content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def userToJson(user):
"""Returns a serializable User dict
:param user: User to get info for
:type user: User
:returns: dict
"""
obj = {
"id": user.id,
"username": user.username,
"name": user.get_full_name(),
"email": user.email,
}
return obj | da5e11bbc2e8cbdffb25e32e6a47e0ccabe8d33a | 701,604 |
def find_block(csv, name):
"""For an Illumina SampleSheet.csv, return a tuple of the index of the
line containing the header specified by name, and the index of the
line just past the end of the data block. `range(*r)` will index
all lines for the block, starting at the header line.
"""
start = None
end = None
def blockend(f):
maxfieldlen = max([0] + [len(x) for x in f])
if len(f) > 0 and len(f[0]) > 0 and f[0][0] == "[" and f[0][-1] == "]":
return True
return 0 == maxfieldlen
for i, fields in enumerate(csv):
if len(fields) > 0 and fields[0] == name:
start = i
elif start is not None and blockend(fields):
return start, i
if start is not None:
end = len(csv)
return start, end | 7a1fc119e6e3e889d9a18884028cb2e6a67e0cd5 | 701,606 |
def cancel_and_stop_intent_handler(handler_input):
"""Single handler for Cancel and Stop Intent."""
# type: (HandlerInput) -> Response
speech_text = "Alla prossima!"
return handler_input.response_builder.speak(speech_text).response | 73a9171b5ea01fedb7fc470dd7d6bcd232a605a0 | 701,607 |
import json
def load_jsonl(filename):
"""Load json lines formatted file"""
with open(filename, "r") as f:
return list(map(json.loads, f)) | 7acb3513cf885139e62af56d17c19aa87e1c85ca | 701,608 |
from typing import List
def _read_get_graph_source_citation_section(jcamp_dict: dict) -> List[str]:
"""
Extract and translate from the JCAMP-DX dictionary the SciData JSON-LD
citations in the 'sources' section from the '@graph' scection.
:param jcamp_dict: JCAMP-DX dictionary to extract citations from
:return: List for citation from SciData JSON-LD
"""
citation = []
if "$ref author" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref author"]} :')
if "$ref title" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref title"]}.')
if "$ref journal" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref journal"]}')
if "$ref volume" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref volume"]}')
if "$ref date" in jcamp_dict:
citation.append(f'({jcamp_dict["$ref date"]})')
if "$ref page" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref page"]}')
return citation | dafe4fd793dd0e47b690d6c1fd745ca89265de39 | 701,610 |
def deltaify_traces(traces, final_byte_duration=9999):
"""Convert absolute start times in traces to durations.
Traces returned by `read_traces_csv` pair bytes with start times. This
function computes how long each byte remains on the bus and replaces the
start time with this value in its output. Note that the final duration can't
be calculated and will be given the duration `final_byte_duration`.
Args:
traces: Traces to "deltaify" as described.
final_byte_duration: Duration to assign to the final byte.
Returns:
"Deltaified" traces as described.
"""
deltaified_traces = []
for i in range(len(traces) - 1):
dt = traces[i+1][0] - traces[i][0]
deltaified_traces.append((dt, traces[i][1]))
deltaified_traces.append((final_byte_duration, traces[-1][1]))
return deltaified_traces | 8185a9825d4706bdf8a579fcefec5e27ca8c3baa | 701,612 |
def rzpad(value, total_length):
"""
Right zero pad value `x` at least to length `l`.
"""
return value + b"\x00" * max(0, total_length - len(value)) | 76a0884e9f8a65e0ff3efac56223dfa2fbed31b4 | 701,613 |
def compose(*funcs):
"""Returns a function that is the composition of multiple functions."""
def wrapper(x):
for func in reversed(funcs):
x = func(x)
return x
return wrapper | d93d59f2f1979fa35638357fcac5130710e0fda3 | 701,616 |
from functools import reduce
def compose(*functions):
"""
Compose all the function arguments together
:param functions: Functions to compose
:return: Single composed function
"""
# pylint: disable=undefined-variable
return reduce(lambda f, g: lambda x: f(g(x)), functions, lambda x: x) | d69ab8953d8e846fffd50aa9c0925935e38e9e38 | 701,617 |
def mul_fft(f_fft, g_fft):
"""Multiplication of two polynomials (coefficient representation)."""
deg = len(f_fft)
return [f_fft[i] * g_fft[i] for i in range(deg)] | 67db62dc812827b6aa7c7406a068ae9e47f97a65 | 701,618 |
import re
def clean_text(text):
""" Cleans abstract text from scopus documents.
Args:
text (str): Unformatted abstract text.
Returns:
(str) Abstract text with formatting issues removed.
"""
if text is None:
return None
try:
cleaned_text = re.sub("© ([0-9])\w* The Author(s)*\.( )*", "", text)
cleaned_text = re.sub("Published by Elsevier Ltd\.", "", cleaned_text)
cleaned_text = re.sub("\n ", "", cleaned_text)
cleaned_text = re.sub("\n ", "", cleaned_text)
cleaned_text = " ".join("".join(cleaned_text.split("\n ")).split())
cleaned_text = cleaned_text.replace("Abstract ", '', 1)
return cleaned_text
except:
return None | 7ffbf3a6ebe0c0caac203cea109e939b5c861724 | 701,620 |
from datetime import datetime
def undersc_str2dt(undersc):
"""Converts the format with underscores to a datetime instance
Args:
undersc(str): time in underscores-format
Returns:
`datetime`: datetime instance
"""
(mydate, mytime) = undersc.split("_")
ymd = mydate.split("-")
ymd = [int(i) for i in ymd]
hms = mytime.split("-")
hms = [int(i) for i in hms]
if len(hms) == 3:
return datetime(ymd[0], ymd[1], ymd[2], hms[0], hms[1], hms[2])
else:
return datetime(ymd[0], ymd[1], ymd[2], hms[0], hms[1], hms[2],
hms[3]) | 36988c6af6a20590d781f7ec1ea1ee2e8713941e | 701,622 |
import yaml
def load_yaml_config(filepath):
"""Load Krake base configuration settings from YAML file
Args:
filepath (os.PathLike, optional): Path to YAML configuration file
Raises:
FileNotFoundError: If no configuration file can be found
Returns:
dict: Krake YAML file configuration
"""
with open(filepath, "r") as fd:
return yaml.safe_load(fd) | a5970ab968a9da7c89733077834a88b05ca2d6a0 | 701,625 |
def max_cum_build_rule(mod, g, p):
"""
**Constraint Name**: GenNewLin_Max_Cum_Build_Constraint
**Enforced Over**: GEN_NEW_LIN_VNTS_W_MAX_CONSTRAINT
Can't build more than certain amount of capacity by period p.
