content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_data_field(thing_description, data_field_list):
"""Get the field specified by 'data_field_list' from each thing description
Args:
data_field_list(list): list of str that specified the hierarchical field names
For example, if the parameter value is ['foo', 'bar', 'foobar'], then this
function will try to get thing_description['foo']['bar']['foobar'] and return the value
If any of the field does not exist, an error will occur
Returns:
object: the content specified by the data field
"""
for data_field in data_field_list:
thing_description = thing_description[data_field]
return thing_description | f0ef0a46fbcafa993e01f59349c1283b51bbd393 | 701,382 |
def get_speed_formatted_str(speed):
""" Returns the speed with always two whole numbers and two decimal value.
Example: 03.45
Args:
speed (float): The actual speed of the car
Returns:
str: The text format of the speed
"""
speed_str = "{:0.2f}".format(round(speed, 2))
return speed_str.zfill(5) | c05d20f568950f8236f9e46e90387e3a71090589 | 701,384 |
def ccw(A, B, C):
"""
Check if a point C is counter-clockwise to AB.
"""
return (C[1] - A[1])*(B[0]-A[0]) > (B[1]-A[1])*(C[0]-A[0]) | c1afb4e510be6a85ad7de1aa924917e37b227dbe | 701,385 |
from typing import Counter
def check_cardinality(df, cat_cols, threshold=8):
"""
Check categorical cardinality
Checks the cardinality of categorical features of a given dataset. Returns
two dictionaries, one for features with low cardinality and another for
features with high cardinality. The low/high cardinality criteria can be
tunned with the `threshold` parameter.
Parameters
----------
df : pandas.DataFrame
Dataset whose categorical features will be analyzed.
cat_cols : list of str
List of column names. The columns must be all categorical.
threshold : int, optional
Numeric criteria to separate low cardinality features from high
cardinality ones. Default value is 8.
Returns
-------
low_card : dict
Dictionary containing the name of the low cardinality features as keys
and their cardinality as values.
high_card : dict
Dictionary containing the name of the high cardinality features as keys
and their cardinality as values.
"""
high_card = {}
low_card = {}
for col in cat_cols:
rank = len(Counter(df[col]))
if rank <= threshold:
low_card[col] = rank
else:
high_card[col] = rank
return low_card, high_card | 5b33a39c1da007de46ca409c8fb531b3b3600a7b | 701,388 |
def parse_veh_comp(xmldoc):
"""parses the vehicle composition from the VISSIM data
:param xmldoc: input VISSIM xml
:type xmldoc: xml.dom.minidom.Document
:return: relevant VISSIM vehicleComposition data
:rtype: dict of list of dict
"""
veh_cmp_d = dict() # local vehicle compositions' dict
for vehicle_comp in xmldoc.getElementsByTagName('vehicleComposition'):
rel_flows = vehicle_comp.getElementsByTagName(
'vehicleCompositionRelativeFlow')
flow_l = []
for flow in rel_flows:
flw_d = {
'desSpeedDistr': flow.getAttribute('desSpeedDistr'),
'rel_flow': flow.getAttribute('relFlow'),
'vehType': flow.getAttribute('vehType'),
}
flow_l.append(flw_d)
# list of dictionaries
veh_cmp_d[vehicle_comp.getAttribute('no')] = flow_l
return veh_cmp_d | 195b2c8dcbd055d5c8e8fdb4f6b68f360c60c961 | 701,390 |
def validate_enum(datum, schema, **kwargs):
"""
Check that the data value matches one of the enum symbols.
i.e "blue" in ["red", green", "blue"]
Parameters
----------
datum: Any
Data being validated
schema: dict
Schema
kwargs: Any
Unused kwargs
"""
return datum in schema["symbols"] | 689fef653b757435d45e76afbf16245d0d53839f | 701,396 |
import re
def get_valid_filename(s):
"""Sanitize string to make it reasonable to use as a filename.
From https://github.com/django/django/blob/master/django/utils/text.py
Parameters
----------
s : string
Examples
--------
>>> print get_valid_filename(r'A,bCd $%#^#*!()"\' .ext ')
'a_bcd__.ext'
"""
s = re.sub(r'[ ,;\t]', '_', s.strip().lower())
return re.sub(r'(?u)[^-\w.]', '', s) | a8161a16d0bd8ad0c5d9ff20c56b52fbdba2d859 | 701,397 |
from typing import Literal
from typing import List
def get_foot_marker(foot: Literal["left", "right"]) -> List[str]:
"""Get the names of all markers that are attached ot a foot (left or right)"""
sensors = ["{}_fcc", "{}_toe", "{}_fm5", "{}_fm1"]
return [s.format(foot[0]) for s in sensors] | 518fbb3f68cbf8622b2bf1fa85f9ecae8008c456 | 701,401 |
def is_config_or_test(example, scan_width=5, coeff=0.05):
"""Check if file is a configuration file or a unit test by :
1- looking for keywords in the first few lines of the file.
2- counting number of occurence of the words 'config' and 'test' with respect to number of lines.
"""
keywords = ["unit tests", "test file", "configuration file"]
lines = example["content"].splitlines()
count_config = 0
count_test = 0
# first test
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
nlines = example["content"].count("\n")
threshold = int(coeff * nlines)
for line in lines:
count_config += line.lower().count("config")
count_test += line.lower().count("test")
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False} | 0e2823897b72a916afd9672beed904190bb2c1c2 | 701,404 |
def has_shape(data, shape, allow_empty=False):
"""
Determine if a data object has the provided shape
At any level, the object in `data` and in `shape` must have the same type.
A dict is the same shape if all its keys and values have the same shape as the
key/value in `shape`. The number of keys/values is not relevant.
A list is the same shape if all its items have the same shape as the value
in `shape`
A tuple is the same shape if it has the same length as `shape` and all the
values have the same shape as the corresponding value in `shape`
Any other object simply has to have the same type.
If `allow_empty` is set, lists and dicts in `data` will pass even if they are empty.
"""
if not isinstance(data, type(shape)):
return False
if isinstance(data, dict):
return (allow_empty or len(data) > 0) and\
all(has_shape(k, shape.keys()[0]) for k in data.keys()) and\
all(has_shape(v, shape.values()[0]) for v in data.values())
elif isinstance(data, list):
return (allow_empty or len(data) > 0) and\
all(has_shape(v, shape[0]) for v in data)
elif isinstance(data, tuple):
return len(data) == len(shape) and all(
has_shape(data[i], shape[i]) for i in range(len(data)))
else:
return True | f04add860bb6b886bb693ddc85b3d4877245d749 | 701,406 |
def RR_calc(classes, TOP):
"""
Calculate Global performance index (RR).
