' ', '_', name[1:])
# Note: next(cluster_groups) retrieves the next cluster i+1 containing the sequences
# the cluster is itself an iterator (every line)
seqs = [seq.split('>')[1].split('...') for seq in next(cluster_groups)]
# Write a boolean value True if sequence is the reference sequence from the cluster
seqs = [[seq[0], (True if seq[1] == ' *\n' else False)] for seq in seqs]
cluster_dic[name] = seqs
# return the cluster dictionary
return cluster_dic | d50eaeb926be3a7b8d1139c82142e4a1b595c1a0 | 707,011 |
import base64
def decode_password(base64_string: str) -> str:
"""
Decode a base64 encoded string.
Args:
base64_string: str
The base64 encoded string.
Returns:
str
The decoded string.
"""
base64_bytes = base64_string.encode("ascii")
sample_string_bytes = base64.b64decode(base64_bytes)
return sample_string_bytes.decode("ascii") | 0f04617c239fbc740a9b4c9c2d1ae867a52e0c74 | 707,015 |
from typing import Iterable
from typing import Any
from typing import List
def drop(n: int, it: Iterable[Any]) -> List[Any]:
"""
Return a list of N elements drop from the iterable object
Args:
n: Number to drop from the top
it: Iterable object
Examples:
>>> fpsm.drop(3, [1, 2, 3, 4, 5])
[4, 5]
"""
return list(it)[n:] | 0732bd560f0da0a43f65ee3b5ed46fd3a05e26f5 | 707,017 |
def csv_args(value):
"""Parse a CSV string into a Python list of strings.
Used in command line parsing."""
return map(str, value.split(",")) | b2596180054f835bfe70e3f900caa5b56a7856a6 | 707,018 |
def reverse( sequence ):
"""Return the reverse of any sequence
"""
return sequence[::-1] | f08ae428844347e52d8dbf1cd8ad07cfbf4ef597 | 707,020 |
def kwargs_to_flags(**kwargs):
"""Convert `kwargs` to flags to pass on to CLI."""
flag_strings = []
for (key, val) in kwargs.items():
if isinstance(val, bool):
if val:
flag_strings.append(f"--{key}")
else:
flag_strings.append(f"--{key}={val}")
return " ".join(flag_strings) | aa672fe26c81e7aaf8a6e7c38354d1649495b8df | 707,025 |
def _groupby_clause(uuid=None, owner=None, human_name=None, processing_name=None):
"""
Build the groupby clause. Simply detect which fields are set, and group by those.
Args:
uuid:
owner:
human_name:
processing_name:
Returns:
(str): "field, ..., field"
"""
gbc = ''
clauses = []
if uuid is not None:
clauses.append('uuid')
if owner is not None:
clauses.append('owner')
if human_name is not None:
clauses.append('human_name')
if processing_name is not None:
clauses.append('processing_name')
if len(clauses) > 0:
gbc = ','.join(clauses)
return gbc | 21546efa19e841661ed3a7ad8a84cf9a9a76d416 | 707,027 |
def has_numbers(input_str: str):
""" Check if a string has a number character """
return any(char.isdigit() for char in input_str) | 5038cb737cdcfbad3a7bd6ac89f435559b67cebc | 707,028 |
import collections
def get_gradients_through_compute_gradients(optimizer, loss, activations):
"""Compute gradients to send to TPU embedding.
Args:
optimizer: a subclass of optimizer.Optimizer, usually CrossShardOptimizer.
Used to call compute_gradients().
loss: a Tensor to call optimizer.compute_gradients() on.
activations: an OrderedDict mapping feature_name to Tensors of activations.
Returns:
An OrderedDict mapping from feature name Strings to Tensors of gradients of
the loss wrt the activations of the features.
"""
activation_list = activations.values()
grads_and_vars = optimizer.compute_gradients(loss, activation_list)
grads = [grad for grad, _ in grads_and_vars]
feature_to_gradient_dict = collections.OrderedDict(
zip(activations.keys(), grads))
return feature_to_gradient_dict | 2a2ebca1e6024e11f541e3ccaf1fee4acd7ab745 | 707,035 |
def AdditionalMedicareTax(e00200, MARS,
AMEDT_ec, sey, AMEDT_rt,
FICA_mc_trt, FICA_ss_trt,
ptax_amc, payrolltax):
"""
Computes Additional Medicare Tax (Form 8959) included in payroll taxes.
Notes
-----
Tax Law Parameters:
AMEDT_ec : Additional Medicare Tax earnings exclusion
AMEDT_rt : Additional Medicare Tax rate
FICA_ss_trt : FICA Social Security tax rate
FICA_mc_trt : FICA Medicare tax rate
Taxpayer Charateristics:
e00200 : Wages and salaries
sey : Self-employment income
Returns
-------
ptax_amc : Additional Medicare Tax
payrolltax : payroll tax augmented by Additional Medicare Tax
"""
line8 = max(0., sey) * (1. - 0.5 * (FICA_mc_trt + FICA_ss_trt))
line11 = max(0., AMEDT_ec[MARS - 1] - e00200)
ptax_amc = AMEDT_rt * (max(0., e00200 - AMEDT_ec[MARS - 1]) +
max(0., line8 - line11))
payrolltax += ptax_amc
return (ptax_amc, payrolltax) | de0e35fbe5c7c09de384e1302cba082149ea5930 | 707,036 |
def get_parameter(dbutils, parameter_name: str, default_value='') -> str:
"""Creates a text widget and gets parameter value. If ran from ADF, the value is taken from there."""