"""
return mod.GenNewLin_Capacity_MW[g, p] \
<= mod.gen_new_lin_max_cumulative_new_build_mw[g, p] | 9122a05867ccccbe36378c36d34e98462c62f85d | 701,626 |
from typing import List
def available_years() -> List[int]:
"""List available years with datasets."""
return [2012, 2013, 2014, 2015, 2016, 2017, 2018] | 898fd02e0cde1ac71251cd70069c52c481a66acf | 701,629 |
import aiohttp
async def http_call(url, method, data=None, headers=None):
"""
Performs an http request
Args:
url (str): The URL to send the request to
method (str): The HTTP method to use
data (dict): The data to send with the request
headers (dict): The headers to send with the request
"""
async with aiohttp.ClientSession(headers=headers) as session:
async with session.request(method, url, data=data) as resp:
return await resp.json() | 10d72f32312b7fe9071a8776f784a1ce7c4954d6 | 701,630 |
def coordinates_contain_point(coordinates, point):
"""
This function uses `Crossing number method` (http:#geomalgorithms.com/a03-_inclusion.html) to check whether
a polygon contains a point or not.
For each segment with the coordinates `pt1` and `pt2`, we check to see if y coordinate of `point` is
between y of `pt1` and `pt2`.
If so, then we check to see if `point` is to the left of the edge; i.e. a line drawn from `point` to the right
will intersect the edge. If the line intersects the polygon an odd number of times, it is inside.
"""
contains = False
j = - 1
for i, pt1 in enumerate(coordinates):
pt2 = coordinates[j]
check_y = lambda: (pt1[1] <= point[1] < pt2[1]) or (pt2[1] <= point[1] < pt1[1])
# The following checks if `point` is to the left of the current segment
check_x = lambda: point[0] < (point[1] - pt1[1]) * (pt2[0] - pt1[0]) / (pt2[1] - pt1[1]) + pt1[0]
if check_y() and check_x():
contains = not contains
j = i
return contains | 97176955324be459595503d204e0e13ce9983562 | 701,631 |
def parse_response(response):
"""
:param response: output of boto3 rds client describe_db_instances
:return: an array, each element is an 3-element array with DBInstanceIdentifier, Engine, and Endpoint Address
Example:
[
['devdb-ldn-test1', 'mysql', 'devdb-ldn-test.cjjimtutptto.eu-west-2.rds.amazonaws.com'],
['devdb-ldn-test2', 'postgres', 'devdb-ldn-test.cjjimtutptto.eu-west-2.rds.amazonaws.com'],
...
]
"""
res = []
# json output parse
for db in response['DBInstances']:
res.append([db['DBInstanceIdentifier'], db['Engine'], db['Endpoint']['Address']])
return res | edaa4abbb695adb06c43dc93d70178bc10a82445 | 701,633 |
def format_csv(factor_name, entry):
"""Format a data entry as a csv line."""
return "%s, %s, %s" % (entry[factor_name], entry['quarter'], entry['count']) | 8d3f4f794f58f6aa0c6d259fcda124340df8d4da | 701,634 |
def _remove_quotes(values):
"""Remove any quotes from quoted values."""
removed = []
for value in values:
if value.startswith('"') and value.endswith('"'):
value = value[1:-1]
removed.append(value)
return removed | a75bd25198a56a28748af059647e62c26df74232 | 701,635 |
import json
def get_dimensions(cube_id):
"""
For this test data we will use a predefined dimension object matching cube-420 in the acceptance environment,
but this could be read from the TAP service.
"""
dims = json.loads(
'{"axes": [{"name": "RA", "numPixels": "4096", "pixelSize": "5.5555555555560e-04", "pixelUnit": "deg"},' +
'{"name": "DEC", "numPixels": "4096", "pixelSize": "5.5555555555560e-04", "pixelUnit": "deg"},' +
'{"name": "STOKES", "numPixels": "1", "pixelSize": "1.0000000000000e+00", "pixelUnit": " ",' +
'"min": "5.0000000000000e-01", "max": "1.5000000000000e+00", "centre": "1.0000000000000e+00"},' +
'{"name": "FREQ", "numPixels": "16416", "pixelSize": "1.0000000000000e+00", "pixelUnit": "Hz",' +
'"min": "1.2699999995000e+09", "max": "1.2700164155000e+09", "centre": "1.2700082075000e+09"}],' +
'"corners": [{"RA": "1.8942941872444e+02", "DEC": "5.3846168509499e+01"},' +
'{"RA": "1.8557152279432e+02", "DEC": "5.3846183833748e+01"},' +
'{"RA": "1.8545899454910e+02", "DEC": "5.6120973603008e+01"},' +
'{"RA": "1.8954200183991e+02", "DEC": "5.6120957384947e+01"}],' +
'"centre": {"RA": "1.8750048428742e+02", "DEC": "5.4999722221261e+01"}}')
return dims | aab639236510785649fd02ff80c795d7941007fd | 701,638 |
from pathlib import Path
import yaml
def load_yaml_config(file_path: str | Path) -> dict:
"""
Parameters
----------
file_path : str or Path
Yaml config file name. The file is assumed to be in
the repo's config directory.
Returns
-------
config : dict
Configuration parameters stored in a dictionary.
"""
file_path = Path(file_path)
with open(file_path) as file:
config = yaml.load(file, Loader=yaml.CLoader)
return config | 88a137807d6d1caabd3b8f7f7a03a3be3f04bdfe | 701,639 |
import re
def has_sh_placeholders(message):
"""Returns true if the message has placeholders."""
return re.search(r'\$\{(\w+)\}', message) is not None | 9bd5b4a22c89cfa1d45ea28bf7121cd4171828ee | 701,642 |
import re
def _find_char(input_char):
"""
find english char in input string
"""
result = re.findall(r'[a-zA-Z=_/0-9.]+', str(input_char))
return result | b89bc97e0b73c71ec6a1a875414b73e16c9d6036 | 701,643 |
import functools
def verifyrun(func):
"""Prints whether the decorated function ran."""
@functools.wraps(func)
def wrapper_verifyrun(*args, **kwargs):
print(f'Ran {func.__name__!r} from {func.__module__}.')
value = func(*args, **kwargs)
return value
return wrapper_verifyrun | 5f2d1289573a9069f283e508b1ce133eccfe3529 | 701,644 |
def create_empty_gid_matrix(width, height):
"""Creates a matrix of the given size initialized with all zeroes."""
return [[0] * width for row_index in range(height)] | 8f1a0adf9e45bb6fc267a5cec3079657dbace51d | 701,647 |
def value_to_none_low_medium_high(confidence_value):
"""
This method will transform an integer value into the None / Low / Med /
High scale string representation.
The scale for this confidence representation is the following:
.. list-table:: STIX Confidence to None, Low, Med, High
:header-rows: 1
* - Range of Values
- None/ Low/ Med/ High
* - 0
- None
* - 1-29
- Low
* - 30-69
- Med
* - 70-100
- High
Args:
confidence_value (int): An integer value between 0 and 100.
Returns:
str: A string corresponding to the None / Low / Med / High scale.
Raises:
ValueError: If `confidence_value` is out of bounds.
