question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1lgswd6s1
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>The number of points, where the curve $$f(x)=\mathrm{e}^{8 x}-\mathrm{e}^{6 x}-3 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}+1, x \in \mathbb{R}$$ cuts $$x$$-axis, is equal to _________.</p>
[]
null
2
Firstly, we know that the given function <br/><br/>$f(x)=e^{8x}-e^{6x}-3e^{4x}-e^{2x}+1$ intersects the x-axis <br/><br/>where $f(x) = 0$. Setting $f(x)$ equal to zero gives us : <br/><br/>$e^{8x}-e^{6x}-3e^{4x}-e^{2x}+1=0.$ <br/><br/>Let $t = e^{2x}$. The equation now becomes : <br/><br/>$t^4 - t^3 - 3t^2 - t + 1 = 0.$ <br/><br/>Dividing by $t^2$ and rearranging the equation gives : <br/><br/>$t^2 - t - 3 - \frac{1}{t} + \frac{1}{t^2} = 0.$ <br/><br/>If we let $y = t + \frac{1}{t}$, we get : <br/><br/>$y^2 - y - 5 = 0.$ <br/><br/>This quadratic equation in y can be solved using the quadratic formula to give two roots : <br/><br/>$y = \frac{1 \pm \sqrt{21}}{2}.$ <br/><br/>Since $y = t + \frac{1}{t}$, and $t > 0$ (as $t = e^{2x}$), we must choose the root where $y > 2$. Thus, we take $y = \frac{1 + \sqrt{21}}{2}$. <br/><br/>So, we have : <br/><br/>$t + \frac{1}{t} = \frac{1 + \sqrt{21}}{2}.$ <br/><br/>Solving for $t$ gives us : <br/><br/>$t^2 - yt + 1 = 0,$ <br/><br/>or <br/><br/>$t = \frac{y \pm \sqrt{y^2 - 4}}{2}.$ <br/><br/>Substituting $y = \frac{1 + \sqrt{21}}{2}$ into the formula gives : <br/><br/>$t = \frac{\frac{1 + \sqrt{21}}{2} \pm \sqrt{\left(\frac{1 + \sqrt{21}}{2}\right)^2 - 4}}{2}.$ <br/><br/>This quadratic formula for $t$ yields two possible values (t = 2.37 and t = 0.42). Both of them are positive, thus both are acceptable values for $t = e^{2x}$. <br/><br/>Finally, to get $x$, take the natural log of both sides and divide by 2 : <br/><br/>$x = \frac{1}{2}\ln(t).$ <br/><br/>This gives us two solutions for $x$, corresponding to the two positive solutions for $t$. So, the number of points where the curve $f(x) = e^{8x} - e^{6x} - 3e^{4x} - e^{2x} + 1$ intersects the x-axis is 2.
integer
jee-main-2023-online-11th-april-evening-shift
1lguwygfx
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>If $$a$$ and $$b$$ are the roots of the equation $$x^{2}-7 x-1=0$$, then the value of $$\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$$ is equal to _____________.</p>
[]
null
51
We have, $a$ and $b$ are the roots of the equation <br/><br/>$$ \begin{aligned} & x^2-7 x-1=0 \\\\ & \Rightarrow a^2-7 a-1=0 \Rightarrow a^2-1=7 a .........(i) \end{aligned} $$ <br/><br/>On squaring both sides, we get $a^4+1=51 a^2$ <br/><br/>Similarly, $b^4+1=51 b^2$ ...........(ii) <br/><br/>$$ \text { Now, } \frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}=\frac{a^{17}\left(a^4+1\right)+b^{17}\left(b^4+1\right)}{a^{19}+b^{19}} $$ <br/><br/>$$ \begin{aligned} & =\frac{a^{17}\left(51 a^2\right)+b^{17}\left(51 b^2\right)}{a^{19}+b^{19}} \quad[\because \text { From Eq. (i) and (ii) }] \\\\ & =\frac{51\left[a^{19}+b^{19}\right]}{a^{19}+b^{19}}=51 \end{aligned} $$
integer
jee-main-2023-online-11th-april-morning-shift
1lgzzo8pe
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta, \gamma$$ be the three roots of the equation $$x^{3}+b x+c=0$$. If $$\beta \gamma=1=-\alpha$$, then $$b^{3}+2 c^{3}-3 \alpha^{3}-6 \beta^{3}-8 \gamma^{3}$$ is equal to :</p>
[{"identifier": "A", "content": "21"}, {"identifier": "B", "content": "19"}, {"identifier": "C", "content": "$$\\frac{169}{8}$$"}, {"identifier": "D", "content": "$$\\frac{155}{8}$$"}]
["B"]
null
Given cubic equation is : <br/><br/>$$ x^3+b x+c=0 $$ <br/><br/>$\because \alpha, \beta, \gamma$ are the roots of above equation. <br/><br/>And $\beta \gamma=1=-\alpha$ <br/><br/>$$ \begin{aligned} & \text { So, product of roots }=-c \\\\ & \Rightarrow \alpha \beta \gamma=-c \\\\ & \Rightarrow(-1)(1)=-c \\\\ & \Rightarrow c=1 \end{aligned} $$ <br/><br/>Since, $\alpha=-1$ is the root. So, <br/><br/>$$ \begin{aligned} & \Rightarrow-1-b+c=0 \\\\ & \Rightarrow c-b=1 \\\\ & \Rightarrow 1-b=1 \Rightarrow b=0 \end{aligned} $$ <br/><br/>The given equation becomes $x^3+1=0$ <br/><br/>So, roots are $-1,-\omega,-\omega^2$ <br/><br/>$$ \begin{aligned} & \therefore b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3 \\\\ & =0+2-3(-1)^3-6(-\omega)^3-8\left(-\omega^2\right)^3 \\\\ & =2+3+6 \omega^3+8 \omega^6 \\\\ & =5+6+8=19 \end{aligned} $$ <br/><br/><b>Concept :</b> <br/><br/>For a cubic equation, $a x^3+b x^2+c x+d=0$ <br/><br/>Sum of roots $=\frac{-b}{a}$ <br/><br/>Product of roots taken two at a time $=\frac{c}{a}$ <br/><br/>Product of roots $=\frac{-d}{a}$
mcq
jee-main-2023-online-8th-april-morning-shift
1lh23bm1u
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>The sum of all the roots of the equation $$\left|x^{2}-8 x+15\right|-2 x+7=0$$ is :</p>
[{"identifier": "A", "content": "$$11+\\sqrt{3}$$"}, {"identifier": "B", "content": "$$9+\\sqrt{3}$$"}, {"identifier": "C", "content": "$$9-\\sqrt{3}$$"}, {"identifier": "D", "content": "$$11-\\sqrt{3}$$"}]
["B"]
null
$$ \begin{aligned} &amp; \text { We have, }\left|x^2-8 x+15\right|-2 x+7=0 \\\\ &amp; \Rightarrow |(x-3)(x-5)|-2 x+7=0 \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnkn5295/e47cf7ce-efd4-4752-9bbb-34637d3af9f9/c36b1990-6798-11ee-97fe-41fa1903ca4f/file-6y3zli1lnkn5296.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnkn5295/e47cf7ce-efd4-4752-9bbb-34637d3af9f9/c36b1990-6798-11ee-97fe-41fa1903ca4f/file-6y3zli1lnkn5296.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 6th April Morning Shift Mathematics - Quadratic Equation and Inequalities Question 19 English Explanation"> <br><br>Now, when $x \leq 3$ or $x \geq 5$, then <br><br>$$ \begin{array}{ccrl} &amp; x^2-8 x+15-2 x+7 =0 \\\\ &amp;\Rightarrow x^2-10 x+22=0 \\\\ &amp;\Rightarrow x^2-10 x+25-3=0 \\\\ &amp;\Rightarrow (x-5)^2-3=0 \\\\ &amp;\Rightarrow (x-5)= \pm \sqrt{3} \\\\ &amp;\Rightarrow x=5+\sqrt{3}, 5-\sqrt{3} \end{array} $$ <br><br>Since, $x \leq 3$ or $x \geq 5$ <br><br>$$ \therefore x=5+\sqrt{3} $$ <br><br>When, $3 &lt; x &lt; 5$, then <br><br>$$ \begin{array}{rlrl} &amp; -\left(x^2-8 x+15\right)-2 x+7 =0 \\\\ &amp; \Rightarrow -x^2+8 x-15-2 x+7 =0 \\\\ &amp; \Rightarrow -x^2+6 x-8 =0 \\\\ &amp; \Rightarrow x^2-6 x+8 =0 \\\\ &amp; \Rightarrow (x-4)(x-2) =0 \Rightarrow x=2,4 \end{array} $$ <br><br>Since, $3 &lt; x &lt; 5$ <br><br>$$ \therefore x=4 $$ <br><br>$$ \therefore \text { Sum of roots }=(5+\sqrt{3})+4=9+\sqrt{3} $$
mcq
jee-main-2023-online-6th-april-morning-shift
lsamarl9
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
Let $\alpha$ and $\beta$ be the roots of the equation $p x^2+q x-r=0$, where $p \neq 0$. If $p, q$ and $r$ be the consecutive terms of a non constant G.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^2$ is :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "$\\frac{20}{3}$"}, {"identifier": "D", "content": "$\\frac{80}{9}$"}]
["D"]
null
Given : $p x^2+q x-r=0$ <br/><br/>Let $p=\frac{a}{r_1}, q=a, r=a r_1$ <br/><br/>$\begin{aligned} & \text { and } \frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4} \\\\ & \Rightarrow \frac{\alpha+\beta}{\alpha \beta}=\frac{3}{4} \\\\ & \Rightarrow \frac{-\frac{q}{p}}{-\frac{r}{p}}=\frac{3}{4} \\\\ & \Rightarrow \frac{q}{r}=\frac{3}{4} \\\\ & \Rightarrow \frac{1}{r_1}=\frac{3}{4} \\\\ & \Rightarrow r_1=\frac{4}{3}\end{aligned}$ <br/><br/>$\begin{aligned}(\alpha-\beta)^2 & =(\alpha+\beta)^2-4 \alpha \beta \\\\ & =\left(\frac{-q}{p}\right)^2-4\left(\frac{-r}{p}\right) \\\\ & =\frac{q^2}{p^2}+\frac{4 r}{p} \\\\ & =r_1^2+4 r_1^2=5 r_1^2 \\\\ & =5\left(\frac{4}{3}\right)^2=\frac{80}{9}\end{aligned}$
mcq
jee-main-2024-online-1st-february-evening-shift
lsaolop2
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
Let $\mathbf{S}=\left\{x \in \mathbf{R}:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["C"]
null
<p>Notice that $(\sqrt{3} + \sqrt{2})$ and $(\sqrt{3} - \sqrt{2})$ are reciprocals of each other because :</p> <ul> <li>$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1$</li> </ul> <br/><strong>Using the Reciprocal Property :</strong> <br/><ul> <br/><li>This means $(\sqrt{3} - \sqrt{2})^x = \frac{1}{(\sqrt{3} + \sqrt{2})^x} $</li> </ul> <br/><strong>Let</strong> $a = (\sqrt{3} + \sqrt{2})^x $. The equation given in the problem becomes : <ul> <br/><li> $a + \frac{1}{a} = 10$</li> </ul> <br/><strong>Simplifying</strong> <p>Multiplying both sides by *a*, we get a quadratic equation :</p> <ul> <li> $a^2 + 1 = 10a$</li><br> <li> $a^2 - 10a + 1 = 0$</li> </ul> <br/><strong>Solving the Quadratic</strong> <p>Using the quadratic formula, we find :</p> <ul> <li> $a = \frac{10 \pm \sqrt{96}}{2} = 5 \pm 2\sqrt{6}$</li> </ul> <br/><strong>Possible values of x</strong> <p>Since $a = (\sqrt{3} + \sqrt{2})^x $, we have two cases :</p> <ol> <li>$(\sqrt{3} + \sqrt{2})^x = 5 + 2\sqrt{6}$ = $(\sqrt{3} + \sqrt{2})^2$. There is one real solution for x in this case which is x = 2.</li><br> <li>$(\sqrt{3} + \sqrt{2})^x = 5 - 2\sqrt{6}$ = $(\sqrt{3} - \sqrt{2})^2= \frac{1}{(\sqrt{3} + \sqrt{2})^2} $ = $(\sqrt{3} + \sqrt{2})^{-2}$. There is one real solution for x in this case which is x = - 2.</li> </ol> <br/><strong>Conclusion</strong> <p>There are <strong>two</strong> real solutions for *x*. Therefore, the number of elements in the set S is <strong>2</strong>. This corresponds with option <strong>(C)</strong>.</p> <p></p>
mcq
jee-main-2024-online-1st-february-morning-shift
1lsgcitu2
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta \in \mathbf{N}$$ be roots of the equation $$x^2-70 x+\lambda=0$$, where $$\frac{\lambda}{2}, \frac{\lambda}{3} \notin \mathbf{N}$$. If $$\lambda$$ assumes the minimum possible value, then $$\frac{(\sqrt{\alpha-1}+\sqrt{\beta-1})(\lambda+35)}{|\alpha-\beta|}$$ is equal to :</p>
[]
null
60
<p>$$\begin{aligned} & x^2-70 x+\lambda=0 \\ & \alpha+\beta=70 \\ & \alpha \beta=\lambda \\ & \therefore \alpha(70-\alpha)=\lambda \end{aligned}$$</p> <p>Since, 2 and 3 does not divide $$\lambda$$</p> <p>$$\therefore \alpha=5, \beta=65, \lambda=325$$</p> <p>By putting value of $$\alpha, \beta, \lambda$$ we get the required value $$60$$.</p>
integer
jee-main-2024-online-30th-january-morning-shift
luxwdj41
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta ; \alpha&gt;\beta$$, be the roots of the equation $$x^2-\sqrt{2} x-\sqrt{3}=0$$. Let $$\mathrm{P}_n=\alpha^n-\beta^n, n \in \mathrm{N}$$. Then $$(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$$ is equal to</p>
[{"identifier": "A", "content": "$$10 \\sqrt{3} \\mathrm{P}_9$$\n"}, {"identifier": "B", "content": "$$11 \\sqrt{3} \\mathrm{P}_9$$\n"}, {"identifier": "C", "content": "$$11 \\sqrt{2} \\mathrm{P}_9$$\n"}, {"identifier": "D", "content": "$$10 \\sqrt{2} \\mathrm{P}_9$$"}]
["A"]
null
<p>$$\begin{aligned} & x^2-\sqrt{2} x-\sqrt{3}=0 \\ & P_n=\alpha^n-\beta^n \end{aligned}$$</p> <p>$$\alpha$$ and $$\beta$$ are the roots of the equation</p> <p>Using Newton's theorem</p> <p>$$\begin{aligned} & P_{n+2}-\sqrt{2} P_{n+1}-\sqrt{3} P_n=0 \\ & \text { Put } n=10 \\ & P_{12}-\sqrt{2} P_{11}-\sqrt{3} P_{10}=0 \end{aligned}$$</p> <p>$$P_{12}=\sqrt{2} P_{11}+\sqrt{3} P_{10}$$</p> <p>Put $$n=9$$</p> <p>$$\begin{aligned} & P_{11}-\sqrt{2} P_{10}-\sqrt{3} P_9=0 \\ & P_{11}=\sqrt{2} P_{10}+\sqrt{3} P_9 \\ & (11 \sqrt{3}-10 \sqrt{2}) P_{10}+(11 \sqrt{2}+10) P_{11}-11 P_{12} \end{aligned}$$</p> <p>Put the value of $$P_{12}$$ & $$P_{12}$$ in above equation.</p> <p>$$\begin{aligned} = & (11 \sqrt{3}-10 \sqrt{2}) P_{10}+(11 \sqrt{2}+10)\left(\sqrt{2} P_{10}+\sqrt{3} P_9\right)-11\left(\sqrt{2} P_{11}+\sqrt{3} P_{10}\right) \\ = & 11 \sqrt{3} P_{10}-10 \sqrt{2} P_{10}+22 P_{10}+10 \sqrt{2} P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-11 \sqrt{2} P_{11}-11 \sqrt{3} P_{10} \\ = & 22 P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-11 \sqrt{2}\left(\sqrt{2} P_{10}+\sqrt{3} P_9\right) \\ = & 22 P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-22 P_{10}-11 \sqrt{6} P_9 \\ = & 10 \sqrt{3} P_9 \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
luy6z57u
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:</p>
[{"identifier": "A", "content": "$$x^2-180 x+9506=0$$\n"}, {"identifier": "B", "content": "$$x^2-195 x+9506=0$$\n"}, {"identifier": "C", "content": "$$x^2-190 x+9466=0$$\n"}, {"identifier": "D", "content": "$$x^2-195 x+9466=0$$"}]
["B"]
null
<p>$$\begin{aligned} & x^2+2 \sqrt{2 x}-1=0 \\ & \alpha+\beta=-2 \sqrt{2} \text { and } \alpha \beta=-1 \\ & \alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta \\ & =8+2=10 \\ & \alpha^4+\beta^4=\left(\alpha^2+\beta^2\right)^2-2(\alpha \beta)^2 \\ & =100-2=98 \\ & \alpha^6+\beta^6=\left(\alpha^2+\beta^2\right)^3-3 \alpha^2 \beta^2\left(\alpha^2+\beta^2\right) \\ & =1000-3(10) \\ & =970 \\ & \therefore \quad \frac{1}{10}\left(\alpha^6+\beta^6\right)=97 \end{aligned}$$</p> <p>Equation whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}\left(\alpha^6+\beta^6\right)$$ is</p> <p>$$\begin{aligned} & x^2-(98+97) x+98 \times 97=0 \\ & x^2-195 x+9506=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-morning-shift
lv0vxd39
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>If 2 and 6 are the roots of the equation $$a x^2+b x+1=0$$, then the quadratic equation, whose roots are $$\frac{1}{2 a+b}$$ and $$\frac{1}{6 a+b}$$, is :</p>
[{"identifier": "A", "content": "$$x^2+8 x+12=0$$\n"}, {"identifier": "B", "content": "$$2 x^2+11 x+12=0$$\n"}, {"identifier": "C", "content": "$$4 x^2+14 x+12=0$$\n"}, {"identifier": "D", "content": "$$x^2+10 x+16=0$$"}]
["A"]
null
<p>Given that the roots of the quadratic equation are $2$ and $6$, we can use Vieta's formulas which relate the coefficients of the polynomial to sums and products of its roots.</p> <p>The given quadratic equation is:</p> <p>$$a x^2 + b x + 1 = 0$$</p> <p>By Vieta's formulas, the sum of the roots is:</p> <p>$$2 + 6 = -\frac{b}{a}$$</p> <p>So:</p> <p>$$8 = -\frac{b}{a} \Rightarrow b = -8a$$</p> <p>And the product of the roots is:</p> <p>$$2 \times 6 = \frac{1}{a} \Rightarrow 12 = \frac{1}{a} \Rightarrow a = \frac{1}{12}$$</p> <p>Therefore, $b = -8a = -8 \left( \frac{1}{12} \right) = -\frac{2}{3}$.</p> <p>Given the roots of the new quadratic equation are:</p> <p>$$\frac{1}{2a+b}$$ and $$\frac{1}{6a+b}$$</p> <p>We know $a = \frac{1}{12}$ and $b = -\frac{2}{3}$, so:</p> <p>$$2a + b = 2 \left(\frac{1}{12}\right) - \frac{2}{3} = \frac{1}{6} - \frac{2}{3} = \frac{1 - 4}{6} = -\frac{3}{6} = -\frac{1}{2}$$</p> <p>and:</p> <p>$$6a + b = 6 \left(\frac{1}{12}\right) - \frac{2}{3} = \frac{1}{2} - \frac{2}{3} = \frac{3 - 4}{6} = -\frac{1}{6}$$</p> <p>Thus, the roots of the new quadratic equation are:</p> <p>$$\frac{1}{-\frac{1}{2}} = -2$$</p> <p>and:</p> <p>$$\frac{1}{-\frac{1}{6}} = -6$$</p> <p>The new quadratic equation with roots $-2$ and $-6$ can be formulated as:</p> <p>$$x^2 - (\text{sum of roots}) x + (\text{product of roots}) = 0$$</p> <p>The sum of the roots is:</p> <p>$$-2 + (-6) = -8$$</p> <p>The product of the roots is:</p> <p>$$(-2) \times (-6) = 12$$</p> <p>Thus, the quadratic equation becomes:</p> <p>$$x^2 - (-8)x + 12 = x^2 + 8x + 12 = 0$$</p> <p>Hence, the correct option is:</p> <p>Option A</p> <p>$$x^2 + 8 x + 12 = 0$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv5gst25
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>The sum of all the solutions of the equation $$(8)^{2 x}-16 \cdot(8)^x+48=0$$ is :</p>
