content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def is_response_paginated(response_data):
"""Checks if the response data dict has expected paginated results keys
Returns True if it finds all the paginated keys, False otherwise
"""
try:
keys = list(response_data.keys())
except AttributeError:
# If we can't get keys, wer'e certainly not paginated
return False
return set(keys) == set([u'count', u'next', u'previous', u'results']) | 521c28c1d6e29e5785b3bcbd5d2604210b3a3874 | 702,076 |
def compute_power(rawvolts, rawamps):
"""
Compute the power. Looks trivial, but I'm gonna implement
smoothing later.
"""
power = rawvolts * 1.58
power_low = rawvolts * 1.51
power_high = rawvolts * 1.648
return power, power_low, power_high | 9202e456d4655de12ec5608011e80647cf62f7ab | 702,078 |
import csv
def read_aa_losses(filename):
"""
Read AA losses from data file. (assume fixed structure...)
"""
aa_losses = {}
with open(filename, 'r') as f:
reader = csv.reader(f, delimiter=',')
next(reader) # skip headers
for line in reader:
if len(line) == 0:
continue
aa_id = line[1]
aa_mono = float(line[4])
aa_avg = float(line[5])
aa_losses[aa_id.lower()] = (aa_mono, aa_avg)
return aa_losses | b1ba8349d01d43112ef67436fa2bb09d3bed768c | 702,080 |
def add(M1, M2):
"""
Returns a matrix Q, where Q[i][j] = M1[i][j] + M2[i][j].
M2 is replaced by Q.
"""
m = len(M1)
n = len(M1[0])
for p in range(m):
for q in range(n):
M2[p][q] = M2[p][q] + M1[p][q]
return M2 | ac86e9109f6287cde062392992bf64dbf49614f5 | 702,081 |
def get_config_by_url(cfg, url):
"""
:param cfg: dictionary
:param url: path to value separated by dot, e.g, key1.key2.key3
:return: value from dictionary
"""
keys = url.split('.')
for key in keys:
cfg = cfg[key]
return cfg | 0dd2a01a2ecd198f044eebcd3f854f96dbf945bd | 702,083 |
def imq_kernel(x, y, score_x, score_y, g=1, beta=0.5, return_kernel=False):
"""Compute the IMQ Stein kernel between x and y
Parameters
----------
x : torch.tensor, shape (n, p)
Input particles
y : torch.tensor, shape (n, p)
Input particles
score_x : torch.tensor, shape (n, p)
The score of x
score_y : torch.tensor, shape (n, p)
The score of y
g : float
Bandwidth
beta : float
Power of the kernel
return_kernel : bool
whether the original kernel k(xi, yj) should also be returned
Return
------
stein_kernel : torch.tensor, shape (n, n)
The linear Stein kernel
kernel : torch.tensor, shape (n, n)
The base kernel, only returned id return_kernel is True
"""
_, p = x.shape
d = x[:, None, :] - y[None, :, :]
dists = (d ** 2).sum(axis=-1)
res = 1 + g * dists
kxy = res ** (-beta)
scores_d = score_x[:, None, :] - score_y[None, :, :]
temp = d * scores_d
dkxy = 2 * beta * g * (res) ** (-beta - 1) * temp.sum(axis=-1)
d2kxy = 2 * (
beta * g * (res) ** (-beta - 1) * p
- 2 * beta * (beta + 1) * g ** 2 * dists * res ** (-beta - 2)
)
k_pi = score_x.mm(score_y.T) * kxy + dkxy + d2kxy
if return_kernel:
return k_pi, kxy
return k_pi | 08c95b04789f47b557645df975a20c1f1b478a0d | 702,091 |
def build_rgb_and_opacity(s):
"""
Given a KML color string, return an equivalent RGB hex color string and an opacity float rounded to 2 decimal places.
EXAMPLE::
>>> build_rgb_and_opacity('ee001122')
('#221100', 0.93)
"""
# Set defaults
color = '000000'
opacity = 1
if s.startswith('#'):
s = s[1:]
if len(s) == 8:
color = s[6:8] + s[4:6] + s[2:4]
opacity = round(int(s[0:2], 16)/256, 2)
elif len(s) == 6:
color = s[4:6] + s[2:4] + s[0:2]
elif len(s) == 3:
color = s[::-1]
return '#' + color, opacity | 06cb729338584c9b3b934a844f5a2ec53245e967 | 702,092 |
def url_add_api_key(url_dict: dict, api_key: str) -> str:
"""Attaches the api key to a given url
Args:
url_dict: Dict with the request url and it's relevant metadata.
api_key: User's API key provided by US Census.
Returns:
URL with attached API key information.
"""
return url_dict['url']+f'&key={api_key}' | 1442d0f67a1f3603205870d1af0baf30eb3f1d50 | 702,095 |
def _compute_fans(shape):
"""Computes the fan-in and fan-out for a depthwise convolution's kernel."""
if len(shape) != 4:
raise ValueError(
'DepthwiseVarianceScaling() is only supported for the rank-4 kernels '
'of 2D depthwise convolutions. Bad kernel shape: {}'
.format(str(shape)))
receptive_field_size = shape[0] * shape[1]
depth_multiplier = shape[3]
fan_in = receptive_field_size
fan_out = receptive_field_size * depth_multiplier
return (fan_in, fan_out) | a33bfdf32080147f092d32fca1d70a90b2b25e91 | 702,097 |
def merge_shards(shard_data, existing):
"""
Compares ``shard_data`` with ``existing`` and updates ``shard_data`` with
any items of ``existing`` that take precedence over the corresponding item
in ``shard_data``.
:param shard_data: a dict representation of shard range that may be
modified by this method.
:param existing: a dict representation of shard range.
:returns: True if ``shard data`` has any item(s) that are considered to
take precedence over the corresponding item in ``existing``
"""
if not existing:
return True
if existing['timestamp'] < shard_data['timestamp']:
# note that currently we do not roll forward any meta or state from
# an item that was created at older time, newer created time trumps
return True
elif existing['timestamp'] > shard_data['timestamp']:
return False
new_content = False
# timestamp must be the same, so preserve existing range bounds and deleted
for k in ('lower', 'upper', 'deleted'):
shard_data[k] = existing[k]
# now we need to look for meta data updates
if existing['meta_timestamp'] >= shard_data['meta_timestamp']:
for k in ('object_count', 'bytes_used', 'meta_timestamp'):
shard_data[k] = existing[k]
else:
new_content = True
if (existing['state_timestamp'] == shard_data['state_timestamp']
and shard_data['state'] > existing['state']):
new_content = True
elif existing['state_timestamp'] >= shard_data['state_timestamp']:
for k in ('state', 'state_timestamp', 'epoch'):
shard_data[k] = existing[k]
else:
new_content = True
return new_content | 18704dd79274dd7ec6157cd28be04a5858e6cff7 | 702,098 |
def usage_percent(used, total, round_=None):
"""Calculate percentage usage of 'used' against 'total'."""
try:
ret = (float(used) / total) * 100
except ZeroDivisionError:
return 0.0
else:
if round_ is not None:
ret = round(ret, round_)
return ret | dd707700de52020102ad51ad6f8494d0db489463 | 702,101 |
import re
def is_valid_regex(string):
"""
Checks whether the re module can compile the given regular expression.