:param classes: confusion matrix classes
:type classes: list
:param TOP: number of positives in predict vector per class
:type TOP: dict
:return: RR as float
"""
try:
class_number = len(classes)
result = sum(list(TOP.values()))
return result / class_number
except Exception:
return "None" | 814a11c339b25dc687d537efd3244ddad9c0f8fd | 701,408 |
import torch
def view_complex_native(x: torch.FloatTensor) -> torch.Tensor:
"""Convert a PyKEEN complex tensor representation into a torch one using :func:`torch.view_as_complex`."""
return torch.view_as_complex(x.view(*x.shape[:-1], -1, 2)) | 14e74f1c8b5e6de673c962e4381e74026d3d3db2 | 701,410 |
def cross_corr_norm(patch_0, patch_1):
"""
Returns the normalized cross-correlation between two same-sized image
patches.
Parameters :
patch_0, patch_1 : image patches
"""
n = patch_0.shape[0] * patch_0.shape[1]
# Mean intensities
mu_0, mu_1 = patch_0.mean(), patch_1.mean()
# Standard deviations
sigma_0, sigma_1 = patch_0.std(), patch_1.std()
return (1.0 / (n - 1) * (((patch_0 - mu_0) / sigma_0) *
((patch_1 - mu_1) / sigma_1)).sum()) | 213100b174993baa07ea685b23541d3dfe49ace8 | 701,411 |
def site_stat_stmt(table, site_col, values_col, fun):
"""
Function to produce an SQL statement to make a basic summary grouped by a sites column.
Parameters
----------
table : str
The database table.
site_col : str
The column containing the sites.
values_col : str
The column containing the values to be summarised.
fun : str
The function to apply.
Returns
-------
str
SQL statement.
"""
fun_dict = {'mean': 'avg', 'sum': 'sum', 'count': 'count', 'min': 'min', 'max': 'max'}
cols_str = ', '.join([site_col, fun_dict[fun] + '(' + values_col + ') as ' + values_col])
stmt1 = "SELECT " + cols_str + " FROM " + table + " GROUP BY " + site_col
return stmt1 | c704d5687effd3c12abb3feecde9041eb88aae7a | 701,413 |
def _format_source_error(filename, lineno, block):
""" A helper function which generates an error string.
This function handles the work of reading the lines of the file
which bracket the error, and formatting a string which points to
the offending line. The output is similar to:
File "foo.py", line 42, in bar()
41 def bar():
----> 42 a = a + 1
43 return a
Parameters
----------
filename : str
The full path to the offending file.
lineno : int
The line number of the offending like.
block : str
The name of the block scope in which the error occured. In the
sample above, the block scope is 'bar'.
Returns
-------
result : str
A nicely formatted string for including in an exception. If the
file cannot be opened, the source lines will note be included.
"""
text = 'File "%s", line %d, in %s()' % (filename, lineno, block)
start_lineno = max(0, lineno - 1)
end_lineno = start_lineno + 2
lines = []
try:
with open(filename, 'r') as f:
for idx, line in enumerate(f, 1):
if idx >= start_lineno and idx <= end_lineno:
lines.append((idx, line))
elif idx > end_lineno:
break
except IOError:
pass
if len(lines) > 0:
digits = str(len(str(end_lineno)))
line_templ = '\n----> %' + digits + 'd %s'
other_templ = '\n %' + digits + 'd %s'
for lno, line in lines:
line = line.rstrip()
if lno == lineno:
text += line_templ % (lno, line)
else:
text += other_templ % (lno, line)
return text | 32d093e53811415338877349ca8e64b0e9261b1d | 701,414 |
def calc_exposure(k, src_rate, bgd_rate, read_noise, neff):
"""
Compute the time to get to a given significance (k) given the source rate,
the background rate, the read noise, and the number
of effective background pixels
-----
time = calc_exposure(k, src_rate, bgd_rate, read_noise, neff)
"""
denom = 2 * src_rate**2
nom1 = (k**2) * (src_rate + neff*bgd_rate)
nom2 = ( k**4 *(src_rate + neff*bgd_rate)**2 +
4 * k**2 * src_rate**2 * neff * read_noise**2)**(0.5)
exposure = (nom1 + nom2)/ denom
return exposure | 993853d244cfa5c6619300def02294a2497d78df | 701,415 |
def type_or_null(names):
"""Return the list of types `names` + the name-or-null list for every type in `names`."""
return [[name, 'null'] for name in names] | 72cbefcbba08c98d3c4c11a126e22b6f83f4175b | 701,416 |
import torch
def quadratic_matmul(x: torch.Tensor, A: torch.Tensor) -> torch.Tensor:
"""Matrix quadratic multiplication.
Parameters
----------
x : torch.Tensor, shape=(..., X)
A batch of vectors.
A : torch.Tensor, shape=(..., X, X)
A batch of square matrices.
Returns
-------
torch.Tensor, shape=(...,)
Batched scalar result of quadratic multiplication.
"""
assert x.shape[-1] == A.shape[-1] == A.shape[-2]
x_T = x.unsqueeze(-2) # shape=(..., 1, X)
x_ = x.unsqueeze(-1) # shape=(..., X, 1)
quadratic = x_T @ A @ x_ # shape=(..., 1, 1)
return quadratic.squeeze(-1).squeeze(-1) | 78335f6a57f34701f3f1fe9b8dd74e9b8be686a3 | 701,418 |
def filter_linksearchtotals(queryset, filter_dict):
"""
Adds filter conditions to a LinkSearchTotal queryset based on form results.
queryset -- a LinkSearchTotal queryset
filter_dict -- a dictionary of data from the user filter form
Returns a queryset
"""
if "start_date" in filter_dict:
start_date = filter_dict["start_date"]
if start_date:
queryset = queryset.filter(date__gte=start_date)
if "end_date" in filter_dict:
end_date = filter_dict["end_date"]
if end_date:
queryset = queryset.filter(date__lte=end_date)
return queryset | 96a7e816e7e2d6632db6e6fb20dc50a56a273be9 | 701,424 |
def find_in_list(list_one, list_two):
"""Find and return an element from list_one that is in list_two, or None otherwise."""
for element in list_one:
if element in list_two:
return element
return None | 9376b38a06cadbb3e06c19cc895eff46fd09f5c1 | 701,427 |
def _real_freq_filter(rfft_signal, filters):
"""Helper function to apply a full filterbank to a rfft signal
"""
nr = rfft_signal.shape[0]
subbands = filters[:, :nr] * rfft_signal
return subbands | 0bee4822ac1d6b5672e4ad89bb59f03d72828244 | 701,430 |
def _strip_extension(name, ext):
"""
Remove trailing extension from name.