"""
if confidence_value == 0:
return 'None'
elif 29 >= confidence_value >= 1:
return 'Low'
elif 69 >= confidence_value >= 30:
return 'Med'
elif 100 >= confidence_value >= 70:
return 'High'
else:
raise ValueError("Range of values out of bounds: %s" % confidence_value) | ac3b39ae12591408fca2f8b4e844b535e7b1aaa3 | 701,648 |
from typing import Iterable
def iterify(x):
"""Return an iterable form of a given value."""
if isinstance(x, Iterable):
return x
else:
return (x,) | 85373e5ac0e03caf2115096088ce92ca27b65b4a | 701,650 |
def load_ignore(fname):
"""Loads patterns signalling lines to ignore
Args:
fname: File name containing patterns
Returns:
A list of patterns
"""
values = []
with open(fname, 'r') as f:
lines = f.readlines()
for line in lines:
values.append(line.rstrip('\n'))
return values | 6a2b4aad3bb4f2747e91a0b1a9a58b70187d1d1e | 701,653 |
def heapsort(values):
"""Heapsorts a list of values in nondecreasing order."""
length = len(values)
def pick_child(parent):
left = parent * 2 + 1
if left >= length:
return None
right = left + 1
if right == length or values[left] >= values[right]:
return left
return right
def sift_down(parent):
while True:
child = pick_child(parent)
if child is None or values[parent] >= values[child]:
break
values[parent], values[child] = values[child], values[parent]
parent = child
# Convert the list into a maxheap.
for parent in range(length // 2, -1, -1):
sift_down(parent)
# Extract each element from the maxheap, placing them from right to left.
while length > 1:
length -= 1
values[0], values[length] = values[length], values[0]
sift_down(0) | 74e1afaf33e474611e842e97032a60a28fe5664d | 701,658 |
def get_array_info(subs, dictofsubs):
"""
Returns information needed to create and access members of the numpy array
based upon the string names given to them in the model file.
Parameters
----------
subs : Array of strings of subscripts
These should be all of the subscript names that are needed to create the array
dictofsubs : dictionary
returns
-------
A dictionary of the dimensions associating their names with their numpy indices
directory = {'dimension name 1':0, 'dimension name 2':1}
A list of the length of each dimension. Equivalently, the shape of the array:
shape = [5,4]
"""
# subscript references here are lists of array 'coordinate' names
if isinstance(subs,list):
element=subs[0]
else:
element=subs
# we collect the references used in each dimension as a set, so we can compare contents
position=[]
directory={}
dirpos=0
elements=element.replace('!','').replace(' ','').split(',')
for element in elements:
if element in dictofsubs.keys():
if isinstance(dictofsubs[element],list):
dir,pos = (get_array_info(dictofsubs[element][-1],dictofsubs))
position.append(pos[0])
directory[dictofsubs[element][-1]]=dirpos
dirpos+=1
else:
position.append(len(dictofsubs[element]))
directory[element]=dirpos
dirpos+=1
else:
for famname,value in dictofsubs.iteritems():
try:
(value[element])
except: pass
else:
position.append(len(value))
directory[famname]=dirpos
dirpos+=1
return directory, position | ad97545278eddd12e8098dc623024beb797baebc | 701,659 |
import click
def validate_nonempty(ctx, param, value):
"""Validate parameter is not an empty string."""
if not value.strip():
raise click.BadParameter('value cannot be empty')
return value | a8dd9a81c7fc7b0d0064fe34e849d35c0ce52a04 | 701,660 |
import re
def get_genres_from_soup(soup):
"""Get the genres of a book.
Parameters
----------
soup : BeautifulSoup
BeautifulSoup object created from a book page.
Returns
-------
list
Book genres.
"""
genres_elements = soup.find_all('a', {'href': re.compile('/genres/')}, class_='bookPageGenreLink')
return list(map(lambda element: element.get_text(), genres_elements)) | 16db0fc8cb58cdcf19aa89ea8fef27078d33a390 | 701,661 |
import torch
def accuracy(predictions, labels):
"""
Evaluate accuracy from model predictions against ground truth labels.
"""
ind = torch.argmax(predictions, 1)
# provide labels only for samples, where prediction is available (during the training, not every samples prediction is returned for efficiency reasons)
labels = labels[-predictions.size()[0]:]
accuracy = torch.sum(torch.eq(ind, labels)).item() / \
labels.size()[0] * 100.0
return accuracy | 484ba64b2239363daddd206e747f6c1456e236c9 | 701,663 |
def inet_ntoa(i):
"""Convert an int to dotted quad."""
return '.'.join(map(str, [(i >> (3-j)*8) & 0xff for j in range(4)])) | b83a6b08118bcd7858cb588f53b71daaf31d358e | 701,664 |
def cleanup_string(string):
"""
>>> cleanup_string(u', Road - ')
u'road'
>>> cleanup_string(u',Lighting - ')
u'lighting'
>>> cleanup_string(u', Length - ')
u'length'
>>> cleanup_string(None)
''
>>> cleanup_string(' LIT ..')
'lit'
>>> cleanup_string('poor.')
'poor'
"""
if string is None: return ''
string = string.replace(',', '')
string = string.replace('.', '')
string = string.replace(' ', '')
string = string.replace('-', '')
string = string.lower()
return string | 5f9a369a52b798ff8c26bea56fbfe585b3612db0 | 701,665 |
def is_field_allowed(name, field_filter=None):
"""
Check is field name is eligible for being split.
For example, '__str__' is not, but 'related__field' is.
"""
if field_filter in ["year", "month", "week", "day", "hour", "minute", "second"]:
return False
return isinstance(name, str) and not name.startswith('__') and not name.endswith('__') and '__' in name | 8be38b79bab3aeb49219155db0159cc143c38111 | 701,666 |
def lucas(n):
""" compute the nth Lucas number """
a, b = 2, 1 # notice that all I had to change from fib were these values?
if n == 0:
return a
for _ in range(n - 1):
a, b = b, a + b
return b | 9d9404edf59690cafc49ba70d7dc776376d1f020 | 701,674 |
from typing import Tuple
from typing import Union
def _verify_data_shape(data, shape, path=None) -> Tuple[bool, Union[str, None]]:
"""
_verify_data_shape(
{'data': []},
{'data': list}
) == (True, None)
_verify_data_shape(
{'data': ''},
{'data': list}
) == (False, '.data')
_verify_data_shape(
{'data': '', 'empty': 10},
{'data': list}
) == (False, '.data')
This function is what handles the data shape verification. You can use this function, or
the decorator on uploaded data to verify its use before usage. You can basically write out
what the shape should look like. This function supports nested dictionaries.
Here, we will return a tuple of a boolean indicating success or failure, and a error string.
If there was an error validating a given field, the error string will be a path to the
unvalidated field. An example would be:
_verify_data_shape(
{'data': ''},
{'data': list}
) -> (False, '.data')
:return: success as bool, error path
"""
if path is None:
path = ""
if shape is dict or shape is list: # Free, just need a match
if isinstance(data, shape):
return True, None
return False, path
# Verify if data is constant
for _t in [int, str, float]:
if isinstance(data, _t):
return (True, None) if shape == _t else (False, path)
if isinstance(data, dict): # Verify dict keys
for s_key, s_value in shape.items():
# Verify key is included
if s_key not in data:
return False, path + "." + s_key
# Supported basic types
for _t in [int, str, float]:
# Check free strings are strings and lists
if s_value is _t:
if not isinstance(data[s_key], s_value):
return False, path + "." + s_key
# Check explicit strings and lists
elif isinstance(s_value, _t):
if not isinstance(data[s_key], type(s_value)):
return False, path + "." + s_key
# Recurse on other dicts
if isinstance(s_value, dict):
# Free dict ( no need to verify more )
if s_value == dict:
return True, None
# Explicit Dict ( need to recurse )
elif isinstance(s_value, dict):
# Recurse on dict
r, e = _verify_data_shape(data[s_key], s_value, path + "." + s_key)
if r is False:
return r, e
# Type s_value was not dict ( type mismatch )
else:
return False, path + "." + s_key
# Recurse on lists
if isinstance(s_value, list):
# Free list ( no need to verify more )
if s_value == list:
return True, None
# Explicit list ( need to recurse )
elif isinstance(s_value, list):