[{"identifier": "A", "content": "$$1+\\log _8(6)$$\n"}, {"identifier": "B", "content": "$$1+\\log _6(8)$$\n"}, {"identifier": "C", "content": "$$\\log _8(6)$$\n"}, {"identifier": "D", "content": "$$\\log _8(4)$$"}]
["A"]
null
<p>First, let's start by substituting $$y = (8)^x$$ in the given equation. By substituting, the equation $$8^{2x} - 16 \cdot 8^x + 48 = 0$$ will be transformed into</p> <p>$$ y^2 - 16y + 48 = 0 $$</p> <p>Now, we have a quadratic equation in $$y$$. To find the roots of this quadratic equation, we can use the quadratic formula:</p> <p>$$ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$</p> <p>In this case, $$a = 1$$, $$b = -16$$, and $$c = 48$$. Substituting these values into the formula, we get:</p> <p>$$ y = \frac{16 \pm \sqrt{256 - 192}}{2} $$</p> <p>$$ y = \frac{16 \pm \sqrt{64}}{2} $$</p> <p>$$ y = \frac{16 \pm 8}{2} $$</p> <p>Solving for the two possible values of $$y$$, we have:</p> <p>$$ y = \frac{16 + 8}{2} = 12 $$</p> <p>$$ y = \frac{16 - 8}{2} = 4 $$</p> <p>Now, recall that we substituted $$y = (8)^x$$. So, we need to solve for $$x$$ when $$y = 12$$ and $$y = 4$$:</p> <p>$$ 8^x = 12 $$</p> <p>$$ x = \log_8(12) $$</p> <p>$$ 8^x = 4 $$</p> <p>$$ x = \log_8(4) $$</p> <p>Therefore, the solutions for $$x$$ are $$\log_8(12)$$ and $$\log_8(4)$$. The sum of these solutions is:</p> <p>$$ \log_8(12) + \log_8(4) $$</p> <p>Using the logarithmic property that $$\log_b(m) + \log_b(n) = \log_b(m \cdot n)$$, we get:</p> <p>$$ \log_8(12) + \log_8(4) = \log_8(12 \cdot 4) $$</p> <p>$$ = \log_8(48) $$</p> <p>Now, we note that:</p> <p>$$ 48 = 8 \cdot 6 $$</p> <p>Thus,</p> <p>$$ \log_8(48) = \log_8(8 \cdot 6) = \log_8(8) + \log_8(6) = 1 + \log_8(6) $$</p> <p>Therefore, the sum of all the solutions of the equation is:</p> <p>Option A $$1 + \log_8(6)$$.</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lvb2952b
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta$$ be roots of $$x^2+\sqrt{2} x-8=0$$. If $$\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$$, then $$\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}$$ is equal to ________.</p>
[]
null
4
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwapcytl/545aa1a6-edf5-4e15-9137-baf3d0f62d19/8d6a2390-144f-11ef-860c-d121cbcdd1fc/file-1lwapcytm.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwapcytl/545aa1a6-edf5-4e15-9137-baf3d0f62d19/8d6a2390-144f-11ef-860c-d121cbcdd1fc/file-1lwapcytm.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Evening Shift Mathematics - Quadratic Equation and Inequalities Question 3 English Explanation"></p> <p>$$\Rightarrow \alpha^2+\sqrt{2} \alpha=8$$</p> <p>$$\begin{aligned} \alpha+\beta=\sqrt{2}, \quad \alpha \beta=-8, &amp; \Rightarrow \alpha+\sqrt{2}=\frac{8}{\alpha} \\ &amp; \Rightarrow \beta+\sqrt{2}=\frac{8}{\beta} \end{aligned}$$</p> <p>$$\begin{aligned} &amp; \frac{U_{10}+\sqrt{2} U_9}{2 U_8}=\frac{\alpha^{10}+\beta^{10}+\sqrt{2} \alpha^9+\sqrt{2} \beta^9}{2 \alpha^8+2 \beta^8} \\ &amp; =\frac{\alpha^9(\alpha+\sqrt{2})+\beta^9(\beta+\sqrt{2})}{2\left(\alpha^8+\beta^8\right)} \\ &amp; =\frac{\alpha^9 \cdot\left(\frac{8}{\alpha}\right)+\beta^9\left(\frac{8}{\beta}\right)}{2\left(\alpha^8+\beta^8\right)}=\frac{8}{2}=4 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-evening-shift
lvc57aw6
maths
quadratic-equation-and-inequalities
relation-between-roots-and-coefficients
<p>Let $$\alpha, \beta$$ be the distinct roots of the equation $$x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$$ and $$a_n=\alpha^n+\beta^n$$. Then the minimum value of $$\frac{a_{2023}+a_{2025}}{a_{2024}}$$ is</p>
[{"identifier": "A", "content": "$$-1 / 2$$\n"}, {"identifier": "B", "content": "$$-1 / 4$$\n"}, {"identifier": "C", "content": "$$1 / 4$$\n"}, {"identifier": "D", "content": "$$1 / 2$$"}]
["B"]
null
<p>$$\begin{aligned} & x^2-\left(t^2-5 t+6\right) x+1=0 \\ & \therefore a_{2025}-\left(t^2-5 t+6\right) a_{2024}+a_{2023}=0 \\ & \Rightarrow \frac{a_{2025}+a_{2023}}{a_{2024}}=t^2-5 t+6 \\ & =\left(t+\frac{5}{2}\right)^2+\left(\frac{-1}{4}\right) \\ & \text { Minimum value }=\frac{-1}{4} \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-morning-shift
YBEbaVOfFKiWxDON
maths
sequences-and-series
am,-gm-and-hm
If m is the A.M. of two distinct real numbers l and n $$(l,n &gt; 1)$$ and $${G_1},{G_2}$$ and $${G_3}$$ are three geometric means between $$l$$ and n, then $$G_1^4\, + 2G_2^4\, + G_3^4$$ equals:
[{"identifier": "A", "content": "$$4\\,lm{n^2}$$ "}, {"identifier": "B", "content": "$$4\\,{l^2}{m^2}{n^2}$$ "}, {"identifier": "C", "content": "$$4\\,{l^2}m\\,n$$ "}, {"identifier": "D", "content": "$$4\\,l\\,{m^2}n$$ "}]
["D"]
null
$$m = {{l + n} \over 2}$$ and common ratio of <br><br>$$G.P.$$ $$ = r = {\left( {{n \over l}} \right)^{{1 \over 4}}}$$ <br><br>$$\therefore$$ $${G_1} = {l^{3/4}}\,{n^{1/4}},$$ $${G_2} = {l^{1/2}}{n^{1/2}},\,$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,{G_3} = {l^{1/4}}{n^{3/4}}$$ <br><br>$$G_1^4 + 2G_2^4 + G_3^4$$ <br><br>$$ = {l^3}n + 2{l^2}{n^2} + {\ln ^3}$$ <br><br>$$ = \ln {\left( {1 + n} \right)^2}$$ <br><br>$$ = \ln \times 2{m^2}$$ <br><br>$$ = 4l{m^2}n$$
mcq
jee-main-2015-offline
UvIf51uHbb6DvoeXkhC7K
maths
sequences-and-series
am,-gm-and-hm
Let x, y, z be positive real numbers such that x + y + z = 12 and x<sup>3</sup>y<sup>4</sup>z<sup>5</sup> = (0.1) (600)<sup>3</sup>. Then x<sup>3</sup> + y<sup>3</sup> + z<sup>3</sup>is equal to :
[{"identifier": "A", "content": "270"}, {"identifier": "B", "content": "258"}, {"identifier": "C", "content": "342"}, {"identifier": "D", "content": "216"}]
["D"]
null
As we know <br><br>AM&nbsp;&nbsp;$$ \ge $$&nbsp;&nbsp;GM <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$${{3\left( {{x \over 3}} \right) + 4\left( {{y \over 4}} \right) + 5\left( {{z \over 5}} \right)} \over {12}}$$&nbsp;&nbsp;$$ \ge $$&nbsp;&nbsp;$${\left[ {{{\left( {{x \over 3}} \right)}^3}{{\left( {{y \over 4}} \right)}^4}{{\left( {{z \over 5}} \right)}^5}} \right]^{{1 \over {12}}}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;1&nbsp;&nbsp;$$ \ge $$&nbsp;&nbsp;$${{{x^3}{y^4}{z^5}} \over {{3^3}{4^4}{5^5}}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;x<sup>3</sup>&nbsp;y<sup>4</sup>&nbsp;z<sup>5</sup>&nbsp;&nbsp;$$ \le $$&nbsp;&nbsp;3<sup>3</sup>&nbsp;.&nbsp;4<sup>4</sup>&nbsp;.&nbsp;5<sup>5</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;x<sup>3</sup> y<sup>4</sup> z<sup>5</sup>&nbsp;&nbsp;$$ \le $$&nbsp;&nbsp;(0.1)(600)<sup>3</sup> <br><br>but given that, <br><br>x<sup>3</sup> y<sup>4</sup> z<sup>5</sup> = (0.1) (600)<sup>3</sup> <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;AM &nbsp;$$=$$&nbsp;&nbsp;GM <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;All the number are equal. <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${x \over 3} = {y \over 4} = {z \over 5} = k$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x $$=$$ 3k, y = 4k, z = 5k <br><br>given that, <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x + y + z $$=$$ 12 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;3k + 4k + 5k $$=$$ 12 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;12k $$=$$ 12 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;k = 1 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;x&nbsp;$$=$$&nbsp;&nbsp; 3, &nbsp;y $$=$$ 4, &nbsp;&nbsp;z $$=$$ 5 <br><br>So, x<sup>3</sup> + y<sup>3</sup> + z<sup>3</sup> <br><br>$$=$$ 3<sup>3</sup> + 4<sup>3</sup> + 5<sup>3</sup> <br><br>$$=$$ 216
mcq
jee-main-2016-online-9th-april-morning-slot
DhoQKCuInbj9DsKERyHLW
maths
sequences-and-series
am,-gm-and-hm
If   A &gt; 0, B &gt; 0   and    A + B = $${\pi \over 6}$$, <br/><br/>then the minimum value of tanA + tanB is :
[{"identifier": "A", "content": "$$\\sqrt 3 - \\sqrt 2 $$ "}, {"identifier": "B", "content": "$$2 - \\sqrt 3 $$"}, {"identifier": "C", "content": "$$4 - 2\\sqrt 3 $$"}, {"identifier": "D", "content": "$${2 \\over {\\sqrt 3 }}$$ "}]
["C"]
null
Given, <br><br>A + B = $${\pi \over 6}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;tan(A + B) = tan$$\left( {{\pi \over 6}} \right)$$ = $${1 \over {\sqrt 3 }}$$ <br><br>We know, <br><br>tan(A + B) = $${{\tan A + \tan B} \over {1 - \tan A\tan B}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${1 \over {\sqrt 3 }}$$ = $${y \over {1 - \tan A\tan B}}$$ <br><br>where y = tan A + tan B <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; tanA tanB = 1 $$-$$ $$\sqrt 3 $$ y <br><br>Also AM &nbsp;&nbsp;$$ \ge $$&nbsp;&nbsp;GM <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; $${{\tan A + \tan B} \over 2} \ge \sqrt {\tan A\tan B} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;y&nbsp;$$ \ge $$&nbsp;2$$\sqrt {1 - \sqrt 3 y} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;y<sup>2</sup> $$ \ge $$ 4 $$-$$ 4$${\sqrt 3 y}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; y<sup>2</sup> + 4$${\sqrt 3 y}$$ $$-$$ 4 $$ \ge $$ 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;y &nbsp;$$ \le $$&nbsp;$$-$$ 2$$\sqrt 3 $$ $$-$$ 4 &nbsp;&nbsp; <br><br>or&nbsp;&nbsp; y $$ \ge $$ $$-$$ 2$$\sqrt 3 $$ + 4 <br><br>(y $$ \le $$ $$-$$ 2$$\sqrt 3 $$ $$-$$ 4 is not possible as tan B &gt; 0)
mcq
jee-main-2016-online-10th-april-morning-slot
wuYGlr4ZcEF2WUJlcQDCt
maths
sequences-and-series
am,-gm-and-hm
If the arithmetic mean of two numbers a and b, a &gt; b &gt; 0, is five times their geometric mean, then $${{a + b} \over {a - b}}$$ is equal to :
[{"identifier": "A", "content": "$${{\\sqrt 6 } \\over 2}$$ "}, {"identifier": "B", "content": "$${{3\\sqrt 2 } \\over 4}$$"}, {"identifier": "C", "content": "$${{7\\sqrt 3 } \\over {12}}$$"}, {"identifier": "D", "content": "$${{5\\sqrt 6 } \\over {12}}$$ "}]
["D"]
null
A.T.Q., <br><br>A.M. = 5G.M. <br><br>$${{a + b} \over 2} = 5\sqrt {ab} $$ <br><br>$${{a + b} \over {\sqrt {ab} }}$$ $$ = 10$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${a \over b} = {{10 + \sqrt {96} } \over {10 - \sqrt {96} }} = {{10 + 4\sqrt 6 } \over {10 - 4\sqrt 6 }}$$ <br><br>Use componendo and Dividendo <br><br>$${{a + b} \over {a - b}} = {{20} \over {8\sqrt 6 }} = {5 \over {2\sqrt 6 }} = {{5\sqrt 6 } \over {12}}$$
mcq
jee-main-2017-online-8th-april-morning-slot
GNsf4xF6cvZXlPv0FTnFO
maths
sequences-and-series
am,-gm-and-hm
Let x, y be positive real numbers and m, n positive integers. The maximum value of the expression $${{{x^m}{y^n}} \over {\left( {1 + {x^{2m}}} \right)\left( {1 + {y^{2n}}} \right)}}$$ is :
[{"identifier": "A", "content": "$${1 \\over 2}$$"}, {"identifier": "B", "content": "$${1 \\over 4}$$"}, {"identifier": "C", "content": "$${{m + n} \\over {6mn}}$$"}, {"identifier": "D", "content": "1"}]
["B"]
null
$${{{x^m}{y^n}} \over {\left( {1 + {x^{2m}}} \right)\left( {1 + {y^{2n}}} \right)}} = {1 \over {\left( {{x^m} + {1 \over {{x^m}}}} \right)\left( {{y^n} + {1 \over {{y^n}}}} \right)}} \le {1 \over 4}$$ <br><br>using AM $$ \ge $$ GM
mcq
jee-main-2019-online-11th-january-evening-slot
TQWG3sOpx0jCpXORb97nm
maths
sequences-and-series
am,-gm-and-hm
If sin<sup>4</sup>$$\alpha $$ + 4 cos<sup>4</sup>$$\beta $$ + 2 = 4$$\sqrt 2 $$ sin $$\alpha $$ cos $$\beta $$; $$\alpha $$, $$\beta $$ $$ \in $$ [0, $$\pi $$], <br/>then cos($$\alpha $$ + $$\beta $$) $$-$$ cos($$\alpha $$ $$-$$ $$\beta $$) is equal to :
[{"identifier": "A", "content": "$$ - \\sqrt 2 $$"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "$$-$$ 1"}, {"identifier": "D", "content": "$$\\sqrt 2 $$ "}]
["A"]
null
A.M. $$ \ge $$ G.M. <br><br>$${{{{\sin }^4}\alpha + 4{{\cos }^4}\beta + 1 + 1} \over 4} \ge {\left( {{{\sin }^4}\alpha .4{{\cos }^4}\beta .1.1} \right)^{{1 \over 4}}}$$ <br><br>sin<sup>4</sup><sup></sup>$$\alpha $$ + 4 cos<sup>2</sup>$$\beta $$ + 2 $$ \ge $$ 4 $$\sqrt 2 $$ sin $$\alpha $$ cos $$\beta $$ <br><br>Given that sin<sup>4</sup>$$\alpha $$ + 4cos<sup>4</sup>$$\beta $$ + 2 = 4$$\sqrt 2 $$ sin$$\alpha $$ cos$$\beta $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;A.M.=G.M. $$ \Rightarrow $$ sin<sup>4</sup><sup></sup><sup></sup>$$\alpha $$ = 1 = 4 cos<sup>4</sup> $$\beta $$ <br><br>sin $$\alpha $$ = 1, cos $$\beta $$ = $$ \pm $$ $${1 \over {\sqrt 2 }}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;sin$$\beta $$ = $${1 \over {\sqrt 2 }}$$ as $$\beta $$ $$ \in $$ [0, $$\pi $$] <br><br>cos($$\alpha $$ + $$\beta $$) $$-$$ cos ($$\alpha $$ $$-$$ $$\beta $$) = $$-$$ 2 sin $$\alpha $$ $$\beta $$ <br><br>= $$ - \sqrt 2 $$
mcq
jee-main-2019-online-12th-january-evening-slot
PS85QIo4S7Avsvyt1bjgy2xukf49qm01
maths
sequences-and-series
am,-gm-and-hm
If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4<sup>th</sup> A.M. is equal to 2<sup>nd</sup> G.M., then m is equal to _________ .
[]
null
39
Given m arithmetic means (A.Ms) present between 3 and 243<br><br>$$ \therefore $$ Common difference, $$d = {{b - a} \over {m + 1}} = {{240} \over {m + 1}}$$<br><br>$$ \therefore $$ 4th A.M. = a + 4d<br><br>= 3 + 4 $$ \times $$ $${{240} \over {m + 1}}$$<br><br>Also there are 3 G.M between 3 and 243<br><br>$$ \therefore $$ Common ratio (r) = $${\left( {{b \over a}} \right)^{{1 \over {n + 1}}}}$$<br><br>where n = number of G.M inserted.<br><br>$$ \therefore $$ r = $${\left( {{{243} \over 3}} \right)^{{1 \over {3 + 1}}}} = 3$$<br><br>Given, <br><br>4<sup>th</sup> A.M = 2<sup>nd</sup> G.M<br><br>$$ \Rightarrow 3 + 4 \times {{240} \over {m + 1}} = 3{(3)^2}$$<br><br>$$ \Rightarrow {{960} \over {m + 1}} = 24$$<br><br>$$ \Rightarrow m = 39$$
integer
jee-main-2020-online-3rd-september-evening-slot
kAHFV06ZK5AUlNQmT8jgy2xukfahb1zf
maths
sequences-and-series
am,-gm-and-hm
The minimum value of 2<sup>sinx</sup> + 2<sup>cosx</sup> is :
[{"identifier": "A", "content": "$${2^{-1 + \\sqrt 2 }}$$"}, {"identifier": "B", "content": "$${2^{1 - {1 \\over {\\sqrt 2 }}}}$$"}, {"identifier": "C", "content": "$${2^{1 - \\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${2^{-1 + {1 \\over {\\sqrt 2 }}}}$$"}]
["B"]
null
Using AM $$ \ge $$ GM<br><br>$$ \Rightarrow {{{2^{\sin \,x}} + {2^{\cos \,x}}} \over 2} \ge \sqrt {{2^{\sin x}}{{.2}^{\cos x}}} $$<br><br>$$ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \left( {{{\sin x + \cos x} \over 2}} \right)}}$$<br><br>$$ \Rightarrow \min ({2^{\sin x}} + {2^{\cos x}}) = {2^{1 - {1 \over {\sqrt 2 }}}}$$ <br><br>As we know range of sin x + cos x is : <br><br>$$ - \sqrt 2 $$ $$ \le $$ sin x + cos x $$ \le $$ $$\sqrt 2 $$. <br><br>So Minimum value of sin x + cos x = $$ - \sqrt 2 $$
mcq
jee-main-2020-online-4th-september-evening-slot
FLfk7pqpuOUDRypvuS1klt80kz2
maths
sequences-and-series
am,-gm-and-hm
The minimum value of $$f(x) = {a^{{a^x}}} + {a^{1 - {a^x}}}$$, where a, $$x \in R$$ and a &gt; 0, is equal to :
[{"identifier": "A", "content": "$$a + {1 \\over a}$$"}, {"identifier": "B", "content": "2a"}, {"identifier": "C", "content": "a + 1"}, {"identifier": "D", "content": "$$2\\sqrt a $$"}]
["D"]
null
We know, $$AM \ge GM$$<br><br>$$ \therefore $$ $${{{a^{a^x}} + {a \over {{a^{a^x}}}}} \over 2} \ge {\left( {{a^{a^x}}\,.\,{a \over {{a^{a^x}}}}} \right)^{1/2}} $$ <br><br>$$\Rightarrow {a^{a^x}} + {a^{1 - a^x}} \ge 2\sqrt a $$
mcq
jee-main-2021-online-25th-february-evening-slot
MYzMY4FrIZlEIa93ir1kluynti6
maths
sequences-and-series
am,-gm-and-hm
If the arithmetic mean and geometric mean of the p<sup>th</sup> and q<sup>th</sup> terms of the <br/>sequence $$-$$16, 8, $$-$$4, 2, ...... satisfy the equation<br/> 4x<sup>2</sup> $$-$$ 9x + 5 = 0, then p + q is equal to __________.