"""
ext_len = len(ext)
if name[-ext_len:] == ext:
name = name[:-ext_len]
return name | aa1e6f8c68e09597e2566ecd96c70d2c748ac600 | 701,431 |
from typing import List
from typing import Optional
def span_to_label(tokens: List[str],
labeled_spans: dict,
scheme: Optional[str] = 'BIO') -> List[str]:
"""
Convert spans to label
:param tokens: a list of tokens
:param labeled_spans: a list of tuples (start_idx, end_idx, label)
:param scheme: labeling scheme, in ['BIO', 'BILOU'].
:return: a list of string labels
"""
assert scheme in ['BIO', 'BILOU'], ValueError("unknown labeling scheme")
if labeled_spans:
assert list(labeled_spans.keys())[-1][1] <= len(tokens), ValueError("label spans out of scope!")
labels = ['O'] * len(tokens)
for (start, end), label in labeled_spans.items():
if scheme == 'BIO':
labels[start] = 'B-' + label
if end - start > 1:
labels[start + 1: end] = ['I-' + label] * (end - start - 1)
elif scheme == 'BILOU':
if end - start == 1:
labels[start] = 'U-' + label
else:
labels[start] = 'B-' + label
labels[end - 1] = 'L-' + label
if end - start > 2:
labels[start + 1: end - 1] = ['I-' + label] * (end - start - 2)
return labels | dbd572d4c306f31202c93b5983f5dd4cdd237074 | 701,435 |
def convert_ids_to_tokens(inv_vocab, ids):
"""Converts a sequence of ids into tokens using the vocab."""
output = []
for item in ids:
output.append(inv_vocab[item])
return output | da1aa84d271fe46cedf530c2871ee54c57e676e2 | 701,438 |
import importlib
def _check_import(package_name):
"""Import a package, or give a useful error message if it's not there."""
try:
return importlib.import_module(package_name)
except ImportError:
err_msg = (
f"{package_name} is not installed. "
"It may be an optional powersimdata requirement."
)
raise ImportError(err_msg) | c4cb7c5a49071663d23e9530155bdee3304a5f72 | 701,441 |
import getpass
def prompt(identifier) -> tuple:
"""Credential entry helper.
Returns:
Tuple of login_id, key
"""
login_id = input(f"API Login ID for {identifier}: ")
key = getpass.getpass(f"API Transaction Key for {identifier}: ")
return (login_id, key) | be0ed9be1a60c2c29753d6a9ca8b3f12294f183b | 701,442 |
import time
def generate_timestamp(expire_after: float = 30) -> int:
"""
:param expire_after: expires in seconds.
:return: timestamp in milliseconds
"""
return int(time.time() * 1000 + expire_after * 1000) | 16f2fcd77de9edb1e167f1288e37a10491469c22 | 701,445 |
import base64
def b64e(s):
"""b64e(s) -> str
Base64 encodes a string
Example:
>>> b64e("test")
'dGVzdA=='
"""
return base64.b64encode(s) | 2562f5d18ac59bbe4e8a28ee4033eaa0f10fc641 | 701,446 |
import yaml
import random
import string
def tmp_config_file(dict_: dict) -> str:
"""
Dumps dict into a yaml file that is saved in a randomly named file. Used to as config file to create
ObservatoryConfig instance.
:param dict_: config dict
:return: path of temporary file
"""
content = yaml.safe_dump(dict_).replace("'!", "!").replace("':", ":")
file_name = "".join(random.choices(string.ascii_lowercase, k=10))
with open(file_name, "w") as f:
f.write(content)
return file_name | d4ea42a8dc1824757df7f9823f44f7fc181b29aa | 701,447 |
import pprint
def check_overlapping(features):
"""Check for elements of `features` with overlapping ranges. In the
case of overlap, print an informative error message and return
names and positions of overlapping features.
"""
features = features[:]
overlapping = []
for i in range(len(features)-1):
prev_name, prev_start, prev_end = features[i]
name, start, end = features[i+1]
if prev_end >= start:
overlap = ((prev_name, prev_start, prev_end), (name, start, end))
overlapping.append(overlap)
raise ValueError('overlapping features: ' + pprint.pformat(overlap))
return overlapping | 6a246aca29c01b32091d7890b6a55d66367e8e14 | 701,450 |
def compute_level(id, tree):
"""
compute the level of an id in a tree
"""
topic = tree[id]
level = 0
while (id != 0):
level += 1
id = topic['parent']
topic = tree[id]
return(level) | fb7fbc1c1f97e85c03abdd453a3deb3411960e45 | 701,451 |
def none_or_valid_float_value_as_string(str_to_check):
"""
Unless a string is "none", tries to convert it to a float and back to check
that it represents a valid float value. Throws ValueError if type
conversion fails. This function is only needed because the MATLAB scripts
take some arguments either as a float value in string form or as "none".
:param str_to_check: string to validate
:return: string which is either "none" or represents a valid float value
"""
return str_to_check if str_to_check == "none" else str(float(str_to_check)) | 54f3c63fab0752678cb5a69723aa7790ab11a624 | 701,453 |
from datetime import datetime
def convert_time(time_str):
"""Convert iso string to date time object
:param time_str: String time to convert
"""
try:
dt = datetime.strptime(time_str, "%Y-%m-%dT%H:%Mz")
return dt
except Exception:
return time_str | 4ba3d5b8af4305cc44afb60d02eeb1b1d041fab9 | 701,456 |
def suck_out_formats(reporters):
"""Builds a dictionary mapping edition keys to their cite_format if any.
The dictionary takes the form of:
{
'T.C. Summary Opinion': '{reporter} {volume}-{page}',
'T.C. Memo.': '{reporter} {volume}-{page}'
...
}
In other words, this lets you go from an edition match to its parent key.
"""
formats_out = {}
for reporter_key, data_list in reporters.items():
# For each reporter key...
for data in data_list:
# Map the cite_format if it exists
for edition_key, edition_value in data["editions"].items():
try:
formats_out[edition_key] = data["cite_format"]
except KeyError:
# The item wasn't there; add it.
pass
return formats_out | a0db907839573ca53f7c96c326afe1eac5491c63 | 701,457 |
def cast_bytes(data, encoding='utf8'):
"""
Cast str, int, float to bytes.