dbutils.widgets.text(parameter_name, default_value)
return dbutils.widgets.get(parameter_name) | cf8359e6acea68ea26e24cc656847e5560019bd1 | 707,039 |
def aic(llf, nobs, df_modelwc):
"""
Akaike information criterion
Parameters
----------
llf : {float, array_like}
value of the loglikelihood
nobs : int
number of observations
df_modelwc : int
number of parameters including constant
Returns
-------
aic : float
information criterion
References
----------
https://en.wikipedia.org/wiki/Akaike_information_criterion
"""
return -2.0 * llf + 2.0 * df_modelwc | 3940c1c86325630248fdf4a50c2aa19b4f4df623 | 707,040 |
def packpeeklist1(n1, n2, n3, n4, n5):
"""
Packs and returns 5 item list
"""
listp = [n1, n2, n3, n4, n5]
return listp | 4b781ff3e8eb4a1bd51f8e834fab5462371a85c5 | 707,041 |
def gen_gap(Pn, T, Q):
"""Runs the generalization gap test. This test
simply checks the difference between the likelihood
assigned to the training set versus that assigned to
a held out test set.
Inputs:
Pn: (n X d) np array containing the held out test sample
of dimension d
T: (l X d) np array containing the training sample of
dimension d
Q: trained model of type scipy.neighbors.KernelDensity
Outputs:
log_lik_gap: scalar representing the difference of the log
likelihoods of Pn and T
"""
return Q.score(T) - Q.score(Pn) | d57d16c06d05cea86e6f6ea89484574f20500170 | 707,043 |
def create_slice_obj(start, end, step):
"""Create slice object"""
return slice(start, end, step) | 88a5c5a9e0d3b714b4316d8744fcdd1a34f347a7 | 707,047 |
def scalar(typename):
"""
Returns scalar type from ROS message data type, like "uint8" from "uint8[100]".
Returns type unchanged if already a scalar.
"""
return typename[:typename.index("[")] if "[" in typename else typename | 729fb68bced11e190b3d32d03bbadd921f191bee | 707,048 |
from typing import Dict
from typing import Type
def remap_shared_output_descriptions(output_descriptions: Dict[str, str], outputs: Dict[str, Type]) -> Dict[str, str]:
"""
Deals with mixed styles of return value descriptions used in docstrings. If the docstring contains a single entry of return value description, that output description is shared by each output variable.
:param output_descriptions: Dict of output variable names mapping to output description
:param outputs: Interface outputs
:return: Dict of output variable names mapping to shared output description
"""
# no need to remap
if len(output_descriptions) != 1:
return output_descriptions
_, shared_description = next(iter(output_descriptions.items()))
return {k: shared_description for k, _ in outputs.items()} | 06d589016a747230f88aa3507bd751fd30095222 | 707,050 |
def fitarg_rename(fitarg, ren):
"""Rename variable names in ``fitarg`` with rename function.
::
#simple renaming
fitarg_rename({'x':1, 'limit_x':1, 'fix_x':1, 'error_x':1},
lambda pname: 'y' if pname=='x' else pname)
#{'y':1, 'limit_y':1, 'fix_y':1, 'error_y':1},
#prefixing
figarg_rename({'x':1, 'limit_x':1, 'fix_x':1, 'error_x':1},
lambda pname: 'prefix_'+pname)
#{'prefix_x':1, 'limit_prefix_x':1, 'fix_prefix_x':1, 'error_prefix_x':1}
"""
tmp = ren
if isinstance(ren, str):
ren = lambda x: tmp + '_' + x
ret = {}
prefix = ['limit_', 'fix_', 'error_', ]
for k, v in fitarg.items():
vn = k
pf = ''
for p in prefix:
if k.startswith(p):
vn = k[len(p):]
pf = p
newvn = pf + ren(vn)
ret[newvn] = v
return ret | 151233d0f18eaea564afbc6d600d576407504b35 | 707,051 |
def _get_matching_stream(smap, itag):
""" Return the url and signature for a stream matching itag in smap. """
for x in smap:
if x['itag'] == itag and x.get("s"):
return x['url'], x['s']
raise IOError("Sorry this video is not currently supported by pafy") | dc83fd3207d5ab4e1c85eb719f5f7d023131565e | 707,053 |
def linear_search(alist, key):
""" Return index of key in alist . Return -1 if key not present."""
for i in range(len(alist)):
if alist[i] == key:
return i
return -1 | ab4c0517f9103a43509b0ba511c75fe03ea6e043 | 707,058 |
def extract_sigma_var_names(filename_nam):
"""
Parses a 'sigma.nam' file containing the variable names, and outputs a
list of these names.
Some vector components contain a semicolon in their name; if so, break
the name at the semicolon and keep just the 1st part.
"""
var_names = []
with open(filename_nam, 'r') as file:
for line in file:
var_name = line.strip()
# check for semicolon
if ';' in var_name:
var_name = var_name.split(';')[0]
var_names.append(var_name)
return var_names | 930e855d47c4303cac28e9973982392489fb577d | 707,060 |
from typing import Any
def all_tasks_stopped(tasks_state: Any) -> bool:
"""
Checks if all tasks are stopped or if any are still running.
Parameters
---------
tasks_state: Any
Task state dictionary object
Returns
--------
response: bool
True if all tasks are stopped.