:param string: str
:return: boolean
"""
try:
re.compile(string)
is_valid = True
except re.error:
is_valid = False
return is_valid | 3893410afd8d3e6ed9310550159b35cc504dfffa | 702,102 |
import calendar
def year_add(date, years):
"""Add number of years to date.
>>> import datetime
>>> year_add(datetime.datetime(2016, 2, 29), 1)
datetime.date(2017, 2, 28)
>>> year_add(datetime.date(2016, 2, 29), 1)
datetime.date(2017, 2, 28)
>>> year_add(datetime.date(2015, 2, 28), 1)
datetime.date(2016, 2, 28)
>>> year_add(datetime.date(2017, 2, 28, -1)
datetime.date(2016, 2, 28)
>>> year_add(datetime.datetime(2016, 2, 29), -1)
datetime.datetime(2015, 2, 28)
"""
if date.day == 29 and date.month == 2 and not calendar.isleap(date.year + years):
return date.replace(day=28, year=date.year + years)
return date.replace(year=date.year + years) | 62be01b7051ddef27376ebae4b97f63e9b7ca979 | 702,106 |
def _get_command_powershell_script(command):
"""Return a valid CMD command that runs a powershell script."""
return "powershell -NonInteractive -NoLogo -File {}".format(command) | fdd67ac942e7869417c57f8021f26480228bc0a7 | 702,109 |
from pathlib import Path
import json
def latest_checkpoint(model_dir, model_name):
"""return path of latest checkpoint in a model_dir
Args:
model_dir: string, indicate your model dir(save ckpts, summarys,
logs, etc).
model_name: name of your model. we find ckpts by name
Returns:
path: None if isn't exist or latest checkpoint path.
"""
ckpt_info_path = Path(model_dir) / "checkpoints.json"
if not ckpt_info_path.is_file():
return None
with open(ckpt_info_path, "r") as f:
ckpt_dict = json.loads(f.read())
if model_name not in ckpt_dict["latest_ckpt"]:
return None
latest_ckpt = ckpt_dict["latest_ckpt"][model_name]
ckpt_file_name = Path(model_dir) / latest_ckpt
if not ckpt_file_name.is_file():
return None
return str(ckpt_file_name) | 29acafdb72bbb549cda7d72cc15a5a93f5535dca | 702,113 |
def get_token_list(text):
"""Returns a list of tokens.
This function expects that the tokens in the text are separated by space
character(s). Example: "ca n't , touch". This is the case at least for the
public DiscoFuse and WikiSplit datasets.
Args:
text: String to be split into tokens.
"""
return text.split() | 01a917fae5923cdfd693548bb688695a917fab70 | 702,115 |
def cut_string(string, limit=30):
"""Shorten the length of longer strings."""
if len(string) <= limit:
return string
else:
return string[:limit-3] + '...' | 842cfefcff84c4f146cc85a4e86dff1486e9a434 | 702,116 |
def heading(heading_string, underline='='):
"""
Takes a raw string and underlines it with the given underline char
"""
return '%s\n%s' % (heading_string, underline * len(heading_string)) | 369385ffef60b88ba7e3a5c376236f6d4043ac72 | 702,117 |
def profile_to_node(src_profile):
"""convert source profile to graph node."""
return (src_profile['uid'], src_profile) | 970d349c2884dd57d10bef8f7e2649509e480a62 | 702,122 |
def matchnocase(word, vocab):
"""
Match a word to a vocabulary while ignoring case
:param word: Word to try to match
:param vocab: Valid vocabulary
:return:
>>> matchnocase('mary', {'Alice', 'Bob', 'Mary'})
'Mary'
"""
lword = word.lower()
listvocab = list(vocab) # this trick catches dict and set in addition to list
lvocab = [w.lower() for w in listvocab]
if lword in lvocab:
return listvocab[lvocab.index(lword)]
return None | ba0354d7669d08fbdedc926c11f446c26f401e89 | 702,130 |
from datetime import datetime
def get_first_timestamp(log_file, search_text):
"""Get the first timestamp of `search_text' in the log_file
Args:
log_file
search_text (str)
Returns:
timestamp: datetime object
"""
timestamp = None
with open(log_file, "r") as f:
content = [next(f) for x in range(51)]
content = [x.strip().split() for x in content]
for log_line in content:
# Extract text
text = ' '.join(log_line[3:-1])
if search_text in text.lower():
# Extract date for this text
date_time_str = ' '.join(log_line[0:2])[1:-1]
timestamp = datetime.strptime(date_time_str,
'%Y-%m-%d %H:%M:%S.%f')
break
return timestamp | fbf5f00ea0810788019ec081a67664393763a95c | 702,131 |
def get_fetaure_names(df, feature_name_substring) :
"""
Returns the list of features with name matching 'feature_name_substring'
"""
return [col_name for col_name in df.columns if col_name.find(feature_name_substring) != -1] | 14103620e89b282da026fd9f30c7491b63820c09 | 702,132 |
import numbers
def ISNUMBER(value):
"""
Checks whether a value is a number.
>>> ISNUMBER(17)
True
>>> ISNUMBER(-123.123423)
True
>>> ISNUMBER(False)
True
>>> ISNUMBER(float('nan'))
True
>>> ISNUMBER(float('inf'))
True
>>> ISNUMBER('17')
False
>>> ISNUMBER(None)
False
>>> ISNUMBER(datetime.date(2011, 1, 1))
False
More tests:
>>> ISNUMBER(AltText("text"))
False
>>> ISNUMBER('')
False
"""
return isinstance(value, numbers.Number) | 422c5bcd24a21a50bfefb1a00193387e725d435b | 702,133 |
def eval_multiple(exprs,**kwargs):
"""Given a list of expressions, and keyword arguments that set variable
values, returns a list of the evaluations of the expressions.
This can leverage common subexpressions in exprs to speed up running times
compared to multiple eval() calls.