[]
null
10
Given, $$4{x^2} - 9x + 5 = 0$$<br><br>$$ \Rightarrow (x - 1)(4x - 5) = 0$$<br><br>$$ \Rightarrow $$ A. M. $$ = {5 \over 4}$$, G. M. = 1 (As A. M. $$ \ge $$ G. M)<br><br>Again, for the series<br><br>$$-$$16, 8, $$-$$4, 2 ..........<br><br>$${p^{th}}$$ term $${t_p} = - 16{\left( {{{ - 1} \over 2}} \right)^{p - 1}}$$<br><br>$${q^{th}}$$ term $${t_p} = 16{\left( {{{ - 1} \over 2}} \right)^{q - 1}}$$<br><br>Now, A. M. = $${{{t_p} + {t_q}} \over 2} = {5 \over 4}$$ &amp; G. M. = $$\sqrt {{t_p}{t_q}} = 1$$<br><br>$$ \Rightarrow {16^2}{\left( { - {1 \over 2}} \right)^{p + q - 2}} = 1$$<br><br>$$ \Rightarrow {( - 2)^8} = {( - 2)^{(p + q - 2)}}$$<br><br>$$ \Rightarrow p + q = 10$$
integer
jee-main-2021-online-26th-february-evening-slot
1l55h7hrj
maths
sequences-and-series
am,-gm-and-hm
<p>If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1 : 7 and a + n = 33, then the value of n is :</p>
[{"identifier": "A", "content": "21"}, {"identifier": "B", "content": "22"}, {"identifier": "C", "content": "23"}, {"identifier": "D", "content": "24"}]
["C"]
null
<p>a, A<sub>1</sub>, A<sub>2</sub> ........... A<sub>n</sub>, 100</p> <p>Let d be the common difference of above A.P. then</p> <p>$${{a + d} \over {100 - d}} = {1 \over 7}$$</p> <p>$$ \Rightarrow 7a + 8d = 100$$ ...... (i)</p> <p>and $$a + n = 33$$ ..... (ii)</p> <p>and $$100 = a + (n + 1)d$$</p> <p>$$ \Rightarrow 100 = a + (34 - a){{(100 - 7a)} \over 8}$$</p> <p>$$ \Rightarrow 800 = 8a + 7{a^2} - 338a + 3400$$</p> <p>$$ \Rightarrow 7{a^2} - 330a + 2600 = 0$$</p> <p>$$ \Rightarrow a = 10,\,{{260} \over 7},$$ but $$a \ne {{260} \over 7}$$</p> <p>$$\therefore$$ $$n = 23$$</p>
mcq
jee-main-2022-online-28th-june-evening-shift
1l5b7vzyn
maths
sequences-and-series
am,-gm-and-hm
<p>Let x, y &gt; 0. If x<sup>3</sup>y<sup>2</sup> = 2<sup>15</sup>, then the least value of 3x + 2y is</p>
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "32"}, {"identifier": "C", "content": "36"}, {"identifier": "D", "content": "40"}]
["D"]
null
<p>x, y > 0 and x<sup>3</sup>y<sup>2</sup> = 2<sup>15</sup></p> <p>Now, 3x + 2y = (x + x + x) + (y + y)</p> <p>So, by A.M $$\ge$$ G.M inequality</p> <p>$${{3x + 2y} \over 5} \ge \root 5 \of {{x^3}\,.\,{y^2}} $$</p> <p>$$\therefore$$ $$3x + 2y \ge 5\root 5 \of {{2^{15}}} \ge 40$$</p> <p>$$\therefore$$ Least value of $$3x + 4y = 40$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l6gglr6d
maths
sequences-and-series
am,-gm-and-hm
<p>Consider two G.Ps. 2, 2<sup>2</sup>, 2<sup>3</sup>, ..... and 4, 4<sup>2</sup>, 4<sup>3</sup>, .... of 60 and n terms respectively. If the geometric mean of all the 60 + n terms is $${(2)^{{{225} \over 8}}}$$, then $$\sum\limits_{k = 1}^n {k(n - k)} $$ is equal to :</p>
[{"identifier": "A", "content": "560"}, {"identifier": "B", "content": "1540"}, {"identifier": "C", "content": "1330"}, {"identifier": "D", "content": "2600"}]
["C"]
null
<p>Given G.P's 2, 2<sup>2</sup>, 2<sup>3</sup>, .... 60 terms</p> <p>4, 4<sup>2</sup>, .... n terms</p> <p>Now, G.M $$ = {2^{{{225} \over 8}}}$$</p> <p>$${\left( {{{2.2}^2}...\,{{4.4}^2}...} \right)^{{1 \over {60 + n}}}} = {2^{{{225} \over 8}}}$$</p> <p>$$\left( {{2^{{{{n^2} + n + 1830} \over {60 + n}}}}} \right) = {2^{{{225} \over 8}}}$$</p> <p>$$ \Rightarrow {{{n^2} + n + 1830} \over {60 + n}} = {{225} \over 8}$$</p> <p>$$ \Rightarrow 8{n^2} - 217n + 1140 = 0$$</p> <p>$$n = {{57} \over 8},\,20,\,$$ so $$n = 20$$</p> <p>$$\therefore$$ $$\sum\limits_{k = 1}^{20} {k(20 - k) = 20 \times {{20 \times 21} \over 2} - {{20 \times 21 \times 41} \over 6}} $$</p> <p>$$ = {{20 \times 21} \over 2}\left[ {20 - {{41} \over 3}} \right] = 1330$$</p>
mcq
jee-main-2022-online-26th-july-morning-shift
lgnybkbk
maths
sequences-and-series
am,-gm-and-hm
Let $A_{1}$ and $A_{2}$ be two arithmetic means and $G_{1}, G_{2}, G_{3}$ be three geometric<br/><br/> means of two distinct positive numbers. Then $G_{1}^{4}+G_{2}^{4}+G_{3}^{4}+G_{1}^{2} G_{3}^{2}$ is equal to :
[{"identifier": "A", "content": "$\\left(A_{1}+A_{2}\\right)^{2} G_{1} G_{3}$"}, {"identifier": "B", "content": "$\\left(A_{1}+A_{2}\\right) G_{1}^{2} G_{3}^{2}$"}, {"identifier": "C", "content": "$2\\left(A_{1}+A_{2}\\right) G_{1}^{2} G_{3}^{2}$"}, {"identifier": "D", "content": "$2\\left(A_{1}+A_{2}\\right) G_{1} G_{3}$"}]
["A"]
null
<p>Now, we have the following relations :</p> <p>Arithmetic progression :</p> <p>Since $A_1$ and $A_2$ are arithmetic means between $a$ and $b$, we can say that $a$, $A_1$, $A_2$, and $b$ are in an arithmetic progression. This means there are three equal intervals between $a$ and $b$, which are represented by the common difference $d$.</p> <p>To find the value of $d$, we can use the following equation :</p> <p>$$ b - a = 3d $$</p> <p>From this equation, we can find the value of $d$ : </p> <p>$$ d = \frac{b - a}{3} $$</p> <p>$$ A_1 = a + \frac{b - a}{3} = \frac{2a + b}{3} $$</p> <p>$$ A_2 = \frac{a + 2b}{3} $$</p> <p>$$ A_1 + A_2 = a + b $$</p> <p>Geometric progression :</p> <p>$$ a, G_1, G_2, G_3, b \text{ are in G.P. } $$</p> <p>$$ r = \left(\frac{b}{a}\right)^{\frac{1}{4}} $$</p> <p>$$ G_1 = \left(a^3b\right)^{\frac{1}{4}} $$</p> <p>$$ G_2 = \left(a^2b^2\right)^{\frac{1}{4}} $$</p> <p>$$ G_3 = \left(ab^3\right)^{\frac{1}{4}} $$</p> <p>We have the expression :</p> <p>$$ G_1^4 + G_2^4 + G_3^4 + G_1^2 G_3^2 = a^3b + a^2b^2 + ab^3 + \left(a^3b\right)^{\frac{1}{2}}\cdot\left(ab^3\right)^{\frac{1}{2}} $$</p> <p>Simplify the expression :</p> <p>$$ a^3b + a^2b^2 + ab^3 + ab(a^2b^2) $$</p> <p>Factor out $ab$:</p> <p>$$ ab(a^2 + ab + b^2 + a^2b^2) $$</p> <p>Combine the terms :</p> <p>$$ ab(a^2 + 2ab + b^2) $$</p> <p>Rewrite the expression using the sum of squares :</p> <p>$$ ab(a + b)^2 $$</p> <p>Now, recall that $A_1 + A_2 = a + b$. Substitute this into the expression :</p> <p>$$ G_1 \cdot G_3 \cdot (A_1 + A_2)^2 $$</p>
mcq
jee-main-2023-online-15th-april-morning-shift
1lgsuajhg
maths
sequences-and-series
am,-gm-and-hm
<p>Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is</p>
[{"identifier": "A", "content": "110"}, {"identifier": "B", "content": "108"}, {"identifier": "C", "content": "90"}, {"identifier": "D", "content": "55"}]
["C"]
null
Given that $$a+b+c+d=11$$ and the maximum value of $$a^5 b^3 c^2 d$$ is $$3750\beta$$, you assumed the numbers to be $$\frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{b}{3}, \frac{b}{3}, \frac{b}{3}, \frac{c}{2}, \frac{c}{2}, d$$. <br/><br/>Applying the AM-GM inequality: <br/><br/>$$\frac{\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{b}{3}+\frac{b}{3}+\frac{b}{3}+\frac{c}{2}+\frac{c}{2}+d}{11} \geq\left(\frac{\left(a^5 b^3 c^2 d\right)}{5^5 3^3 2^2 1}\right)^{\frac{1}{11}}$$ <br/><br/>Since $$a+b+c+d=11$$, we have: <br/><br/>$$1 \geq\left(\frac{\left(a^5 b^3 c^2 d\right)}{5^5 3^3 2^2 1}\right)^{\frac{1}{11}}$$ <br/><br/>Now, raising both sides to the power of 11: <br/><br/>$$1^{11} \geq \frac{a^5 b^3 c^2 d}{5^5 3^3 2^2 1}$$ <br/><br/>From the given information, we know that $$a^5 b^3 c^2 d \geq 3750\beta$$: <br/><br/>$$5^5 3^3 2^2 \geq 3750\beta$$ <br/><br/>Now, we can solve for $$\beta$$: <br/><br/>$$\beta \leq \frac{1}{3750} \cdot 5^5 3^3 2^2$$ <br/><br/>Since we are looking for the maximum value of $$\beta$$, we take the equality case: <br/><br/>$$\beta = \frac{1}{3750} \cdot 5^5 3^3 2^2$$ <br/><br/>Calculating the value, we find that: <br/><br/>$$\beta = 90$$ <br/><br/>So, the value of $$\beta$$ is 90.
mcq
jee-main-2023-online-11th-april-evening-shift
lsappvw8
maths
sequences-and-series
am,-gm-and-hm
Let $3, a, b, c$ be in A.P. and $3, a-1, b+1, c+9$ be in G.P. Then, the arithmetic mean of $a, b$ and $c$ is :
[{"identifier": "A", "content": "-4"}, {"identifier": "B", "content": "-1"}, {"identifier": "C", "content": "13"}, {"identifier": "D", "content": "11"}]
["D"]
null
<p>Since $3, a, b, c$ are in arithmetic progression (A.P.), the common difference can be calculated using the term $a$ (the second term) as follows:</p> <p>$$ d = a - 3 $$</p> <p>The nth term of an A.P. is given by the formula:</p> <p>$$ T_n = a + (n-1)d $$</p> <p>So, using this formula, we can express $b$ and $c$ in terms of $a$ and $d$:</p> <p>$$ b = a + d $$</p> <p>$$ c = a + 2d $$</p> <p>Substituting $d = a - 3$ into these expressions:</p> <p>$$ b = a + (a - 3) $$</p> <p>$$ c = a + 2(a - 3) $$</p> <p>Therefore:</p> <p>$$ b = 2a - 3 $$</p> <p>$$ c = 3a - 6 $$</p> <p>Now, let's consider that $3, a-1, b+1, c+9$ are in geometric progression (G.P.). For terms in a G.P., the ratio (common ratio, r) between consecutive terms is constant. So:</p> <p>$$ \frac{a - 1}{3} = \frac{b + 1}{a - 1} = \frac{c + 9}{b + 1} $$</p> <p>Now, we will establish the relation between the terms using the property of G.P.:</p> <p>$$ \frac{a - 1}{3} = \frac{b + 1}{a - 1} $$</p> <p>$$ (a - 1)^2 = 3(b + 1) $$</p> <p>$$ a^2 - 2a + 1 = 3b + 3 $$</p> <p>Substituting $b = 2a - 3$, we get:</p> <p>$$ a^2 - 2a + 1 = 3(2a - 3) + 3 $$</p> <p>$$ a^2 - 2a + 1 = 6a - 9 + 3 $$</p> <p>$$ a^2 - 8a + 7 = 0 $$</p> <p>Solving this quadratic equation:</p> <p>$$ (a - 7)(a - 1) = 0 $$</p> <p>Hence, $a = 7$ or $a = 1$. However, if $a = 1$, the terms $3, a-1, b+1, c+9$ cannot form a G.P. as it would involve division by zero. Therefore, $a = 7$. We use this value to find $b$ and $c$:</p> <p>$$ b = 2a - 3 = 2(7) - 3 = 14 - 3 = 11 $$</p> <p>$$ c = 3a - 6 = 3(7) - 6 = 21 - 6 = 15 $$</p> <p>Now we can find the arithmetic mean ($A$) of $a$, $b$, and $c$:</p> <p>$$ A = \frac{a + b + c}{3} $$</p> <p>$$ A = \frac{7 + 11 + 15}{3} $$</p> <p>$$ A = \frac{33}{3} $$</p> <p>$$ A = 11 $$</p> <p>Hence, the arithmetic mean of $a$, $b$, and $c$ is $11$, which corresponds to Option D.</p>
mcq
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lse508pa
maths
sequences-and-series
am,-gm-and-hm
<p>For $$0 &lt; c &lt; b &lt; a$$, let $$(a+b-2 c) x^2+(b+c-2 a) x+(c+a-2 b)=0$$ and $$\alpha \neq 1$$ be one of its root. Then, among the two statements</p> <p>(I) If $$\alpha \in(-1,0)$$, then $$b$$ cannot be the geometric mean of $a$ and $$c$$</p> <p>(II) If $$\alpha \in(0,1)$$, then $$b$$ may be the geometric mean of $$a$$ and $$c$$</p>
[{"identifier": "A", "content": "only (II) is true\n"}, {"identifier": "B", "content": "Both (I) and (II) are true\n"}, {"identifier": "C", "content": "only (I) is true\n"}, {"identifier": "D", "content": "Neither (I) nor (II) is true"}]
["B"]
null
<p>$$\begin{aligned} & f(x)=(a+b-2 c) x^2+(b+c-2 a) x+(c+a-2 b) \\ & f(x)=a+b-2 c+b+c-2 a+c+a-2 b=0 \\ & f(1)=0 \\ & \therefore \alpha \cdot 1=\frac{c+a-2 b}{a+b-2 c} \\ & \alpha=\frac{c+a-2 b}{a+b-2 c} \\ & \text { If, }-1<\alpha<0 \\ & -1<\frac{c+a-2 b}{a+b-2 c}<0 \\ & b+c<2 a \text { and } b>\frac{a+c}{2} \end{aligned}$$</p> <p>therefore, b cannot be G.M. between a and c.</p> <p>$$\begin{aligned} & \text { If, } 0<\alpha<1 \\ & 0<\frac{c+a-2 b}{a+b-2 c}<1 \\ & b>c \text { and } b<\frac{a+c}{2} \end{aligned}$$</p> <p>Therefore, $$\mathrm{b}$$ may be the G.M. between $$\mathrm{a}$$ and $$\mathrm{c}$$.</p>
mcq
jee-main-2024-online-31st-january-morning-shift
lv2erzp0
maths
sequences-and-series
am,-gm-and-hm
<p>Let three real numbers $$a, b, c$$ be in arithmetic progression and $$a+1, b, c+3$$ be in geometric progression. If $$a&gt;10$$ and the arithmetic mean of $$a, b$$ and $$c$$ is 8, then the cube of the geometric mean of $$a, b$$ and $$c$$ is</p>
[{"identifier": "A", "content": "120"}, {"identifier": "B", "content": "316"}, {"identifier": "C", "content": "312"}, {"identifier": "D", "content": "128"}]
["A"]
null
<p>$$\begin{aligned} & 2 b=a+c \quad \text{.... (1)}\\ & b^2=(a+1)(c+3) \quad \text{.... (2)}\\ & \frac{a+b+c}{3}=8 \quad \text{.... (3)} \end{aligned}$$</p> <p>$$\begin{aligned} \Rightarrow & \frac{3 b}{3}=8 \\ & b=8 \\ \Rightarrow \quad & a c+3 a+c+3=64 \end{aligned}$$</p> <p>$$\begin{aligned} & 3 a+c+a c=61 \quad \text{... (4)}\\ & a+c=16 \\ & c=16-a \end{aligned}$$</p> <p>from equation (4)</p> <p>$$\begin{aligned} & 3 a+16-a+a(16-a)=61 \\ & \Rightarrow \quad(a-15)(a-3)=0 \\ & \quad a=15(a>10) \\ & \Rightarrow \quad a=15, b=8, c=1 \\ & \left((a \cdot b \cdot c)^{\frac{1}{3}}\right)^3=15 \times 8 \times 1=120 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
vlG8kHqWShZMhOkT
maths
sequences-and-series
arithmetic-progression-(a.p)
If 1, $${\log _9}\,\,({3^{1 - x}} + 2),\,\,{\log _3}\,\,({4.3^x} - 1)$$ are in A.P. then x equals
[{"identifier": "A", "content": "$${\\log _3}\\,4\\,\\,\\,$$ "}, {"identifier": "B", "content": "$$1 - \\,{\\log _3}\\,4\\,$$ "}, {"identifier": "C", "content": "$$1 - \\,{\\log _4}\\,3$$ "}, {"identifier": "D", "content": "$${\\log _4}\\,3$$ "}]
["B"]
null
$$1,\,{\log _9}\left( {{3^{1 - x}} + 2} \right),{\log _3}\left( {{{4.3}^x} - 1} \right)$$ are in $$A.P.$$ <br><br>$$ \Rightarrow 2{\log _9}\left( {{3^{1 - x}} + 2} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,$$ $$ = 1 + {\log _3}\left( {{{4.3}^x} - 1} \right)$$ <br><br>$$ \Rightarrow {\log _3}\left( {{3^{1 - x}} + 2} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,$$ $$ = {\log _3}3 + {\log _3}\left( {{{4.3}^x} - 1} \right)$$ <br><br>$$ \Rightarrow {\log _3}\left( {{3^{1 - x}} + 2} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,$$ $$ = {\log _3}\left[ {3\left( {{{4.3}^x} - 1} \right)} \right]$$ <br><br>$$ \Rightarrow {3^{1 - x}} + 2 = 3\,\left( {{{4.3}^x} - 1} \right)$$ <br><br>$$ \Rightarrow {3.3^{ - x}} + 2 = {12.3^x} - 3.$$ <br><br>Put $${3^x} = t$$ <br><br>$$ \Rightarrow {3 \over t} + 2 = 12t - 3$$ <br><br>or $$12{t^2} - 5t - 3 = 0;$$ <br><br>Hence $$t = - {1 \over 3},{3 \over 4} \Rightarrow {3^x} = {3 \over 4}$$ <br><br>(as $${3^x}\,\, \ne \,\, - ve$$ ) <br><br>$$ \Rightarrow x = {\log _3}\left( {{3 \over 4}} \right)$$ <br><br>or $$x = {\log _3}3 - {\log _3}4$$ <br><br>$$ \Rightarrow x = 1 - {\log _3}4$$
mcq
aieee-2002
wcwhgSoE2D9djeuf
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $${{T_r}}$$ be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, $$m \ne n,\,\,{T_m} = {1 \over n}\,\,and\,{T_n} = {1 \over m},\,$$ then a - d equals
[{"identifier": "A", "content": "$${1 \\over m} + {1 \\over n}$$ "}, {"identifier": "B", "content": "1 "}, {"identifier": "C", "content": "$${1 \\over {m\\,n}}$$ "}, {"identifier": "D", "content": "0 "}]
["D"]
null
$${T_m} = a + \left( {m - 1} \right)d = {1 \over n}...........\left( 1 \right)$$ <br><br>$${T_n} = a + \left( {n - 1} \right)d = {1 \over m}..........\left( 2 \right)$$ <br><br>$$\left( 1 \right) - \left( 2 \right) \Rightarrow \left( {m - n} \right)d$$ <br><br>$$ = {1 \over n} - {1 \over m} \Rightarrow d = {1 \over {mn}}$$ <br><br>From $$\left( 1 \right)$$ $$a = {1 \over {mn}} \Rightarrow a - d = 0$$
mcq
aieee-2004
Xm2Y0pl2ITjxWaRb
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $${a_1}$$, $${a_2}$$, $${a_3}$$.....be terms on A.P. If $${{{a_1} + {a_2} + .....{a_p}} \over {{a_1} + {a_2} + .....{a_q}}} = {{{p^2}} \over {{q^2}}},\,p \ne q,\,then\,{{{a_6}} \over {{a_{21}}}}\,$$ equals
[{"identifier": "A", "content": "$${{41} \\over {11}}$$ "}, {"identifier": "B", "content": "$${7 \\over 2}$$ "}, {"identifier": "C", "content": "$${2 \\over 7}$$ "}, {"identifier": "D", "content": "$${{11} \\over {41}}$$ "}]
["D"]
null
$${{{p \over 2}\left[ {2{a_1} + \left( {p - 1} \right)d} \right]} \over {{q \over 2}\left[ {2{a_1} + \left( {q - 1} \right)d} \right]}} = {{{p^2}} \over {{q^2}}}$$ <br><br>$$ \Rightarrow {{2{a_1} + \left( {p - 1} \right)d} \over {2{a_1} + \left( {p - 1} \right)d}} = {p \over q}$$ <br><br>$${{{a_1} + \left( {{{p - 1} \over 2}} \right)d} \over {{a_1} + \left( {{{q - 1} \over 2}} \right)d}} = {p \over q}$$ <br><br>For $${{{a_6}} \over {a{}_{21}}},\,\,p = 11,\,q = 41$$ <br><br>$$ \Rightarrow {{{a_6}} \over {a{}_{21}}} = {{11} \over {41}}$$
mcq
aieee-2006
AdurnkJA7QNZXqLq
maths
sequences-and-series
arithmetic-progression-(a.p)
A person is to count 4500 currency notes. Let $${a_n}$$ denote the number of notes he counts in the $${n^{th}}$$ minute. If $${a_1}$$ = $${a_2}$$ = ....= $${a_{10}}$$= 150 and $${a_{10}}$$, $${a_{11}}$$,.... are in an AP with common difference - 2, then the time taken by him to count all notes is
[{"identifier": "A", "content": "34 minutes"}, {"identifier": "B", "content": "125 minutes"}, {"identifier": "C", "content": "135 minutes "}, {"identifier": "D", "content": "24 minutes "}]
["A"]
null
Till $$10$$<sup>th</sup> minute number of counted notes $$ = 1500$$ <br><br>$$3000 = {n \over 2}\left[ {2 \times 148 + \left( {n - 1} \right)\left( { - 2} \right)} \right]$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$ = n\left[ {148 - n + 1} \right]$$ <br><br>$$ \Rightarrow $$$${n^2} - 149n + 3000 = 0$$ <br><br>$$ \Rightarrow n = 125,24$$ <br><br>But $$n=125$$ is not possible <br><br>$$\therefore$$ total time $$ = 24 + 10 = 34$$ minutes.