"""
for t in tasks_state["tasks"]:
if t["lastStatus"] in ("PENDING", "RUNNING"):
return False
return True | 98edffe71052cc114a7dda37a17b3a346ef59ef8 | 707,062 |
def dataclass_fields(dc):
"""Returns a dataclass's fields dictionary."""
return {name: getattr(dc, name)
for name in dc.__dataclass_fields__} | 4b82af3bfbc02f7bbfcf1aecb6f6501ef10d86e1 | 707,063 |
import pathlib
def _suffix_directory(key: pathlib.Path):
"""Converts '/folder/.../folder/folder/folder' into 'folder/folder'"""
key = pathlib.Path(key)
shapenet_folder = key.parent.parent
key = key.relative_to(shapenet_folder)
return key | 147539065c3d21ee351b23f2d563c662fe55f04a | 707,078 |
def text_to_string(filename, useEncoding):
"""Read a text file and return a string."""
with open(filename, encoding=useEncoding, errors='ignore') as infile:
return infile.read() | f879bb747699496204820b74944fd563658a7117 | 707,080 |
def iscomment(s):
"""
Define what we call a comment in MontePython chain files
"""
return s.startswith('#') | ab3a9d240e423c562c9e83cdd9599fddf144b7c3 | 707,081 |
def CommaSeparatedFloats(sFloatsCSV):
"""Read comma-separated floats from string.
[sFloatsCSV]: string, contains comma-separated floats.
<retval>: list, floats parsed from string.
"""
return [float(sFloat) for sFloat in sFloatsCSV.replace(" ","").split(",")] | 1aa12ca7297aa3bd809f6d2ffaf155233a826b49 | 707,089 |
def topological_sort(g):
"""
Returns a list of vertices in directed acyclic graph g in topological
order.
"""
ready = []
topo = []
in_count = {}
for v in g.vertices():
in_count[v] = g.degree(v, outgoing=False)
if in_count[v] == 0: # v has no constraints, i.e no incoming edges
ready.append(v)
while len(ready) > 0:
u = ready.pop()
topo.append(u)
for e in g.incident_edges(u):
v = e.opposite(u)
in_count[v] -= 1 # v now no longer has u as a constraint
if in_count[v] == 0:
ready.append(v)
return topo | 5ac6261bf1b6fa92280abdc3fc95679ad9294e80 | 707,092 |
from typing import List
from typing import Tuple
def getElementByClass(className: str, fileName: str) -> List[Tuple[int, str]]:
"""Returns first matching tag from an HTML/XML document"""
nonN: List[str] = []
with open(fileName, "r+") as f:
html: List[str] = f.readlines()
for line in html:
nonN.append(line.replace("\n", ""))
pattern: str = f'class="{className}"'
patternAlt: str = f"class='{className}'"
matches: List[Tuple[int, str]] = []
for line in nonN:
if pattern in line or patternAlt in line:
lineNo = nonN.index(line) + 1
matches.append((int(lineNo), line))
break
return matches | 969e4070e16dec2e10e26e97cbaaab9d95e7b904 | 707,095 |
import math
def func (x):
"""
sinc (x)
"""
if x == 0:
return 1.0
return math.sin (x) / x | c91242e360547107f7767e442f40f4bf3f2b53e8 | 707,100 |
import copy
def db_entry_trim_empty_fields(entry):
""" Remove empty fields from an internal-format entry dict """
entry_trim = copy.deepcopy(entry) # Make a copy to modify as needed
for field in [ 'url', 'title', 'extended' ]:
if field in entry:
if (entry[field] is None) or \
(type(entry[field]) is str and len(entry[field]) == 0):
del entry_trim[field]
return entry_trim | d5b31c823f4e8091872f64445ab603bcbf6a2bef | 707,102 |
def _is_install_requirement(requirement):
""" return True iff setup should install requirement
:param requirement: (str) line of requirements.txt file
:return: (bool)
"""
return not (requirement.startswith('-e') or 'git+' in requirement) | 339f6a8a573f33157a46193216e90d62475d2dea | 707,104 |
def move_to_next_pixel(fdr, row, col):
""" Given fdr (flow direction array), row (current row index), col (current col index).
return the next downstream neighbor as row, col pair
See How Flow Direction works
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-flow-direction-works.htm
D8 flow direction grid
| 32 | 64 | 128 |
| 16 | X | 1 |
| 8 | 4 | 2 |
"""
# get the fdr pixel value (x,y)
value = fdr[row, col]
# Update the row, col based on the flow direction
if value == 1:
col += 1
elif value == 2:
col += 1
row += 1
elif value == 4:
row += 1
elif value == 8:
row += 1
col -= 1
elif value == 16:
col -= 1
elif value == 32:
row -= 1
col -= 1
elif value == 64:
row -= 1
elif value == 128:
row -= 1
col += 1
else:
# Indetermine flow direction, sink. Do not move.
row = row
col = col
return (row, col) | d134bb35ed4962945c86c0ac2c6af1aff5acd06b | 707,105 |
from typing import Union
def addition(a:Union[int, float], b:Union[int, float]) -> Union[int, float]:
"""
A simple addition function. Add `a` to `b`.
