question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1lgvqpf80
maths
sequences-and-series
arithmetico-geometric-progression
<p>Suppose $$a_{1}, a_{2}, 2, a_{3}, a_{4}$$ be in an arithmetico-geometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is $$\frac{49}{2}$$, then $$a_{4}$$ is equal to __________.</p>
[]
null
16
Since, common ratio of A.G.P. is 2 therefore A.G.P. can be taken as <br/><br/>$$ \begin{aligned} & \frac{(a-2 d)}{4}, \frac{(c-d)}{2}, a, 2(a+d), 4(a+2 d) \\\\ & \text { or } a_1, a_2, 2, a_3, a_4 \text { (Given) } \\\\ & \Rightarrow a=2 \end{aligned} $$ <br/><br/>also sum of thes A.G.P. is $\frac{49}{2}$ <br/><br/>$$ \begin{aligned} & \Rightarrow \frac{2-2 d}{4}+\frac{2-d}{2}+2+2(2+d)+4(2+2 d)=\frac{49}{2} \\\\ & \Rightarrow \frac{1}{4}[2-2 d+4-2 d+8+16+8 d+32+32 d]=\frac{49}{2} \\\\ & \Rightarrow 36 d+62=98 \end{aligned} $$ <br/><br/>$$ \Rightarrow 36 d=36 \Rightarrow d=1 $$ <br/><br/>Hence, $a_4=4(a+2 d)=4(2+2 \times 1)=16$
integer
jee-main-2023-online-10th-april-evening-shift
1lgypzf6s
maths
sequences-and-series
arithmetico-geometric-progression
<p>Let $$0 &lt; z &lt; y &lt; x$$ be three real numbers such that $$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$$ are in an arithmetic progression and $$x, \sqrt{2} y, z$$ are in a geometric progression. If $$x y+y z+z x=\frac{3}{\sqrt{2}} x y z$$ , then $$3(x+y+z)^{2}$$ is equal to ____________.</p>
[]
null
150
$\because \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. <br/><br/>$$ \Rightarrow \frac{1}{x}+\frac{1}{z}=\frac{2}{y} $$ ........... (i) <br/><br/>and $x, \sqrt{2} y, z$ are in G.P. <br/><br/>$$ \Rightarrow 2 y^2=x z $$ .......... (ii) <br/><br/>from (i), $\frac{2}{y}=\frac{x+z}{x z}=\frac{x+z}{2 y^2}$ <br/><br/>$$ \Rightarrow 4 y=x+z $$ <br/><br/>$$ \begin{aligned} & \text { Also, } x y+y z+z x=\frac{3}{\sqrt{2}} x y z \\\\ & y(4 y)+x z=\frac{3}{\sqrt{2}}\left(2 y^2\right) y \\\\ & \Rightarrow 4 y^2+2 y^2=3 \sqrt{2} y^3 \\\\ & \Rightarrow 6 y^2=3 \sqrt{2} y^3 \Rightarrow y=\sqrt{2} \\\\ & \therefore 3(x+y+z)^2=3(5 y)^2=3(5 \sqrt{2})^2 \\\\ & =150 \end{aligned} $$
integer
jee-main-2023-online-8th-april-evening-shift
lsblc3ma
maths
sequences-and-series
arithmetico-geometric-progression
If $8=3+\frac{1}{4}(3+p)+\frac{1}{4^2}(3+2 p)+\frac{1}{4^3}(3+3 p)+\cdots \cdots \infty$, then the value of $p$ is ____________.