"""
for e in exprs:
e._clear_eval_cache()
return [e._eval([],kwargs) for e in exprs] | 2bc90dacb972d3315168638a4ea99f9cfbb13830 | 702,136 |
import requests
def get(url, params, proxies, headers):
"""Send a request with the GET method."""
response = requests.get(url, params=params, proxies=proxies, headers=headers)
return response | a481a91e5f3fc71f88de8d84efaac3dd666c302e | 702,137 |
def action_from_trinary_to_env(action) -> int:
"""
Maps trinary model output to int action understandable by env
"""
assert action in (0, 1, 2), f'Wrong action: {action}'
return {
0: 0,
1: 2,
2: 5
}[action] | e2a7cd3d6c018a7112e2304f2910781b665a8247 | 702,139 |
import hashlib
def file_md5(file_path: str) -> str:
"""Compute the md5 hex digest of a binary file with reasonable memory usage."""
md5_hash = hashlib.md5()
with open(file_path, 'rb') as f:
while True:
data = f.read(65536)
if not data:
break
md5_hash.update(data)
return md5_hash.hexdigest() | ac0576e901ca3205f824a599566e628ee29f5a7c | 702,141 |
def pl_to_eng(unit: str) -> str:
"""Converts Polish terminology to English"""
switcher = {
"pikinier": "spear",
"miecznik": "sword",
"topornik": "axe",
"lucznik": "archer",
"zwiadowca": "spy",
"lekki kawalerzysta": "light",
"lucznik na koniu": "marcher",
"ciezki kawalerzysta": "heavy",
"taran": "ram",
"katapulta": "catapult",
"szlachcic": "snob"
}
return switcher.get(unit, "error") | 7d9634c554cc84663b1c7fb787b070d535747d36 | 702,142 |
from typing import Dict
from typing import List
from pathlib import Path
import yaml
def write_commands_instructions(
commands_instructions: Dict[str, List[str]], scene_path: Path, index: int
) -> Path:
"""*Deprecated, use `write_yaml_instructions` instead.*
Writes a command instruction `yaml` file.
These are the files that [`runner`](github.com/TrickyTroll/good-bot-runner)
takes as input to type commands and expect stuff.
Args:
commands_instructions (Dict[str, List[str]]): A dictionary of commands
and things to expect. Keys should be either `commands` or
`expect`. The values should be a list of commands and a list of
things to expect.
scene_path (Path): The path towards the scene where the
`commands_instructions` come from.
index (int): The index of the command block.
Returns:
Path: The path towards where the new `yaml` file has been written.
"""
commands_path: Path = scene_path / Path("commands")
file_path: Path = commands_path / Path(f"commands_{index + 1}").with_suffix(".yaml")
to_write: str = yaml.safe_dump(commands_instructions)
with open(file_path, "w") as stream:
stream.write(to_write)
return file_path | 1a0cc75b9bcf269133b799f1abe4b507b2f42c16 | 702,147 |
import re
def replace_simultaneous(s: str, r0: str, r1: str) -> str:
"""
Replace all instances of `r0` in `s` with `r1` and vice versa.
This method does the replacements simultaneously so that, e.g.,
if you call `replace_simultaneous("apple banana", "apple", "banana")`
the result will be `"banana apple"` instead of either `"apple apple"`
or `"banana banana"` for a sequential replacement (depending on the
order of the replacements).
It is assumed that `r0` is not a substring of `r1` and vice versa.
:param s: string to do replacements in
:param r0: first string to replace
:param r1: second string to replace
"""
replacement = {r0: r1, r1: r0}
r0 = re.escape(r0)
r1 = re.escape(r1)
return re.sub(f"{r0}|{r1}", lambda x: replacement[x.group()], s) | bcfe2d13fb3b0c3156e866954d6ddf1a0a02e9fc | 702,148 |
def retry_http(response):
"""Retry on specific HTTP errors:
* 429: Rate limited to 50 reqs/minute.
Args:
response (dict): Dynatrace API response.
Returns:
bool: True to retry, False otherwise.
"""
retry_codes = [429]
code = int(response.get('error', {}).get('code', 200))
return code in retry_codes | f45f6e9239d78cfa6ad0ec397e3a5b4a58a655f5 | 702,150 |
def circular_wetted_perimeter(angle, diameter):
"""Returns circle wetted perimeter.
:param angle: angle in radians from angle_in_partial_filled_pipe function
:param diameter: diameter of pipe [m]
"""
return angle * diameter | e24cc0839eb3bf78e65f6b9b99b34bf87f77b2cf | 702,152 |
def is_dunder(attr_name: str) -> bool:
"""
Retuns whether the given attr is a magic/dunder method.
:param attr_name:
"""
return attr_name.startswith("__") and attr_name.endswith("__") | b3a1f10e9fc7fd5c7dbb930be977a814e6b0c37d | 702,156 |
def regularize_layer_weighted(layers, penalty, tags={'regularizable': True}, **kwargs):
"""
Computes a regularization cost by applying a penalty to a group of layers, weighted by a coefficient for each layer.
Parameters
----------
layers : dict
A mapping from : tuple of class:`Layer` instances to coefficients.
penalty : callable
tags: dict
Tag specifications which filter the parameters of the layer or layers.
By default, only parameters with the `regularizable` tag are included.
Should be defined inside the penalty function
**kwargs
keyword arguments passed to penalty.
Returns
-------
Theano scalar
a scalar expression for the cost
"""
return sum(coeff * sum(penalty(layer_tuple, tags, **kwargs)) for layer_tuple, coeff in list(layers.items())) | e4de182b3e99ace5fd41c05d2a318fc865a6dd9c | 702,158 |
def convert_df_2_string(df):
"""
Convert data frame rows to string output where each new line is defined as \n
"""
# ititialise string
output = 'agent,wkt\n'
for i, row in df.iterrows():
if i == len(df) - 1:
output += str(row['label']) + ',' + str(row['geometry'])
else:
output += str(row['label']) + ',' + str(row['geometry']) + '\n'
# set environment variable ${AGENTS}
# os.environ['AGENTS'] = output
return output | c8d2717b72f875f0f4ae743a2cc6c82550221447 | 702,160 |
from typing import List
from typing import Any
import random
def shuffle_list(elements: List[Any]) -> List[Any]:
"""
Shuffle the input list in random order
:param elements: List to be reshuffled
:return: reshuffled list
"""
random.shuffle(elements)
return elements | 17a6520fce91e60f1cfe59d31736c2e5f50ded6f | 702,165 |
def merge_sort(array):
"""
### Merge sort
Implementation of one of the most powerful sorting algorithms algorithms.\n
Return a sorted array,
"""
def merge(L, R):
res = []
left_ind = right_ind = 0
while left_ind < len(L) and right_ind < len(R):
if L[left_ind] < R[right_ind]:
res.append(L[left_ind])
left_ind += 1
elif L[left_ind] > R[right_ind]:
res.append(R[right_ind])
right_ind += 1
else:
res.append(R[right_ind])
res.append(L[right_ind])
left_ind += 1
right_ind += 1
res.extend(L[left_ind:])
res.extend(R[right_ind:])
return res
length = len(array)
if length <= 1:
return array
middle_ind = int(length/2)
right = merge_sort(array[middle_ind:])
left = merge_sort(array[:middle_ind])
return merge(right, left) | 9f2101b0286525490aedce6d6f99962f5e6050f2 | 702,167 |
def split_col_row(ref):
"""Split the letter and number components of a cell reference.