"""
calc = a + b
return calc | b9adaf3bea178e23bd4c02bdda3f286b6ca8f3ab | 707,107 |
import contextlib
import sqlite3
def run_sql_command(query: str, database_file_path:str, unique_items=False) -> list:
"""
Returns the output of an SQL query performed on a specified SQLite database
Parameters:
query (str): An SQL query
database_file_path (str): absolute path of the SQLite database file
unique_items (bool): whether the function should return a list
of items instead of a list of tuples with one value
Returns:
records (list): The output of the SQLite database
"""
with contextlib.closing(sqlite3.connect(database_file_path)) as conn:
with conn:
with contextlib.closing(conn.cursor()) as cursor: # auto-closes
cursor.execute(query)
records = cursor.fetchall()
if unique_items:
return [x[0] for x in records]
return records | 705584db31fd270d4127e7d1b371a24a8a9dd22e | 707,110 |
def compact_float(n, max_decimals=None):
"""Reduce a float to a more compact value.
Args:
n: Floating point number.
max_decimals: Maximum decimals to keep; defaults to None.
Returns:
An integer if `n` is essentially an integer, or a string
representation of `n` reduced to `max_decimals` numbers after
the decimal point. Otherwise, simply returns `n`.
"""
compact = n
if float(n).is_integer():
compact = int(n)
elif max_decimals is not None:
compact = "{0:.{1}f}".format(n, max_decimals)
return compact | 827e49e05aaca31d497f84c2a8c8dd52cfad73d9 | 707,112 |
def arrToDict(arr):
"""
Turn an array into a dictionary where each value maps to '1'
used for membership testing.
"""
return dict((x, 1) for x in arr) | 3202aac9a6c091d7c98fd492489dbcf2300d3a02 | 707,118 |
def convert_to_dtype(data, dtype):
"""
A utility function converting xarray, pandas, or NumPy data to a given dtype.
Parameters
----------
data: xarray.Dataset, xarray.DataArray, pandas.Series, pandas.DataFrame,
or numpy.ndarray
dtype: str or numpy.dtype
A string denoting a Python datatype name (e.g. int, float) or a NumPy dtype (e.g.
np.int16, np.float32) to convert the data to.
"""
if dtype is None: # Don't convert the data type.
return data
return data.astype(dtype) | ec3130311fe9c136707d5afb8f564b4f89067f4e | 707,120 |
import re
def match(text: str, pattern: str) -> bool:
"""
Match a text against a given regular expression.
:param text: string to examine.
:param pattern: regular expression.
:returns: ``True`` if pattern matches the string.
"""
return re.match(pattern, text) is not None | a59d71283766c5079e8151e8be49501246218001 | 707,125 |
from typing import Tuple
import math
def euler_to_quaternion(roll: float = 0, pitch: float = 0, yaw: float = 0) -> Tuple[float, float, float, float]:
"""
Convert Euler to Quaternion
Args:
roll (float): roll angle in radian (x-axis)
pitch (float): pitch angle in radian (y-axis)
yaw (float): yaw angle in radian (z-axis)
Returns:
Tuple[float, float, float, float]: x, y, z, w
"""
# Abbreviations for the various angular functions
cy = math.cos(yaw * 0.5)
sy = math.sin(yaw * 0.5)
cp = math.cos(pitch * 0.5)
sp = math.sin(pitch * 0.5)
cr = math.cos(roll * 0.5)
sr = math.sin(roll * 0.5)
# Quaternion
w = cr * cp * cy + sr * sp * sy
x = sr * cp * cy - cr * sp * sy
y = cr * sp * cy + sr * cp * sy
z = cr * cp * sy - sr * sp * cy
return x, y, z, w | e8346172f07510c377e14827842eb18f1631402e | 707,128 |
def table_exists(conn, table_name, schema=False):
"""Checks if a table exists.
Parameters
----------
conn
A Psycopg2 connection.
table_name : str
The table name.
schema : str
The schema to which the table belongs.
"""
cur = conn.cursor()
table_exists_sql = ('select * from information_schema.tables '
f'where table_name={table_name!r}')
if schema:
table_exists_sql += f' and table_schema={schema!r}'
cur.execute(table_exists_sql)
return bool(cur.rowcount) | c9b698afbe795a6a73ddfb87b2725c3c4205f35e | 707,132 |
def aggregate_by_player_id(statistics, playerid, fields):
"""
Inputs:
statistics - List of batting statistics dictionaries
playerid - Player ID field name
fields - List of fields to aggregate
Output:
Returns a nested dictionary whose keys are player IDs and whose values
are dictionaries of aggregated stats. Only the fields from the fields
input will be aggregated in the aggregated stats dictionaries.
"""
players = {}
# create nested dict with outer keys of player ids and inner dict of fields
for dic in statistics:
if dic[playerid] not in players:
players[dic[playerid]] = {playerid: dic[playerid]}
for field in fields:
players[dic[playerid]][field] = 0
# loop through statistics again, incrementing field values
for dic in statistics:
for field in fields:
players[dic[playerid]][field] += int(dic[field])
return players | c137fc8820f8898ebc63c54de03be5b919fed97a | 707,133 |
import pickle
def loadStatesFromFile(filename):
"""Loads a list of states from a file."""
try:
with open(filename, 'rb') as inputfile:
result = pickle.load(inputfile)
except:
result = []
return result | cc2f64a977ff030ec6af94d3601c094e14f5b584 | 707,134 |
import re
def is_mismatch_before_n_flank_of_read(md, n):
"""
Returns True if there is a mismatch before the first n nucleotides
of a read, or if there is a mismatch before the last n nucleotides
of a read.