mcq
aieee-2010
GjqY94gBeyZFKgR8
maths
sequences-and-series
arithmetic-progression-(a.p)
A man saves ₹ 200 in each of the first three months of his service. In each of the subsequent months his saving increases by ₹ 40 more than the saving of immediately previous month. His total saving from the start of service will be ₹ 11040 after
[{"identifier": "A", "content": "19 months"}, {"identifier": "B", "content": "20 months"}, {"identifier": "C", "content": "21 months "}, {"identifier": "D", "content": "18 months "}]
["C"]
null
Let required number of months $$=n$$ <br><br>$$\therefore$$ $$200 \times 3 + \left( {240 + 280 + 320 + ...} \right.$$ <br><br>$$\left. {\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {n - 3} \right)}^{th}}\,term} \right) = 11040$$ <br><br>$$ \Rightarrow {{n - 3} \over 2}\left[ {2 \times 240 + \left( {n - 4} \right) \times 40} \right]$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\, = 11040 - 600$$ <br><br>$$ \Rightarrow \left( {n - 3} \right)\left[ {240 + 20n - 80} \right] = 10440$$ <br><br>$$ \Rightarrow \left( {n - 3} \right)\left( {20n + 160} \right) = 10440$$ <br><br>$$ \Rightarrow \left( {n - 3} \right)\left( {n + 8} \right) = 522$$ <br><br>$$ \Rightarrow {n^2} + 5n - 546 = 0$$ <br><br>$$ \Rightarrow \left( {n + 26} \right)\left( {n - 21} \right) = 0$$ <br><br>$$\therefore$$ $$n = 21$$
mcq
aieee-2011
a2Ydbym8jWeSPitXaOUmI
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, . . . . . . . , a<sub>n</sub>, . . . . . be in A.P. <br/><br/>If a<sub>3</sub> + a<sub>7</sub> + a<sub>11</sub> + a<sub>15</sub> = 72, <br/><br/>then the sum of its first 17 terms is equal to :
[{"identifier": "A", "content": "306"}, {"identifier": "B", "content": "153"}, {"identifier": "C", "content": "612"}, {"identifier": "D", "content": "204"}]
["A"]
null
As&nbsp;&nbsp;a<sub>1</sub>&nbsp;a<sub>2</sub>&nbsp;. . . . . a<sub>n</sub> . . . . . are in A.P. <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;a<sub>3</sub> + a<sub>15</sub> = a<sub>7</sub> + a<sub>11</sub> = a<sub>1</sub> + a<sub>17</sub> <br><br>Given, <br><br>a<sub>3</sub> + a<sub>7</sub> + a<sub>11</sub> + a<sub>15</sub> + a<sub>15</sub> = 72 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(a<sub>3</sub> + a<sub>15</sub>) + (a<sub>7</sub> + a<sub>11</sub>) = 72 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;2(a<sub>1</sub> + a<sub>17</sub>) = 72 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(a<sub>1</sub> + a<sub>17</sub>) = 36 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Sum of first 17 terms <br><br>= $${{17} \over 2}$$ (a<sub>1</sub> + a<sub>17</sub>) <br><br>= $${{17} \over 2}$$ $$ \times $$ 36 <br><br>= 306
mcq
jee-main-2016-online-10th-april-morning-slot
9Gv7MfBVcVWqAbtn3Bhao
maths
sequences-and-series
arithmetic-progression-(a.p)
If three positive numbers a, b and c are in A.P. such that abc = 8, then the minimum possible value of b is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "4$${^{{1 \\over 3}}}$$"}, {"identifier": "C", "content": "4$${^{{2 \\over 3}}}$$"}, {"identifier": "D", "content": "4"}]
["A"]
null
a, b and c are in AP. <br><br>$$ \therefore $$ a + c = 2b <br><br>As, abc = 8 <br><br> $$ \Rightarrow $$ac$$\left( {{{a + c} \over 2}} \right)$$= 8 <br><br>$$ \Rightarrow $$ ac(a + c) = 16 = 4 $$ \times $$ 4 <br><br>$$ \therefore $$ ac = 4 and a + c = 4 <br><br>Then, <br><br>b = $$\left( {{{a + c} \over 2}} \right)$$ = $${4 \over 2}$$ = 2
mcq
jee-main-2017-online-9th-april-morning-slot
0pRQnw9nIKu0GgXK
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $${a_1}$$, $${a_2}$$, $${a_3}$$, ......... ,$${a_{49}}$$ be in A.P. such that <br/><br/>$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$. <br/><br/>$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
[{"identifier": "A", "content": "33"}, {"identifier": "B", "content": "66"}, {"identifier": "C", "content": "68"}, {"identifier": "D", "content": "34"}]
["D"]
null
a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> . . . a<sub>43</sub> are in AP <br><br>So, a<sub>2</sub> = a<sub>1</sub> + d <br><br>a<sub>3</sub> = a<sub>1</sub> + 2d <br><br>. <br><br>. <br><br>. <br><br>a<sub>49</sub> =a<sub>1</sub> + 48d <br><br>Now given, $${a_9} + {a_{43}} = 66$$ <br><br>$$ \Rightarrow \,\,\,\,$$ a<sub>1</sub> + 8d + a<sub>1</sub> + 42d = 66 <br><br>$$ \Rightarrow \,\,\,\,$$ 2a<sub>1</sub> + 50d = 66 <br><br>$$ \Rightarrow \,\,\,\,$$ a<sub>1</sub> + 25d = 33 . . . . . (1) <br><br>$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} $$ = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ a<sub>1</sub> + a<sub>5</sub> + a<sub>9</sub> + a<sub>13</sub> +. . . . . 13 items = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ a<sub>1</sub> + a<sub>1</sub> + 4d + a<sub>1</sub> + 8d + . . . . a<sub>1</sub> + 48d = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ 13a<sub>1</sub> + 4d +8d + 12d + . . . . . 48d = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ 13a<sub>1</sub> + 4 (1+ 2 + 3 + . . . + 12) d = 416 <br><br>$$ \Rightarrow \,\,\,\,13\,\,a{}_1 + \,4\,\, \times \,{{12 \times 13} \over 2} \times $$d = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ 13a<sub>1</sub> + 24 $$ \times$$ 13d = 416 <br><br>$$ \Rightarrow \,\,\,\,$$ a<sub>1</sub> + 24 d =32 . . . .(2) <br><br>Solving (1) and (2) we get, <br><br>d = 1 <br><br>and $${a_1} = 8$$ <br><br>$$\therefore\,\,\,$$ a<sub>1</sub> = 8 <br><br>a<sub>2</sub> = 8 + 1 = 9 <br><br>a<sub>3</sub> = 8 + 2 = 10 <br><br>. <br><br>. <br><br>. <br><br>a<sub>17</sub> = 8 + 16 = 24 <br><br>Now, $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2\,\, = \,\,140m$$ <br><br>$$ \Rightarrow \,\,\,\,$$ $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2 = 140\,m$$ <br><br>$$ \Rightarrow \,\,\,\,\,{8^2}\, + \,\,{9^2}\, + \,{10^2} + ......{(24)^2} = 140\,m$$ <br><br>We can write above series like this, <br><br> $$ \Rightarrow \,\,\,\,\,$$ (1<sup>2</sup> +2<sup>2</sup> + . . . . +24<sup>2</sup>) $$-$$ (1<sup>2</sup> + 2<sup>2</sup> + . . . . .+ 7<sup>2</sup>) = 140 m <br><br>$$ \Rightarrow {{24\left( {25} \right)\left( {49} \right)} \over 6} - {{7 \times 8 \times 15} \over 6} = 140\,m$$ <br><br>$$ \Rightarrow \,\,\,\,\,$$ 490 $$-$$ 140 = 140 m <br><br>$$ \Rightarrow \,\,\,\,\,$$4760 = 140 m <br><br>$$ \Rightarrow \,\,\,\,\,$$ m = 34
mcq
jee-main-2018-offline
woTqZt9YlsJk9DcM8ygkw
maths
sequences-and-series
arithmetic-progression-(a.p)
If x<sub>1</sub>, x<sub>2</sub>, . . ., x<sub>n</sub> and $${1 \over {{h_1}}}$$, $${1 \over {{h_2}}}$$, . . . , $${1 \over {{h_n}}}$$ are two A.P..s such that x<sub>3</sub> = h<sub>2</sub> = 8 and x<sub>8</sub> = h<sub>7</sub> = 20, then x<sub>5</sub>.h<sub>10</sub> equals :
[{"identifier": "A", "content": "2560"}, {"identifier": "B", "content": "2650"}, {"identifier": "C", "content": "3200"}, {"identifier": "D", "content": "1600"}]
["A"]
null
Assume d<sub>1</sub> is the common difference of A.P x<sub>1</sub>,x<sub>2</sub> ..... x<sub>n</sub><br><br> Given x<sub>3</sub> = 8 and x<sub>8</sub> = 20<br><br> $$ \therefore $$ x<sub>1</sub> + 2d<sub>1</sub> = 8 ..... <b>(i)</b><br> and x<sub>1</sub> + 7d<sub>1</sub> = 20 .....<b> (ii)</b><br><br> Solving <b>(i)</b> and <b>(ii)</b> we get x<sub>1</sub> = $$16 \over {15}$$ and d<sub>1</sub> = $$12 \over {5}$$<br><br> Now let $$1 \over d_2$$ is the common difference of A.P $$1 \over h_1$$, $$1 \over h_2$$ ..... $$1 \over h_n$$<br><br> Given that,<br> h<sub>2</sub> = 8 and h<sub>7</sub> = 20<br><br> $$ \therefore $$ $$1 \over h_2$$ = $$1 \over 8$$<br><br> $$ \Rightarrow $$ $$1 \over h_1$$ + $$1 \over d_2$$ = $$1 \over 8$$ .... <b>(iii)</b><br><br> and $$1 \over h_7$$ = $$1 \over 20$$<br><br> $$ \Rightarrow $$ $$1 \over h_1$$ + $$6 \over d_2$$ = $$1 \over 20$$ ... <b>(iv)</b><br><br> Solving <b>(iii)</b> and <b>(iv)</b> we get <br> $$1 \over h_1$$ = $$28 \over 200$$ and $$1 \over d_2$$ = $$- {3 \over 200}$$<br> So, x<sub>5</sub> = x<sub>1</sub> + 4d<sub>1</sub><br> = $$16 \over 5$$ + $$48 \over 5$$= $$64 \over 5$$ and <br>$$1 \over h_{10}$$ = $$1 \over h_1$$ + $$9 \over d_2$$ <br>= $$28 \over 200$$ - $$27 \over 200$$ = $$1\over 200$$<br><br> $$ \therefore $$ x<sub>5</sub> $$\times$$ h<sub>10</sub> = $${64 \over 5} \times 200$$ = 2560
mcq
jee-main-2018-online-15th-april-morning-slot
6FiYbaaf6MERQvv8ffrYX
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $${1 \over {{x_1}}},{1 \over {{x_2}}},...,{1 \over {{x_n}}}\,\,$$ (x<sub>i</sub> $$ \ne $$ 0 for i = 1, 2, ..., n) be in A.P. such that x<sub>1</sub>=4 and x<sub>21</sub> = 20. If n is the least positive integer for which $${x_n} &gt; 50,$$ then $$\sum\limits_{i = 1}^n {\left( {{1 \over {{x_i}}}} \right)} $$ is equal to :
[{"identifier": "A", "content": "$${1 \\over 8}$$"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "$${{13} \\over 8}$$"}, {"identifier": "D", "content": "$${{13} \\over 4}$$"}]
["D"]
null
$$ \because $$$$\,\,\,$$ $${1 \over {{x_1}}},{1 \over {{x_2}}},{1 \over {{x_3}}},.....,{1 \over {{x_n}}}$$ are in A.P. <br><br>x<sub>1</sub> = 4 and x<sub>21</sub> = 20 <br><br>Let 'd' be the common difference of this A.P. <br><br>$$\therefore\,\,\,$$ its 21<sup>st</sup> term = $${1 \over {{x_{21}}}} = {1 \over {{x_1}}} + \left[ {\left( {21 - 1} \right) \times d} \right]$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ d = $${1 \over {20}}$$ $$ \times $$ $$\left( {{1 \over {20}} - {1 \over 4}} \right)$$ $$ \Rightarrow $$ d = $$-$$ $${1 \over {100}}$$ <br><br>Also x<sub>n</sub> &gt; 50(given). <br><br>$$\therefore\,\,\,$$ $${1 \over {{x_n}}} = {1 \over {{x_1}}} + \left[ {\left( {n - 1} \right) \times d} \right]$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ x<sub>n</sub> = $${{{x_1}} \over {1 + \left( {n - 1} \right) \times d \times {x_1}}}$$ <br><br>$$\therefore\,\,\,$$ $${{{x_1}} \over {1 + \left( {n - 1} \right) \times d \times {x_1}}} &gt; 50$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ $${4 \over {1 + \left( {n - 1} \right) \times \left( { - {1 \over {100}}} \right) \times 4}} &gt; 50$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ 1 + (n $$-$$ 1) $$ \times $$ ($$-$$ $${1 \over {100}}$$) $$ \times $$ 4 &lt; $${4 \over {50}}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ $$-$$ $${1 \over {100}}$$(n $$-$$ 1) &lt; $$-$$ $${{23} \over {100}}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ n $$-$$ &gt; 23 &nbsp;&nbsp;$$ \Rightarrow $$ &nbsp;n &gt; 24 <br><br>Therefore$$\,\,\,$$ n = 25. <br><br>$$ \Rightarrow $$$$\,\,\,$$$$\sum\limits_{i = 1}^{25} {{1 \over {{x_i}}}} $$ = $${{25} \over 2}\left[ {\left( {2 \times {1 \over 4}} \right) + \left( {25 - 1} \right) \times \left( { - {1 \over {100}}} \right)} \right]$$ = $${{13} \over 4}$$
mcq
jee-main-2018-online-16th-april-morning-slot
d4VJ7d65BnAyLfgZ7j3rsa0w2w9jwy1gult
maths
sequences-and-series
arithmetic-progression-(a.p)
If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ............... a<sub>n</sub> are in A.P. and a<sub>1</sub> + a<sub>4</sub> + a<sub>7</sub> + ........... + a<sub>16</sub> = 114, then a<sub>1</sub> + a<sub>6</sub> + a<sub>11</sub> + a<sub>16</sub> is equal to :
[{"identifier": "A", "content": "38"}, {"identifier": "B", "content": "98"}, {"identifier": "C", "content": "76"}, {"identifier": "D", "content": "64"}]
["C"]
null
3(a<sub>1</sub> + a<sub>16</sub>) = 114<br><br> $${a_1} + {a_{16}} = 38$$<br><br> Now a<sub>1</sub> + a<sub>6</sub> + a<sub>11</sub> + a<sub>16</sub> = 2(a<sub>1</sub> + a<sub>16</sub>)<br><br> = 2 × 38 = 76
mcq
jee-main-2019-online-10th-april-morning-slot
kAbLnyXnMBfNTGXpwC3rsa0w2w9jxb4m3oi
maths
sequences-and-series
arithmetic-progression-(a.p)
If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..... are in A.P. such that a<sub>1</sub> + a<sub>7</sub> + a<sub>16</sub> = 40, then the sum of the first 15 terms of this A.P. is :
[{"identifier": "A", "content": "120"}, {"identifier": "B", "content": "200"}, {"identifier": "C", "content": "150"}, {"identifier": "D", "content": "280"}]
["B"]
null
a<sub>1</sub> + a<sub>7</sub> + a<sub>16</sub> = 40<br><br> $${a_1} + \left( {{a_1} + 6d} \right) + ({a_1} + 15d) = 40$$<br><br> $$ \Rightarrow 3{a_1} + 21d = 40$$<br><br> $$ \Rightarrow {a_1} + 7d = {{40} \over 3}$$<br><br> $$ \Rightarrow {a_1} + {a_2}....... + {a_{15}} = {{15} \over 2}[{a_1} + {a_{15}}]$$<br><br> $$ \Rightarrow {{15} \over 2}[{a_1} + {a_1} + 14d] \Rightarrow 15({a_1} + 7d) = 15 \times {{40} \over 3} = 200$$
mcq
jee-main-2019-online-12th-april-evening-slot
MAuiUu0xJFaSUmPVeZ3rsa0w2w9jx6g3geq
maths
sequences-and-series
arithmetic-progression-(a.p)
Let S<sub>n</sub> denote the sum of the first n terms of an A.P. If S<sub>4</sub> = 16 and S<sub>6</sub>= – 48, then S<sub>10</sub> is equal to :
[{"identifier": "A", "content": "- 320"}, {"identifier": "B", "content": "- 380"}, {"identifier": "C", "content": "- 460"}, {"identifier": "D", "content": "- 210"}]
["A"]
null
S<sub>4</sub> = $${4 \over 2}\left( {2a + 3d} \right) = 16$$<br><br> $$ \Rightarrow 2a + 3d = 8$$<br><br> S<sub>4</sub> = $${6 \over 2}\left( {2a + 5d} \right) = -48$$<br><br> $$ \Rightarrow 2a + 5d = -16$$<br><br> $$ \therefore $$ d = -12 and a = 22, Now S<sub>10</sub> = $${{10} \over 2}\left( {44 - 108} \right) = - 320$$
mcq
jee-main-2019-online-12th-april-morning-slot
mkSTbBbv8X594mlprT3rsa0w2w9jx2g4463
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,......be an A.P. with a<sub>6</sub> = 2. Then the common difference of this A.P., which maximises the product a<sub>1</sub>a<sub>4</sub>a<sub>5</sub>, is :
[{"identifier": "A", "content": "$${3 \\over 2}$$"}, {"identifier": "B", "content": "$${6 \\over 5}$$"}, {"identifier": "C", "content": "$${8 \\over 5}$$"}, {"identifier": "D", "content": "$${2 \\over 3}$$"}]
["C"]
null
first term = a, Common difference = d <br><br> $$ \therefore $$ a + 5d = 2<br><br> a<sub>1</sub>. a<sub>4</sub>. a<sub>5</sub> = a(a + 3d) (a + 4d)<br><br> f(d) = (2 – 5d) (2 – 2d) (2 – d)<br><br> $$ \Rightarrow $$ $$f'(d) = 0 \Rightarrow d = {2 \over 3},{8 \over 5}$$<br><br> $$ \Rightarrow $$ $$f''(d) &lt; 0\,at\,d = {8 \over 5}$$<br><br> $$\, \Rightarrow d = {8 \over 5}$$
mcq
jee-main-2019-online-10th-april-evening-slot
dYLoLXwINfh5DdmFfC18hoxe66ijvwubvnl
maths
sequences-and-series
arithmetic-progression-(a.p)
If the sum and product of the first three term in an A.P. are 33 and 1155, respectively, then a value of its 11<sup>th</sup> term is :-
[{"identifier": "A", "content": "\u201325"}, {"identifier": "B", "content": "\u201336"}, {"identifier": "C", "content": "25"}, {"identifier": "D", "content": "\u201335"}]
["A"]
null
Let the three terms are a - d, a, a + d <br><br>Given a - d + a + a + d = 33 <br><br>$$ \Rightarrow $$ 3a = 33 <br><br>$$ \Rightarrow $$ a = 11 <br><br>Also given, <br><br>(a - d)a(a + d) = 1155 <br><br>$$ \Rightarrow $$ (a<sup>2</sup> - d<sup>2</sup>)a = 1155 <br><br>$$ \Rightarrow $$ (11<sup>2</sup> - d<sup>2</sup>)11 = 1155 <br><br>$$ \Rightarrow $$ (11<sup>2</sup> - d<sup>2</sup>) = 105 <br><br>$$ \Rightarrow $$ d = $$ \pm $$ 4 <br><br>When d = 4 and a = 11 then series is <br><br>7, 11, 15, .... <br><br>$$ \therefore $$ T<sub>11</sub> = a + 10d = 7 + 10$$ \times $$ 4 = 47 <br><br>When d = -4 and a = 11 then series is <br><br>15, 11, 7, .... <br><br>$$ \therefore $$ T<sub>11</sub> = a + 10d = 15 + 10$$ \times $$ -4 = -25
mcq
jee-main-2019-online-9th-april-evening-slot
9YvLd5bxYwk2gXlduoBxc
maths
sequences-and-series
arithmetic-progression-(a.p)
Let the sum of the first n terms of a non-constant A.P., a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..... be $$50n + {{n(n - 7)} \over 2}A$$, where A is a constant. If d is the common difference of this A.P., then the ordered pair (d, a<sub>50</sub>) is equal to
[{"identifier": "A", "content": "(A, 50+45A)"}, {"identifier": "B", "content": "(50, 50+45A)"}, {"identifier": "C", "content": "(A, 50+46A)"}, {"identifier": "D", "content": "(50, 50+46A)"}]
["C"]
null
S<sub>n</sub> = $$50n + {{n(n - 7)} \over 2}A$$ <br><br>We know, n<sup>th</sup> tem <br><br>T<sub>n</sub> = S<sub>n</sub> - S<sub>n - 1</sub> <br><br>= $$50n + {{n(n - 7)} \over 2}A$$ - $$50\left( {n - 1} \right) - {{\left( {n - 1} \right)\left( {n - 8} \right)} \over 2}A$$ <br><br>= 50 + $${A \over 2}\left[ {{n^2} - 7n - {n^2} + 9n - 8} \right]$$ <br><br>= 50 + A(n - 4) <br><br>We also know, common difference <br><br>d = T<sub>n</sub> - T<sub>n - 1</sub> <br><br>= 50 + A(n - 4) - 50 - A(n - 5) <br><br>= A <br><br>And T<sub>50</sub> = 50 + A(50 - 4) <br><br>= 50 + 46A <br><br>$$ \therefore $$ (d, a<sub>50</sub>) = (A, 50+46A)
mcq
jee-main-2019-online-9th-april-morning-slot
VbSju1U91PISJVdiGZyBw
maths
sequences-and-series
arithmetic-progression-(a.p)
If   <sup>n</sup>C<sub>4</sub>, <sup>n</sup>C<sub>5</sub> and <sup>n</sup>C<sub>6</sub> are in A.P., then n can be :
[{"identifier": "A", "content": "11"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "14"}]
["D"]
null
2.<sup>n</sup>C<sub>5</sub> = <sup>n</sup>C<sub>4</sub> + <sup>n</sup><sup></sup>C<sub>6</sub> <br><br>2.$${n \over {\left| 5 \right|n - 5}} = {n \over {\left| 4 \right|n - 4}} + {n \over {\left| 6 \right|n - 6}}$$ <br><br>$${2 \over 5}.{1 \over {n - 5}} = {1 \over {\left( {n - 4} \right)\left( {n - 5} \right)}} + {1 \over {30}}$$ <br><br>$$n = 14$$ satisfying equation.