Examples:
>>> split_col_row('A1')
('A', 1)
>>> split_col_row('B100')
('B', 100)
>>> split_col_row('CC12')
('CC', 12)
"""
head = ref.rstrip("0123456789")
tail = ref[len(head) :]
return head, int(tail) | ae236aa0521564958bd61643fbce932f1b8a2d99 | 702,169 |
import gzip
def get_file_handle(file_path, compression):
"""
Returns a file handle to the given path.
:param file_path: path to the file to open
:param compression: indicates whether or not the input file is compressed
:return: a file handle to file_path
"""
if compression:
return gzip.open(file_path, 'rt', encoding='utf-8', errors='strict')
else:
return open(file_path, 'rt', encoding='utf-8', errors='strict') | 44c97b211c4b44679934eede62845c58947c4091 | 702,175 |
def save_params(net, best_metric, current_metric, epoch, save_interval, prefix):
"""Logic for if/when to save/checkpoint model parameters"""
if current_metric < best_metric:
best_metric = current_metric
net.save_parameters('{:s}_best.params'.format(prefix, epoch, current_metric))
with open(prefix+'_best.log', 'a') as f:
f.write('\n{:04d}:\t{:.4f}'.format(epoch, current_metric))
if save_interval and (epoch + 1) % save_interval == 0:
net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_metric))
return best_metric | 9af251965a4facc598c9a3d833f967511cc7b0ec | 702,179 |
import operator
def vector_add(a, b):
"""Component-wise addition of two vectors.
>>> vector_add((0, 1), (8, 9))
(8, 10)
"""
return tuple(map(operator.add, a, b)) | 2144a02128ffa8712cfb998045ede1ca9308650f | 702,185 |
import json
def get_aws_key_and_secret(aws_creds_file_path):
""" Given a filename containing AWS credentials (see README.md),
return a 2-tuple (access key, secret key).
"""
with open(aws_creds_file_path, 'r') as f:
creds_dict = json.load(f)
return creds_dict['accessKeyId'], creds_dict['secretAccessKey'] | b3eae6ee0283a7245d37f92b5a5f4ef1102e248d | 702,186 |
def freq_id_to_stream_id(f_id):
""" Convert a frequency ID to a stream ID. """
pre_encode = (0, (f_id % 16), (f_id // 16), (f_id // 256))
stream_id = (
(pre_encode[0] & 0xF)
+ ((pre_encode[1] & 0xF) << 4)
+ ((pre_encode[2] & 0xF) << 8)
+ ((pre_encode[3] & 0xF) << 12)
)
return stream_id | f89d52adf4390f665e069c2b5f4f5accc22709b8 | 702,189 |
import dateutil.parser
def get_entry_end_date(e):
"""Returns end date for entry"""
return dateutil.parser.parse(e['time_end']) | a9b8bdae873de0ef97de49e342cd4f3bbd8117f6 | 702,191 |
from pathlib import Path
def get_launch_agents_dir() -> Path:
"""Returns user LaunchAgents directory."""
launch_agents_dir = Path.home() / "Library" / "LaunchAgents"
assert launch_agents_dir.is_dir()
return launch_agents_dir | d11bc00c986bd5440549e71fdae9ed1f98f18d21 | 702,192 |
def yddot_d_z(mu, state, r_15_inv, r_25_inv):
""" Partial of x acceleration with respect to z
Args:
mu (float): three body constant
state (np.array): 6 dimensional state vector of
(x, y, z, dx, dy, dz)
r_15_inv (float): 1 / norm(r_1)^(5) where r_1 is the vector from the
primary (i.e. Earth) to the satellite
r_25_inv (float): 1 / norm(r_2)^(5) where r_2 is the vector from the
secondary (i.e. Moon) to the satellite
Returns:
float
"""
x, y, z = state[:3]
ans = 3 * mu * y * z * r_25_inv \
+ 3 * (1 - mu) * y * z * r_15_inv
return ans | 18281dc5dffdef99e38c33e28cc26a0e9d9aa262 | 702,193 |
def decypher(text):
"""
Decypher file name into descriptive label for legend
"""
# name shortcuts
help_dict = {"h": "Target/Hunt AI", "p": "Probabilistic AI", "r": "Random AI"}
final = ""
t_split = text.split("-")
final += help_dict[t_split[0]]
# hunt/target AI branch
if t_split[0] == "h":
if t_split[1] == "True":
final += ", parity"
if t_split[2] == "True":
final += ", cheating"
final += "(knows "+t_split[3]+" ships)"
# probabilistic AI branch
if t_split[0] == "p":
if t_split[1] == "True":
final += ", cheating"
final += "(knows "+t_split[2]+" ships)"
return final | bf4db039bcc86d8d874a29dbf301cc91fa461560 | 702,194 |
import re
def compute_rq_type(oslevel, empty_list):
"""Compute rq_type.