[]
null
9
<p>$$8=\frac{3}{1-\frac{1}{4}}+\frac{p \cdot \frac{1}{4}}{\left(1-\frac{1}{4}\right)^2}$$</p> <p>$$\text { (sum of infinite terms of A.G.P }=\frac{a}{1-r}+\frac{d r}{(1-r)^2} \text { ) }$$</p> <p>$$\Rightarrow \frac{4 p}{9}=4 \Rightarrow p=9$$</p>
integer
jee-main-2024-online-27th-january-morning-shift
lv9s20lt
maths
sequences-and-series
arithmetico-geometric-progression
<p>If $$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$$ upto $$\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _e\left(\frac{a}{b}\right)$$, where a and b are integers with $$\operatorname{gcd}(a, b)=1$$, then $$\mathrm{11 a+18 b}$$ is equal to __________.</p>
[]
null
76
<p>$$\begin{aligned} & S=1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\ldots \infty \\\\ & =1+\frac{(1-\sqrt{2} / \sqrt{3})}{2}+\frac{(1-\sqrt{2} / \sqrt{3})^2}{6}+\frac{(1-\sqrt{2} / \sqrt{3})^3}{12}+\ldots \infty \end{aligned}$$</p> <p>$$\text { let } 1-\frac{\sqrt{2}}{\sqrt{3}}=a$$</p> <p>$$\begin{aligned} & S=1+\frac{a}{2}+\frac{a^2}{6}+\frac{a^3}{12}+\ldots \\\\ & =1+\left(1-\frac{1}{2}\right) a+\left(\frac{1}{2}-\frac{1}{3}\right) a^2+\left(\frac{1}{3}-\frac{1}{4}\right) a^3+\ldots \\\\ & =1+\left(a+\frac{a^2}{2}+\frac{a^3}{3} \ldots \infty\right)+\frac{1}{a}\left(\frac{-a^2}{2}-\frac{a^3}{3}-\frac{a^4}{4} \ldots \infty\right) \\\\ & =-\ln (1-a)+\frac{1}{a}\left(-a-\frac{a^2}{2}-\frac{a^3}{3} \ldots \infty\right)+2 \\\\ & =-\ln (1-a)+\frac{1}{a} \ln (1-a)+2 \\\\ & =2+\left(\frac{1}{a}-1\right) \ln (1-a) \\\\ & =2+\left(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}-1\right) \ln \left(1-1+\sqrt{\frac{2}{3}}\right) \\\\ & =2+\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{2} \ln \sqrt{\frac{2}{3}} \\\\ & =2+\left(\frac{\sqrt{6}+2}{1} \cdot \frac{1}{2} \ln \frac{2}{3}\right) \\\\ & \therefore 2+\left(\sqrt{\frac{3}{2}}+1\right) \ln \frac{2}{3} \\\\ & \therefore 11 a+18 b=76 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-evening-shift
lvc57uf2
maths
sequences-and-series
arithmetico-geometric-progression
<p>Let the first term of a series be $$T_1=6$$ and its $$r^{\text {th }}$$ term $$T_r=3 T_{r-1}+6^r, r=2,3$$, ............ $$n$$. If the sum of the first $$n$$ terms of this series is $$\frac{1}{5}\left(n^2-12 n+39\right)\left(4 \cdot 6^n-5 \cdot 3^n+1\right)$$, then $$n$$ is equal to ___________.</p>
[]
null
6
<p>$$\begin{aligned} & T_r=3 T_{r-1}+6^r \\ & \Rightarrow \text { solving homogenous part } \\ & T_r=3 T_{r-1} \\ & \Rightarrow x=3 \text { is the root } \end{aligned}$$</p> <p>$$\therefore T_r=a .3^r$$</p> <p>Solving for particular part</p> <p>$$\begin{aligned} & T_r=b .6^r \\ & b .6^r=3 b 6^{r-1}+6^r \\ & \Rightarrow 6 b=3 b+6 \\ & \Rightarrow 3 b=6 \\ & \Rightarrow b=2 \\ & T_r=a^n+a^p \\ & T_r=a 3^{b r}+2.6^r \quad \text{.... (i)} \\ & T_r=3 T_{r-1}+6^r \end{aligned}$$</p> <p>Putting $$r=2$$</p> <p>$$T_2=18+36=54 \quad \text{.... (ii)}$$</p> <p>Using equation (i) and (ii)</p> <p>$$\begin{aligned} & 54=9 a+72 \Rightarrow-18=9 a \Rightarrow a=-2 \\ & \therefore T_r=2 \cdot 6^r-2 \cdot 3^r=2\left(6^r-3^r\right) \\ & \sum_{r=1}^n T_r=2 \sum 6^r-2 \sum 3^r \\ & =2 \cdot 6 \frac{\left(6^n-1\right)}{5}-2 \cdot 3 \frac{\left(3^n-1\right)}{2} \\ & =\frac{3}{5}\left(4 \cdot 6^n-5 \cdot 3^n+1\right) \\ & \therefore n^2-12 n+39=3 \\ & n^2-12 n+36=0 \\ & (n-6)^2=0 \\ & \therefore n=6 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-morning-shift