# If we have a type specified in the list,
# we should iterate, then recurse on the
# elements of the data. Otherwise there's
# nothing to do.
if len(s_value) == 1:
s_value = s_value[0]
for item in data[s_key]:
# Recurse on list item
r, e = _verify_data_shape(
item, s_value, path + ".[" + s_key + "]"
)
if r is False:
return r, e
# Type s_value was not dict ( type mismatch )
else:
return False, path + "." + s_key
if s_value is list or s_value is dict:
if isinstance(data[s_key], s_value):
return True, None
return (
False,
path + ".[" + s_key + "]"
if s_value is list
else path + "." + s_key + "",
)
return True, None | 3e76362938146972d96e34a22373b43dca23381b | 701,680 |
def create_dict_playlists_playlistids(p_list, pid_list):
""" Create a dictionary of playlists and playlist ids """
playlists_and_playlist_ids = {}
for i in range(len(p_list)):
playlists_and_playlist_ids[p_list[i]] = pid_list[i]
return playlists_and_playlist_ids | 173850ed85b3dc774ddea14674e22e701991c807 | 701,685 |
def required_input(message, method=input):
"""
Collect input from user and repeat until they answer.
"""
result = method(message)
while len(result) < 1:
result = method(message)
return result | c9a21d6e63ab6bdde081db471cf0d2420f9047ea | 701,686 |
def is_cat(filename: str) -> bool:
"""
Returns true if filename is an image of a cat.
In the dataset we are using this is indicated by the first letter of the
filename; cats are labeled with uppercase letters, dogs with lowercase ones.
"""
result = filename[0].isupper()
# print(f"File: {filename}, initial: '{filename[0]}', result: {result}")
return result | ad56c7c3ae28951fc31bcf70fece29bf934e4cec | 701,690 |
def analyze_text(filename):
"""
Calculate the number of lines and characters in a file
:param filename: the name of the file to analyze
:raises: IOError: if ``filename`` does not exist or can't be read
:return: a tuple where the first element is the number of lines in the file
and the second element is the number of characters
"""
lines = 0
chars = 0
with open(filename, 'r') as f:
for line in f:
lines += 1
chars += len(line)
return lines, chars | 1670d3bff0402482e9e33be401e8914eea117f6c | 701,691 |
def auto_adapt_batch(train_size, val_size, batch_count_multiple=1, max_size=256):
"""
returns a suitable batch size according to train and val dataset size,
say max_size = 128, and val_size is smaller than train_size,
if val_size < 128, the batch_size1 to be returned is val_size
if 128 < val_size <= 256, the batch size is 1/2 of val_size, at most 1 validation sample cannot be used
if 256 < val_size <= 384, the batch size is 1/3 of val_size, at most 2 validation samples cannot be used
...
:param train_size: the number of training samples in the training set
:param val_size: the number of validation samples in the validation set
:param max_size: the maximum batch_size1 that is allowed to be returned
:param batch_count_multiple: force the batch count to be a multiple of this number, default = 1
:return: a suitable batch_size1 for the input
"""
print('Auto adapting batch size...')
numerator = min(train_size, val_size)
denominator = 0
while True:
denominator += batch_count_multiple
batch_size = numerator // denominator
if batch_size <= max_size: return batch_size | d0a6fa9e6bde3d563bd7fad5e2bbcf7068f9ff65 | 701,692 |
def two_fer(name="you"):
"""Returns a string in the two-fer format."""
return "One for " + name + ", one for me." | a7f10a45b214ea1ea79a6956148b3c6677f27e21 | 701,695 |
import math
def create_pagination(page, results_per_page, total_results):
"""Create pagination to filter results to manageable amounts."""
pagination = {}
# For UI
pagination['page'] = page
pagination['total_results'] = total_results
pagination['total_pages'] = math.ceil(total_results / results_per_page)
# For database
pagination['limit'] = results_per_page
pagination['offset'] = (page - 1) * results_per_page
return pagination | d58bf2adee3e090e88aa82a5a91560e8fb1631e0 | 701,697 |
import math
def a_raininess_oracle(timestep):
"""Mimics an external data source for raininess
Arguments
=========
timestep : int
Requires a year between 2010 and 2050
Returns
=======
raininess : int
"""
msg = "timestep {} is outside of the range [2010, 2050]".format(timestep)
assert timestep in [x for x in range(2010, 2051, 1)], msg
raininess = math.floor((timestep - 2000) / 10)
return raininess | e1b4f32f62fe19f95ac876a0acf03fe533858366 | 701,701 |
import torch
def matrix_to_homogeneous(batch: torch.Tensor) -> torch.Tensor:
"""
Transforms a given transformation matrix to a homogeneous
transformation matrix.
Args:
batch: the batch of matrices to convert [N, dim, dim]
Returns:
torch.Tensor: the converted batch of matrices
"""
if batch.size(-1) == batch.size(-2):
missing = batch.new_zeros(size=(*batch.shape[:-1], 1))
batch = torch.cat([batch, missing], dim=-1)
missing = torch.zeros(
(batch.size(0), *[1 for tmp in batch.shape[1:-1]], batch.size(-1)), device=batch.device, dtype=batch.dtype
)
missing[..., -1] = 1
return torch.cat([batch, missing], dim=-2) | ab3bf1acf1e8fab2d4a4fcdcfd062821bc891b9d | 701,702 |
def find_ch_interest_dict(show_channel_dict : dict, usr_pref_dict : dict):
"""Pass in show_channel_dict {show:channels} and usr_pref_dict {show: rating}. Returns dictionary {channel : total rating}"""
ch_interest_dict = {}
for show in usr_pref_dict:
if show in show_channel_dict:
if show_channel_dict[show] in ch_interest_dict:
ch_interest_dict[show_channel_dict[show]] += usr_pref_dict[show]
else:
ch_interest_dict[show_channel_dict[show]] = usr_pref_dict[show]
return ch_interest_dict | 9928b03c0ceea3ea38c3808a5fd4053553f4e5c4 | 701,706 |
def is_valid_int(s: str) -> bool:
"""
Return true if s can be converted into a valid integer, and false otherwise.
:param s: value to check if can be converted into a valid integer
:return: true if s can be converted into a valid integer, false otherwise
>>> is_valid_int("hello")
False
>>> is_valid_int("506")
True
"""
try:
int(s)
except ValueError:
return False
else:
return True | 9d2c849839f6fdcf729a7c1503a3eac3daa5f000 | 701,707 |
def clean_software_config(config):
"""Take an individual `config` data structure (as specified by
config_validation.SoftwareSchema) and return a 'clean' version suitable for
internal use. This allows for a simplified schema to be available to users
whilst preserving consistent internal data structures by e.g. replacing null
values with empty lists etc.
args:
config (dict): A validated SoftwareSchema
returns:
(dict): A cleaned version of `config`
"""
config = config.copy()
if not config["input_files"]["required"]:
config["input_files"]["required"] = []
if not config["input_files"]["optional"]:
config["input_files"]["optional"] = []
return config | c89ad5a4b61e4214d4b79ce6782e4fe5a86311bf | 701,708 |
def miller_rabin_d(n: int) -> bool:
"""Check if n is a prime number via deterministic Miller-Rabin test.