:param md: string
:param n: int
:return is_mismatch: boolean
"""
is_mismatch = False
flank_mm_regex = r"^(\d+).*[ACGT](\d+)$"
flank_mm = re.findall(flank_mm_regex,md)
if flank_mm:
flank_mm = flank_mm[0]
if flank_mm[1]:
if int(flank_mm[1]) < n:
is_mismatch = True
if flank_mm[0]:
if int(flank_mm[0]) < n:
is_mismatch = True
return is_mismatch | 1e41c67e29687d93855ed212e2d9f683ef8a88d7 | 707,135 |
def _read_txt(file_path: str) -> str:
"""
Read specified file path's text.
Parameters
----------
file_path : str
Target file path to read.
Returns
-------
txt : str
Read txt.
"""
with open(file_path) as f:
txt: str = f.read()
return txt | 5f0657ee223ca9f8d96bb612e35304a405d2339e | 707,137 |
def load_data(data_map,config,log):
"""Collect data locally and write to CSV.
:param data_map: transform DataFrame map
:param config: configurations
:param log: logger object
:return: None
"""
for key,df in data_map.items():
(df
.coalesce(1)
.write
.csv(f'{config["output"]}/{key}', mode='overwrite', header=True))
return None | 2b690c4f5970df7f9e98ce22970ce3eb892f15bc | 707,139 |
def extract_first_value_in_quotes(line, quote_mark):
"""
Extracts first value in quotes (single or double) from a string.
Line is left-stripped from whitespaces before extraction.
:param line: string
:param quote_mark: type of quotation mark: ' or "
:return: Dict: 'value': extracted value;
'remainder': the remainder after extraction
'error' empty string if success or 'syntax' otherwise;
"""
line = line.lstrip()
result = {'value': '', 'remainder': line, 'error': 'syntax'}
if len(line) < 2:
return result
if line[0] != quote_mark:
return result
next_qm_pos = line.find(quote_mark, 1)
if next_qm_pos == -1:
return result
result['value'] = line[1:next_qm_pos]
result['remainder'] = line[next_qm_pos + 1:]
result['error'] = ''
return result | 4f614cbbb3a1a04ece0b4da63ea18afb32c1c86b | 707,141 |
def format_dependency(dependency: str) -> str:
"""Format the dependency for the table."""
return "[coverage]" if dependency == "coverage" else f"[{dependency}]" | 981a38074dbfb1f332cc49bce2c6d408aad3e9e2 | 707,143 |
def _unpickle_injected_object(base_class, mixin_class, class_name=None):
"""
Callable for the pickler to unpickle objects of a dynamically created class
based on the InjectableMixin. It creates the base object from the original
base class and re-injects the mixin class when unpickling an object.
:param type base_class: The base class of the pickled object before adding
the mixin via injection.
:param type mixin_class: The :class:`InjectableMixin` subclass that was
injected into the pickled object.
:param str class_name: The class name of the pickled object's dynamically
created class.
:return: The initial unpickled object (before the pickler restores the
object's state).
"""
obj = base_class.__new__(base_class, ())
return mixin_class.inject_into_object(obj, class_name) | 1821509506ad31dcdb21f07a2b83c544ff3c3eb3 | 707,148 |
import colorsys
def hsl_to_rgb(hsl):
"""Convert hsl colorspace values to RGB."""
# Convert hsl to 0-1 ranges.
h = hsl[0] / 359.
s = hsl[1] / 100.
l = hsl[2] / 100.
hsl = (h, s, l)
# returns numbers between 0 and 1
tmp = colorsys.hls_to_rgb(h, s, l)
# convert to 0 to 255
r = int(round(tmp[0] * 255))
g = int(round(tmp[1] * 255))
b = int(round(tmp[2] * 255))
return (r, g, b) | 4417ce8468e71b7139b57fe270809c7030b2c3df | 707,151 |
import six
def strip(val):
"""
Strip val, which may be str or iterable of str.
For str input, returns stripped string, and for iterable input,
returns list of str values without empty str (after strip) values.
"""
if isinstance(val, six.string_types):
return val.strip()
try:
return list(filter(None, map(strip, val)))
except TypeError:
return val | 893986e69f6d64167f45daf30dacb72f4b7f2bff | 707,153 |
import math
def tau_polinomyal_coefficients(z):
"""
Coefficients (z-dependent) for the log(tau) formula from
Raiteri C.M., Villata M. & Navarro J.F., 1996, A&A 315, 105-115
"""
log_z = math.log10(z)
log_z_2 = log_z ** 2
a0 = 10.13 + 0.07547 * log_z - 0.008084 * log_z_2
a1 = -4.424 - 0.7939 * log_z - 0.1187 * log_z_2
a2 = 1.262 + 0.3385 * log_z + 0.05417 * log_z_2
return [a0, a1, a2] | ebef7d773eeb400ef87553fc5838ee2cb97d0669 | 707,154 |
def get_all_playlist_items(playlist_id, yt_client):
"""
Get a list of video ids of videos currently in playlist
"""
return yt_client.get_playlist_items(playlist_id) | c7a8cc806b552b1853eba1d8223aa00225d5539e | 707,155 |
def get_library_isotopes(acelib_path):
"""
Returns the isotopes in the cross section library
Parameters
----------
acelib_path : str
Path to the cross section library
(i.e. '/home/luke/xsdata/endfb7/sss_endfb7u.xsdata')
Returns
-------
iso_array: array
array of isotopes in cross section library:
"""
lib_isos_list = []
with open(acelib_path, 'r') as f:
lines = f.readlines()
for line in lines:
iso = line.split()[0]
lib_isos_list.append(iso)
return lib_isos_list | d93d319b84c02b8156c5bad0998f5943a5bbe8ae | 707,156 |
import json
def odict_to_json(odict):
"""
Dump an OrderedDict into JSON series
"""
json_series = json.dumps(odict)
return json_series | d18a4e0f0d11a2c529edb395671052f15ad8071d | 707,157 |
def encode_data(data):
"""
Helper that converts :class:`str` or :class:`bytes` to :class:`bytes`.