mcq
jee-main-2019-online-12th-january-evening-slot
jMQGhZPXti3X7SerSWxl2
maths
sequences-and-series
arithmetic-progression-(a.p)
If 19<sup>th</sup> term of a non-zero A.P. is zero, then its (49<sup>th</sup> term) : (29<sup>th</sup> term) is :
[{"identifier": "A", "content": "2 : 1"}, {"identifier": "B", "content": "4 : 1"}, {"identifier": "C", "content": "1 : 3"}, {"identifier": "D", "content": "3 : 1"}]
["D"]
null
a + 18d = 0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(1) <br><br>$${{a + 48d} \over {a + 28d}} = {{ - 18d + 48d} \over { - 18d + 28d}} = {3 \over 1}$$
mcq
jee-main-2019-online-11th-january-evening-slot
XiEmOz8m70Df51MsaRno1
maths
sequences-and-series
arithmetic-progression-(a.p)
The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is -
[{"identifier": "A", "content": "1356"}, {"identifier": "B", "content": "1256"}, {"identifier": "C", "content": "1365"}, {"identifier": "D", "content": "1465"}]
["A"]
null
$$\sum\limits_{r = 2}^{13} {(7r + 2) = 7.{{2 + 13} \over 2}} \times 6 + 2 \times 12$$ <br><br>= 7 $$ \times $$90 + 24 = 654 <br><br>$$\sum\limits_{r = 1}^{13} {(7r + 5) = 7\left( {{{1 + 13} \over 2}} \right)} \times 13 + 5 \times 13 = 702$$ <br><br>Total = 654 + 702 = 1356
mcq
jee-main-2019-online-10th-january-morning-slot
kQCDkroRzgx0A6RuISTkL
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $${a_1},{a_2},.......,{a_{30}}$$ be an A.P., <br/><br/>$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$. <br/><br/>If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
[{"identifier": "A", "content": "47"}, {"identifier": "B", "content": "42"}, {"identifier": "C", "content": "52"}, {"identifier": "D", "content": "57"}]
["C"]
null
Let the common difference = d <br><br>S = $$\sum\limits_{i = 1}^{30} {{a_i}} $$ <br><br>= $$a$$<sub>1</sub> + $$a$$<sub>2</sub> + . . . . . + $$a$$<sub>30</sub> <br><br>$$ \therefore $$&nbsp;&nbsp;S = $${{30} \over 2}\left[ {{a_1} + {a_{30}}} \right]$$ <br><br>= 15 [$$a$$<sub>1</sub> + $$a$$<sub>1</sub> + 29d] <br><br>= 15 (2$$a$$<sub>1</sub> + 29d) <br><br>T = $$\sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$ <br><br>= $$a$$<sub>1</sub> + $$a$$<sub>3</sub> + . . . . . . + $$a$$<sub>29</sub> <br><br>= $${{15} \over 2}\left[ {a{}_1 + {a_{29}}} \right]$$ <br><br>= $${{15} \over 2}\left[ {a{}_1 + {a_1} + 28d} \right]$$ <br><br>= $${{15} \over 2}\left[ {2a{}_1 + 28d} \right]$$ <br><br>= 15 ($$a$$<sub>1</sub> + 14d) <br><br>Given, <br><br>S $$-$$ 2T = 75 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;15(2$$a$$<sub>1</sub> + 29d) $$-$$ 2 $$ \times $$ 15 ($$a$$<sub>1</sub> + 14d) = 75 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;30$$a$$<sub>1</sub> + 15 $$ \times $$ 29d $$-$$ 30 $$a$$<sub>1</sub> $$-$$ 420d = 75 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;435d $$-$$ 420d = 75 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;15d = 75 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;d = 5 <br><br>Given that, <br><br>$$a$$<sub>5</sub> = 27 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$a$$<sub>1</sub> + 4d = 27 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$a$$<sub>1</sub> + 20 = 27 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$a$$<sub>1</sub> = 7 <br><br>$$ \therefore $$&nbsp;&nbsp;$$a$$<sub>10</sub> = $$a$$<sub>1</sub> + 9d <br><br>= 7 + 45 <br><br>= 52
mcq
jee-main-2019-online-9th-january-morning-slot
BFKROwAabU9SIEAGMs1jw
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a, b and c be the 7<sup>th</sup>, 11<sup>th</sup> and 13<sup>th</sup> terms respectively of a non-constant A.P. If these are also three consecutive terms of a G.P., then $${a \over c}$$ equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${7 \\over 13}$$"}, {"identifier": "D", "content": "4"}]
["D"]
null
T<sub>7</sub> = A + 6d = a; T<sub>11</sub> = A + 10d = b; T<sub>13</sub> = A + 12d = c <br><br>Now a, b, c are in G.P. <br><br>$$ \therefore $$&nbsp;&nbsp;b<sup>2</sup> = ac <br><br>$$ \Rightarrow $$&nbsp;&nbsp;(A + 10d)<sup>2</sup> = (A + 6d) (A + 12d) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;A<sup>2</sup> + 100d<sup>2</sup> + 20Ad = A<sup>2</sup> + 18Ad + 72d<sup>2</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;A + 14d = 0, A = $$-$$ 14d <br><br>$${a \over c} = {{A + 6d} \over {A + 12d}} = {{ - 8d} \over { - 2d}} = 4$$
mcq
jee-main-2019-online-9th-january-evening-slot
r4WC0aKydDZkqNCmrD5bM
maths
sequences-and-series
arithmetic-progression-(a.p)
The sum of all natural numbers 'n' such that 100 &lt; n &lt; 200 and H.C.F. (91, n) &gt; 1 is :
[{"identifier": "A", "content": "3221"}, {"identifier": "B", "content": "3121"}, {"identifier": "C", "content": "3203"}, {"identifier": "D", "content": "3303"}]
["B"]
null
$$ \because $$ 91 = 13 $$ \times $$ 7 <br><br>So the required numbers are either divisible by 7 or 13. <br><br>S<sub>A</sub> = sum of numbers between 100 and 200 which are divisible by 7. <br><br>$$ \Rightarrow $$ S<sub>A</sub> = 105 + 112 + ..... + 196 <br><br>S<sub>A</sub> = $${{14} \over 2}\left[ {105 + 196} \right]$$ = 2107 <br><br>S<sub>B</sub> = Sum of numbers between 100 and 200 which are divisible by 13. <br><br>S<sub>B</sub> = 104 + 117 + ....... + 195 <br><br>S<sub>B</sub> = $${8 \over 2}\left[ {104 + 195} \right]$$ = 1196 <br><br>S<sub>C</sub> = Sum of numbers between 100 and 200 which are divisible by 7 and 13. <br><br>S<sub>C</sub> = 182 <br><br>Sum of numbers divisible by 7 or 13 = Sum of no. divisible by 7 + sum of the no. divisible by 13 – Sum of the numbers divisible by 7 and 13 <br><br> = 2107 + 1196 - 182 <br><br>= 3121
mcq
jee-main-2019-online-8th-april-morning-slot
WbC8tVOvR5LmL8klSE7k9k2k5khzuf1
maths
sequences-and-series
arithmetic-progression-(a.p)
The number of terms common to the two A.P.'s 3, 7, 11, ....., 407 and 2, 9, 16, ....., 709 is ______.
[]
null
14
First A.P. is 3, 7, 11, 15, 19, 23, ..... 407 <br><br>d<sub>1</sub> = 4 <br><br>Second A.P. is 2, 9, 16, 23, ..... 709 <br><br>d<sub>2</sub> = 7 <br><br>First common term = 23 <br><br>Common difference of new A.P using the common terms of the two given A.P's is d = L.C.M. (4, 7) = 28 <br><br>Last term $$ \le $$ 407 <br><br>$$ \Rightarrow $$ 23 + (n – 1) (28) $$ \le $$ 407 <br><br>$$ \Rightarrow $$ n $$ \le $$ 14.7 <br><br>$$ \therefore $$ n = 14
integer
jee-main-2020-online-9th-january-evening-slot
MHxZwe5tFw0FI9dtSrjgy2xukg0cxml1
maths
sequences-and-series
arithmetic-progression-(a.p)
The common difference of the A.P. <br/>b<sub>1</sub>, b<sub>2</sub>, … , b<sub>m</sub> is 2 more than the common<br/> difference of A.P. a<sub>1</sub>, a<sub>2</sub>, …, a<sub>n</sub>. If<br/> a<sub>40 </sub> = –159, a<sub>100</sub> = –399 and b<sub>100</sub> = a<sub>70</sub>, then b<sub>1</sub> is equal to :
[{"identifier": "A", "content": "127"}, {"identifier": "B", "content": "81"}, {"identifier": "C", "content": "\u2013127"}, {"identifier": "D", "content": "-81"}]
["D"]
null
Let common difference of series <br>a<sub>1</sub> , a<sub>2</sub> , a<sub>3</sub> ,..., a<sub>n</sub> be d. <br><br>$$ \because $$ a<sub>40</sub> = a<sub>1</sub> + 39d == –159 ...(i) <br><br>and a<sub>100</sub> = a<sub>1</sub> + 99d = –399 ...(ii) <br><br>From eqn. (ii) and (i) <br>d = –4 and a<sub>1</sub> = –3. <br><br>The common difference of the A.P. <br>b<sub>1</sub>, b<sub>2</sub>, … , b<sub>m</sub> is 2 more than the common<br> difference of A.P. a<sub>1</sub>, a<sub>2</sub>, …, a<sub>n</sub>. <br><br>$$ \therefore $$ Common difference of b<sub>1</sub> , b<sub>2</sub> , b<sub>3</sub> , ..., be (–2). <br><br>$$ \because $$ b<sub>100</sub> = a<sub>70</sub> <br><br>$$ \therefore $$ b<sub>1</sub> + 99(–2) = (–3) + 69(–4) <br><br>$$ \therefore $$ b<sub>1</sub> = 198 – 279 <br><br>$$ \therefore $$ b<sub>1</sub> = – 81
mcq
jee-main-2020-online-6th-september-evening-slot
qMKL8WjZUIAD5hRjSpjgy2xukfg6jne3
maths
sequences-and-series
arithmetic-progression-(a.p)
If $${3^{2\sin 2\alpha - 1}}$$, 14 and $${3^{4 - 2\sin 2\alpha }}$$ are the first three terms of an A.P. for some $$\alpha $$, then the sixth terms of this A.P. is:
[{"identifier": "A", "content": "66"}, {"identifier": "B", "content": "81"}, {"identifier": "C", "content": "65"}, {"identifier": "D", "content": "78"}]
["A"]
null
Given that<br><br>$${3^{4 - \sin 2\alpha }} + {3^{2\sin 2\alpha - 1}} = 28$$<br><br>Let $${3^{2\sin 2\alpha }}$$ = t<br><br>$$ \Rightarrow $$ $${{81} \over t} + {t \over 3} = 28$$<br><br>$$ \Rightarrow $$t = 81, 3<br><br>$$ \therefore $$ $${3^{2\sin 2\alpha }}$$ = 3<sup>1</sup>, 3<sup>4</sup><br><br>$$\sin 2\alpha = {1 \over 2}$$, 2 (rejected)<br><br>First term a = $${3^{2\sin 2\alpha -1}}$$ = 3<sup>0</sup> <br><br>$$ \Rightarrow $$ a = 1<br><br>Given Second term = 14<br><br>$$ \therefore $$ Common difference d = 13<br><br>$${T_6} = a + 5d$$<br><br>$${T_6} = 1 + 5 \times 13$$<br><br>$${T_6} = 66$$
mcq
jee-main-2020-online-5th-september-morning-slot
cFq6eDhgpo0Oel3P33jgy2xukfakjhs2
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a<sub>1</sub>, a<sub>2</sub>, ..., an be a given A.P. whose<br/> common difference is an integer and <br/>S<sub>n</sub> = a<sub>1</sub> + a<sub>2</sub> + .... + a<sub>n</sub>. If a<sub>1</sub> = 1, a<sub>n</sub> = 300 and 15 $$ \le $$ n $$ \le $$ 50, then <br/>the ordered pair (S<sub>n-4</sub>, a<sub>n–4</sub>) is equal to:
[{"identifier": "A", "content": "(2480, 249) "}, {"identifier": "B", "content": "(2480, 248)"}, {"identifier": "C", "content": "(2490, 248)"}, {"identifier": "D", "content": "(2490, 249)"}]
["C"]
null
$${a_n} = {a_1} + (n - 1)d$$<br><br>$$ \Rightarrow 300 = 1 + (n - 1)d$$<br><br>$$ \Rightarrow (n - 1)d = 299 = 13 \times 23$$<br><br>since, n $$ \in $$[15, 50]<br><br>$$ \therefore $$ n = 24 and d = 13<br><br>$${a_{n - 4}} = {a_{20}} = 1 + 19 \times 13 = 248$$<br><br>$$ \Rightarrow {a_{n - 4}} = 248$$<br><br>$${S_{n - 4}} = {{20} \over 2}\{ 1 + 248\} = 2490$$
mcq
jee-main-2020-online-4th-september-evening-slot
p6030E7IzHd7wg2E0Jjgy2xukf0p91yb
maths
sequences-and-series
arithmetic-progression-(a.p)
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is :
[{"identifier": "A", "content": "$${1 \\over 4}$$"}, {"identifier": "B", "content": "$${1 \\over 5}$$"}, {"identifier": "C", "content": "$${1 \\over 7}$$"}, {"identifier": "D", "content": "$${1 \\over 6}$$"}]
["D"]
null
First 25 terms = a, a + d, .......,a + 24d <br><br>Next 15 terms = a + 25d, a + 26d, ......, a + 39d <br><br>$$ \therefore $$ $${{25} \over 2}\left[ {2a + 24d} \right] = {{15} \over 2}\left[ {2\left( {a + 25d} \right) + 14d} \right]$$ <br><br>$$ \Rightarrow $$ 50a + 600d = 15 [2a + 50d + 14d] <br><br>$$ \Rightarrow $$ 20a + 600d = 960d <br><br>$$ \Rightarrow $$ 60 = 360d <br><br>$$ \Rightarrow $$ d = $${1 \over 6}$$
mcq
jee-main-2020-online-3rd-september-morning-slot
7cFUZoeafMOtnxiXOLjgy2xukez7017n
maths
sequences-and-series
arithmetic-progression-(a.p)
If the sum of first 11 terms of an A.P., <br/>a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, .... is 0 (a $$ \ne $$ 0), then the sum of the A.P., <br/>a<sub>1</sub> , a<sub>3</sub> , a<sub>5</sub> ,....., a<sub>23</sub> is ka<sub>1</sub> , where k is equal to :
[{"identifier": "A", "content": "$${{121} \\over {10}}$$"}, {"identifier": "B", "content": "-$${{121} \\over {10}}$$"}, {"identifier": "C", "content": "$${{72} \\over 5}$$"}, {"identifier": "D", "content": "-$${{72} \\over 5}$$"}]
["D"]
null
Let common difference be d. <br><br>$$ \because $$ a<sub>1</sub> + a<sub>2</sub> + a<sub>3</sub> + ... + a<sub>11</sub> = 0 <br><br>$$ \therefore $$ $${{11} \over 2}\left[ {2{a_1} + 10d} \right]$$ = 0 <br><br>$$ \Rightarrow $$ a<sub>1</sub> + 5d = 0 <br><br>$$ \Rightarrow $$ d = $${ - {{{a_1}} \over 5}}$$ .....(1) <br><br>Now a<sub>1</sub> + a<sub>3</sub> + a<sub>5</sub> + ... + a<sub>23</sub> <br><br>= (a<sub>1</sub> + a<sub>23</sub>) $$ \times $$ $${{12} \over 2}$$ <br><br>= (a<sub>1</sub> + a<sub>1</sub> + 22d) × 6 <br><br>= $$\left[ {2{a_1} + 22\left( { - {{{a_1}} \over 5}} \right)} \right]$$ $$ \times $$ 6 <br><br>= $$ - {{72} \over 2}{a_1}$$ <br><br>$$ \therefore $$ k = $$ - {{72} \over 2}$$
mcq
jee-main-2020-online-2nd-september-evening-slot
m38rP9Tkzz02doHgLE7k9k2k5hj1bjo
maths
sequences-and-series
arithmetic-progression-(a.p)
If the 10<sup>th</sup> term of an A.P. is $${1 \over {20}}$$ and its 20<sup>th</sup> term is $${1 \over {10}}$$, then the sum of its first 200 terms is
[{"identifier": "A", "content": "100"}, {"identifier": "B", "content": "$$100{1 \\over 2}$$"}, {"identifier": "C", "content": "$$50{1 \\over 4}$$"}, {"identifier": "D", "content": "50"}]
["B"]
null
T<sub>10</sub> = a + 9d = $${1 \over {20}}$$ ....(1) <br><br>T<sub>20</sub> = a + 19d = $${1 \over {10}}$$ .....(2) <br><br>Equation (2) – (1) <br><br>10d = $${1 \over {10}}$$ - $${1 \over {20}}$$ <br><br>$$ \Rightarrow $$ d = $${1 \over {200}}$$ <br><br>a + $${9 \over {200}}$$ = $${1 \over {20}}$$ <br><br>$$ \Rightarrow $$ a = $${1 \over {200}}$$ <br><br>S<sub>200</sub> = $${{200} \over 2}\left[ {{2 \over {200}} + \left( {200 - 1} \right) \times {1 \over {200}}} \right]$$ <br><br>= $$100\left[ {{2 \over {200}} + {{199} \over {200}}} \right]$$ <br><br>= $${{201} \over 2}$$ = $$100{1 \over 2}$$
mcq
jee-main-2020-online-8th-january-evening-slot
MeExSco81dydzJRFtt7k9k2k5gpayn9
maths
sequences-and-series
arithmetic-progression-(a.p)
Let ƒ : <b>R</b> $$ \to $$ <b>R</b> be such that for all x $$ \in $$ R <br/>(2<sup>1+x</sup> + 2<sup>1–x</sup>), ƒ(x) and (3<sup>x</sup> + 3<sup>–x</sup>) are in A.P., <br/>then the minimum value of ƒ(x) is
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "4"}]
["C"]
null
f(x) = $${{2\left( {{2^x} + {2^{ - x}}} \right) + \left( {{3^x} + {3^{ - x}}} \right)} \over 2} \ge 3$$ <br><br>As we know, A.M &gt; G.M
mcq
jee-main-2020-online-8th-january-morning-slot
QcvKqniiG7DVwDMmdz7k9k2k5e4k7ko
maths
sequences-and-series
arithmetic-progression-(a.p)
Five numbers are in A.P. whose sum is 25 and product is 2520. If one of these five numbers is -$${1 \over 2}$$ , then the greatest number amongst them is:
[{"identifier": "A", "content": "$${{21} \\over 2}$$"}, {"identifier": "B", "content": "27"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "16"}]
["D"]
null
Let the A.P is <br>a - 2d, a - d, a, a + d, a + 2d <br>$$ \because $$ sum = 25 <br>$$ \Rightarrow $$ 5a = 25 $$ \Rightarrow $$ a = 5 <br><br>Also given, <br><br> product (a<sup>2</sup> – 4d<sup>2</sup>) (a<sup>2</sup> – d<sup>2</sup>).a = 2520 <br><br>$$ \Rightarrow $$ (25 – 4d<sup>2</sup>) (25 –d<sup>2</sup>)5 = 2520 <br><br>$$ \Rightarrow $$ 4d<sup>4</sup> – 121d<sup>2</sup> – 4d<sup>2</sup> + 121 = 0 <br><br>$$ \Rightarrow $$ (d<sup>2</sup> – 1) (4d<sup>2</sup> – 121) = 0 <br><br>$$ \Rightarrow $$ d = $$ \pm $$1, d = $$ \pm {{11} \over 2}$$ <br><br>When d = $$ \pm $$1 we can't get any fraction term like -$${1 \over 2}$$. <br><br>$$ \therefore $$ d = $$ \pm {{11} \over 2}$$ <br><br>And when d = $${{11} \over 2}$$ <br><br>we get largest term = 5 + 2d = 5 + 11 = 16
mcq
jee-main-2020-online-7th-january-morning-slot
UXHgHEDPLWdzlEEwzB1kluy1yat
maths
sequences-and-series
arithmetic-progression-(a.p)
The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is _________.