"""
if isinstance(data, str) is True:
return data.encode(encoding)
elif isinstance(data, int) is True:
return str(data).encode(encoding)
elif isinstance(data, float) is True:
return str(data).encode(encoding)
elif isinstance(data, bytes) is True:
return data
elif data is None:
return None
else:
raise TypeError("Expected unicode or bytes, got %r" % data) | 01ac5d7cd4a728e401075334900808a6a579deef | 701,458 |
def B(i,j,k):
"""
Tensor B used in constructing ROMs.
Parameters
----------
i : int
j : int
k : int
Indices in the tensor.
Returns
-------
int
Tensor output.
"""
if i == j + k:
return -1
elif j == i + k or k == i + j:
return 1
else:
msg = "Possible Error: Indices ({},{},{})".format(i,j,k)
print(msg)
return 0 | b4969759fd2f07bd2bd2baed48a2adfd8669987a | 701,459 |
import io
def format_data(data, indent):
"""Format a bytestring as a C string literal.
Arguments:
data: Bytestring to write
indent: Indentation for each line, a string
Returns:
A multiline string containing the code, with indentation before every line
including the first. There is no final newline.
"""
fp = io.StringIO()
fp.write(indent)
fp.write('"')
rem = 80 - 3 - len(indent)
def advance(n):
nonlocal rem
if rem < n:
fp.write('"\n')
fp.write(indent)
fp.write('"')
rem = 80 - 3 - len(indent)
rem -= n
for n, c in enumerate(data.rstrip(b"\0")):
if 32 <= c <= 126:
if c in b'\\"':
advance(2)
fp.write("\\")
else:
advance(1)
fp.write(chr(c))
elif c == 0 and (n == len(data) - 1
or not b"0" <= data[n + 1:n + 2] <= b"7"):
advance(2)
fp.write("\\0")
else:
advance(4)
fp.write("\\{:03o}".format(c))
fp.write('"')
return fp.getvalue() | 260e2b296addeb1113d657b086302197a8e365bb | 701,460 |
def psf_to_inhg(psf):
"""Convert lb/ft^2 to inches of mercury."""
return psf * 0.014139030952735 | c1a482c71ad86ae31efece5f1a395fa354db8c3e | 701,462 |
def get_version(v):
"""
Generate a PEP386 compliant version
Stolen from django.utils.version.get_version
:param v tuple: A five part tuple indicating the version
:returns str: Compliant version
"""
assert isinstance(v, tuple)
assert len(v) == 5
assert v[3] in ('alpha', 'beta', 'rc', 'final')
parts = 2 if v[2] == 0 else 3
main = '.'.join(str(i) for i in v[:parts])
sub = ''
if v[3] != 'final':
mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'}
sub = mapping[v[3]] + str(v[4])
return str(main + sub) | 946c9ea382ac7da0da1c74373cf981df174737c1 | 701,463 |
def tadsize_chart(genome_name):
"""
Determine the distance threshold to build coverage tracks.
Args:
genome_name (string): name of the reference genome;
ex: mammals, drosophila, c_elegans, s_pombe, c_crescentus
Returns:
dist_thresh (int): integer specifying distance threshold in basepairs
"""
low_bound = {
"mammals": 100000,
"drosophila": 10000,
"c_elegans": 1000000,
"s_pombe": 50000,
"c_crescentus": 30000
}
upp_bound = {
"mammals": 2000000,
"drosophila": 100000,
"c_elegans": 2000000,
"s_pombe": 100000,
"c_crescentus": 400000
}
typ_res = {
"mammals": 1000000,
"drosophila": 250000,
"c_elegans": 3000000,
"s_pombe": 300000,
"c_crescentus": 250000
}
return low_bound[genome_name], upp_bound[genome_name], typ_res[genome_name] | 844744424845a1d240fa93023b9786a7ed2cc12c | 701,465 |
def convert_results_to_table(results, aggregation="average"):
"""
Convert results to table
Args:
results (dict): results dictionary
aggregation (str): aggregation method, either average or sum
"""
headers = []
columns = []
for target_task, source_tasks in results.items():
headers.append(target_task)
column = []
for _, metrics in source_tasks.items():
if metrics:
aggregate_value = sum(metrics.values()) if aggregation == "sum" else sum(metrics.values())/len(metrics)
aggregate_value = round(aggregate_value, 4)
else:
aggregate_value = "N/A"
column.append(aggregate_value)
columns.append(column)
return columns,headers | 51d38a52cb5428568c89e518df86624c5f438cf6 | 701,466 |
def get_service_type(f):
"""Retrieves service type from function."""
return getattr(f, 'service_type', None) | fb4d98a4b4db0d10ab97d94d98ccfe21cea05fe9 | 701,472 |
def compute_error(model_data, reference_data):
"""Returns the summ of the squared differences between model and reference data."""
error = ((model_data - reference_data) ** 2).sum()
return error | 66e80326b85eed67008b517dfeff99cc8352bffd | 701,474 |
import json
def dj(_dict):
"""Converts dicts to JSON and safely handles non-serializable items"""
return json.dumps(
_dict,
default=lambda o: 'ERROR: Item not JSON serializable',
sort_keys=True,
indent=3) | 042fdc731a084e1d74175a1ac22bc5b4204050c6 | 701,477 |
def split_path(path):
"""
Normalise S3 path string into bucket and key.
Parameters
----------
path : string
Input path, like `s3://mybucket/path/to/file`
Examples
--------
>>> split_path("s3://mybucket/path/to/file")
['mybucket', 'path/to/file']
"""
if path.startswith('s3://'):
path = path[5:]
if '/' not in path:
return path, ""
else:
return path.split('/', 1) | 446f7643066864937e11b915d4ff842f21c65dd6 | 701,479 |
def unixtime2mjd(unixtime):
"""
Converts a UNIX time stamp in Modified Julian Day
Input: time in UNIX seconds
Output: time in MJD (fraction of a day)
"""
# unixtime gives seconds passed since "The Epoch": 1.1.1970 00:00
# MJD at that time was 40587.0
result = 40587.0 + unixtime / (24. * 60. * 60.)
return result | 670e915b7a5de8cd9ced28e6b4d32c51ac916d54 | 701,480 |
def num_active_calls(log, ad):
"""Get the count of current active calls.
Args:
log: Log object.
ad: Android Device Object.
Returns:
Count of current active calls.