return:
Latest when oslevel is blank or latest (not case sensitive)
Latest when oslevel is a TL (6 digits) and target list is empty
TL when oslevel is xxxx-xx(-00-0000)
SP when oslevel is xxxx-xx-xx(-xxxx)
ERROR when oslevel is not recognized
"""
if oslevel is None or not oslevel.strip() or oslevel.upper() == 'LATEST':
return 'Latest'
if re.match(r"^([0-9]{4}-[0-9]{2})$", oslevel) and empty_list:
return 'Latest'
if re.match(r"^([0-9]{4}-[0-9]{2})(|-00|-00-0000)$", oslevel):
return 'TL'
if re.match(r"^([0-9]{4}-[0-9]{2}-[0-9]{2})(|-[0-9]{4})$", oslevel):
return 'SP'
return 'ERROR' | 753e54d4858a8d1248958c15bbd6b1a0cbc9b02e | 702,196 |
import re
def convert_input_paths(argo_json):
"""
argo aggregation is not valid json as properties are not enclosed in quotes:
flow/step/[{task-id:flow-step-3119439657},{task-id:flow-step-195521861},{task-id:flow-step-3020891073}]
Parameters
----------
argo_json
Returns
-------
list of task-ids to be consumed by metaflow join step:
flow/step/:flow-step-3119439657,flow-step-195521861,flow-step-3020891073
"""
flow, run_id, task_ids = argo_json.split('/')
task_ids = re.sub('[\[\]{}]', '', task_ids)
task_ids = task_ids.split(',')
tasks = [t.split(":")[1] for t in task_ids]
return '{}/{}/:{}'.format(flow, run_id, ','.join(tasks)) | 2a1e5ddd378546343d5532f304145cb2157244b5 | 702,197 |
from pathlib import Path
def get_solar_charge_state() -> str:
"""
Gets the current state of the charging system
Returns:
The charge state object as a json string
"""
current_state = Path('current_state.json').read_text()
return current_state | 0621aff9e6ae77b48811b2879f644ff3e4e4ee91 | 702,200 |
def get_fixture_value(request, fixture_name):
"""
Returns the value associated with fixture named `fixture_name`, in provided `request` context.
This is just an easy way to use `getfixturevalue` or `getfuncargvalue` according to whichever is available in
current `pytest` version.
:param request:
:param fixture_name:
:return:
"""
try:
# Pytest 4+ or latest 3.x (to avoid the deprecated warning)
return request.getfixturevalue(fixture_name)
except AttributeError:
# Pytest 3-
return request.getfuncargvalue(fixture_name) | 11e2b5f67595ecf102f7a8f28cc4aa151a8ebca5 | 702,201 |
def printSchoolYear(year1):
"""Return a print version of the given school year.
"""
if year1:
return "%d–%d" % (year1 - 1, year1) | 93879512567a2be3e3cf541b747178b422be0590 | 702,206 |
def dahua_brightness_to_hass_brightness(bri_str: str) -> int:
"""
Converts a dahua brightness (which is 0 to 100 inclusive) and converts it to what HASS
expects, which is 0 to 255 inclusive
"""
bri = 100
if not bri_str:
bri = int(bri_str)
current = bri / 100
return int(current * 255) | d1d8d02f896edc4a16fbb1b26c99416b60764fc6 | 702,208 |
def fit_parabola(x1,x2,x3,y1,y2,y3):
"""Returns the parabola coefficients a,b,c given 3 data points [y(x)=a*x**2+b*x+c]"""
denom = (x1-x2)*(x1-x3)*(x2-x3)
a = (x3*(y2-y1)+x2*(y1-y3)+x1*(y3-y2))/denom
b = (x1**2*(y2-y3)+x3**2*(y1-y2)+x2**2*(y3-y1))/denom
c = (x2**2*(x3*y1-x1*y3)+x2*(x1**2*y3-x3**2*y1)+x1*x3*(x3-x1)*y2)/denom
return a,b,c | e077f5a895e353d5b980b15bee603be5c34d3ec4 | 702,218 |
def generate_list(usb_dict: dict) -> list:
"""
wrapper for list conversion
:param usb_dict: usb dictionary
:return: list of usb devices for tui print
"""
devices = []
for usb in usb_dict.values():
devices.append(usb)
return devices | 8d1d106c7b9fd4078b0d78f0370bd9d22ecda368 | 702,219 |
def reset_line_breaks(curr_boundary={}):
"""
Builds a fresh line breaks dictionary while keeping any
information provided concerning line boundaries.
Parameters
----------
curr_boundary: dict
Line boundaries to be preserved
Returns
-------
dict
The newly initialized line breaks dictionary
"""
start = []
end = []
tokens = []
if "end" in curr_boundary:
end = curr_boundary["end"]
if "start" in curr_boundary:
start = curr_boundary["start"]
if "tokens" in curr_boundary:
tokens = curr_boundary["tokens"]
line_breaks = {
"end": end,
"pageBoundaries": {},
"start": start,
"tokens": tokens
}
return line_breaks | da7f1fc0f206e8a39f0a0d42f1652a3c4bb23200 | 702,221 |
def stop(M, i):
"""
Check if the algorithm converged.
:param M: input matrix
:param i: iteration steo
:return: boolean: True if converged
"""
# this saves time, so we dont have to do multiplication in the first 7 iterations
if i > 6:
M_temp = M ** 2 - M
m = M_temp.max() - M_temp.min()
if abs(m) < 1e-8:
return True
return False | 3fc6cec40db8e52aed6e435a5552a8cf8edb68a1 | 702,222 |
def split_text(text, sep='\n'):
"""Split text."""
if isinstance(text, bytes):
text = text.decode("utf8")
return [elm.strip() for elm in text.split(sep) if elm.strip()] | 5247919ab151b2e4d1b4e631046d7030e673a68a | 702,228 |
import re
def replace_image_link(target_str):
"""
Replace the shorthand of an image link { image.jpg } with the full link {{ img_tag("image.jpg") | safe }}
:param target_str: String with images in it to be edited
:return: string with images formatted as {{ img_tag("image.jpg") | safe }}
"""
# Find all image links as {image.jpg} or { image.jpg } etc...
image_list = re.findall(r'{(\s*\w+\.\w+\s*)}', target_str)
# Drop the first and last characters to get citation numbers.
img_name_list = [cit.strip() for cit in image_list]
for idx, img in enumerate(image_list):
# Replace the citation shorthand with the proper markdown.
target_str = target_str.replace(img, f'{{ img_tag("{img_name_list[idx]}") | safe }}')
return target_str | d72cbaacecec7d2654a20f50098f21059130dbc3 | 702,230 |
def create_option(option, display, window, active=True):
"""
Returns an option `dict` to be used by lottus
:param option `str`: the value of the option
:param option `str`: the value that will be displayed
:param window `str`: the name of the window that this option points to
:param active `bool`: indicates wheter the option will be showed to the client
"""
return {
'option': option,
'display': display,
'window': window,
'active': active
} | 31eb71dee85a7876997d4b41914f974cbcfcf938 | 702,231 |
import re
def remove_proximity_around_booleans(query_str):
"""
Clients like PEP-Web (Gavant) send fulltext1 as a proximity string.
This removes the proximity if there's a boolean inside.
We could have the client "not do that", but it's actually easier to
remove than to parse and add.