[]
null
1000
Let N be the four digit number<br><br>gcd(N, 18) = 3<br><br>Hence N is an odd integer which is divisible by 3 but not by 9.<br><br>4 digit odd multiples of 3<br><br>1005, 1011, ..........., 9999 $$ \to $$ 1500<br><br>4 digit odd multiples of 9<br><br>1017, 1035, ..........., 9999 $$ \to $$ 500<br><br>Hence number of such N = 1000
integer
jee-main-2021-online-26th-february-evening-slot
s8bWRo7c7px8aS6V1D1kmm3p42s
maths
sequences-and-series
arithmetic-progression-(a.p)
Let S<sub>1</sub> be the sum of first 2n terms of an arithmetic progression. Let S<sub>2</sub> be the sum of first 4n terms of the same arithmetic progression. If (S<sub>2</sub> $$-$$ S<sub>1</sub>) is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to :
[{"identifier": "A", "content": "7000"}, {"identifier": "B", "content": "1000"}, {"identifier": "C", "content": "3000"}, {"identifier": "D", "content": "5000"}]
["C"]
null
S<sub>1</sub> = $${{2n} \over 2}$$[2a + (2n $$-$$ 1)d]<br><br>S<sub>2</sub> = $${{4n} \over 2}$$[2a + (4n $$-$$ 1)d]<br><br>(where a = T<sub>1</sub> and d is common difference)<br><br>S<sub>2</sub> $$-$$ S<sub>1</sub>$$ \Rightarrow $$ 2n[2a + (4n $$-$$ 1)d] $$-$$ n[2a + (2n $$-$$ 1)d] = 1000<br><br>$$ \Rightarrow $$ n[2a + d(8n $$-$$ 2 $$-$$ 2n + 1)] = 1000<br><br>$$ \Rightarrow $$ n[2a + (6n $$-$$ 1)d] = 1000<br><br>S<sub>6</sub> = $${{6n} \over 2}$$[2a + (6n $$-$$ 1)d] = 3(S<sub>2</sub> $$-$$ S<sub>1</sub>) = 3000
mcq
jee-main-2021-online-18th-march-evening-shift
1krtbqfk7
maths
sequences-and-series
arithmetic-progression-(a.p)
Let S<sub>n</sub> denote the sum of first n-terms of an arithmetic progression. If S<sub>10</sub> = 530, S<sub>5</sub> = 140, then S<sub>20</sub> $$-$$ S<sub>6</sub> is equal to:
[{"identifier": "A", "content": "1862"}, {"identifier": "B", "content": "1842"}, {"identifier": "C", "content": "1852"}, {"identifier": "D", "content": "1872"}]
["A"]
null
Let first term of A.P. be a and common difference is d.<br><br>$$\therefore$$ $${S_{10}} = {{10} \over 2}\{ 2a + 9d\} = 530$$<br><br>$$\therefore$$ $$2a + 9d = 106$$ ..... (i)<br><br>$${S_5} = {5 \over 2}\{ 2a + 4d\} = 140$$<br><br>$$a + 2d = 28$$ ...... (ii)<br><br>From equation (i) and (ii), a = 8, d = 10<br><br>$$\therefore$$ $${S_{20}} - {S_6} = {{20} \over 2}\{ 2 \times 8 + 19 \times 10\} - {6 \over 2}\{ 2 \times 8 + 5 \times 10\} $$<br><br>$$ = 2060 - 198$$<br><br>$$ = 1862$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krub79cd
maths
sequences-and-series
arithmetic-progression-(a.p)
The sum of all the elements in the set {n$$\in$$ {1, 2, ....., 100} | H.C.F. of n and 2040 is 1} is equal to _____________.
[]
null
1251
2040 = 2<sup>3</sup> $$\times$$ 3 $$\times$$ 5 $$\times$$ 17<br><br>n should not be multiple of 2, 3, 5 and 17.<br><br>Sum of all n = (1 + 3 + 5 + ...... + 99) $$-$$ (3 + 9 + 15 + 21 + ...... + 99) $$-$$ (5 + 25 + 35 + 55 + 65 + 85 + 95) $$-$$ (17)<br><br>= 2500 $$-$$ $${{17} \over 2}$$(3 + 99) $$-$$ 365 $$-$$ 17<br><br>2500 $$-$$ 867 $$-$$ 365 $$-$$ 17<br><br>= 1251
integer
jee-main-2021-online-22th-july-evening-shift
1krvs2cgo
maths
sequences-and-series
arithmetic-progression-(a.p)
Let S<sub>n</sub> be the sum of the first n terms of an arithmetic progression. If S<sub>3n</sub> = 3S<sub>2n</sub>, then the value of $${{{S_{4n}}} \over {{S_{2n}}}}$$ is :
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "8"}]
["A"]
null
Let a be first term and d be common diff. of this A.P.<br><br>Given, S<sub>3n</sub> = 3S<sub>2n</sub><br><br>$$ \Rightarrow {{3n} \over 2}[2a + (3n - 1)d] = 3{{2n} \over 2}[2a + (2n - 1)d]$$<br><br>$$ \Rightarrow 2a + (3n - 1)d = 4a + (4n - 2)d$$<br><br>$$ \Rightarrow 2a + (n - 1)d = 0$$<br><br>Now, $${{{S_{4n}}} \over {{S_{2n}}}} = {{{{4n} \over 2}[2a + (4n - 1)d]} \over {{{2n} \over 2}[2a + (2n - 1)d]}} = {{2\left[ {\underbrace {2a + (n - 1)d}_{ = 0} + 3nd} \right]} \over {\left[ {\underbrace {2a + (n - 1)d}_{ = 0} + nd} \right]}}$$<br><br>$$ = {{6nd} \over {nd}} = 6$$
mcq
jee-main-2021-online-25th-july-morning-shift
1ks0bytdw
maths
sequences-and-series
arithmetic-progression-(a.p)
If $${\log _3}2,{\log _3}({2^x} - 5),{\log _3}\left( {{2^x} - {7 \over 2}} \right)$$ are in an arithmetic progression, then the value of x is equal to _____________.
[]
null
3
$$2{\log _3}({2^x} - 5) = {\log _2} + {\log _3}\left( {{2^x} - {7 \over 2}} \right)$$<br><br>Let $${2^x} = t$$<br><br>$${\log _3}{(t - 5)^2} = {\log _3}2\left( {t - {7 \over 2}} \right)$$<br><br>$${(t - 5)^2} = 2t - 7$$<br><br>$${t^2} - 12t + 32 = 0$$<br><br>$$(t - 4)(t - 8) = 0$$<br><br>$$\Rightarrow$$ 2<sup>x</sup> = 4 or 2<sup>x</sup> = 8<br><br>x = 2 (Rejected)<br><br>Or x = 3
integer
jee-main-2021-online-27th-july-morning-shift
1ktd2u4n1
maths
sequences-and-series
arithmetic-progression-(a.p)
The sum of all 3-digit numbers less than or equal to 500, that are formed without using the digit "1" and they all are multiple of 11, is _____________.
[]
null
7744
209, 220, 231, ..........., 495<br><br>Sum = $${{27} \over 2}$$(209 + 495) = 9504<br><br>Number containing 1 at unit place $$\matrix{ {\underline 2 } &amp; {\underline 3 } &amp; {\underline 1 } \cr {\underline 3 } &amp; {\underline 4 } &amp; {\underline 1 } \cr {\underline 4 } &amp; {\underline 5 } &amp; {\underline 1 } \cr } $$<br><br>Number containing 1 at 10<sup>th</sup> place $$\matrix{ {\underline 3 } &amp; {\underline 1 } &amp; {\underline 9 } \cr {\underline 4 } &amp; {\underline 1 } &amp; {\underline 8 } \cr } $$<br><br>Required = 9504 $$-$$ (231 + 341 + 451 + 319 + 418)<br><br>= 7744
integer
jee-main-2021-online-26th-august-evening-shift
1ktk9gc86
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..... be an A.P. If $${{{a_1} + {a_2} + .... + {a_{10}}} \over {{a_1} + {a_2} + .... + {a_p}}} = {{100} \over {{p^2}}}$$, p $$\ne$$ 10, then $${{{a_{11}}} \over {{a_{10}}}}$$ is equal to :
[{"identifier": "A", "content": "$${{19} \\over {21}}$$"}, {"identifier": "B", "content": "$${{100} \\over {121}}$$"}, {"identifier": "C", "content": "$${{21} \\over {19}}$$"}, {"identifier": "D", "content": "$${{121} \\over {100}}$$"}]
["C"]
null
$${{{{10} \over 2}(2{a_1} + 9d)} \over {{p \over 2}(2{a_1} + (p - 1)d)}} = {{100} \over {{p^2}}}$$<br><br>$$(2{a_1} + 9d)p = 10(2{a_1} + (p - 1)d)$$<br><br>$$9dp = 20{a_1} - 2p{a_1} + 10d(p - 1)$$<br><br>$$9p = (20 - 2p){{{a_1}} \over d} + 10(p - 1)$$<br><br>$${{{a_1}} \over d} = {{(10 - p)} \over {2(10 - p)}} = {1 \over 2}$$<br><br>$$\therefore$$ $${{{a_{11}}} \over {{a_{10}}}} = {{{a_1} + 10d} \over {{a_1} + 9d}} = {{{1 \over 2} + 10} \over {{1 \over 2} + 9}} = {{21} \over {19}}$$
mcq
jee-main-2021-online-31st-august-evening-shift
1ktkdo86s
maths
sequences-and-series
arithmetic-progression-(a.p)
The number of 4-digit numbers which are neither multiple of 7 nor multiple of 3 is ____________.
[]
null
5143
A = 4-digit numbers divisible by 3<br><br>A = 1002, 1005, ....., 9999.<br><br>9999 = 1002 + (n $$-$$ 1)3<br><br>$$\Rightarrow$$ (n $$-$$ 1)3 = 8997 $$\Rightarrow$$ n = 3000<br><br>B = 4-digit numbers divisible by 7<br><br>B = 1001, 1008, ......., 9996<br><br>$$\Rightarrow$$ 9996 = 1001 + (n $$-$$ 1)7<br><br>$$\Rightarrow$$ n = 1286<br><br>A $$\cap$$ B = 1008, 1029, ....., 9996<br><br>9996 = 1008 + (n $$-$$ 1)21<br><br>$$\Rightarrow$$ n = 429<br><br>So, no divisible by either 3 or 7<br><br>= 3000 + 1286 $$-$$ 429 = 3857<br><br>total 4-digits numbers = 9000<br><br>required numbers = 9000 $$-$$ 3857 = 5143
integer
jee-main-2021-online-31st-august-evening-shift
1kto9lnec
maths
sequences-and-series
arithmetic-progression-(a.p)
Let a<sub>1</sub>, a<sub>2</sub>, ..........., a<sub>21</sub> be an AP such that $$\sum\limits_{n = 1}^{20} {{1 \over {{a_n}{a_{n + 1}}}} = {4 \over 9}} $$. If the sum of this AP is 189, then a<sub>6</sub>a<sub>16</sub> is equal to :
[{"identifier": "A", "content": "57"}, {"identifier": "B", "content": "72"}, {"identifier": "C", "content": "48"}, {"identifier": "D", "content": "36"}]
["B"]
null
$$\sum\limits_{n = 1}^{20} {{1 \over {{a_n}{a_{n + 1}}}} = \sum\limits_{n = 1}^{20} {{1 \over {{a_n}({a_n} + d)}}} } $$<br><br>$$ = {1 \over d}\sum\limits_{n = 1}^{20} {\left( {{1 \over {{a_n}}} - {1 \over {{a_n} + d}}} \right)} $$<br><br>$$ \Rightarrow {1 \over d}\left( {{1 \over {{a_1}}} - {1 \over {{a_{21}}}}} \right) = {4 \over 9}$$ (Given)<br><br>$$ \Rightarrow {1 \over d}\left( {{{{a_{21}} - {a_1}} \over {{a_1}{a_{21}}}}} \right) = {4 \over 9}$$<br><br>$$ \Rightarrow {1 \over d}\left( {{{{a_1} + 20d - {a_1}} \over {{a_1}{a_2}}}} \right) = {4 \over 9} \Rightarrow {a_1}{a_2} = 45$$ .... (1)<br><br>Now sum of first 21 terms = $${{21} \over 2}(2{a_1} + 20d) = 189$$<br><br>$$\Rightarrow$$ a<sub>1</sub> + 10d = 9 ..... (2)<br><br>For equation (1) &amp; (2) we get<br><br>a<sub>1</sub> = 3 &amp; d = $${3 \over 5}$$<br><br>or a<sub>1</sub> = 15 &amp; d = $$ - {3 \over 5}$$<br><br>So, a<sub>6</sub> . a<sub>16</sub> = (a<sub>1</sub> + 5d) (a<sub>1</sub> + 15d)<br><br>$$\Rightarrow$$ a<sub>6</sub>a<sub>16</sub> = 72<br><br>Option (b)
mcq
jee-main-2021-online-1st-september-evening-shift
1l54tsnl8
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.</p>
[]
null
2223
<p>1st AP :</p> <p>3, 6, 9, 12, ....... upto 78 terms</p> <p>t<sub>78</sub> = 3 + (78 $$-$$ 1)3</p> <p>= 3 + 77 $$\times$$ 3</p> <p>= 234</p> <p>2nd AP :</p> <p>5, 9, 13, 17, ...... upto 59 terms</p> <p>t<sub>59</sub> = 5 + (59 $$-$$ 1)4</p> <p>= 5 + 58 $$\times$$ 4</p> <p>= 237</p> <p>Common term's AP :</p> <p>First term = 9</p> <p>Common difference of first AP = 3</p> <p>And common difference of second AP = 4</p> <p>$$\therefore$$ Common difference of common terms</p> <p>AP = LCM (3, 4) = 12</p> <p>$$\therefore$$ New AP = 9, 21, 33, .......</p> <p>t<sub>n</sub> = 9 + (n $$-$$ 1)12 $$\le$$ 234</p> <p>$$ \Rightarrow n \le {{237} \over {12}}$$</p> <p>$$ \Rightarrow n = 19$$</p> <p>$$\therefore$$ $${S_{19}} = {{19} \over 2}\left[ {2.9 + (19 - 1)12} \right]$$</p> <p>$$ = 19(9 + 108)$$</p> <p>$$ = 2223$$</p>
integer
jee-main-2022-online-29th-june-evening-shift
1l567rodu
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let A = {1, a<sub>1</sub>, a<sub>2</sub> ....... a<sub>18</sub>, 77} be a set of integers with 1 &lt; a<sub>1</sub> &lt; a<sub>2</sub> &lt; ....... &lt; a<sub>18</sub> &lt; 77. <br/><br/>Let the set A + A = {x + y : x, y $$\in$$ A} contain exactly 39 elements. Then, the value of a<sub>1</sub> + a<sub>2</sub> + ...... + a<sub>18</sub> is equal to _____________.</p>
[]
null
702
If we write the elements of $A+A$, we can certainly find 39 distinct elements as $1+1,1+a_{1}, 1+a_{2}, \ldots .1$ $+a_{18}, 1+77, a_{1}+77, a_{2}+77, \ldots \ldots a_{18}+77,77+77$.<br/><br/> It means all other sums are already present in these 39 values, which is only possible in case when all numbers are in A.P. <br/><br/> Let the common difference be '$d$'. <br/><br/> $77=1+19 \mathrm{~d} \Rightarrow d=4$ <br/><br/> So, $\sum\limits_{i=1}^{18} a_{1}=\frac{18}{2}\left[2 a_{1}+17 d\right]=9[10+68]=702$
integer
jee-main-2022-online-28th-june-morning-shift
1l56q8kl9
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> ...... and b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub> ....... are A.P., and a<sub>1</sub> = 2, a<sub>10</sub> = 3, a<sub>1</sub>b<sub>1</sub> = 1 = a<sub>10</sub>b<sub>10</sub>, then a<sub>4</sub> b<sub>4</sub> is equal to -</p>
[{"identifier": "A", "content": "$${{35} \\over {27}}$$"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$${{27} \\over {28}}$$"}, {"identifier": "D", "content": "$${{28} \\over {27}}$$"}]
["D"]
null
<p>a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> .... are in A.P. (Let common difference is d<sub>1</sub>)</p> <p>b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub> .... are in A.P. (Let common difference is d<sub>2</sub>)</p> <p>and a<sub>1</sub> = 2, a<sub>10</sub> = 3, a<sub>1</sub>b<sub>1</sub> = 1 = a<sub>10</sub>b<sub>10</sub></p> <p>$$\because$$ a<sub>1</sub>b<sub>1</sub> = 1</p> <p>$$\therefore$$ b<sub>1</sub> = $${1 \over 2}$$</p> <p>a<sub>10</sub>b<sub>10</sub> = 1</p> <p>$$\therefore$$ b<sub>10</sub> = $${1 \over 3}$$</p> <p>Now, a<sub>10</sub> = a<sub>1</sub> + 9d<sub>1</sub> $$\Rightarrow$$ d<sub>1</sub> = $${1 \over 9}$$</p> <p>b<sub>10</sub> = b<sub>1</sub> + 9d<sub>2</sub> $$\Rightarrow$$ d<sub>2</sub> = $${1 \over 9}$$$$\left[ {{1 \over 3} - {1 \over 2}} \right]$$ = $$-$$ $${{1 \over {54}}}$$</p> <p>Now, a<sub>4</sub> = 2 + $${{3 \over {9}}}$$ = $${{7 \over {3}}}$$</p> <p>b<sub>4</sub> = $${{1 \over {2}}}$$ $$-%$$ $${{3 \over {54}}}$$ = $${{4 \over {9}}}$$</p> <p>$$\therefore$$ a<sub>4</sub>b<sub>4</sub> = $${{28 \over {27}}}$$</p>
mcq
jee-main-2022-online-27th-june-evening-shift
1l5c1fk8r
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>If $$\{ {a_i}\} _{i = 1}^n$$, where n is an even integer, is an arithmetic progression with common difference 1, and $$\sum\limits_{i = 1}^n {{a_i} = 192} ,\,\sum\limits_{i = 1}^{n/2} {{a_{2i}} = 120} $$, then n is equal to :</p>
[{"identifier": "A", "content": "48"}, {"identifier": "B", "content": "96"}, {"identifier": "C", "content": "92"}, {"identifier": "D", "content": "104"}]
["B"]
null
<p>$$\sum\limits_{i = 1}^n {{a_i} = 192} $$</p> <p>$$\Rightarrow$$ a<sub>1</sub> + a<sub>2</sub> + a<sub>3</sub> + ...... + a<sub>n</sub> = 192</p> <p>$$ \Rightarrow {n \over 2}[{a_1} + {a_n}] = 192$$</p> <p>$$ \Rightarrow {a_1} + {a_n} = {{384} \over n}$$ ..... (1)</p> <p>Now, $$\sum\limits_{i = 1}^{{n \over 2}} {{a_{2i}} = 120} $$</p> <p>$$\Rightarrow$$ a<sub>2</sub> + a<sub>4</sub> + a<sub>6</sub> + ...... + a<sub>n</sub> = 120</p> <p>Here total $${n \over 2}$$ terms present.</p> <p>$$\therefore$$ $${{{n \over 2}} \over 2}[{a_2} + {a_n}] = 120$$</p> <p>$$ \Rightarrow {n \over 4}[{a_1} + 1 + {a_n}] = 120$$</p> <p>$$ \Rightarrow {a_1} + {a_n} + 1 = {{480} \over n}$$ ..... (2)</p> <p>Subtracting (1) from (2), we get</p> <p>$$1 = {{480} \over n} - {{384} \over n}$$</p> <p>$$ \Rightarrow 1 = {{96} \over n}$$</p> <p>$$\Rightarrow$$ n = 96</p>
mcq
jee-main-2022-online-24th-june-morning-shift
1l6dx827f
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$a, b$$ be two non-zero real numbers. If $$p$$ and $$r$$ are the roots of the equation $$x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0$$ and $$\mathrm{q}$$ and s are the roots of the equation $$x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0$$, such that $$\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}$$ are in A.P., then $$\mathrm{a}^{-1}-\mathrm{b}^{-1}$$ is equal to _____________.</p>
[]
null
38
$\because$ Roots of $2 a x^{2}-8 a x+1=0$ are $\frac{1}{p}$ and $\frac{1}{r}$ and roots of $6 b x^{2}+12 b x+1=0$ are $\frac{1}{q}$ and $\frac{1}{s}$. <br/><br/> Let $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}, \frac{1}{s}$ as $\alpha-3 \beta, \alpha-\beta, \alpha+\beta, \alpha+3 \beta$ <br/><br/> So sum of roots $2 \alpha-2 \beta=4$ and $2 \alpha+2 \beta=-2$ <br/><br/> Clearly $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{2}$ <br/><br/>Now product of roots, $\frac{1}{p} \cdot \frac{1}{r}=\frac{1}{2 a}=-5 \Rightarrow \frac{1}{a}=-10$<br/><br/> and $\frac{1}{q} \cdot \frac{1}{x}=\frac{1}{6 b}=-8 \Rightarrow \frac{1}{b}=-48$ <br/><br/> So, $\frac{1}{a}-\frac{1}{b}=38$