"""
calls = ad.droid.telecomCallGetCallIds()
return len(calls) if calls else 0 | a6674df1e8e539478db6ab1a640fbce1cf0b6b4c | 701,482 |
def density_standard(components):
"""
Natural gas density at standard temperature, kg/m3
:param components: (list) List of gas components. Each item is an object of class GasComponent
:return: (float) The density of natural gas an standard parameters, kg/m3
"""
return sum([component.density_standard * component.volume_percentage * 0.01 for component in components]) | c087ce6ae1a3486dd092341286023c56606380a3 | 701,485 |
def generate_test_uuid(tail_value=0):
"""Returns a blank uuid with the given value added to the end segment."""
return '00000000-0000-0000-0000-{value:0>{pad}}'.format(value=tail_value,
pad=12) | f113eef54eba9d8d1fb5234c87af3cb6290ea25e | 701,487 |
from typing import Dict
async def total() -> Dict:
"""
Sum of a list of numbers
---
tags:
- Total
get:
parameters:
- N/A
response:
200:
description: returns a dictionary with a total sum of a list of numbers
"""
return {"total": sum(list(range(10000001)))} | 67c1d1abf6c76c533d8ea776dbb46a4184b0fca5 | 701,489 |
def extractAliasFromContainerName(containerName):
""" Take a compose created container name and extract the alias to which it
will be refered. For example bddtests_vp1_0 will return vp0 """
return containerName.split("_")[1] | a5ab9487ae31ee1a4b2ed9b67062817488107983 | 701,491 |
def get_string(request, key):
"""Returns the first value in the request args for a given key."""
if not request.args:
return None
if type(key) is not bytes:
key = key.encode()
if key not in request.args:
return None
val = request.args[key][0]
if val is not None and type(val) is bytes:
val = val.decode()
return val | ae43bb3e11cf21deb8f726ed6a2321c51099e4f3 | 701,494 |
def _get_maxmem(profile_df):
"""
Get current peak memory
:param pandas.core.frame.DataFrame profile_df: a data frame representing the current profile.tsv for a sample
:return str: max memory
"""
return "{} GB".format(str(max(profile_df['mem']) if not profile_df['mem'].empty else 0)) | 2e628d48f7b4e0e3c1465f09da7aa795d2954a06 | 701,497 |
async def process_headers(headers):
"""Filter out unwanted headers and return as a dictionary."""
headers = dict(headers)
header_keys = (
"user-agent",
"referer",
"accept-encoding",
"accept-language",
"x-real-ip",
"x-forwarded-for",
)
return {k: headers.get(k) for k in header_keys} | 32feeb40c12c4b69d65da1c178e396e85fc9e557 | 701,500 |
def by_circ(x, y):
"""
Sort circRNAs by the start and end position
"""
return x.end - y.end if x.start == y.start else x.start - y.start | 5d8205389960b92f10c450fdb6385678a279406b | 701,503 |
def _normalize_longitude(lon: float) -> float:
"""Normalize longitudes between [-180, 180]"""
return ((lon + 180.0) % 360.0) - 180.0 | e50dc8fee9a0499a2e32f3ccf8b2e9a634581bba | 701,507 |
def get_tf_tensor_shape(tensor):
"""Get tensor shape, if there is unkown tensor, set it as None"""
shape = []
try:
shape = tensor.get_shape().as_list()
if any(s is None for s in shape):
return None
return shape
except Exception: # pylint: disable=broad-except
shape = None
return shape | 33c7e17102ad2f7d407c1f86b13c7cdfa61ca677 | 701,508 |
def _wrapped_value_and_num(value):
"""Returns a list containing value plus the list's length."""
if isinstance(value, (list, tuple)):
return value, len(value)
else:
return [value], 1 | 811521a18dffd9ee046751c74d4d8a097662c8cd | 701,514 |
def perform_fit(cfmclient, fabric_uuid, name, description):
"""
Request a full fit across managed Composable Fabrics.
:param cfmclient: CFM Client object
:param fabric_uuid: Valid Fabric UUID of an existing fabric
:param name: Simple name of the fit
:param description: Longer Description of the fitting request
:return:
"""
data = {
'fabric_uuid': '{}'.format(fabric_uuid),
'name': '{}'.format(name),
'description': '{}'.format(description)
}
path = 'v1/fits'
return cfmclient.post(path, data=data) | 66d6462c97b1354ef11b6378b82912030ed40a94 | 701,515 |
from pathlib import Path
def parent(path: str):
"""Returns the parent `Path` of the given path."""
return Path(path).parent.resolve() | d86b37bc8310b024eb0a78c1b1de404cf6c2c85a | 701,517 |
import base64
def b64encode(value):
"""
Encode a value in base64
"""
return base64.b64encode(value) | 988abf5a9d2c0c1f38f16fbf8f80fd43aa115223 | 701,520 |
def zip_tasks_verbose_output(table, stdstreams):
"""Zip a list of strings (table) with a list of lists (stdstreams)
:param table: a formatted list of tasks
:param stdstreams: for each task, a list of lines from stdout/stderr tail
"""
if len(table) != len(stdstreams):
raise ValueError('Can only zip same-length lists')
output = []
for i in range(len(table)):
output.append(table[i])
output.extend([line for line in stdstreams[i]])
return output | 33d74cd274ec39330cbc127a3088a430b80d234a | 701,523 |
import pickle
def try_deserialize_handler(serialized_handler):
"""Reverse function of try_serialize_handler.
Args:
serialized_handler: serialized handler str or None.
Returns:
handler instance or None.
"""
if serialized_handler:
return pickle.loads(serialized_handler) | bc91e26c65add4e74affd148b8ed550fe923c925 | 701,526 |
def hardwareVersionToString (hwversion):
"""
Converts a raw integer value into a human readable string a.b.c.d.
:param int hwversion: raw value as received from the generator
:return str: a human readable string 'a.b.c.d'.
"""
if ((hwversion >> 30) & 1) != 0:
# new format 30-22 + 21-16
# mask here with 0xFF instead of 0x3FF to ignore the first two bits
a = (hwversion >> 22) & 0xFF
# this one should always be 17
b = (hwversion >> 16) & 0x3F
c = (hwversion >> 8) & 0xFF
d = (hwversion & 0xFF)
else:
# old format
a = 2000 + ((hwversion >> 26) & 0x3F) # 2000 + first 6 bits (MSB)
b = (hwversion >> 22) & 0x0F # 4 next bits
c = (hwversion >> 16) & 0x3F # 6 next bits
d = (hwversion & 0xFFFF) # last 16 bits (LSB)
return "%d.%d.%d.%d" % (a, b, c, d) | 1f1fab23706e05fa593ef4cf56f3ec4e1a6f4c6f | 701,527 |
import code
def main(_):
"""Run an interactive console."""
code.interact()
return 0 | e85a21c0197a599378c3f25022ec99cb557d6017 | 701,532 |
import heapq
def heapmerge(*inputs):
"""Like heapq.merge(), merges multiple sorted inputs (any iterables) into a single sorted output, but provides more convenient API:
each input is a pair of (iterable, label) and each yielded result is a pair of (item, label of the input) - so that it's known what input a given item originates from.