jk3IWUpURQ7vO8z9
maths
sequences-and-series
geometric-progression-(g.p)
Fifth term of a GP is 2, then the product of its 9 terms is
[{"identifier": "A", "content": "256"}, {"identifier": "B", "content": "512 "}, {"identifier": "C", "content": "1024"}, {"identifier": "D", "content": "none of these"}]
["B"]
null
$$a{r^4} = 2$$ <br><br>$$a \times ar \times a{r^2} \times a{r^3} \times a{r^4} \times a{r^5} \times a{r^6} \times a{r^7} \times a{r^8}$$ <br><br>$$ = {a^9}{r^{36}} = {\left( {a{r^4}} \right)^9} = {2^9} = 512$$
mcq
aieee-2002
y3zqSDYlgLFRtylu
maths
sequences-and-series
geometric-progression-(g.p)
l, m, n are the $${p^{th}}$$, $${q^{th}}$$ and $${r^{th}}$$ term of a G.P all positive, $$then\,\left| {\matrix{ {\log \,l} &amp; p &amp; 1 \cr {\log \,m} &amp; q &amp; 1 \cr {\log \,n} &amp; r &amp; 1 \cr } } \right|\,equals$$
[{"identifier": "A", "content": "- 1"}, {"identifier": "B", "content": "2 "}, {"identifier": "C", "content": "1 "}, {"identifier": "D", "content": "0 "}]
["D"]
null
$$l = A{R^{p - 1}}$$ <br><br>$$ \Rightarrow \log 1 = \log A + \left( {p - 1} \right)\log R$$ <br><br>$$m = A{R^{q - 1}}$$ <br><br>$$ \Rightarrow \log m = \log A + \left( {q - 1} \right)\log R$$ <br><br>$$n = A{R^{r - 1}}$$ <br><br>$$ \Rightarrow \log n = \log A + \left( {r - 1} \right)\log R$$ <br><br>Now, $$\left| {\matrix{ {\log l} &amp; p &amp; 1 \cr {\log m} &amp; q &amp; 1 \cr {\log n} &amp; r &amp; 1 \cr } } \right|$$ <br><br>$$ = \left| {\matrix{ {\log A + \left( {p - 1} \right)\log R} &amp; p &amp; 1 \cr {\log A + \left( {q - 1} \right)\log R} &amp; q &amp; 1 \cr {\log A + \left( {r - 1} \right)\log R} &amp; r &amp; 1 \cr } } \right|$$ <br><br>Operating $${C_1} - \left( {\log R} \right){C_2} + \left( {\log R - \log A} \right){C_3}$$ <br><br>$$ = \left| {\matrix{ 0 &amp; p &amp; 1 \cr 0 &amp; q &amp; 1 \cr 0 &amp; r &amp; 1 \cr } } \right| = 0$$
mcq
aieee-2002
WsEUUUVc0kVsIZYL
maths
sequences-and-series
geometric-progression-(g.p)
Sum of infinite number of terms of GP is 20 and sum of their square is 100. The common ratio of GP is
[{"identifier": "A", "content": "5 "}, {"identifier": "B", "content": "3/5 "}, {"identifier": "C", "content": "8/5 "}, {"identifier": "D", "content": "1/5 "}]
["B"]
null
Let $$a=$$ first team of $$G.P.$$ and $$r=$$ common ratio of $$G.P.;$$ <br><br>Then $$G.P.$$ is $$a,$$ $$ar,$$ $$a{r^2}$$ <br><br>Given $${S_\infty } = 20 \Rightarrow {a \over {1 - r}} = 20$$ <br><br>$$ \Rightarrow a = 20\left( {1 - r} \right)....\left( i \right)$$ <br><br>Also $${a^2} + {a^2}{r^2} + {a^2}{r^4} + ...$$ to $$\infty = 100$$ <br><br>$$ \Rightarrow {{{a^2}} \over {1 - {r^2}}} = 100$$ <br><br>$$ \Rightarrow {a^2} = 100\left( {1 - r} \right)\left( {1 + r} \right)....\left( {ii} \right)$$ <br><br>From $$(i),$$ $${a^2} = 400{\left( {1 - r} \right)^2};$$ <br><br>From $$(ii),$$ we get $$100\left( {1 - r} \right)\left( {1 + r} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,\, = 400{\left( {1 - r} \right)^2}$$ <br><br>$$ \Rightarrow 1 + r = 4 - 4r$$ <br><br>$$ \Rightarrow 5r = 3$$ <br><br>$$ \Rightarrow r = 3/5.$$