:class:`str` are encoded with UTF-8.
"""
# Expect str or bytes, return bytes.
if isinstance(data, str):
return data.encode('utf-8')
elif isinstance(data, bytes):
return data
else:
raise TypeError("data must be bytes or str") | 3cd54389719439e8f18cf02b110af07799c946b5 | 707,158 |
from typing import Any
def safe_string(value: Any) -> str:
"""
Consistently converts a value to a string.
:param value: The value to stringify.
"""
if isinstance(value, bytes):
return value.decode()
return str(value) | 0ba8dcfe028ac6c45e0c17f9ba02014c2f746c4d | 707,163 |
from typing import List
def count_short_tail_keywords(keywords: List[str]) -> int:
"""
Returns the count of short tail keywords in a list of keywords.
Parameters:
keywords (List[str]): list with all keywords as strings.
Returns:
total (int): count of short tail keywords (1 o 2 words per keyword).
"""
total = 0
for keyword in keywords:
keyword_list = keyword.split()
if len(keyword_list) > 1 and len(keyword_list) < 3:
total += 1
return total | 1af42d71be75d9279584a8c3edc090a39ec6cf77 | 707,165 |
def is_odd(number):
"""Determine if a number is odd."""
if number % 2 == 0:
return False
else:
return True | 4efe5114f2e25431808492c768abc0f750e63225 | 707,166 |
def fmt_quil_str(raw_str):
"""Format a raw Quil program string
Args:
raw_str (str): Quil program typed in by user.
Returns:
str: The Quil program with leading/trailing whitespace trimmed.
"""
raw_quil_str = str(raw_str)
raw_quil_str_arr = raw_quil_str.split('\n')
trimmed_quil_str_arr = [qs.strip() for qs in raw_quil_str_arr]
trimmed_quil_str = '\n'.join([x for x in trimmed_quil_str_arr])
return trimmed_quil_str | e95c26f3de32702d6e44dc09ebbd707da702d964 | 707,167 |
from typing import Optional
from typing import Callable
from typing import Literal
def _not_json_encodable(message: str, failure_callback: Optional[Callable[[str], None]]) -> Literal[False]:
""" Utility message to fail (return `False`) by first calling an optional failure callback. """
if failure_callback:
failure_callback(message)
return False | 6979261a5f14a32c1ae34d01bad346344f38ed14 | 707,168 |
def bitwise_dot(x, y):
"""Compute the dot product of two integers bitwise."""
def bit_parity(i):
n = bin(i).count("1")
return int(n % 2)
return bit_parity(x & y) | 074b09a92e3e697eb08b8aaefa6ffd05d58698f4 | 707,169 |
def validate_mash(seq_list, metadata_reports, expected_species):
"""
Takes a species name as a string (i.e. 'Salmonella enterica') and creates a dictionary with keys for each Seq ID
and boolean values if the value pulled from MASH_ReferenceGenome matches the string or not
:param seq_list: List of OLC Seq IDs
:param metadata_reports: Dictionary retrieved from get_combined_metadata()
:param expected_species: String containing expected species
:return: Dictionary with Seq IDs as keys and True/False as values
"""
seq_status = {}
for seqid in seq_list:
print('Validating MASH reference genome for {} '.format(seqid))
df = metadata_reports[seqid]
observed_species = df.loc[df['SeqID'] == seqid]['MASH_ReferenceGenome'].values[0]
if observed_species == expected_species:
seq_status[seqid] = True
else:
seq_status[seqid] = False
return seq_status | 9eb4fd6e1f156a4fed3cc0be0c5b7153a05b038b | 707,171 |
def redirect_to_url(url):
"""
Return a bcm dictionary with a command to redirect to 'url'
"""
return {'mode': 'redirect', 'url': url} | 01e4deb80bbd8f8e119c99d64001866c6cd644d9 | 707,172 |
def sqrt(number):
"""
Calculate the floored square root of a number
Args:
number(int): Number to find the floored squared root
Returns:
(int): Floored Square Root
"""
assert number >= 0, 'Only square root of positive numbers are valid'
start = 0
end = number
res = None
while start <= end:
middle = (start + end) // 2
square = middle ** 2
next_square = (middle + 1) ** 2
if square <= number and next_square > number:
res = middle
break
if square > number:
end = middle - 1
else:
start = middle + 1
return res | 7ed4d547e0dbabebff7ffdf1e368817a415cbb9e | 707,173 |
def sum_fn(xnum, ynum):
""" A function which performs a sum """
return xnum + ynum | 61a1ae2e4b54348b9e3839f7f2779edd03f181df | 707,176 |
def matlabize(s):
"""Make string s suitable for use as a MATLAB function/script name"""
s = s.replace(' ', '_')
s = s.replace('.', '_')
s = s.replace('-', '_')
assert len(s) <= 63 # MATLAB function/script name length limitation
return s | 5dccb9497a3ee28dae5fb7de6e15a1fa02f144cf | 707,177 |
def get_spec_res(z=2.2, spec_res=2.06, pix_size=1.8):
""" Calculates the pixel size (pix_size) and spectral resolution (spec_res) in
km/s for the MOCK SPECTRA.