Labels can be any objects (e.g., object that produced the input stream)."""
def entries(iterable, label):
for obj in iterable: yield (obj, label)
iterables = [entries(*inp) for inp in inputs]
return heapq.merge(*iterables) | 580ec9f2f0793f8907390f5c7f8eebf4ac539b59 | 701,533 |
import mimetypes
def bundle_media_description(key, filename):
"""Bundle the media description necessary for uploading.
:param key: form-data key name
:param filename: Local file name or path.
:return: tuple of ('key name', ('file name', 'file object', 'MIME content-type')
:rtype: tuple
"""
content_type, _ = mimetypes.guess_type(filename)
media_description = (key, (filename, open(filename, 'rb'), content_type))
return media_description | 8c160a9c767d86a1c1867d22f018d6342239e68d | 701,537 |
def format_write_request(address, value):
""" Format a write request based on an address and the value to write to
the FPGA.
:param address: address at which to write date.
:param value: data to write to the address.
:return: formatted request.
"""
if address >= 2**(4 * 8):
raise ValueError(f'Address {address} is too large (max 4 bytes).')
if address < 0:
raise ValueError(f'Address {address} cannot be negative.')
if value >= 2**(4 * 8):
raise ValueError(f'Value {value} is too large (max 4 bytes).')
if value < 0:
raise ValueError(f'Address {address} cannot be negative.')
buff = bytearray(9)
buff[0] = 1 << 7
buff[1:] = int.to_bytes(address, length=4, byteorder="little")
buff[5:] = int.to_bytes(value, length=4, byteorder="little")
return buff | 8425b7ff3422162cb0127c64069dbf68a414becf | 701,538 |
from datetime import datetime
def create_envelope(payload: dict) -> dict:
"""
Creates a dictionary with event label, timestamp and message field
:param payload: The payload dict
:return: An event message dictionary
"""
payload['timestamp'] = datetime.utcnow().timestamp()
if 'event' not in payload:
payload['event'] = 'cs.unknown'
if 'message' not in payload:
payload['message'] = None
return payload | 593a2b60a667dece41f10031d13ad98018d9f881 | 701,540 |
import re
def prepare_template_data(fill_pairs):
"""
Prepares formatted data for filling template.
It produces mutliple variants of keys (key, Key, KEY) to control
format of filled template.
Args:
fill_pairs (iterable) of tuples (key, value)
Returns:
(dict)
('host', 'maya') > {'host':'maya', 'Host': 'Maya', 'HOST': 'MAYA'}
"""
fill_data = {}
regex = re.compile(r"[a-zA-Z0-9]")
for key, value in dict(fill_pairs).items():
# Handle cases when value is `None` (standalone publisher)
if value is None:
continue
# Keep value as it is
fill_data[key] = value
# Both key and value are with upper case
fill_data[key.upper()] = value.upper()
# Capitalize only first char of value
# - conditions are because of possible index errors
# - regex is to skip symbols that are not chars or numbers
# - e.g. "{key}" which starts with curly bracket
capitalized = ""
for idx in range(len(value or "")):
char = value[idx]
if not regex.match(char):
capitalized += char
else:
capitalized += char.upper()
capitalized += value[idx + 1:]
break
fill_data[key.capitalize()] = capitalized
return fill_data | a6082093bcbe39ba429decd2735fb2797c6c11dd | 701,542 |
from pathlib import Path
from typing import Callable
from typing import Any
def readFileLines(filepath: Path, f: Callable[[str], Any] = str) -> list:
"""Reads the lines in a file
Args:
filepath (Path): The path of the file to be read.
f (Callable[[str], Any], optional): Transformation for the lines. Defaults to `str`.
Returns:
list: list with the lines, with the defined transformation applied.
"""
lines = None
with open(filepath, 'r') as file:
lines = []
# `readline` reads one line (better do it like this for large files)
while (line := file.readline()):
lines.append(f(line)) # We want integer numbers
return lines | 21df2445f6132085d7da36276f371170ff0f2a4e | 701,543 |
def get_default(arr, idx, default_value):
"""get arr[idx] or return default_value
"""
try:
return arr[idx]
except IndexError:
return default_value | 038b943da7fa1d36038444880264160da8e031f4 | 701,544 |
def second(xs):
"""
Returns the second element of a list, or None if the list is empty
"""
if not xs:
return None
return xs[1] | e5a915116d61e01842f86623aafcf6e2e6c8b5a3 | 701,545 |
import logging
def get_logger(module: str, file: str) -> logging.Logger:
"""Configure a file logger for use in a script.
Parameters
----------
module : str
The name of the module from which the logger is called
file : str
The name of the log file to which the logger will write
Returns
-------
logging.Logger
The configured logger instance.
"""
handler = logging.FileHandler(file)
formatter = logging.Formatter(
"{asctime} :: {levelname} :: {name} :: {message}", style="{"
)
handler.setLevel(logging.INFO)
handler.setFormatter(formatter)
logging.basicConfig(level=logging.INFO, handlers=[handler])
logger = logging.getLogger(module)
return logger | c9a68d216ca9a04ccb208dd546621e051dd37e36 | 701,546 |
def filled_grasp_grid(empty_grasp_grid, grid_file):
"""Return a GraspGrid instance filled from the grid_file."""
empty_grasp_grid.read(grid_file)
grid_file.close()
return empty_grasp_grid | 97ed623c09b9d42642a208451b004e5bec4910ed | 701,547 |
def get_1d_coords(p, i, j):
"""
Finds index of site in 1d chain from 2d lattics based on snake
decomposition, ie 1d coords on 2d lattice look like:
0, 1, 2, 3,
7, 6, 5, 4,
8, 8, 10, 11
Args:
p - dictionary that contains the relevant system parameters
i - row index on 2d lattice
j - column index on 2d lattice
Returns:
reshaped_i - index of site on 1d chain
"""
if i % 2 == 0:
reshaped_i = i * p['W'] + j
else:
reshaped_i = i * p['W'] + (p['W'] - j - 1)
return reshaped_i | 2852ec9d57c99f922380fc8b671bdd757e8decf4 | 701,550 |
import json
def abrir_freq(file):
"""
Abre o ficheiro json com o dicionário das frequências das regras.
:param file: ficheiro json
:return: dicionário com as frequências das regras no corpus.