>>> a = '(article_xml:"dog AND cat"~25 AND body:"quick fox"~25) OR title:fox'
>>> remove_proximity_around_booleans(a)
'(article_xml:(dog AND cat) AND body:"quick fox"~25) OR title:fox'
>>> a = 'body_xml:"Even and Attention"~25 && body_xml:tuckett'
>>> remove_proximity_around_booleans(a)
'body_xml:"Even and Attention"~25 && body_xml:tuckett'
"""
srch_ptn = r'\"([A-z\s0-9\!\@\*\~\-\&\|\[\]]+)\"~25'
changes = False
while 1:
m = re.search(srch_ptn, query_str)
if m is not None:
# does it have a boolean, a quote, or a bracket (range)?
# n = re.search(r"\s(AND|OR|NOT|\&\&|\|\|)\s|([\"\[\']])", m.group(1), flags=re.IGNORECASE)
# 2021-04-01 Booleans must be UPPERCASE now
n = re.search(r"\s(AND|OR|NOT|\&\&|\|\|)\s|([\"\[\']])", m.group(1))
# if it's not None, then this is not a proximity match
if n is not None:
query_str = re.subn(srch_ptn, r'(\1)', query_str, 1)[0]
else: # change it so it doesn't match next loop iter
query_str = re.subn(srch_ptn, r'"\1"~26', query_str, 1)[0]
changes = True
else:
if changes:
# change proximity ranges back
query_str = re.sub("~26", "~25", query_str)
break
return query_str | b89ac8ab52cf00f1902603c38bc3f4fdd47cbda2 | 702,232 |
def api_client(application, request):
"""
Fixture that returns api_client
Parameters:
app (Application): Application for which create the client.
Returns:
api_client (HttpClient): Api client for application
"""
def _api_client(app=application, **kwargs):
client = app.api_client(**kwargs)
request.addfinalizer(client.close)
return client
return _api_client | cf2894c8f8c2adb8a8700dfa1b9f3a99e86909d8 | 702,234 |
from functools import reduce
def _is_num_tuple(t,size):
"""Returns: True if t is a sequence of numbers; False otherwise.
If the sequence is not of the given size, it also returns False.
Parameter t: The value to test
Precondition: NONE
Parameter size: The size of the sequence
Precondition: size is an int >= 0
"""
try:
return len(t) == size and reduce(lambda x, y: x and y, map(lambda z: type(z) in [int, float], t))
except:
return False | 64b3795b8e90dc38a7c48cd177d8e2aaffc0aa3d | 702,239 |
def jsonify_dict(d):
"""Turns python booleans into strings so hps dict can be written in json.
Creates a shallow-copied dictionary first, then accomplishes string
conversion.
Args:
d: hyperparameter dictionary
Returns: hyperparameter dictionary with bool's as strings
"""
d2 = d.copy() # shallow copy is fine by assumption of d being shallow
def jsonify_bool(boolean_value):
if boolean_value:
return "true"
else:
return "false"
for key in d2.keys():
if isinstance(d2[key], bool):
d2[key] = jsonify_bool(d2[key])
return d2 | afbf5819fc4fda444076562b02deb22f8146f123 | 702,241 |
from pathlib import Path
def _load_requirements(requirements_file, folder="requirements"):
"""Load requirements from a file."""
requirements = []
with open(Path(folder) / Path(requirements_file), "r") as f:
for line in f:
line = line.strip()
if line and not line.startswith("#"):
requirements.append(line)
return requirements | e9d56a025986f9a2899b3d070033abcdeec21956 | 702,245 |
def get_emails(notification_rec):
"""
Get list of emails for users listed in the specified notification
"""
# Use a set instead of list as there could be duplicates.
ret = []
for recipient in notification_rec.recipients.all():
ret.append(recipient.email)
return ret | 9c01b1e5615cf3a35fbda0c4d92a1e092cfc3d59 | 702,246 |
import six
def text_type(string, encoding='utf-8'):
"""
Given text, or bytes as input, return text in both python 2/3
This is needed because the arguments to six.binary_type and six.text_type change based on
if you are passing it text or bytes, and if you simply pass bytes to
six.text_type without an encoding you will get output like: ``six.text_type(b'hello-world')``
which is not desirable.
"""
if isinstance(string, six.text_type):
return six.text_type(string)
else:
return six.text_type(string, encoding) | 5b962c348769ccb1029cd0d41fc23ddb6942d37d | 702,247 |
def quote_value(value: str) -> str:
"""
Ensures values with ";" are quoted.
>>> quote_value("foo")
'foo'
>>> quote_value("foo;bar")
'"foo;bar"'
"""
if value.find(";") != -1:
return f'"{value}"'
return value | e6bb23a17d554742115582feb90ba621ddd7fc66 | 702,248 |
def idx2token(idx, reverse_vocab):
"""
index换取词
:param idx: index
:param reverse_vocab: 反查表 @see chatbot.build_vocab
:return: 词
"""
return reverse_vocab[idx] | 4ce26e6a6a103133ffe0212d01a4c52a8a23479d | 702,258 |
def message_from_lax(data):
"""
format a message from a Lax response data
"""
return data.get("message") if data.get("message") else "(empty message)" | 81ba7399bc0e3e86ee1967988a17fd7f3524d8ab | 702,259 |
import itertools
def get_n_bits_combinations(num_bits: int) -> list:
"""
Function returning list containing all combinations of n bits.
Given num_bits binary bits, each bit has value 0 or 1,
there are in total 2**n_bits combinations.
:param num_bits: int, number of combinations to evaluate
:return: a list of length 2**n_bits,
return[i] is the binary representation of the decimal integer.
:Example:
>>> from deepreg.model.layer_util import get_n_bits_combinations
>>> get_n_bits_combinations(3)
[[0, 0, 0], # 0
[0, 0, 1], # 1
[0, 1, 0], # 2
[0, 1, 1], # 3
[1, 0, 0], # 4
[1, 0, 1], # 5
[1, 1, 0], # 6
[1, 1, 1]] # 7
"""
assert num_bits >= 1
return [list(i) for i in itertools.product([0, 1], repeat=num_bits)] | 6813f76f856a639688d6b80ddce0e605707f8d1f | 702,262 |
def get_centers(bins):
"""Return the center of the provided bins.
Example:
>>> get_centers(bins=np.array([0.0, 1.0, 2.0]))
array([0.5, 1.5])
"""
bins = bins.astype(float)
return (bins[:-1] + bins[1:]) / 2 | 4f5b3454e1ef718302c7e5ea204954d498ca9e10 | 702,265 |
def hex_16bit(value):
"""Converts 16bit value into bytearray.
args:
16bit value
returns:
bytearray of size 2
"""
if value > 0xffff or value < 0:
raise Exception('Sar file 16bit value %s out of range' % value)
return value.to_bytes(2, 'little') | 1c5aab076798b40459bf5afab73fd92e8dbb93a1 | 702,266 |
def transpose(matrix):
"""Transpose a list of lists.