mcq
aieee-2002
LpYUFoQKA1MVXCBb
maths
sequences-and-series
geometric-progression-(g.p)
In a geometric progression consisting of positive terms, each term equals the sum of the next two terns. Then the common ratio of its progression is equals
[{"identifier": "A", "content": "$${\\sqrt 5 }$$ "}, {"identifier": "B", "content": "$$\\,{1 \\over 2}\\left( {\\sqrt 5 - 1} \\right)$$ "}, {"identifier": "C", "content": "$${1 \\over 2}\\left( {1 - \\sqrt 5 } \\right)$$ "}, {"identifier": "D", "content": "$${1 \\over 2}\\sqrt 5 $$."}]
["B"]
null
Let the series $$a,ar,$$ $$a{r^2},........$$ are in geometric progression. <br><br>given, $$a = ar + a{r^2}$$ <br><br>$$ \Rightarrow 1 = r + {r^2}$$ <br><br>$$ \Rightarrow {r^2} + r - 1 = 0$$ <br><br>$$ \Rightarrow r = {{ - 1 \mp \sqrt {1 - 4 \times - 1} } \over 2}$$ <br><br>$$ \Rightarrow r = {{ - 1 \pm \sqrt 5 } \over 2}$$ <br><br>$$ \Rightarrow r = {{\sqrt 5 - 1} \over 2}$$ <br><br>[ As terms of $$G.P.$$ are positive <br><br>$$\therefore$$ $$r$$ should be positive]
mcq
aieee-2007
dsXDAGYKTZx0KfLz
maths
sequences-and-series
geometric-progression-(g.p)
The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
[{"identifier": "A", "content": "- 4"}, {"identifier": "B", "content": "- 12"}, {"identifier": "C", "content": "12"}, {"identifier": "D", "content": "4"}]
["B"]
null
As per question, <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,a + ar = 12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,a{r^2} + a{r^3} = 48\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>$$ \Rightarrow {{a{r^2}\left( {1 + r} \right)} \over {a\left( {1 + r} \right)}} = {{48} \over {12}}$$ <br><br>$$ \Rightarrow {r^2} = 4, \Rightarrow r = - 2$$ <br><br>(As terms are $$=+ve$$ and $$-ve$$ alternately) <br><br>$$ \Rightarrow a = - 12$$
mcq
aieee-2008
cbq6hH68znDtn5vz
maths
sequences-and-series
geometric-progression-(g.p)
Three positive numbers form an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are in A.P. then the common ratio of the G.P. is :
[{"identifier": "A", "content": "$$2 - \\sqrt 3 $$ "}, {"identifier": "B", "content": "$$2 + \\sqrt 3 $$ "}, {"identifier": "C", "content": "$$\\sqrt 2 + \\sqrt 3 $$ "}, {"identifier": "D", "content": "$$3 + \\sqrt 2 $$ "}]
["B"]
null
Let $$a,ar,a{r^2}$$ are in $$G.P.$$ <br><br>According to the question <br><br>$$a,2ar,a{r^2}$$ are in $$A.P.$$ <br><br>$$ \Rightarrow 2 \times 2ar = a + a{r^2}$$ <br><br>$$ \Rightarrow 4r = 1 + {r^2}$$ <br><br>$$ \Rightarrow {r^2} - 4r + 1 = 0$$ <br><br>$$r = {{4 \pm \sqrt {16 - 4} } \over 2} = 2 \pm \sqrt 3 $$ <br><br>Since $$r &gt; 1$$ <br><br>$$\therefore$$ $$\pi = 2 - \sqrt 3 $$ is rejected <br><br>Hence, $$r = 2 + \sqrt 3 $$
mcq
jee-main-2014-offline
t8Hle6z9XMRBLBrD
maths
sequences-and-series
geometric-progression-(g.p)
If the $${2^{nd}},{5^{th}}\,and\,{9^{th}}$$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :
[{"identifier": "A", "content": "1 "}, {"identifier": "B", "content": "$${7 \\over 4}$$ "}, {"identifier": "C", "content": "$${8 \\over 5}$$ "}, {"identifier": "D", "content": "$${4 \\over 3}$$"}]