arguments: z, redshift. spec_res, spectral resoloution in Angst. pixel_size
in sngst.
returns:
(pixel_size, spec_res) in km/s
"""
# conversion factor from Angstrom to km/s at any redshift
conv_fac = 3e5*0.000823/(1+z)
return(pix_size*conv_fac, spec_res*conv_fac) | 597db8ce00c071624b0877fe211ab9b01ec889de | 707,178 |
import platform
def get_default_command() -> str:
"""get_default_command returns a command to execute the default output of g++ or clang++. The value is basically `./a.out`, but `.\a.exe` on Windows.
The type of return values must be `str` and must not be `pathlib.Path`, because the strings `./a.out` and `a.out` are different as commands but same as a path.
"""
if platform.system() == 'Windows':
return r'.\a.exe'
return './a.out' | d06abdefab189f9c69cba70d9dab25ce83bebc75 | 707,182 |
def object_type(r_name):
"""
Derives an object type (i.e. ``user``) from a resource name (i.e. ``users``)
:param r_name:
Resource name, i.e. would be ``users`` for the resource index URL
``https://api.pagerduty.com/users``
:returns: The object type name; usually the ``type`` property of an instance
of the given resource.
:rtype: str
"""
if r_name.endswith('ies'):
# Because English
return r_name[:-3]+'y'
else:
return r_name.rstrip('s') | b74e373691edf8a8b78c2a3ff5d7b9666504330a | 707,183 |
def convert_to_roman_numeral(number_to_convert):
"""
Converts Hindi/Arabic (decimal) integers to Roman Numerals.
Args:
param1: Hindi/Arabic (decimal) integer.
Returns:
Roman Numeral, or an empty string for zero.
"""
arabic_numbers = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)
roman_numerals = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I')
result = ""
for index, arabic_number in enumerate(arabic_numbers):
count = int(number_to_convert / arabic_number)
result += roman_numerals[index] * count
number_to_convert -= arabic_numbers[index] * count
return result | f970517a7c2d1ceb13ec025d6d446499ce5c21ff | 707,184 |
import re
def wikify(value):
"""Converts value to wikipedia "style" of URLS, removes non-word characters
and converts spaces to hyphens and leaves case of value.
"""
value = re.sub(r'[^\w\s-]', '', value).strip()
return re.sub(r'[-\s]+', '_', value) | dc4504ea6eb7905b5e18a1d1f473a4f337697b26 | 707,192 |
def _tolist(arg):
"""
Assure that *arg* is a list, e.g. if string or None are given.
Parameters
----------
arg :
Argument to make list
Returns
-------
list
list(arg)
Examples
--------
>>> _tolist('string')
['string']
>>> _tolist([1,2,3])
[1, 2, 3]
>>> _tolist(None)
[None]
"""
if isinstance(arg, str):
return [arg]
try:
return list(arg)
except TypeError:
return [arg] | e4293991eeb6d15470511281680af44353232c37 | 707,193 |
def ConvertToFloat(line, colnam_list):
"""
Convert some columns (in colnam_list) to float, and round by 3 decimal.
:param line: a dictionary from DictReader.
:param colnam_list: float columns
:return: a new dictionary
"""
for name in colnam_list:
line[name] = round(float(line[name]), 3)
return line | e95fd6cfa9bb57060fdd835eea139fd9c67bc211 | 707,194 |
from typing import List
import json
def transform_application_assigned_users(json_app_data: str) -> List[str]:
"""
Transform application users data for graph consumption
:param json_app_data: raw json application data
:return: individual user id
"""
users: List[str] = []
app_data = json.loads(json_app_data)
for user in app_data:
users.append(user["id"])
return users | 625c8f662b364bb3fe63bb26b06eaca57ae8be79 | 707,195 |
def get_day_suffix(day):
"""
Returns the suffix of the day, such as in 1st, 2nd, ...
"""
if day in (1, 21, 31):
return 'st'
elif day in (2, 12, 22):
return 'nd'
elif day in (3, 23):
return 'rd'
else:
return 'th' | 7d9277303357de5405b3f6894cda24726d60ad47 | 707,196 |
def power_law_at_2500(x, amp, slope, z):
""" Power law model anchored at 2500 AA
This model is defined for a spectral dispersion axis in Angstroem.
:param x: Dispersion of the power law
:type x: np.ndarray
:param amp: Amplitude of the power law (at 2500 A)
:type amp: float
:param slope: Slope of the power law
:type slope: float
:param z: Redshift
:type z: float
:return: Power law model
:rtype: np.ndarray
"""
return amp * (x / (2500. * (z+1.))) ** slope | 508227f332f652d00c785074c20f9acefbce9258 | 707,202 |
def extract_vuln_id(input_string):
"""
Function to extract a vulnerability ID from a message
"""
if 'fp' in input_string.lower():
wordlist = input_string.split()
vuln_id = wordlist[-1]
return vuln_id
else:
return None | 06673f2b401472185c8a3e6fc373d39c171791db | 707,203 |
from typing import Any
def _element(
html_element: str,
html_class: str,
value: Any,
is_visible: bool,
**kwargs,
) -> dict:
"""
Template to return container with information for a <td></td> or <th></th> element.