>>> transpose([['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']])
[['a', 'd', 'g'], ['b', 'e', 'h'], ['c', 'f', 'i']]
>>> transpose([['a', 'b', 'c'], ['d', 'e', 'f']])
[['a', 'd'], ['b', 'e'], ['c', 'f']]
>>> transpose([['a', 'b'], ['d', 'e'], ['g', 'h']])
[['a', 'd', 'g'], ['b', 'e', 'h']]
"""
result = zip(*matrix)
# Convert list of tuples to list of lists.
# map is faster than a list comprehension since it is being used with
# a built-in function as an argument.
result = map(list, result)
return result | e96e7fbd074115a4291cc495c0251d1083f4592e | 702,270 |
import torch
def reduce(tensor: torch.Tensor, reduction: str) -> torch.Tensor:
"""Reduces the given tensor using a specific criterion.
Args:
tensor (torch.Tensor): input tensor
reduction (str): string with fixed values [elementwise_mean, none, sum]
Raises:
ValueError: when the reduction is not supported
Returns:
torch.Tensor: reduced tensor, or the tensor itself
"""
if reduction in ("elementwise_mean", "mean"):
return torch.mean(tensor)
if reduction == 'sum':
return torch.sum(tensor)
if reduction is None or reduction == 'none':
return tensor
raise ValueError('Reduction parameter unknown.') | a77edd7f9a8486a8fd604b9a35c2ecfe28d43c8c | 702,271 |
def load_cows(filename):
"""
Read the contents of the given file. Assumes the file contents contain
data in the form of comma-separated cow name, weight pairs, and return a
dictionary containing cow names as keys and corresponding weights as values.
Parameters:
filename - the name of the data file as a string
Returns:
a dictionary of cow name (string), weight (int) pairs
"""
# MY_CODE
cow_dict = {}
with open(filename, 'r') as f:
for line in f:
name, weight = line.split(',')
cow_dict[name] = int(weight)
return cow_dict | aa44df075a4aa8d44d37743b8a351ef57133d148 | 702,273 |
def wrap_hashlib(hasher, length=None):
"""
Wraps hashlib's functions, returning a function that returns the hex-digest of its input.
>>> from hashlib import sha1
>>> wrap_hashlib(sha1)(b'heyo')
'f8bb1031d6d82b30817a872b8a2ec31d5380cee5'
:param hasher: A function from :mod:`hashlib`
:return: Function
"""
args = []
if length is not None:
args = [length]
def _hasher(data):
return hasher(data).hexdigest(*args)
return _hasher | dbd07d4151a5c5c523fe75c3f29b72abfd15c3b8 | 702,274 |
import re
def isBlank(s):
""" Returns True if string contains only space characters."""
return bool(re.compile("^\s*$").match(s)) | 1e6f7f7cefa4fea3d5b7443d74a265a79c3db3d7 | 702,275 |
def __extract_tzd(m):
"""Return the Time Zone Designator as an offset in seconds from UTC."""
if not m:
return 0
tzd = m.group("tzd")
if not tzd:
return 0
if tzd == "Z":
return 0
hours = int(m.group("tzdhours"), 10)
minutes = m.group("tzdminutes")
if minutes:
minutes = int(minutes, 10)
else:
minutes = 0
offset = (hours*60 + minutes) * 60
if tzd[0] == "+":
return -offset
return offset | 5e786cab67a2151df8ed8851dc19a6adbc365aea | 702,276 |
def compute_heuristic_conn_4(init_pos, coord):
"""Returns Manhattan heuristic for distance from coord to init_pos
init_pos - coordinate of position of goal configuration
coord - coordinate of configuration for which heursitic is
being computed
Returns the heuristic distance to goal through a
Manhattan metric calculation.
"""
return sum(map(lambda x, y: abs(x - y), coord, init_pos)) | 873fcbad5ebadcb8d0f0009c6d3bb615146bab5a | 702,279 |
def frequency(text, char):
""" Counts frequency of a character in a string. """
count = 0
for c in text:
if c == char:
count += 1
return count | 5a58161f6aed1f8ba88ed6490891b544b23449cd | 702,281 |
import time
def measure_command(func, kwargs):
""" Measures the execution time of a function
:param func: function
:param kwargs: dict
keyword arguments
:return: float, result
(time, result of fucntion)
"""
time_start = time.time()
r = func(**kwargs)
dt = time.time() - time_start
return dt, r | 33ca8627681b3f32d8d39fc088175a6a38d51097 | 702,283 |
def largest_number(seq_seq):
"""
Returns the largest number in the subsequences of the given
sequence of sequences. Returns None if there are NO numbers
in the subsequences.
For example, if the given argument is:
[(3, 1, 4),
(13, 10, 11, 7, 10),
[1, 2, 3, 4]]
then this function returns 13.
As another example, if the given argument is:
([], [-1111111111111111], [])
then this function returns -1111111111111111.
As yet another example, if the given argument is:
([], [], [])
then this function returns None.
Preconditions:
:type seq_seq: (list, tuple)
and the given argument is a sequence of sequences,
where each subsequence contains only numbers.
"""
# -------------------------------------------------------------------------
# DONE: 3. Implement and test this function.
# Note that you should write its TEST function first (above).
# -------------------------------------------------------------------------
largest = 0
for k in range(len(seq_seq)):
for j in range(len(seq_seq[k])):
if seq_seq[k][j] > largest or -seq_seq[k][j] > largest:
largest = seq_seq[k][j]
if largest != 0:
return largest | 5a2418e1f8ee0413e8306a04d3ee17a909b7b0c3 | 702,295 |
def __unwrap_nonsense_request(request):
"""
Unwrap the given "estimate nonsense" request into a string.