Miller showed that it is possible to make the algorithm deterministic by
only checking all bases ≤ O(lg(n)^2). Bach later gave a concrete bound, it
is only necessary to test all bases a ≤ 2lg(n)^2. It turns out, for testing
a 32 bit integer it is only necessary to check the first 4 prime bases:
2, 3, 5 and 7. The smallest composite number that fails this test is
3,215,031,751=151⋅751⋅28351. And for testing 64 bit integer it is enough to
check the first 12 prime bases: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and
37."""
if n < 2: return False
s, d = 0, n-1
while d&1 == 0:
s += 1
d >>= 1
for a in 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37:
if n == a: return True
v = pow(a, d, n)
if v != 1 and v != n-1:
for j in range(1, s):
v = pow(v, 2, n)
if v == n-1: break
if v != n-1: return False
return True | ac668cb55e417a6784ba52d1c5da1dc26d3693ad | 701,709 |
from typing import List
from typing import Callable
def evaluate_predictions(preds: List[List[float]],
targets: List[List[float]],
metric_func: Callable) -> List[float]:
"""
Evaluates predictions using a metric function and filtering out invalid targets.
:param preds: A list of lists of shape (data_size, num_tasks) with model predictions.
:param targets: A list of lists of shape (data_size, num_tasks) with targets.
:param metric_func: Metric function which takes in a list of targets and a list of predictions.
:return: A list with the score for each task based on `metric_func`.
"""
data_size, num_tasks = len(preds), len(preds[0])
# Filter out empty targets
# valid_preds and valid_targets have shape (num_tasks, data_size)
valid_preds = [[] for _ in range(num_tasks)]
valid_targets = [[] for _ in range(num_tasks)]
for i in range(num_tasks):
for j in range(data_size):
if targets[j][i] is not None: # Skip those without targets
valid_preds[i].append(preds[j][i])
valid_targets[i].append(targets[j][i])
# Compute metric
results = []
for i in range(num_tasks):
# Skip if all targets are identical
if all(target == 0 for target in valid_targets[i]) or all(target == 1 for target in valid_targets[i]):
continue
results.append(metric_func(valid_targets[i], valid_preds[i]))
return results | 7b7f550a0983cbb8af90f13b214a195cdb8cbfe3 | 701,711 |
from typing import Union
def flatten(x: Union[list, tuple]) -> list:
"""
Flattening function for nested lists and tuples
Args:
x: List or tuple
Returns:
object (list): Flat list
"""
if not isinstance(x, list) and isinstance(x, tuple):
raise TypeError("input must be a list or tuple")
out: list = []
for item in x:
if isinstance(item, (list, tuple)):
out.extend(flatten(item))
else:
out.append(item)
return out | 36c35dfbef4214ccf0f6d355f36865996fd6d88e | 701,713 |
from typing import Mapping
def update_nested(original_dict, update_dict):
"""Update a nested dictionary with another nested dictionary.
Has equivalent behaviour to :obj:`dict.update(self, update_dict)`.
Args:
original_dict (dict): The original dictionary to update.
update_dict (dict): The dictionary from which to extract updates.
Returns:
original_dict (dict): The original dictionary after updates.
"""
for k, v in update_dict.items():
nested_dict = v
if isinstance(v, Mapping): # Mapping ~= any dict-like object
nested_dict = original_dict.get(k, {})
if nested_dict is not None:
nested_dict = update_nested(nested_dict, v)
original_dict[k] = nested_dict
return original_dict | a1a372ac4d26066c3fe32cd4ee1a49fff6972cd9 | 701,714 |
def asInteger(epsg):
""" convert EPSG code to integer """
return int(epsg) | 18a14944f5f29ec09585757f0edc912b896a12ba | 701,720 |
def mag(initial, current):
"""
Calculates the magnification of a specified value
**Parameters**
intial: *float*
initial value (magnificiation of 1)
current: *float*
current value
**Returns**
magnification: *float*
the magnification of the current value
"""
return float(initial) / float(current) | abc8d3603f11e62f57a62c47dc372b4b9ea19b0c | 701,722 |
import re
def capitalize(word):
"""Only capitalize the first letter of a word, even when written in
CamlCase.
Args:
word (str): Input string.
Returns:
str: Input string with first letter capitalized.
"""
return re.sub('([a-zA-Z])', lambda x: x.groups()[0].upper(), word, 1) | 4f254696e00c24a85a20ea74fc66a32fceb541c6 | 701,723 |
import re
def cassandra_ddl_repr(data):
"""Generate a string representation of a map suitable for use in Cassandra DDL."""
if isinstance(data, str):
return "'" + re.sub(r"(?<!\\)'", "\\'", data) + "'"
elif isinstance(data, dict):
pairs = []
for k, v in data.items():
if not isinstance(k, str):
raise ValueError('DDL map keys must be strings')
pairs.append(cassandra_ddl_repr(k) + ': ' + cassandra_ddl_repr(v))
return '{' + ', '.join(pairs) + '}'
elif isinstance(data, int):
return str(data)
elif isinstance(data, bool):
if data:
return 'true'
else:
return 'false'
else:
raise ValueError('Cannot convert data to a DDL representation') | c81ad24c0185ef10646644b82399c202c2261a1a | 701,724 |
import csv
def read_csv_file(file_name):
"""
Given a CSV file, read the data into a nested list
Input: String corresponding to comma-separated CSV file
Output: Nested list consisting of the fields in the CSV file
"""
with open(file_name, newline='') as csv_file: # don't need to explicitly close the file now
csv_table = []
csv_reader = csv.reader(csv_file, delimiter=',')
for row in csv_reader:
csv_table.append(row)
return csv_table | 65f9d2edb9ecf020d773a8d8516f31247fa680ed | 701,726 |
def get_all_entries(df, pdbid, cdr):
"""
Get all entries of a given PDBID and CDR.
:param df: dataframe.DataFrame
:rtype: pandas.DataFrame
"""
return df[(df['input_tag'].str.contains(pdbid)) & (df['CDR'] == cdr)] | 414eca4481bde0ccc5cdd6e143f7d4b06216a102 | 701,728 |
def merge_result(res):
"""
Merges all items in `res` into a list.
This command is used when sending a command to multiple nodes
and they result from each node should be merged into a single list.
"""
if not isinstance(res, dict):
raise ValueError("Value should be of dict type")
result = set([])
for _, v in res.items():
for value in v:
result.add(value)
return list(result) | 28d21ca00316303c0e2fc0400599921154253236 | 701,730 |
def get_file_section_name(section_key, section_label=None):
"""Build a section name as in the config file, given section key and label."""
return section_key + (" {0}".format(section_label) if section_label else "") | 01e1f46d2a949315ba2e927ddfab610064539e3b | 701,731 |
def _final_frame_length(header, final_frame_bytes):
"""Calculates the length of a final ciphertext frame, given a complete header
and the number of bytes of ciphertext in the final frame.