integer
jee-main-2022-online-25th-july-morning-shift
1l6i041q0
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Different A.P.'s are constructed with the first term 100, the last term 199, and integral common differences. The sum of the common differences of all such A.P.'s having at least 3 terms and at most 33 terms is ___________.</p>
[]
null
53
<p>$${d_1} = {{199 - 100} \over 2} \notin I$$</p> <p>$${d_2} = {{199 - 100} \over 3} = 33$$</p> <p>$${d_3} = {{199 - 100} \over 4} \notin I$$</p> <p>$${d_n} = {{199 - 100} \over {i + 1}} \in I$$</p> <p>$${d_i} = 33 + 11,\,9$$</p> <p>Sum of CD's $$ = 33 + 11 + 9$$</p> <p>$$ = 53$$</p>
integer
jee-main-2022-online-26th-july-evening-shift
1l6jbbycd
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Suppose $$a_{1}, a_{2}, \ldots, a_{n}$$, .. be an arithmetic progression of natural numbers. If the ratio of the sum of first five terms to the sum of first nine terms of the progression is $$5: 17$$ and , $$110 &lt; {a_{15}} &lt; 120$$, then the sum of the first ten terms of the progression is equal to</p>
[{"identifier": "A", "content": "290"}, {"identifier": "B", "content": "380"}, {"identifier": "C", "content": "460"}, {"identifier": "D", "content": "510"}]
["B"]
null
<p>$$\because$$ a<sub>1</sub>, a<sub>2</sub>, .... a<sub>n</sub> be an A.P of natural numbers and</p> <p>$${{{S_5}} \over {{S_9}}} = {5 \over {17}} \Rightarrow {{{5 \over 2}[2{a_1} + 4d]} \over {{9 \over 2}[2{a_1} + 8d]}} = {5 \over {17}}$$</p> <p>$$ \Rightarrow 34{a_1} + 68d = 18{a_1} + 72d$$</p> <p>$$ \Rightarrow 16{a_1} = 4d$$</p> <p>$$\therefore$$ $$d = 4{a_1}$$</p> <p>And $$110 < {a_{15}} < 120$$</p> <p>$$\therefore$$ $$110 < {a_1} + 14d < 120 \Rightarrow 110 < 57{a_1} < 120$$</p> <p>$$\therefore$$ $${a_1} = 2$$ ($$\because$$ $${a_i}\, \in N$$)</p> <p>$$d = 8$$</p> <p>$$\therefore$$ $${S_{10}} = 5[4 + 9 \times 8] = 380$$</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1l6p3bg7l
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$a_{1}, a_{2}, a_{3}, \ldots$$ be an A.P. If $$\sum\limits_{r=1}^{\infty} \frac{a_{r}}{2^{r}}=4$$, then $$4 a_{2}$$ is equal to _________.</p>
[]
null
16
<p>Given</p> <p>$$S = {{{a_1}} \over 2} + {{{a_2}} \over {{2^2}}} + {{{a_3}} \over {{2^3}}} + {{{a_4}} \over {{2^4}}}\, + \,.....\,\infty $$</p> <p>$${{{1 \over 2}S = {{{a_1}} \over {{2^2}}} + {{{a_2}} \over {{2^3}}}\, + \,.........\,\infty } \over {{S \over 2} = {{{a_1}} \over 2} + {{({a_2} + {a_1})} \over {{2^2}}} + {{({a_3} + {a_2})} \over {{2^3}}}\, + \,......\,\infty }}$$</p> <p>$$ \Rightarrow {S \over 2} = {{{a_1}} \over 2} + {d \over 2}$$</p> <p>$$ \Rightarrow {a_1} + d = {a_2} = 4 \Rightarrow 4{a_2} = 16$$</p>
integer
jee-main-2022-online-29th-july-morning-shift
1ldo7ckhv
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>The sum of the common terms of the following three arithmetic progressions.</p> <p>$$3,7,11,15, \ldots ., 399$$,</p> <p>$$2,5,8,11, \ldots ., 359$$ and</p> <p>$$2,7,12,17, \ldots ., 197$$,</p> <p>is equal to _____________.</p>
[]
null
321
$$ \begin{array}{ll} 3,7,11,15, \ldots \ldots \ldots . .399 : & \mathrm{~d}_1=4 \\\\ 2,5,8,11, \ldots \ldots \ldots \ldots, 359 : & \mathrm{~d}_2=3 \\\\ 2,7,12,17, \ldots \ldots, 197 : & \mathrm{~d}_3=5 \\\\ \operatorname{LCM}\left(\mathrm{d}_1, \mathrm{~d}_2, \mathrm{~d}_3\right)=60 & \end{array} $$ <br/><br/>Common terms are 47, 107, 167 <br/><br/>Sum $=321$
integer
jee-main-2023-online-1st-february-evening-shift
ldo8c1vp
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $a_1, a_2, a_3, \ldots$ be an A.P. If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
[{"identifier": "A", "content": "24"}, {"identifier": "B", "content": "$\\frac{381}{4}$"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "$\\frac{33}{4}$"}]
["A"]
null
$a_{7}=3 \Rightarrow a+6 d=3 \Rightarrow a=3-6 d$ <br/><br/>$$ \begin{aligned} & a_{1} \cdot a_{4}=a(a+3 d) \\\\ & \Rightarrow(3-6 d)(3-6 d+3 d) \\\\ & \Rightarrow 3(1-2 d) 3(1-d) \\\\ & \Rightarrow 9\left(2 d^{2}-3 d+1\right) \end{aligned} $$ <br/><br/>Let $f(d)=2 d^{2}-3 d+1$ <br/><br/>$f^{\prime}(d)=4 d-3 \Rightarrow d=\frac{3}{4}$ <br/><br/>$\therefore a=3-6 \cdot \frac{3}{4}=3-\frac{9}{2}=-\frac{3}{2}$ <br/><br/>$S_{n}=0$ <br/><br/>$\frac{n}{2}(29+(n-1) d)=0$ <br/><br/>$\Rightarrow 2 \cdot\left(-\frac{3}{2}\right)+(n-1)\left(\frac{3}{4}\right)=0$ <br/><br/>$\Rightarrow \quad 3=\frac{3}{4}(n-1)$ <br/><br/>$\Rightarrow n=5$ <br/><br/>Now, $n !-4 \cdot a_{n(n+2)}$ <br/><br/>$$ \begin{aligned} & =5 !-4 \cdot a_{35} \\\\ & =120-4\left(-\frac{3}{2}+34 \cdot \frac{3}{4}\right) \\\\ & =120-(-6+102) \\\\ & =120-(96) \\\\ & =24 \end{aligned} $$
mcq
jee-main-2023-online-31st-january-evening-shift
1ldonp1se
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.</p>
[]
null
754
$$ \begin{aligned} & a_1+a_2+a_3+a_4=50 \\\\ & \Rightarrow 32+6 d=50 \\\\ & \Rightarrow d=3 \\\\ & \text { and, } a_{n-3}+a_{n-2}+a_{n-1}+a_n=170 \\\\ & \Rightarrow 32+(4 n-10) \cdot 3=170 \\\\ & \Rightarrow \mathrm{n}=14 \\\\ & a_7=26, a_8=29 \\\\ & \Rightarrow a_7 \cdot a_8=754 \end{aligned} $$
integer
jee-main-2023-online-1st-february-morning-shift
1ldptn1y5
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$a_{1}, a_{2}, \ldots, a_{n}$$ be in A.P. If $$a_{5}=2 a_{7}$$ and $$a_{11}=18$$, then <br/><br/>$$12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$$ is equal to ____________.</p>
[]
null
8
$a_{11}=18$ <br/><br/>$$ \begin{aligned} & a+10 d=18 \\\\ & a_{5}=2 a_{7} \\\\ & a+4 d=2(a+6 d) \\\\ & a=-8 d \end{aligned} $$ <br/><br/>(i) and (ii) $\Rightarrow a=-72, d=9$. <br/><br/>On rationalising the denominator, given expression <br/><br/>$=12\left[\frac{\sqrt{a_{10}}-\sqrt{a_{11}}}{-d}+\frac{\sqrt{a_{11}}-\sqrt{a_{12}}}{-d}+\ldots+\frac{\sqrt{a_{17}}-\sqrt{a_{18}}}{-d}\right]$ <br/><br/>$=12\left[\frac{\sqrt{a_{10}}-\sqrt{a_{18}}}{-d}\right]$ <br/><br/>$=12\left[\frac{\sqrt{a_{11}-d}-\sqrt{a_{11}+7 d}}{-d}\right]$ <br/><br/>$=12\left[\frac{\sqrt{18-9}-\sqrt{18+63}}{-9}\right]$ $=12 \times \frac{2}{3}=8$
integer
jee-main-2023-online-31st-january-morning-shift
1ldybitxm
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>For three positive integers p, q, r, $${x^{p{q^2}}} = {y^{qr}} = {z^{{p^2}r}}$$ and r = pq + 1 such that 3, 3 log$$_yx$$, 3 log$$_zy$$, 7 log$$_xz$$ are in A.P. with common difference $$\frac{1}{2}$$. Then r-p-q is equal to</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "$$-$$6"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "2"}]
["D"]
null
$x^{p q^{2}}=y^{q r}=z^{p^{2} r}$ <br/><br/> $$ 3 \log _{y} x=\frac{7}{2}, 3 \log _{z} y=4,7 \log _{x} z=\frac{9}{2} $$ <br/><br/> $$ \begin{aligned} & \Rightarrow x=y^{\frac{7}{6}}, y=z^{\frac{4}{3}}, z=x^{\frac{9}{14}} \\\\ & y^{\frac{7}{6} p q^{2}}=y^{q r}=y^{\frac{3}{4} p^{2} r} \\\\ & \Rightarrow \frac{7}{6} p q^{2}=q r=\frac{3}{4} p^{2} r \\\\ & \therefore 7 p q=6 r, 4 q=3 p^{2} \\\\ & r=p q+1 \\\\ & r=\frac{6 r}{7}+1 \Rightarrow r=7 \\\\ & p q=6 \\\\ & p\left(\frac{3 p^{2}}{4}\right)=6 \\\\ & p=2, q=3 \\\\ & r-p-q=7-5=2 \end{aligned} $$
mcq
jee-main-2023-online-24th-january-morning-shift
1lgpy2jk4
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$s_{1}, s_{2}, s_{3}, \ldots, s_{10}$$ respectively be the sum to 12 terms of 10 A.P. s whose first terms are $$1,2,3, \ldots .10$$ and the common differences are $$1,3,5, \ldots \ldots, 19$$ respectively. Then $$\sum_\limits{i=1}^{10} s_{i}$$ is equal to :</p>
[{"identifier": "A", "content": "7360"}, {"identifier": "B", "content": "7220"}, {"identifier": "C", "content": "7260"}, {"identifier": "D", "content": "7380"}]
["C"]
null
We have 10 arithmetic progressions (A.P.s) with the first terms $$a_i$$ and the common differences $$d_i$$, where $$i = 1, 2, \ldots, 10$$. <br/><br/>The first terms are $$a_i = i$$ and the common differences are $$d_i = 2i - 1$$. <br/><br/>Now, we need to find the sum of the first 12 terms for each A.P. The formula for the sum of the first n terms of an A.P. is: <br/><br/>$$S_n = n\left(\frac{2a + (n - 1)d}{2}\right)$$ <br/><br/>In this case, we need to find the sum of the first 12 terms for each A.P., so we have: <br/><br/>$$S_{12} = 12\left(\frac{2a + 11d}{2}\right)$$ <br/><br/>Now, we can compute the sum $$s_i$$ for each A.P.: <br/><br/>$$s_i = 12\left(\frac{2i + 11(2i - 1)}{2}\right) = 6(2i + 22i - 11) = 6(24i - 11)$$ <br/><br/>Finally, we need to find the sum of all $$s_i$$ for $$i = 1, 2, \ldots, 10$$: <br/><br/>$$\sum\limits_{i=1}^{10} s_i = 6\sum\limits_{i=1}^{10} (24i - 11) = 6\left(24\sum\limits_{i=1}^{10} i - 11\sum\limits_{i=1}^{10} 1\right)$$ <br/><br/>The sum of the first 10 integers is $$\sum\limits_{i=1}^{10} i = \frac{10(10 + 1)}{2} = 55$$, so we have: <br/><br/>$$\sum\limits_{i=1}^{10} s_i = 6\left(24\cdot55 - 11\cdot10\right) = 6(1320 - 110) = 6\cdot1210 = 7260$$ <br/><br/>Thus, the sum $$\sum\limits_{i=1}^{10} s_i$$ is equal to 7260.
mcq
jee-main-2023-online-13th-april-morning-shift
1lgutxklh
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$x_{1}, x_{2}, \ldots, x_{100}$$ be in an arithmetic progression, with $$x_{1}=2$$ and their mean equal to 200 . If $$y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100$$, then the mean of $$y_{1}, y_{2}, \ldots, y_{100}$$ is :</p>
[{"identifier": "A", "content": "10051.50"}, {"identifier": "B", "content": "10049.50"}, {"identifier": "C", "content": "10100"}, {"identifier": "D", "content": "10101.50"}]
["B"]
null
We have, mean of $x_1, x_2 \ldots \ldots x_{100}=200$ <br/><br/>Where, $x_1, x_2 \ldots x_{100}$ are in AP with first term as 2. <br/><br/>$$ \begin{aligned} \text { Mean } & =200 \\\\ & =\frac{\sum\limits_{i=1}^{100} x_i}{100}=200 \end{aligned} $$ <br/><br/>$$ \begin{aligned} \frac{100}{2} \times[2 \times 2+99 d] =20000 \\\\ \Rightarrow 4+99 d =400 \\\\ \Rightarrow 99 d =396 \\\\ d =4 \end{aligned} $$ <br/><br/>Also, <br/><br/>$$ \begin{aligned} y_i & =i\left(x_i-i\right) \\\\ & =i[2+(i-1) 4-i] \\\\ & =i[3 i-2] \\\\ & =3 i^2-2 i \end{aligned} $$ <br/><br/>$$ \begin{aligned} \text { Required mean } & =\frac{\sum\limits_{i=1}^{100} y_i}{100} \\\\ & =\frac{1}{100}\left[\sum_{i=1}^{100}\left(3 i^2-2 i\right)\right] \\\\ & =\frac{1}{100}\left[\frac{3 \times 100 \times 101 \times 201}{6}-2 \times \frac{100 \times 101}{2}\right]\\\\ & =\frac{20301}{2}-101 \\\\ & =10049.50 \end{aligned} $$
mcq
jee-main-2023-online-11th-april-morning-shift
1lgzztm49
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$S_{K}=\frac{1+2+\ldots+K}{K}$$ and $$\sum_\limits{j=1}^{n} S_{j}^{2}=\frac{n}{A}\left(B n^{2}+C n+D\right)$$, where $$A, B, C, D \in \mathbb{N}$$ and $$A$$ has least value. Then</p>
[{"identifier": "A", "content": "$$A+B+C+D$$ is divisible by 5"}, {"identifier": "B", "content": "$$A+C+D$$ is not divisible by $$B$$"}, {"identifier": "C", "content": "$$A+B=5(D-C)$$"}, {"identifier": "D", "content": "$$A+B$$ is divisible by $$\\mathrm{D}$$"}]
["D"]
null
$$ \begin{aligned} & \because S_k=\frac{1+2+\ldots+k}{k} \\\\ & =\frac{k(k+1)}{2 k}=\frac{k+1}{2} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow S_k^2=\left(\frac{k+1}{2}\right)^2=\frac{k^2+1+2 k}{4} \\\\ & \Rightarrow \sum_{j=1}^n S_j^2=\frac{1}{4}\left[\sum_{j=1}^n k^2+\sum_{j=1}^n 1+2 \sum_{j=1}^n k\right] \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =\frac{1}{4}\left[\frac{n(n+1)(2 n+1)}{6}+n+\frac{2 n(n+1)}{2}\right] \\\\ & =\frac{n}{4}\left[\frac{(n+1)(2 n+1)}{6}+1+n+1\right] \\\\ & =\frac{n}{24}\left[2 n^2+3 n+1+6+6 n+6\right] \\\\ & =\frac{n}{24}\left[2 n^2+9 n+13\right] \end{aligned} $$ <br/><br/>On comparing, we get <br/><br/>$$ \mathrm{A}=24, \mathrm{~B}=2, \mathrm{C}=9, \mathrm{D}=13 $$ <br/><br/>(A) $A+B+C+D=48$, which is not divisible by 5. <br/><br/>(B) $\mathrm{A}+\mathrm{C}+\mathrm{D}=46$, which is divisible by 2(B). <br/><br/>(C) $A+B=26$ <br/><br/>$$ \begin{aligned} & 5(\mathrm{D}-\mathrm{C})=5(13-9)=20 \\\\ & \therefore 26 \neq 20 \end{aligned} $$ <br/><br/>(D) $A+B=24+2=26$, divisible by 13.
mcq
jee-main-2023-online-8th-april-morning-shift
lsamv2vn
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_5$ is equal to :
[{"identifier": "A", "content": "800"}, {"identifier": "B", "content": "890"}, {"identifier": "C", "content": "790"}, {"identifier": "D", "content": "690"}]
["C"]
null
<p>To solve this problem, we will start by using the properties of an arithmetic progression (AP).</p> <p>The sum of the first $n$ terms of an AP can be calculated using the formula: $$ S_n = \frac{n}{2} (2a + (n-1)d) $$ where $S_n$ is the sum of the first $n$ terms, $a$ is the first term, and $d$ is the common difference between the terms.</p> <p>Given the information: $$ S_{10} = 390 $$</p> <p>We can plug $n=10$ into the sum formula to get:</p> <p>$$ S_{10} = \frac{10}{2} (2a + (10-1)d) $$</p> <p>$$ 390 = 5(2a + 9d) $$</p> <p>$$ 390 = 10a + 45d $$</p> <p>$$ 78 = 2a + 9d \quad .........\text{(1)} $$</p> <p>Next, we're given the ratio of the tenth term ($T_{10}$) to the fifth term ($T_5$): $$ \frac{T_{10}}{T_5} = \frac{15}{7} $$</p> <p>The $n$th term of an AP is given by: <br/><br/>$$ T_n = a + (n-1)d $$</p> <p>So, for the tenth term: $$ T_{10} = a + (10-1)d = a + 9d $$</p> <p>And for the fifth term: <br/><br/>$$ T_5 = a + (5-1)d = a + 4d $$</p> <p>Now we can write the ratio as:</p> <p>$$ \frac{a + 9d}{a + 4d} = \frac{15}{7} $$</p> <p>$$ 7(a + 9d) = 15(a + 4d) $$</p> <p>$$ 7a + 63d = 15a + 60d $$</p> <p>$$ 63d - 60d = 15a - 7a $$</p> <p>$$ 3d = 8a \quad .........\text{(2)} $$</p> <p>Now we have two equations (1) and (2):</p> <p>$$ 78 = 2a + 9d \quad \text{(1)} $$</p> <p>$$ 3d = 8a \quad \text{(2)} $$</p> <p>We can solve these equations simultaneously.</p> <p>From equation (2):</p> <p>$$ d = \frac{8}{3}a $$</p> <p>Plugging this back into (1):</p> <p>$$ 78 = 2a + 9\left(\frac{8}{3}a\right) $$</p> <p>$$ 78 = 2a + 24a $$</p> <p>$$ 78 = 26a $$</p> <p>$$ a = 3 $$</p> <p>Now we can find $d$:</p> <p>$$ d = \frac{8}{3}a $$</p> <p>$$ d = \frac{8}{3} \times 3 $$</p> <p>$$ d = 8 $$</p> <p>Now we can find $S_{15}$ and $S_5$ using the formula for the sum of an AP.</p> <p>For $S_{15}$:</p> <p>$$ S_{15} = \frac{15}{2} (2 \cdot 3 + (15-1) \cdot 8) $$</p> <p>$$ S_{15} = \frac{15}{2} (6 + 14 \cdot 8) $$</p> <p>$$ S_{15} = \frac{15}{2} (6 + 112) $$</p> <p>$$ S_{15} = \frac{15}{2} \cdot 118 $$</p> <p>$$ S_{15} = 15 \cdot 59 $$</p> <p>$$ S_{15} = 885 $$</p> <p>For $S_5$:</p> <p>$$ S_5 = \frac{5}{2} (2 \cdot 3 + (5-1) \cdot 8) $$</p> <p>$$ S_5 = \frac{5}{2} (6 + 4 \cdot 8) $$</p> <p>$$ S_5 = \frac{5}{2} (6 + 32) $$</p> <p>$$ S_5 = \frac{5}{2} \cdot 38 $$</p> <p>$$ S_5 = 5 \cdot 19 $$</p> <p>$$ S_5 = 95 $$</p> <p>The difference $S_{15} - S_{5}$ is:</p> <p>$$ S_{15} - S_{5} = 885 - 95 $$</p> <p>$$ S_{15} - S_{5} = 790 $$</p> <p>Therefore, the correct answer is Option C, which is 790.</p>
mcq
jee-main-2024-online-1st-february-evening-shift
lsapy2m8
maths
sequences-and-series
arithmetic-progression-(a.p)
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to ___________.