Args:
request: A JSON-like dict describing an "estimate nonsense" request
(as described on https://clusterdocs.azurewebsites.net/)
Returns: A string that represents the sentence of which to estimate the offensiveness
"""
# request = json.loads(request)
sentence = request["sentence"]
return sentence | 793b5b352db1edd31e537e39bd7ac0c3f62e0fc0 | 702,297 |
def _clean(target_str: str, is_cellref: bool = False) -> str:
"""Rids a string of its most common problems: spacing, capitalisation,etc."""
try:
output_str = target_str.lstrip().rstrip()
except AttributeError:
raise AttributeError("Cannot clean value other than a string here.")
if is_cellref:
output_str = output_str.upper()
return output_str | 778658332059679356c399c7bb5b0c66383650d3 | 702,298 |
def get_values(record, tag):
"""Gets values that matches |tag| from |record|."""
keys = [key for key in record.keys() if key[0] == tag]
return [record[k] for k in sorted(keys)] | 7b75e300cbdb5c1840681c78af9adc4dc1f21838 | 702,299 |
from typing import List
def expected_value(values: List[float]) -> float:
"""Return the expected value of the input list
>>> expected_value([1, 2, 3])
2.0
"""
return sum(values) / len(values) | b856157d21bd8a82813bfb8ae39c4c5a1f3aef53 | 702,300 |
def is_valid_gadget(gadget, bad_chars):
"""Determine if a gadget is valid (i.e., contains no bad characters).
Args:
gadget (Gadget): A namedtuple-like object with `shellcode` and `asm`
fields.
bad_chars (bytearray): The bad characters not allowed to be present.
Returns:
bool: Whether the specified gadget is acceptable.
"""
gadget_chars = bytearray(gadget.shellcode)
for bc in bad_chars:
if bc in gadget_chars:
return False
return True | 00189e08120e377ec873aa4267f3240d72943966 | 702,308 |
def month(dt):
""" For a given datetime, return the matching first-day-of-month date. """
return dt.date().replace(day=1) | 480fcdfd7a69f95aa071e2061efc4740802d72d6 | 702,309 |
def count_frequency(df, col):
"""Count the number of occurence value in a column."""
df['Freq'] = df.groupby(col)[col].transform('count')
return df | 28f502d79bacaba474c6df8b642f8e3f7875d1f3 | 702,310 |
def extract_tty_phone(service_center):
""" Extract a TTY phone number if one exists from the service_center
entry in the YAML. """
tty_phones = [p for p in service_center['phone'] if 'TTY' in p]
if len(tty_phones) > 0:
return tty_phones[0] | 9c4d349e0c75b1d75f69cb7758a3aac7dca5b5a5 | 702,311 |
from pathlib import Path
def get_data_dir() -> str:
"""Get a filepath to the drem data directory.
Returns:
str: Filepath to the drem data directory
"""
cwd = Path(__file__)
base_dir = cwd.resolve().parents[3]
data_dir = base_dir / "data"
return str(data_dir) | 16e1bf3d8eab4c4f58ec90f832fd15809bdbbbca | 702,312 |
def sentinel(name):
"""Create a unique, one-off object with a useful repr"""
def __repr__(_):
return f'<{name}>'
return type(name, (), {'__repr__': __repr__})() | 6abe44a5b72bf7d5685c3d7ca97caf0b9c2ee49b | 702,316 |
import math
import torch
def wrap_phi_to_2pi_torch(x):
"""Shift input angle x to the range of [-pi, pi]
"""
pi = math.pi
x = torch.fmod(2 * pi + torch.fmod(x + pi, 2 * pi), 2 * pi) - pi
return x | 0905134f4cce5aae13f91e9e7900dd053a5861aa | 702,318 |
def FixAbsolutePathInLine(line, relative_paths):
"""Fix absolute paths present in |line| to relative paths."""
absolute_path = line.split(':')[0]
relative_path = relative_paths.get(absolute_path, absolute_path)
if absolute_path == relative_path:
return line
return relative_path + line[len(absolute_path):] | e0db0d2f3a0973b4db5f3e551f164481861c0b56 | 702,319 |
def lazyprop(func):
"""Wraps a property so it is lazily evaluated.
Args:
func: The property to wrap.
Returns:
A property that only does computation the first time it is called.
"""
attr_name = '_lazy_' + func.__name__
@property
def _lazyprop(self):
"""A lazily evaluated propery.
"""
if not hasattr(self, attr_name):
setattr(self, attr_name, func(self))
return getattr(self, attr_name)
return _lazyprop | b14f82b196177be207923744dda695d6aa70248f | 702,321 |
def simpleCollision(spriteOne, spriteTwo):
"""
Simple bounding box collision detection.
"""
widthSpriteOne, heightSpriteOne = spriteOne.image.get_size()
rectSpriteOne = spriteOne.image.get_rect().move(
spriteOne.pos.x - widthSpriteOne / 2,
spriteOne.pos.y - heightSpriteOne / 2)
widthSpriteTwo, heightSpriteTwo = spriteTwo.image.get_size()
rectSpriteTwo = spriteTwo.image.get_rect().move(
spriteTwo.pos.x - widthSpriteTwo / 2,
spriteTwo.pos.y - heightSpriteTwo / 2)
return rectSpriteOne.colliderect(rectSpriteTwo) | b6084ad260e084effb11701a6b859e0a58c9d19b | 702,325 |
import numbers
import json
import base64
def encode(d):
"""Encode an object in a way that can be transported via Mesos attributes: first to
JSON, then to base64url. The JSON string is padded with spaces so that the base64
string has no = pad characters, which are outside the legal set for Mesos.
"""
if isinstance(d, numbers.Real) and not isinstance(d, bool):
return repr(float(d))
else:
s = json.dumps(d, sort_keys=True)
while len(s) % 3:
s += ' '
return base64.urlsafe_b64encode(s.encode('utf-8')).decode('ascii') | b1018b9eba2f136f9281dcb936d0903290abd505 | 702,327 |
def __read_dataset_item(path):
"""Reads data set from path returns a movie dict.
Parameters
----------
path : str
Absolute path of the MovieLens data set(u.data).
Returns
-------
rating_dict : dict
Returns a dict of users, movies and ratings.
{ string:movie = { string:user = int:rating } }
"""
rating_dict = {}
with open(path, "r") as reader:
lines = reader.readlines()
for line in lines:
x = line.split(sep="\t")
user = x[0]
movie = x[1]
rating = int(x[2])
if movie not in rating_dict:
rating_dict[movie] = dict()
rating_dict[movie][user] = rating
else:
rating_dict[movie][user] = rating
return rating_dict | a87baecc5b0c28675bc715aab646bf41e4b40f96 | 702,329 |
import torch
def query_ball_point(radius, nsample, xyz, new_xyz):
"""
Input:
radius: local region radius
nsample: max sample number in local region
xyz: all points, [B, N, 3]
new_xyz: query points, [B, S, 3]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
device = xyz.device
B, N, C = xyz.shape
_, S, _ = new_xyz.shape
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
dists = torch.cdist(new_xyz, xyz)
if radius is not None:
group_idx[dists > radius] = N
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx | e74992747103d11b6618ecf7daf035c4f83e9911 | 702,331 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.