:param header: Complete message header object
:type header: aws_encryption_sdk.structures.MessageHeader
:param int final_frame_bytes: Bytes of ciphertext in the final frame
:rtype: int
"""
final_frame_length = 4 # Sequence Number End
final_frame_length += 4 # Sequence Number
final_frame_length += header.algorithm.iv_len # IV
final_frame_length += 4 # Encrypted Content Length
final_frame_length += final_frame_bytes # Encrypted Content
final_frame_length += header.algorithm.auth_len # Authentication Tag
return final_frame_length | b7029e3b705194ee7daa02b4400d124ffe6efc2a | 701,736 |
def check_is_paired(df, subject, group):
"""
Check if samples are paired.
:param df: pandas dataframe with samples as rows and protein identifiers as columns (with additional columns 'group', 'sample' and 'subject').
:param str subject: column with subject identifiers
:param str group: column with group identifiers
:return: True if paired samples.
:rtype: bool
"""
is_pair = False
if subject is not None:
count_subject_groups = df.groupby(subject)[group].count()
is_pair = (count_subject_groups > 1).all()
return is_pair | 38f9b0722e77edb88ff44a7bc73eb24a8f1aa097 | 701,738 |
def specific_heat(mat):
"""Calculate specifc heat"""
cw = 4183
mr = mat['m_heat']
mw = mat['m_w']
Tr = mat['Tr']
Tw = mat['Tw']
Te = mat['Te']
return (mw * cw * (Te - Tw)) / (mr * (Tr - Te)) | 7d3fbe3f67b3df593c94c93ab7d8523242d17b46 | 701,743 |
def _flatten(suitable_for_isinstance):
"""
isinstance() can accept a bunch of really annoying different types:
* a single type
* a tuple of types
* an arbitrary nested tree of tuples
Return a flattened tuple of the given argument.
"""
types = set()
if not isinstance(suitable_for_isinstance, tuple):
suitable_for_isinstance = (suitable_for_isinstance,)
for thing in suitable_for_isinstance:
if isinstance(thing, tuple):
types.update(_flatten(thing))
else:
types.add(thing)
return tuple(types) | 5ba63f39b2d22da78f5a362ce6821239714a9e6a | 701,745 |
import six
def bitcast_to_bytes(s):
"""
Take a string and return a string(PY2) or a bytes(PY3) object. The returned
object contains the exact same bytes as the input string. (latin1 <->
unicode transformation is an identity operation for the first 256 code
points).
"""
return s if six.PY2 else s.encode("latin1") | b902550be03f447a286490653a2a1361257ac88c | 701,748 |
from typing import Type
from typing import Hashable
def _lookup(key: str, typ: Type, *args, **kwargs) -> Hashable:
"""
Gets the value of the given key in args, defaulting to the first positional.
:param key: key to find value of in args.
:param typ: type that dispatch is being perform on.
:param args: positional args.
:param kwargs: keyword args.
:return: value of the key in the given args.
"""
if key in kwargs:
value = kwargs[key]
else:
try:
if typ.__qualname__.endswith('.__new__'):
value = args[1]
else:
value = args[0]
except IndexError:
raise TypeError(f'missing dispatch parameter {key!r} on {typ.__name__}')
return value | 195e95cd1d77137890d0608195677c344e698ad7 | 701,750 |
import re
def validate_time_string(value, is_list):
"""
Checks that a "time string" quant is correctly formatted.
A time string can contain three kinds of expressions, separated by + or -:
Base values, which are just numeric (with an optional exponent on e form)
Delta values, which are the same as above with a '*i' or 'i' suffix
Variables, which are strings that are formatted according to the variable name rules
If the string is correctly formatted, a polished version is returned.
Otherwise, the original string is returned with an 'INVALID: ' prefix.
"""
# Strip the input down to the essential part
value = value.replace('INVALID:', '').strip()
input_str = value.replace(' ', '')
# Split the string if the quant accepts multiple values
if is_list:
strings = input_str.split(',')
else:
strings = [input_str]
result = ''
for idx, s in enumerate(strings):
accum_string = '' if idx == 0 else ', '
first = True
if len(s) == 0:
return f'INVALID: {value}'
while len(s) > 0:
prefix = '[+-]?' if first else '[+-]'
var_rex = re.compile(prefix + r'[A-Za-z_]+[0-9A-Za-z_]*(\*i)?')
var_match = var_rex.match(s)
if var_match:
# Remove the matched part from input
match_str = var_match.group()
match_len = len(match_str)
s = s[match_len:]
first = False
if match_str[0] in ('+', '-'):
match_str = f'{match_str[0]} {match_str[1:]}'
# Add a space after variable name
accum_string += f'{match_str} '
continue
# No variable match, check for numeric value
num_rex = re.compile(prefix + r'(([0-9]*\.[0-9]+)|([0-9]+))(e-?[0-9]+)?(\*?i)?', re.I)
num_match = num_rex.match(s)
if num_match:
# Remove the matched part from input
match_str = num_match.group()
match_len = len(match_str)
s = s[match_len:]
first = False
# Temporarily remove first char if it's a + or -
if match_str[0] in ('+', '-'):
# Put a space after the sign
prefix_char = f'{match_str[0]} '
match_str = match_str[1:]
else:
prefix_char = ''
# Perform some cleanup
while match_str.startswith('0') and len(match_str) > 1 and match_str[1].isnumeric():
match_str = match_str[1:]
# Insert a zero if the number starts with a period
if match_str.startswith('.'):
match_str = '0' + match_str
match_str = f'{prefix_char}{match_str} '
match_str = match_str.replace('I', 'i')
match_str = match_str.replace('e', 'E')
accum_string += match_str
continue
# No match, invalid input
return f'INVALID: {value}'
result += accum_string.strip()
return result | 802e7503f19ed1a5bb47ad887d1fe15219225fe1 | 701,753 |
async def async_setup(hass, hass_config):
"""Set up the Plaato component."""
return True | b2c620c58aabcf788310e3aaf9cdf836f9be15ba | 701,755 |
def read_ffindex(file):
"""Read a ffindex and return a list of all the lines in the file .
Args:
file (string): path to the ffindex
Returns:
list of string: The file read line by line
"""
fh = open(file, "r")
index = []
for line in fh:
index.append(line.rstrip().split())
fh.close()
return index | fae6494ddbda63abae1161f9fd22c8a94f506407 | 701,760 |
import importlib
def resolve(module_name, obj_name):
"""
Resolve a named object in a module.
"""
return getattr(importlib.import_module(module_name), obj_name) | 87ccef3456d28615b82a89a8e4ce405403eaade9 | 701,762 |
def get_num_shorts(string_list):
""" Returns the number of occurences of 'Short' in an input string list.
Args:
string_list(list of string objects)
Returns:
numShorts(int): Number of occurences of 'Short'
"""
numShorts = 0
for marker in string_list:
if (marker == 'Short'):
numShorts += 1
return numShorts | b8e9da454590a8b29965696be3265053cfc78729 | 701,763 |
import jinja2
def create_j2env(template_dir) -> jinja2.Environment:
"""
Create a Jinja2 enviornment instance used when template building the containerlab
topology file.