"""
with open(file) as f:
freq_svo_dict = json.load(f)
return freq_svo_dict | b1cbb7c98146cf72390b511428d7734881f0b944 | 701,551 |
def get_minsep_range(minseps, cap=None):
"""
Create ranged minseps from an ensemble of minsep entries
Args:
minseps (list): A list of minsep dictionaries
cap (tuple): Minimum-maximum caps
Returns:
minsep (dict): A minsep where values are minimum and maximum values
"""
base = {key: [value, value] for key, value in minseps[0].items()}
for minsep in minseps:
for key, value in minsep.items():
# If the key exists (it should)
if key in base:
existing = base[key]
# Expand the minimum and maximum values
if cap and (value < cap[0]):
existing[0] = cap[0]
elif cap and (value > cap[1]):
existing[1] = cap[1]
elif existing[0] > value:
existing[0] = value
elif existing[1] < value:
existing[1] = value
# add the pairs if needed
else:
base[key] = [value, value]
return base | e60392fa70f7f2b0989f4894ce90c7bd78aac7d2 | 701,553 |
def datetime_to_iso(date, only_date=True):
""" Convert datetime format to ISO 8601 time format
This function converts a date in datetime instance, e.g. ``datetime.datetime(2017,9,14,0,0)`` to ISO format,
e.g. ``2017-09-14``
:param date: datetime instance to convert
:type date: datetime
:param only_date: whether to return date only or also time information. Default is ``True``
:type only_date: bool
:return: date in ISO 8601 format
:rtype: str
"""
if only_date:
return date.isoformat().split('T')[0]
return date.isoformat() | 676a7e65de2c9e4de60cfe8d832ab342aa46af4f | 701,555 |
def descendants(node, lst=None):
"""Return a list of all the descendants beneath a node"""
if lst is None:
lst = []
for child in node.children:
lst.append(child)
descendants(child, lst=lst)
return lst | 5fe6fb9d9fbfd63bbeb161fdbe1d0e54d20edf9e | 701,558 |
def create_elem_dict(row):
"""
Create new element dictionary from row with metadata common to all
nodes/ways/relations.
"""
elem = {
'id': row.id,
'version': row.version,
'userId': row.user_id,
'userName': row.user_name,
'timestamp': row.timestamp,
'tags': row.tags,
}
if row.add:
elem['added'] = True
if row.delete:
elem['deleted'] = True
return elem | d97b712cd4b0bc6e79f5aa09f212491d715f1c69 | 701,562 |
from typing import Dict
from typing import Any
from typing import Tuple
from typing import Optional
def source_ip_and_reverse_dns(
message: Dict[str, Any]) -> Tuple[Optional[str], Optional[str]]:
"""
Extract the source IP and reverse DNS information from a canary request.
"""
reverse_dns, source_ip = (None, None)
if 'SourceIP' in message:
source_ip = message['SourceIP']
# `ReverseDNS` can sometimes exist and still be empty.
if 'ReverseDNS' in message and message['ReverseDNS']:
reverse_dns = message['ReverseDNS']
return (source_ip, reverse_dns) | df2a9b6c4a177073fc019e88c33234f4d6124ccb | 701,563 |
def fCO2_to_CO2(fCO2, Ks):
"""
Calculate CO2 from fCO2
"""
return fCO2 * Ks.K0 | 2b71b46147291e7fffb99d51d0acb59ea4cd0c69 | 701,564 |
def check_if_in_team(api, team_id, person):
""" Checks if a person is in a given team
:param api: CiscoSparkAPI instance to query Spark with.
:param team_id: The ID of the team to check for
:param person: The person to check against the team
"""
team_memberships = api.team_memberships.list(team_id)
# Check every membership to see if this person is contained within
for membership in team_memberships:
if person.id == membership.personId:
return True
return False | b20a5ee41485b2dd397c7dd23407ef95d0f34e4a | 701,566 |
def group_per_category(bkgs):
"""
Groups a flat list of datasets into sublists with the same category
E.g. [ ttjet, ttjet, ttjet, qcd, qcd ] --> [ [ttjet, ttjet, ttjet], [qcd, qcd] ]
"""
cats = list(set(bkg.get_category() for bkg in bkgs))
cats.sort()
return [ [ b for b in bkgs if b.get_category() == cat ] for cat in cats ] | c331456b1b3066f667c94e6ed7d00c8421ec2160 | 701,567 |
def subtract_params(param_list_left: list, param_list_right: list):
"""Subtract two lists of parameters
:param param_list_left: list of numpy arrays
:param param_list_right: list of numpy arrays
:return: list of numpy arrays
"""
return [x - y for x, y in zip(param_list_left, param_list_right)] | f8563cae337af0e30621428103afa10bde614e93 | 701,568 |
import torch
def pretty_size(size):
"""
Pretty prints a torch.Size object
By user machinethink: https://forums.fast.ai/t/gpu-memory-not-being-freed-after-training-is-over/10265/7
"""
assert(isinstance(size, torch.Size))
return " × ".join(map(str, size)) | 006ae05ce22653bfe58a5791aa5912de7283d9ca | 701,574 |
from typing import Tuple
def convert_time(time: str, ampm: str) -> Tuple[int, int]:
"""Convert time given "HH:MM" to 24h format.
Args:
time (str): a time like "12:00" without ampm
ampm (str): either "am" or "pm"
Returns:
Tuple[int, int]: (hour, minute) in 24h time format
"""
hour, minute = [int(n) for n in time.split(':')]
hour %= 12
if ampm == 'pm':
hour += 12
return hour, minute | b1bd57ea92e82ba629e3ad2733f173dfcc805e9e | 701,575 |
def column_equality(series, col1, col2, comparison='equal', pos_return_val=1, neg_return_val=0):
"""
Apply to a dataframe row to return a binary feature depending on equality or inequality
E.g. df.apply(lambda s: column_match(s, 'day_of_week', 'day_of_sale'), axis=1) to for matching the two.
Result is series of positive_return_vals and neg_return_vals. Defaults to
"""
if comparison == 'equal':
if series[col1] == series[col2]:
return pos_return_val
else:
return neg_return_val
if comparison == 'unequal':
if series[col1] != series[col2]:
return pos_return_val
else:
return neg_return_val | 9ec71f5fd3af4a8d89b4cd58a255065ec8352eb2 | 701,576 |
import math
def get_tile_from_lon_lat(lon: float, lat: float, zoom: int) -> tuple[int, int]:
"""
Turns a lon/lat measurement into a Slippy map tile at a given zoom.