[]
null
6699
<p>To find the common terms in the two given arithmetic progressions (AP), we need to first identify the common difference for each sequence and then find the sequence that represents their overlap by employing the concept of least common multiple (LCM). <p>The first AP is:</p></p> <p>$$3, 7, 11, 15, \ldots, 403$$</p> <p>The common difference ($d_1$) for the first AP can be calculated by subtracting the first term from the second term:</p> <p>$$d_1 = 7 - 3 = 4$$</p> <p>The second AP is:</p> <p>$$2, 5, 8, 11, \ldots, 404$$</p> <p>The common difference ($d_2$) for the second AP is:</p> <p>$$d_2 = 5 - 2 = 3$$</p> <p>To find the terms common to both sequences, we need to find a term that appears in both sequences. Any common term must be of the form $3 + 4k$ and $2 + 3l$ for some integers $k$ and $l$. We want to find when these two forms will give us the same number, so we set them equal to each other:</p> <p>$$3 + 4k = 2 + 3l$$</p> <p>Rearranging the terms gives us:</p> <p>$$4k - 3l = 2 - 3$$</p> <p>This simplifies to:</p> <p>$$4k - 3l = -1 ....... (1)$$</p> <p>The solutions to equation $(1)$ will give us the common terms. Notice this is a Diophantine equation (A Diophantine equation is a polynomial equation, usually with two or more variables,) and has an infinite number of solutions. Let's find one such solution. We can see that:</p> <p>$$k = 1 \quad \text{yields} \quad 4(1) - 3l = -1 \implies 4 - 3l = -1 \implies 3l = 5 \implies l = 1\frac{2}{3}$$</p> <p>This is not an integer solution for $l$, so $k = 1$ does not work. Trying $k = 2$ gives:</p> <p>$$4(2) - 3l = -1 \implies 8 - 3l = -1 \implies 3l = 9 \implies l = 3$$</p> <p>Now we've found integers $k = 2$ and $l = 3$ that satisfy the equation. The corresponding term in both sequences would be:</p> <p>$$3 + 4(2) = 3 + 8 = 11 \quad \text{and} \quad 2 + 3(3) = 2 + 9 = 11$$</p> <p>Since $11$ is a common term, we can assert that every common term in both APs will be of the form $11 + m(4 \times 3)$, where $m$ is a non-negative integer, and $4 \times 3 = 12$ is the LCM of the common differences of the two APs. Thus, the general form for the common terms would be:</p> <p>$$11 + 12m$$</p> <p>Now we are to find all terms that are common up to $403$ in the first sequence and up to $404$ in the second sequence. Because the first sequence doesn't exceed $403$, we'll use this as our limit:</p> <p>$$11 + 12m \leq 403$$</p> <p>To find the largest possible integer value for $m$, we solve the inequality:</p> <p>$$12m \leq 403 - 11$$</p> <p>$$12m \leq 392$$</p> <p>$$m \leq 32\frac{2}{3}$$</p> <p>Since $m$ has to be an integer, the largest possible value for $m$ is $32$. Therefore, the common terms are generated by $m = 0, 1, 2, \ldots, 32$. There are $32 + 1 = 33$ terms in total. <p>We will now sum these up. The sum of an AP is given by the formula:</p></p> <p>$$S = \frac{n}{2}(a_1 + a_n)$$</p> <p>Where $S$ is the sum, $n$ is the number of terms, $a_1$ is the first term, and $a_n$ is the last term. Using the formula:</p> <p>$$S = \frac{33}{2}(11 + (11 + 12 \times 32))$$</p> <p>$$S = \frac{33}{2}(11 + 11 + 384)$$</p> <p>$$S = \frac{33}{2}(11 + 11 + 384)$$</p> <p>$$S = \frac{33}{2}(406)$$</p> <p>$$S = 33 \times 203$$</p> <p>$$S = 6699$$</p> <p>Therefore, the sum of the common terms in the two arithmetic progressions is 6699.</p>
integer
jee-main-2024-online-1st-february-morning-shift
lsbl2vr8
maths
sequences-and-series
arithmetic-progression-(a.p)
The number of common terms in the progressions <br/><br/>$4,9,14,19, \ldots \ldots$, up to $25^{\text {th }}$ term and <br/><br/>$3,6,9,12, \ldots \ldots$, up to $37^{\text {th }}$ term is :
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "7"}]
["D"]
null
<p>$$4,9,14,19, \ldots$$, up to $$25^{\text {th }}$$ term</p> <p>$$\mathrm{T}_{25}=4+(25-1) 5=4+120=124$$</p> <p>$$3,6,9,12, \ldots$$, up to $$37^{\text {th }}$$ term</p> <p>$$\mathrm{T}_{37}=3+(37-1) 3=3+108=111$$</p> <p>Common difference of $$\mathrm{I}^{\text {st }}$$ series $$\mathrm{d}_1=5$$</p> <p>Common difference of $$\mathrm{II}^{\text {nd }}$$ series $$\mathrm{d}_2=3$$</p> <p>First common term $$=9$$, and their common difference $$=15\left(\operatorname{LCM}\right.$$ of $$\mathrm{d}_1$$ and $$\left.\mathrm{d}_2\right)$$ then common terms are $$9,24,39,54,69,84,99$$</p>
mcq
jee-main-2024-online-27th-january-morning-shift
jaoe38c1lscn8k0e
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>$$\text { The } 20^{\text {th }} \text { term from the end of the progression } 20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4} \text { is : }$$</p>
[{"identifier": "A", "content": "$$-115$$"}, {"identifier": "B", "content": "$$-100$$"}, {"identifier": "C", "content": "$$-110$$"}, {"identifier": "D", "content": "$$-118$$"}]
["A"]
null
<p>$$20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots,-129 \frac{1}{4}$$</p> <p>This is A.P. with common difference</p> <p>$$\begin{aligned} & d_1=-1+\frac{1}{4}=-\frac{3}{4} \\ & -129 \frac{1}{4}, \ldots \ldots \ldots \ldots . . .19 \frac{1}{4}, 20 \end{aligned}$$</p> <p>This is also A.P. $$\mathrm{a}=-129 \frac{1}{4}$$ and $$\mathrm{d}=\frac{3}{4}$$</p> <p>Required term $$=$$</p> <p>$$\begin{aligned} & -129 \frac{1}{4}+(20-1)\left(\frac{3}{4}\right) \\ & =-129-\frac{1}{4}+15-\frac{3}{4}=-115 \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lseyi8z2
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>In an A.P., the sixth term $$a_6=2$$. If the product $$a_1 a_4 a_5$$ is the greatest, then the common difference of the A.P. is equal to</p>
[{"identifier": "A", "content": "$$\\frac{2}{3}$$\n"}, {"identifier": "B", "content": "$$\\frac{5}{8}$$\n"}, {"identifier": "C", "content": "$$\\frac{3}{2}$$\n"}, {"identifier": "D", "content": "$$\\frac{8}{5}$$"}]
["D"]
null
<p>$$\begin{aligned} &amp; a_6=2 \Rightarrow a+5 d=2 \\ &amp; a_1 a_4 a_5=a(a+3 d)(a+4 d) \\ &amp; =(2-5 d)(2-2 d)(2-d) \\ &amp; f(d)=8-32 d+34 d^2-20 d+30 d^2-10 d^3 \\ &amp; f^{\prime}(d)=-2(5 d-8)(3 d-2) \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt2xo2gn/47c8e21d-8001-480c-b87e-4bf1dfc70a37/1fd43f80-d4a5-11ee-bdd1-01c80c3e2d9a/file-1lt2xo2go.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt2xo2gn/47c8e21d-8001-480c-b87e-4bf1dfc70a37/1fd43f80-d4a5-11ee-bdd1-01c80c3e2d9a/file-1lt2xo2go.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Morning Shift Mathematics - Sequences and Series Question 25 English Explanation"></p> <p>$$\mathrm{d}=\frac{8}{5}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsfkmm1m
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>If $$\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$$ are in an A.P. and $$\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c} -\log _e$$ a are also in an A.P, then $$a: b: c$$ is equal to</p>
[{"identifier": "A", "content": "$$6: 3: 2$$\n"}, {"identifier": "B", "content": "$$9: 6: 4$$\n"}, {"identifier": "C", "content": "$$25: 10: 4$$\n"}, {"identifier": "D", "content": "$$16: 4: 1$$"}]
["B"]
null
<p>$$\log _{\mathrm{e}} \mathrm{a}, \log _{\mathrm{e}} \mathrm{b}, \log _{\mathrm{e}} \mathrm{c}$$ are in A.P.</p> <p>$$\therefore \mathrm{b}^2=\mathrm{ac}$$ ..... (i)</p> <p>Also</p> <p>$$\begin{aligned} & \log _e\left(\frac{a}{2 b}\right), \log _e\left(\frac{2 b}{3 c}\right), \log _e\left(\frac{3 c}{a}\right) \text { are in A.P. } \\ & \left(\frac{2 b}{3 c}\right)^2=\frac{a}{2 b} \times \frac{3 c}{a} \\ & \frac{b}{c}=\frac{3}{2} \end{aligned}$$</p> <p>Putting in eq. (i) $$b^2=a \times \frac{2 b}{3}$$</p> <p>$$\begin{aligned} & \frac{\mathrm{a}}{\mathrm{b}}=\frac{3}{2} \\ & \mathrm{a}: \mathrm{b}: \mathrm{c}=9: 6: 4 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
1lsgb2052
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$S_n$$ denote the sum of first $$n$$ terms of an arithmetic progression. If $$S_{20}=790$$ and $$S_{10}=145$$, then $$\mathrm{S}_{15}-\mathrm{S}_5$$ is :</p>
[{"identifier": "A", "content": "405"}, {"identifier": "B", "content": "390"}, {"identifier": "C", "content": "410"}, {"identifier": "D", "content": "395"}]
["D"]
null
<p>$$\begin{aligned} &\begin{aligned} & \mathrm{S}_{20}=\frac{20}{2}[2 \mathrm{a}+19 \mathrm{~d}]=790 \\ & 2 \mathrm{a}+19 \mathrm{~d}=79 \quad \text{.... (1)}\\ & \mathrm{~S}_{10}=\frac{10}{2}[2 \mathrm{a}+9 \mathrm{~d}]=145 \\ & 2 \mathrm{a}+9 \mathrm{~d}=29 \quad \text{.... (2)} \end{aligned}\\ &\text { From (1) and (2) } a=-8, d=5 \end{aligned}$$</p> <p>$$\begin{aligned} & S_{15}-S_5=\frac{15}{2}[2 a+14 d]-\frac{5}{2}[2 a+4 d] \\ & =\frac{15}{2}[-16+70]-\frac{5}{2}[-16+20] \\ & =405-10 \\ & =395 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
lv3vegci
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>An arithmetic progression is written in the following way</p> <p><img src=""/></p> <p>The sum of all the terms of the 10<sup>th</sup> row is _________.</p>
[]
null
1505
<p>First term is each row form pattern</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw4ntqyk/94850946-5efa-47dd-aab7-199c5589db35/d9f12fc0-10fc-11ef-aaa0-17ca36a32505/file-1lw4ntqyl.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw4ntqyk/94850946-5efa-47dd-aab7-199c5589db35/d9f12fc0-10fc-11ef-aaa0-17ca36a32505/file-1lw4ntqyl.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Evening Shift Mathematics - Sequences and Series Question 11 English Explanation"></p> <p>$$\begin{aligned} &amp; \Rightarrow T_n=a n^2+b n+c \\ &amp; \Rightarrow T_1=a+b+c=2 \\ &amp; \Rightarrow T_2=4 a+2 b+c=5 \\ &amp; \Rightarrow T_3=9 a+3 b+c=11 \\ &amp; \Rightarrow 3 a+b=3 \\ &amp; 5 a+b=6 \\ &amp; \Rightarrow 2 a=3 \Rightarrow a=\frac{3}{2}, \quad b=\frac{-3}{2} \Rightarrow c=2 \\ &amp; \Rightarrow T_n=\frac{3}{2} n^2-\frac{3(n)}{2}+2 \Rightarrow \frac{3 n^2-3 n+4}{2} \\ &amp; T_{10}=\frac{3 \times 100-3 \times 10+4}{2}=\frac{274}{2}=137 \end{aligned}$$</p> <p>Terms in $$10^{\text {th }}$$ row is 10 with 3 differences</p> <p>$$\begin{aligned} &amp; \Rightarrow 137,140,143 \ldots \\ &amp; \Rightarrow \quad S_{10}=\frac{10}{2}(2 \times 137+(10-1) \times 3) \\ &amp; =5(274+27)=5 \times 301=1505 \end{aligned}$$</p>
integer
jee-main-2024-online-8th-april-evening-shift
lv7v4g4n
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>Let $$a_1, a_2, a_3, \ldots$$ be in an arithmetic progression of positive terms.</p> <p>Let $$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$$.</p> <p>If $$\mathrm{A}_3=-153, \mathrm{~A}_5=-435$$ and $$\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$$, then $$\mathrm{a}_{17}-\mathrm{A}_7$$ is equal to ________.</p>
[]
null
910
<p>Let $$a_n=a+(n-1) d \forall n \in N$$</p> <p>$$\begin{aligned} A_k & =\left(a_1^2-a_2^2\right)+\left(a_3^2-a_4^2\right)+\ldots a_{2 k-1}^2-a_{2 k}^2 \\ & =(-d)\left(a_1+a_2+\ldots+a_{2 k}\right) \\ & A_k=(-d k)(2 a+(2 k-1) d) \\ \Rightarrow & A_3=(-3 d)(2 a+5 d)=-153 \\ \Rightarrow & d(2 a+5 d)=51 \quad \text{... (i)}\\ & A_5=(-5 d)(2 a+9 d)=-435 \end{aligned}$$</p> <p>$$\begin{aligned} \Rightarrow & d(2 a+9 d)=87 \\ \Rightarrow & 4 d^2=36 \Rightarrow d= \pm 3(d=3 \text { positive terms }) \\ \Rightarrow & 3(2 a+27)=87 \\ \Rightarrow & 2 a=29-27 \\ \Rightarrow & a=1 \\ & a_{17}-A_7=(a+16 d)-(-7 d)(2+13 d) \\ & =49+7 \times 3(2+39) \\ & =49+21 \times 41=910 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-morning-shift
lv9s20ci
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>For $$x \geqslant 0$$, the least value of $$\mathrm{K}$$, for which $$4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$$ are three consecutive terms of an A.P., is equal to :</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "16"}]
["A"]
null
<p>To determine the least value of $$\mathrm{K}$$ for which the terms $$4^{1+x} + 4^{1-x}, \frac{\mathrm{K}}{2}, 16^x + 16^{-x}$$ form an arithmetic progression (A.P.), we need to establish the relationship among these terms in an A.P.</p> <p>For three numbers to be in an arithmetic progression, the middle term must be the average of the other two terms. Therefore, we can write:</p> <p>$$ \frac{4^{1+x} + 4^{1-x} + 16^x + 16^{-x}}{2} = \frac{K}{2} $$</p> <p>First, simplify each term individually:</p> <p>1. Consider $$4^{1+x} + 4^{1-x}$$:</p> <p>$$4^{1+x} = 4 \cdot 4^x = 4 \cdot (2^2)^x = 4 \cdot 2^{2x} = 4 \cdot 2^{2x}$$</p> <p>and</p> <p>$$4^{1-x} = 4 \cdot 4^{-x} = 4 \cdot (2^2)^{-x} = 4 \cdot 2^{-2x} = 4 \cdot 2^{-2x}$$</p> <p>Thus,</p> <p>$$4^{1+x} + 4^{1-x} = 4 \cdot 2^{2x} + 4 \cdot 2^{-2x} = 4(2^{2x} + 2^{-2x})$$</p> <p>2. Consider $$16^x + 16^{-x}$$:</p> <p>$$16^x = (2^4)^x = 2^{4x}$$</p> <p>and</p> <p>$$16^{-x} = (2^4)^{-x} = 2^{-4x}$$</p> <p>Thus,</p> <p>$$16^x + 16^{-x} = 2^{4x} + 2^{-4x}$$</p> <p>3. Combine the terms and set up the equation:</p> <p>$$ \frac{4(2^{2x} + 2^{-2x}) + 2^{4x} + 2^{-4x}}{2} = \frac{K}{2} $$</p> <p>Multiply both sides by 2:</p> <p>$$ 4(2^{2x} + 2^{-2x}) + 2^{4x} + 2^{-4x} = K $$</p> <p>To find the least value of $$\mathrm{K}$$, let's assume $$x = 0$$ (since $$x$$ can range over non-negative values):</p> <p>For $$x = 0$$:</p> <p>$$4(2^{2 \cdot 0} + 2^{-2 \cdot 0}) + 2^{4 \cdot 0} + 2^{-4 \cdot 0}$$</p> <p>This simplifies to:</p> <p>$$4(2^0 + 2^0) + 2^0 + 2^0$$</p> <p>$$ = 4(1 + 1) + 1 + 1 $$</p> <p>$$ = 4 \cdot 2 + 1 + 1 $$</p> <p>$$ = 8 + 1 + 1 $$</p> <p>$$ = 10 $$</p> <p>Therefore, the least value of $$\mathrm{K}$$ that ensures the values form an arithmetic progression is $ 10 $. Hence, the correct option is:</p> <p>Option A: 10</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvb294px
maths
sequences-and-series
arithmetic-progression-(a.p)
<p>A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of $$\mathrm{m}$$ is equal to:</p>
[{"identifier": "A", "content": "125"}, {"identifier": "B", "content": "160"}, {"identifier": "C", "content": "150"}, {"identifier": "D", "content": "180"}]
["C"]
null
<p>To determine the value of $$\mathrm{m}$$, we need to formulate the problem using some basic concepts of arithmetic progression and work. Let's first understand the nature of the problem:</p> <p>Initially, there are $$\mathrm{m}$$ computers, and it is estimated that with these $$\mathrm{m}$$ computers, the assignment can be completed in 17 days.</p> <p>However, due to the crash of 4 computers every day starting from the second day onward, the total time taken extends by 8 days, making it 25 days in total.</p> <p>To begin with, let's define the total work (W) in terms of the number of computers and days:</p> <p>The total work (W) is given by:</p> <p>The amount of work completed each day with $$\mathrm{m}$$ computers for 17 days:</p> <p>$$W = 17m$$</p> <p>When computers crash, the number of working computers each day forms an arithmetic sequence. On the first day, there are $$\mathrm{m}$$ computers. On the second day, there are $$\mathrm{m} - 4$$ computers, on the third day, there are $$\mathrm{m} - 8$$ computers, and so on. We need to sum this series until 25 days are completed.</p> <p>This can be formulated as:</p> <p>Total work done over 25 days with decrement in the number of computers:</p> <p>$$W = m + (m - 4) + (m - 8) + \ldots + \left[m - 4 \times (n - 1)\right]$$</p> <p>where $$n$$ is the number of days. Here, $$n = 25$$.</p> <p>Notice that we form an arithmetic series where the first term (a) is $$\mathrm{m}$$ and the common difference (d) is -4. The sum of the first n terms of an arithmetic series is:</p> <p>$$S_n = \frac{n}{2} \left[ 2a + (n - 1)d \right]$$</p> <p>Plugging in the values:</p> <p>$$S_{25} = \frac{25}{2} \left[ 2m + (25 - 1)(-4) \right]$$</p> <p>$$S_{25} = \frac{25}{2} \left[ 2m - 96 \right]$$</p> <p>$$S_{25} = \frac{25}{2} \left[ 2m - 96 \right] = 25(m - 48)$$</p> <p>This work should be equivalent to the work calculated earlier, so:</p> <p>$$17m = 25(m - 48)$$</p> <p>Solving for $$\mathrm{m}$$:</p> <p>$$17m = 25m - 1200$$</p> <p>$$8m = 1200$$</p> <p>$$m = 150$$</p> <p>Thus, the value of $$\mathrm{m}$$ is equal to:</p> <p>Option C: 150</p>
mcq
jee-main-2024-online-6th-april-evening-shift
1l5w0vbmu
maths
sequences-and-series
arithmetico-geometric-progression
<p>Let for $$f(x) = {a_0}{x^2} + {a_1}x + {a_2},\,f'(0) = 1$$ and $$f'(1) = 0$$. If a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub> are in an arithmatico-geometric progression, whose corresponding A.P. has common difference 1 and corresponding G.P. has common ratio 2, then f(4) is equal to _____________.</p>
[]
null
2
<p>Given,</p> <p>$$f(x) = {a_0}{x^2} + {a_1}x + {a_2}$$</p> <p>$$f'(0) = 1$$</p> <p>$$f'(1) = 0$$</p> <p>a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub> are in A. G. P</p> <p>Common difference of $$AP = 1$$</p> <p>Common ratio of $$GP = 2$$</p> <p>A.P terms = a, a + 1, a + 2</p> <p>G.P terms = y, ry, r<sup>2</sup>y</p> <p>$$\therefore$$ AGP terms = ay, (a+1)ry, (a+2)r<sup>2</sup>y</p> <p>$$\therefore$$ $${a_0} = ay$$</p> <p>$${a_1} = (a + 1)ry = (a + 1)2y$$</p> <p>$${a_2} = (a + 2){r^2}y = (a + 2)4y$$</p> <p>Now, $$f'(x) = 2x{a_0} + {a_1}$$</p> <p>$$\therefore$$ $$f'(0) = {a_1} = 1$$</p> <p>and $$f'(1) = 2{a_0} + {a_1} = 0$$</p> <p>$$ \Rightarrow 2{a_0} + 1 = 0$$</p> <p>$$ \Rightarrow {a_0} = - {1 \over 2}$$</p> <p>$$\therefore$$ $$ay = - {1 \over 2}$$</p> <p>and $$(a + 1)2y = 1$$</p> <p>$$ \Rightarrow 2ay + 2y = 1$$</p> <p>$$ \Rightarrow 2 \times \left( { - {1 \over 2}} \right) + 2y = 1$$</p> <p>$$ \Rightarrow 2y = + \,2$$</p> <p>$$ \Rightarrow y = + \,1$$</p> <p>$$\therefore$$ $$a = - {1 \over 2}$$</p> <p>$$\therefore$$ $${a_2} = (a + 2)4y$$</p> <p>$$ = \left( { - {1 \over 2} + 2} \right) \times 4\,.\,1$$</p> <p>$$ = 6$$</p> <p>$$\therefore$$ $$f(x) = - {1 \over 2}{x^2} + x + 6$$</p> <p>$$\therefore$$ $$f(4) = - {1 \over 2}{(4)^2} + 4 + 6$$</p> <p>$$ = - 8 + 10$$</p> <p>$$ = 2$$</p>
integer
jee-main-2022-online-30th-june-morning-shift