Parameters
----------
template_dir: str
The file path where the Jinja2 template file is located.
Returns
-------
A Jinja2 enviornment instance that will be used to template build the
containerlabs topology file.
"""
env = jinja2.Environment(
trim_blocks=True,
lstrip_blocks=True,
keep_trailing_newline=True,
loader=jinja2.FileSystemLoader([template_dir]),
undefined=jinja2.StrictUndefined,
)
return env | 1d6559eae0346c0b9fd6171c18da5f2d94e1db86 | 701,765 |
import torch
def compute_accuracy(logits, labels, mask):
"""Compute the accuracy"""
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels) | a7ee234837024598fc95fa9c54c55802ea411577 | 701,770 |
def gt(value, other):
"""Greater than"""
return value > other | 943d50ded0dfcb248eefb060d28850154693956b | 701,782 |
def point_dist(a, b):
""" Distance between two points. """
return ((a[0]-b[0]) ** 2 + (a[1]-b[1]) ** 2) ** 0.5 | ad3490e25fb21a555ee2d12bead5fa476f682566 | 701,783 |
import math
def exempt_milliwatts_sar(cm: float, ghz: float) -> float:
"""Calculate power threshold for exemption from routine radio frequency exposure evaluation. Note: narrow range
of applicable frequencies. FCC formula is "based on localized specific absorption rate (SAR) limits." Source: FCC
19-126 p.23
:param cm: Distance from antenna to person (centimeters)
:param ghz: Frequency of RF source (gigahertz, NOTE different unit from other functions)
:return: time-averaged power threshold for exemption (milliwatts)
:raises ValueError: if frequency or distance out of range (0.3 - 6 GHz; 0 - 40 cm)
"""
if 0.3 <= ghz < 1.5:
erp20 = 2040 * ghz
elif 1.5 <= ghz <= 6:
erp20 = 3060
else:
raise ValueError("frequency out of range: %s GHz" % str(ghz))
x = -1 * math.log10(60 / (erp20 * math.sqrt(ghz)))
if 0 <= cm <= 20:
p_threshold = erp20 * (cm / 20) ** x
elif 20 < cm <= 40:
p_threshold = erp20
else:
raise ValueError("distance out of range: %s cm" % str(cm))
return p_threshold | d705c3fd2388204d188e95d9013fe0c574f9e82a | 701,789 |
import uuid
def random_string() -> str:
"""
Create a 36-character random string.
Returns
-------
str
"""
return str(uuid.uuid4()) | f01e291f6d36a8468a256af0fad83e2d468b471d | 701,791 |
def _extent(x, y):
"""Get data extent for pyplot imshow.
Parameters
----------
x: list
Data array on X-axis.
y: list
Data array on Y-axis.
Returns
-------
[float, float, float, float]
X and Y extent.
"""
dx, dy = .5 * (x[1] - x[0]), .5 * (y[1] - y[0])
return [x[0] - dx, x[-1] + dx, y[-1] + dy, y[0] - dy] | 1b8a062e2060dc99d3fcdc32fe6fd1952f468a6a | 701,792 |
def _normalize_newlines(text: str) -> str:
"""Normalizes the newlines in a string to use \n (instead of \r or \r\n).
:param text: the text to normalize the newlines in
:return: the text with the newlines normalized
"""
return "\n".join(text.splitlines()) | 6b53b42e8cec72a8e63ec0065776f47de2fba835 | 701,796 |
def pick_from_greatests(dictionary, wobble):
"""
Picks the left- or rightmost positions of the greatests list in a window
determined by the wobble size. Whether the left or the rightmost positions
are desired can be set by the user, and the list is ordered accordingly.
"""
previous = -100
is_picked_list = []
for pos, is_greatest in dictionary.items():
is_picked = False
if is_greatest:
if previous not in range(pos - wobble, pos + wobble + 1):
is_picked = True
previous = pos
is_picked_list.append(is_picked)
return is_picked_list | 52685877620ab7f58a27eb6997ec25f3b499e3a4 | 701,797 |
def replace_layer(model, layer_name, replace_fn):
"""Replace single layer in a (possibly nested) torch.nn.Module using `replace_fn`.
Given a module `model` and a layer specified by `layer_name` replace the layer using
`new_layer = replace_fn(old_layer)`. Here `layer_name` is a list of strings, each string
indexing a level of the nested model."""
if layer_name:
nm = layer_name.pop()
model._modules[nm] = replace_layer(model._modules[nm], layer_name, replace_fn)
else:
model = replace_fn(model)
return model | 2e0ee082d6ab8b48979aa49e303a0e12583812b7 | 701,798 |
def genInvSBox( SBox ):
"""
genInvSBox - generates inverse of an SBox.
Args:
SBox: The SBox to generate the inverse.
Returns:
The inverse SBox.
"""
InvSBox = [0]*0x100
for i in range(0x100):
InvSBox[ SBox[i] ] = i
return InvSBox | 8ddf7e338e914f6cb6c309dc25705601326160c0 | 701,799 |
def get_unassigned(values:dict, unassigned:dict):
"""
Select Unassigned Variable
It uses minimum remaining values MRV and degree as heuristics
returns a tuple of:
unassigned key and a list of the possible values
e.g. ('a1', [1, 2, 3, 4, 5, 6, 7, 8, 9])
"""
values_sort = dict() # empty dictionary to store length of possible values array
for key in values.keys():
length = len(values[key]) # get the length of possible values array
values_sort[key] = (length) # add to dictionary for sorting in next step
# sort the dictionary including lengths of possible values from small to large
# this is to later on assign the items with the minimum number of remaining values first
values_sorted = dict(sorted(values_sort.items(), key=lambda item: item[1], reverse=False))
for key in values_sorted.keys():
if unassigned[key] == True:
length = values_sorted[key]
if length > 1:
vars = values[key]
return key, vars | 32ff78f7a6443bfbf4406c420ba87e254e88d5c3 | 701,800 |
from datetime import datetime
def datetime_to_year(dt: datetime) -> float:
"""
Convert a DateTime instance to decimal year
For example, 1/7/2010 would be approximately 2010.5
:param dt: The datetime instance to convert
:return: Equivalent decimal year
"""
# By Luke Davis from https://stackoverflow.com/a/42424261
year_part = dt - datetime(year=dt.year, month=1, day=1)
year_length = datetime(year=dt.year + 1, month=1, day=1) - datetime(year=dt.year, month=1, day=1)
return dt.year + year_part / year_length | 5f4ae29d57d13a344e70016ab59dbc0a619db4d8 | 701,802 |
def ek_R56Q(cell):
"""
Returns the R56Q reversal potential (in mV) for the given integer index
``cell``.