"""
# Clamps lon, lat to proper mercator projection values
lat = min(lat, 85.0511)
lat = max(lat, -85.0511)
lon = min(lon, 179.9999)
lon = max(lon, -179.9999)
lat_rad = math.radians(lat)
n = 2.0 ** zoom
xtile = int((lon + 180.0) / 360.0 * n)
ytile = int((1.0 - math.asinh(math.tan(lat_rad)) / math.pi) / 2.0 * n)
return xtile, ytile | cdd542c8a362d54dccb8760278b22a17f5df57f9 | 701,577 |
def get_cincinnati_channels(major, minor):
"""
:param major: Major for release
:param minor: Minor version for release.
:return: Returns the Cincinnati graph channels associated with a release
in promotion order (e.g. candidate -> stable)
"""
major = int(major)
minor = int(minor)
if major != 4:
raise IOError('Unable to derive previous for non v4 major')
prefixes = ['candidate', 'fast', 'stable']
if major == 4 and minor == 1:
prefixes = ['prerelease', 'stable']
return [f'{prefix}-{major}.{minor}' for prefix in prefixes] | e57ad8d26ea0a397e8c3f9edc99174f78b506564 | 701,580 |
def lagrange_four_point(x, y0, y1, y2, y3):
"""The third order polynomial p(x) with p(-1)=y0, p(0)=y1, p(1)=y2, p(2)=y3."""
a2 = 3 * (y0 + y2 - y1 - y1)
a3 = 3 * (y1 - y2) + y3 - y0
a1 = -a3 + 3 * (y2 - y0)
return y1 + x * (a1 + x * (a2 + x * a3)) * 0.166666666666666666666666 | b60da1f8567c5b9babbc9e158b1444e30424bb1f | 701,581 |
import uuid
def create_filename(prefix='', ext=''):
"""
Create a unique filename.
:param str prefix: Prefix to add to filename.
:param str ext: Extension to append to filename, e.g. 'jpg'
:return: Unique filename.
:rtype: str
"""
suffix = '.' + ext if ext else ''
return prefix + str(uuid.uuid4()) + suffix | 30cedc7bdcf3fdbf202b8a0d26e64bd6f865094d | 701,586 |
def std_secao_filter(secao_list):
"""
Takes a words list from a secao filter and standardize the words to the
same pattern as the one used to download the articles' URLs:
extra -> e and suplemento -> a.
"""
return [str(s).lower().replace('extra','e').replace('suplemento','a') for s in secao_list] | 6c5b1a52bec02078cd8c0e1dc35c97420a424936 | 701,591 |
import re
def generate_layer_name(layer):
"""
Generates unique name for layer.
Parameters
----------
layer : BaseLayer
Returns
-------
str
"""
cls = layer.__class__
layer_id = cls.global_identifiers_map[cls]
cls.global_identifiers_map[cls] += 1
classname = cls.__name__
if classname.isupper():
layer_name = classname.lower()
else:
layer_name = re.sub(r'(?<!^)(?=[A-Z][a-z_])', '-', classname)
return "{}-{}".format(layer_name.lower(), layer_id) | 8cce0bf0c68601dcbed2c0852a563243cd818743 | 701,594 |
def recv_meas_outcome(socket):
"""Receive the measurement outcome (0 or 1) of the server's
last measurement.
"""
return int(socket.recv(maxsize=1)) | f49717272722be1476cb9bcc08bcbe7b8525c2ba | 701,597 |
import base64
def make_basic_auth_header(username, password):
"""
create a basic authentication header
:param username: user name [unicode on py2, str on py3]
:param password: password [unicode on py2, str on py3]
:return: basic auth header [str on py2, str on py3]
"""
# note: the coding dance in the next lines is to make sure we get str type
# on python 2 as well as on python 3 as str is the type we get in the auth
# object when practically running with a real web server.
user_pass = u'%s:%s' % (username, password)
return 'Basic ' + str(base64.b64encode(user_pass.encode('utf-8')).decode('ascii')) | 69900bbc73a4df8e0f2f932a30e6acdb08cb9c4d | 701,598 |
from typing import Union
def alfa_key(alfa: Union[str, int]) -> Union[str, None]:
"""
Return the numeric value of a possible alfanumeric key name. See "alfanumeric key names".
Parameters
----------
alfa : str | int
The package name from "alfa numeric names" list
or the correspondent index
Returns
-------
alfa_code : str
The correspondent alfa numeric code
Raises
------
TypeError
If `alfa` type isn't str or int
Examples
--------
>>> alfa_key('A')
29
>>> alfa_key(10)
29
"""
alfa_key_list = [
['0', 7],
['1', 8],
['2', 9],
['3', 10],
['4', 11],
['5', 12],
['6', 13],
['7', 14],
['8', 15],
['9', 16],
['A', 29],
['B', 30],
['C', 31],
['D', 32],
['E', 33],
['F', 34],
['G', 35],
['H', 36],
['I', 37],
['J', 38],
['K', 39],
['L', 40],
['M', 41],
['N', 42],
['O', 43],
['P', 44],
['Q', 45],
['R', 46],
['S', 47],
['T', 48],
['U', 49],
['V', 50],
['W', 51],
['X', 52],
['Y', 53],
['Z', 54]]
if type(alfa) == int:
return(alfa_key_list[int(alfa)][1])
elif type(alfa) == str:
for index in range(len(alfa_key_list)):
if str(alfa_key_list[index][0]) == alfa:
alfa_code = alfa_key_list[index][1]
return(alfa_code)
else:
raise TypeError() | f800ec179075f00264d3d797c3df6bcf1e6b80da | 701,599 |
def word_to_col(w):
"""Splits a hexadecimal string to a bytes column.
Parameters
----------
w : str
Hexadecimal 32-bit word.
Returns
-------
list
4 bytes column containing integers representing the input string.
"""
x = int(w, 16)
return [x >> 24, (x >> 16) & 0xff, (x >> 8) & 0xff, x & 0xff] | 540dabd4e42eb68ce166f608bfa849b31f1bc2fe | 701,600 |
def _create_documents_per_words(freq_matrix: dict) -> dict:
"""
Returns a dictionary of words and the number of documents in which they
appear.
:param freq_matrix: The frequency matrix to be summarized.
:return: A dictionary of words and the number of documents in which they appear.
"""
doc_per_words = dict()
for sentence, freq_table in freq_matrix.items():
for word, frequency in freq_table.items():
if word in doc_per_words:
doc_per_words[word] += 1
else:
doc_per_words[word] = 1
return doc_per_words | 3b25081ce3452629de9fdd6afd122bd058ee9acf | 701,601 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.