"""
if "display_value" not in kwargs:
kwargs["display_value"] = value
return {
"type": html_element,
"value": value,
"class": html_class,
"is_visible": is_visible,
**kwargs,
} | 4ce4d2ff9f547470d4a875508c40d3ae2a927ba0 | 707,205 |
def get_gene_summary(gene):
"""Gets gene summary from a model's gene."""
return {
gene.id: {
"name": gene.name,
"is_functional": gene.functional,
"reactions": [{rxn.id: rxn.name} for rxn in gene.reactions],
"annotation": gene.annotation,
"notes": gene.notes,
}
} | dd9cb3f8e9841a558898c67a16a02da1b39479d2 | 707,206 |
def tle_fmt_float(num,width=10):
""" Return a left-aligned signed float string, with no leading zero left of the decimal """
digits = (width-2)
ret = "{:<.{DIGITS}f}".format(num,DIGITS=digits)
if ret.startswith("0."):
return " " + ret[1:]
if ret.startswith("-0."):
return "-" + ret[2:] | 686cb4061e5cf2ad620b85b0e66b96a8cd1c3abf | 707,207 |
def is_vulgar(words, sentence):
"""Checks if a given line has any of the bad words from the bad words list."""
for word in words:
if word in sentence:
return 1
return 0 | f8ff64f1d29313c145ebbff8fef01961e14cfd1f | 707,209 |
import re
def matchNoSpaces(value):
"""Match strings with no spaces."""
if re.search('\s', value):
return False
return True | 6b33c6b500f78664c04ef8c507e9b25fa19c760d | 707,211 |
def get_number(line, position):
"""Searches for the end of a number.
Args:
line (str): The line in which the number was found.
position (int): The starting position of the number.
Returns:
str: The number found.
int: The position after the number found.
"""
word = ""
for pos, char in enumerate(line[position:]):
if char.isdigit() or char == ".": word += char
else: return word, position + pos
return word, len(line) | df41a1b53953b912e5ce5d6d9b3d69c4133460f1 | 707,213 |
def levelize_smooth_or_improve_candidates(to_levelize, max_levels):
"""Turn parameter in to a list per level.
Helper function to preprocess the smooth and improve_candidates
parameters passed to smoothed_aggregation_solver and rootnode_solver.
Parameters
----------
to_levelize : {string, tuple, list}
Parameter to preprocess, i.e., levelize and convert to a level-by-level
list such that entry i specifies the parameter at level i
max_levels : int
Defines the maximum number of levels considered
Returns
-------
to_levelize : list
The parameter list such that entry i specifies the parameter choice
at level i.
Notes
--------
This routine is needed because the user will pass in a parameter option
such as smooth='jacobi', or smooth=['jacobi', None], and this option must
be "levelized", or converted to a list of length max_levels such that entry
[i] in that list is the parameter choice for level i.
The parameter choice in to_levelize can be a string, tuple or list. If
it is a string or tuple, then that option is assumed to be the
parameter setting at every level. If to_levelize is inititally a list,
if the length of the list is less than max_levels, the last entry in the
list defines that parameter for all subsequent levels.
Examples
--------
>>> from pyamg.util.utils import levelize_smooth_or_improve_candidates
>>> improve_candidates = ['gauss_seidel', None]
>>> levelize_smooth_or_improve_candidates(improve_candidates, 4)
['gauss_seidel', None, None, None]
"""
# handle default value (mutable)
# improve_candidates=(('block_gauss_seidel',
# {'sweep': 'symmetric', 'iterations': 4}),
# None)
# -> make it a list
if isinstance(to_levelize, tuple):
if isinstance(to_levelize[0], tuple):
to_levelize = list(to_levelize)
if isinstance(to_levelize, (str, tuple)):
to_levelize = [to_levelize for i in range(max_levels)]
elif isinstance(to_levelize, list):
if len(to_levelize) < max_levels:
mlz = max_levels - len(to_levelize)
toext = [to_levelize[-1] for i in range(mlz)]
to_levelize.extend(toext)
elif to_levelize is None:
to_levelize = [(None, {}) for i in range(max_levels)]
return to_levelize | 8b302b8cae04adae010607c394c2e5059aa46eeb | 707,214 |
def get_max_num_context_features(model_config):
"""Returns maximum number of context features from a given config.
Args:
model_config: A model config file.
Returns:
An integer specifying the max number of context features if the model
config contains context_config, None otherwise
"""
meta_architecture = model_config.WhichOneof("model")
meta_architecture_config = getattr(model_config, meta_architecture)
if hasattr(meta_architecture_config, "context_config"):
return meta_architecture_config.context_config.max_num_context_features | 1df5d220e30cfa5b440c0063149e2ebaf896352a | 707,215 |
def parse_encoding_header(header):
"""
Break up the `HTTP_ACCEPT_ENCODING` header into a dict of the form,
{'encoding-name':qvalue}.
"""
encodings = {'identity':1.0}
for encoding in header.split(","):
if(encoding.find(";") > -1):
encoding, qvalue = encoding.split(";")
encoding = encoding.strip()
qvalue = qvalue.split('=', 1)[1]
if(qvalue != ""):
encodings[encoding] = float(qvalue)
else:
encodings[encoding] = 1
else:
encodings[encoding] = 1
return encodings | 0d423ad51ff14589b5858681cf32a0f318e6dbfa | 707,217 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.