"""
reversal_potentials = {
1: -96.0,
2: -95.0,
3: -90.5,
4: -94.5,
5: -94.5,
6: -101.0
}
return reversal_potentials[cell] | a61d33426e4c14147677c29b8e37381981f0d1db | 701,803 |
import re
def _sort_nd2_files(files):
"""
The script used on the Nikon scopes is not handling > 100 file names
correctly and is generating a pattern like:
ESN_2021_01_08_00_jsp116_00_P_009.nd2
ESN_2021_01_08_00_jsp116_00_P_010.nd2
ESN_2021_01_08_00_jsp116_00_P_0100.nd2
ESN_2021_01_08_00_jsp116_00_P_011.nd2
So this function parses the last number and treats it as an int for sorting
"""
pat = re.compile(r"(.*_)(\d+)(\.nd2)$")
file_splits = []
did_split = None
for file in files:
g = pat.match(file)
if g is not None:
file_splits += [(g.group(1), g.group(2), g.group(3))]
assert did_split is True or did_split is None
did_split = True
else:
assert did_split is False or did_split is None
did_split = False
if did_split:
numerically_sorted = sorted(file_splits, key=lambda x: int(x[1]))
return ["".join(i) for i in numerically_sorted]
else:
return sorted(files) | 17a034323412174beab3fd9cfb23e315a26d4d5a | 701,806 |
def _suppression_polynomial(halo_mass, z, log_half_mode_mass, c_scale, c_power):
"""
:param halo_mass: halo mass
:param z: halo redshift
:param log_half_mode_mass: log10 of half-mode mass
:param c_scale: the scale where the relation turns over
:param c_power: the steepness of the turnover
The functional form is:
c_wdm / c_cdm = (1 + c_scale * mhm / m)^c_power * redshift_factor
where
redshift_factor = (1+z)^(0.026 * z - 0.04)
(Bose et al. 2016)
:return: the ratio c_wdm over c_cdm
"""
if c_power > 0:
raise Exception('c_power parameters > 0 are unphysical')
if c_scale < 0:
raise Exception('c_scale parameters < 0 are unphysical')
mhm = 10 ** log_half_mode_mass
mass_ratio = mhm / halo_mass
concentration_factor = (1 + c_scale * mass_ratio) ** c_power
redshift_factor = (1 + z) ** (0.026 * z - 0.04)
rescale = redshift_factor * concentration_factor
return rescale | e0d72ae6c092ff01864cfb74d18143b070f075c9 | 701,807 |
import torch
def KLDiv_loss(x, y):
"""Wrapper for PyTorch's KLDivLoss function"""
x_log = x.log()
return torch.nn.functional.kl_div(x_log, y) | e288c3e60fab90a30693b6d5856bd2964f421599 | 701,808 |
def limit_vals(input_value, low_limit, high_limit):
"""
Apply limits to an input value.
Parameters
----------
input_value : float
Input value.
low_limit : float
Low limit. If value falls below this limit it will be set to this value.
high_limit : float
High limit. If value falls above this limit it will be set to this value.
Returns
-------
float
Returns input value unless it falls above or below the entered limits.
"""
if input_value < low_limit:
return low_limit
elif input_value > high_limit:
return high_limit
else:
return input_value | 4520da27c81338631ea0d35651c7e3170de0524c | 701,809 |
import torch
def get_mask(
ref,
sub,
pyg=False
):
"""
Get the mask for a reference list based on a subset list.
Args:
ref: reference list
sub: subset list
pyg: boolean; whether to return torch tensor for PyG
Return:
mask: list or torch.BoolTensor
"""
mask = [item in sub for item in ref]
if pyg:
mask = torch.BoolTensor(mask)
return mask | 07e4b092b5becaaec8bc070990259701bc3a00b7 | 701,810 |
def get_merged_overlapping_coords(start_end):
"""merges overlapping spans, assumes sorted by start"""
result = [start_end[0]]
prev_end = result[0][-1]
for i in range(1, len(start_end)):
curr_start, curr_end = start_end[i]
# if we're beyond previous, add and continue
if curr_start > prev_end:
prev_end = curr_end
result.append([curr_start, curr_end])
elif curr_end > prev_end:
prev_end = curr_end
result[-1][-1] = prev_end
else:
pass # we lie completely within previous span
return result | 22220778a66e069d98d1129b32f024e61fde1859 | 701,811 |
def html_to_spreadsheet_cell(html_element):
""" Parse HTML elmement, like <a href=www.google.com>Google</a> to =HYPERLINK(www.google.com, Google) """
link = html_element.find("a")
if link:
return '=HYPERLINK("{}", "{}")'.format(link['href'], link.contents[0])
else:
return html_element.text | f0c797f59ed55d1ce6aab32ff8c40cf83577ee27 | 701,814 |
from typing import Tuple
def parseOptionWithArgs(plugin: str) -> Tuple[str, str]:
"""Parse the plugin name into name and parameter
@type plugin: str
@param plugin: The plugin argument
@returns tuple[str, str]: The plugin name and parameter
"""
if '=' in plugin:
plugin, param = plugin.split('=', 1)
else:
plugin = plugin
param = ''
return (plugin, param) | 0e1f85f2e31349bf7ddcdc2d35b9ba815a61ec06 | 701,816 |
def knapsack(p, v, cmax):
"""Knapsack problem: select maximum value set of items if total size not
more than capacity
:param p: table with size of items
:param v: table with value of items
:param cmax: capacity of bag
:requires: number of items non-zero
:returns: value optimal solution, list of item indexes in solution
:complexity: O(n * cmax), for n = number of items
"""
n = len(p)
opt = [[0] * (cmax + 1) for _ in range(n + 1)]
sel = [[False] * (cmax + 1) for _ in range(n + 1)]
# --- basic case
for cap in range(p[0], cmax + 1):
opt[0][cap] = v[0]
sel[0][cap] = True
# --- induction case
for i in range(1, n):
for cap in range(cmax + 1):
if cap >= p[i] and opt[i-1][cap - p[i]] + v[i] > opt[i-1][cap]:
opt[i][cap] = opt[i-1][cap - p[i]] + v[i]
sel[i][cap] = True
else:
opt[i][cap] = opt[i-1][cap]
sel[i][cap] = False
# --- reading solution
cap = cmax
solution = []
for i in range(n-1, -1, -1):
if sel[i][cap]:
solution.append(i)
cap -= p[i]
return (opt[n - 1][cmax], solution) | 484ae09e663c834e42a9e05d684138d4fb6ddf08 | 701,817 |
def get_usage_data_labels(usage_data):
"""Return dict with human readable labels for each of the groups in each of the given usage data timeframes."""
labels = {}
timeframe_formats = {"day": "%H", "week": "%b %d", "month": "%b %d", "year": "%b %Y"}
for timeframe, timeframe_data in usage_data.items():
labels[timeframe] = [group["datetime"].strftime(timeframe_formats[timeframe]) for group in timeframe_data]
# Modify hourly labels to signify that it is covering a period of an hour.
labels["day"] = [f"{label}:00-{int(label) + 1:02}:00" for label in labels["day"]]
return labels | 7c8610a7feb8a3a4a6454f508bfb9c95ccba55ff | 701,819 |
def format_currency(amount):
"""Convert float to string currency with 2 decimal places."""
str_format = str(amount)
cents = str_format.split('.')[1]
if len(cents) == 1:
str_format += '0'
return '{0} USD'.format(str_format) | b90d064fe6b095227e5c590ad8d175f072e07957 | 701,823 |
def _get_delay_time(session):
"""
Helper function to extract the delay time from the session.
:param session: Pytest session object.
:return: Returns the delay time for each test loop.
"""
return session.config.option.delay | 466ce191962df90ee8cdc1a5f8a004094eb9e79f | 701,825 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.