["D"]
null
<p>The terms of an Arithmetic Progression (A.P.) are given by $a$, $a + d$, $a + 2d$, ..., where $a$ is the first term and $d$ is the common difference.</p> <p>Given that the 2nd, 5th and 9th terms of an A.P. are in Geometric Progression (G.P.), we can denote them as follows :</p> <p>2nd term = $a + d$</p> <p>5th term = $a + 4d$</p> <p>9th term = $a + 8d$</p> <p>For three numbers to be in G.P., the square of the middle term must be equal to the product of the other two terms. So,</p> <p>$(a + 4d)^2 = (a + d)(a + 8d)$</p> <p>Expanding and simplifying :</p> <p>$a^2 + 8ad + 16d^2 = a^2 + 9ad + 8d^2$</p> <p>$8ad + 16d^2 = a^2 + 9ad + 8d^2$</p> <p>$8ad - 9ad = 8d^2 - 16d^2$</p> <p>$-ad = -8d^2$</p> <p>$a = 8d$</p> <p>The common ratio of the G.P. is the ratio of the 5th term to the 2nd term, or $(a + 4d) / (a + d)$. Substituting $a = 8d$ gives :</p> <p>$(8d + 4d) / (8d + d) = 12d / 9d = 4 / 3$</p> <p>So, the common ratio of the G.P. is $4 / 3$. The answer is option D.</p>
mcq
jee-main-2016-offline
r0ajdDNJvO6Ela0EA6Qzo
maths
sequences-and-series
geometric-progression-(g.p)
If b is the first term of an infinite G.P. whose sum is five, then b lies in the interval :
[{"identifier": "A", "content": "($$-$$ $$\\infty $$, $$-$$10]"}, {"identifier": "B", "content": "($$-$$10, 0)"}, {"identifier": "C", "content": "(0, 10)"}, {"identifier": "D", "content": "[10, $$\\infty $$)"}]
["C"]
null
Sum of infinite G.P,<br><br> S = $$b \over {1-r}$$ where $$\left| r \right| &lt; 1$$<br><br> $$ \Rightarrow $$ 5 = $$b \over {1-r}$$<br><br> $$ \Rightarrow $$ 1 - r = $$b \over 5$$<br><br> $$ \Rightarrow $$ b = 5(1 - r)<br><br> as $$\left| r \right| &lt; 1$$<br><br> $$ \therefore $$ &nbsp;-1 &lt; r &lt; 1<br><br> $$ \Rightarrow $$ 1 &gt; -r &gt; -1<br><br> $$ \Rightarrow $$ 2 &gt; 1-r &gt; 0<br><br> $$ \Rightarrow $$ 10 &gt; 5(1-r) &gt; 0<br><br> $$ \Rightarrow $$ 10 &gt; b &gt; 0<br><br> $$ \therefore $$ interval of b = (0, 10)
mcq
jee-main-2018-online-15th-april-morning-slot
4jkMKIeMvDgkctyNVmMvG
maths
sequences-and-series
geometric-progression-(g.p)
If  a,   b,   c  are in A.P. and  a<sup>2</sup>,  b<sup>2</sup>,  c<sup>2</sup> are in G.P. such that <br/>a &lt; b &lt; c and   a + b + c = $${3 \over 4},$$ then the value of a is :
[{"identifier": "A", "content": "$${1 \\over 4} - {1 \\over {4\\sqrt 2 }}$$"}, {"identifier": "B", "content": "$${1 \\over 4} - {1 \\over {3\\sqrt 2 }}$$"}, {"identifier": "C", "content": "$${1 \\over 4} - {1 \\over {2\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${1 \\over 4} - {1 \\over {\\sqrt 2 }}$$"}]
["C"]
null
$$ \because $$$$\,\,\,$$a, b, c are in A.P. then <br><br>a + c = 2b <br><br>also it is given that, <br><br>a + b + c = $${{3 \over 4}}$$ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . .(1) <br><br>$$ \Rightarrow $$$$\,\,\,$$ 2b + b = $${{3 \over 4}}$$ &nbsp;&nbsp;$$ \Rightarrow $$$$\,\,\,$$ b = $${{1 \over 4}}$$&nbsp;&nbsp;. . . . .(2) <br><br>Again it is given that, a<sup>2</sup>, b<sup>2</sup>, c<sup>2</sup> are in G.P. then <br><br>(b<sup>2</sup>)<sup>2</sup> = a<sup>2</sup>c<sup>2</sup> &nbsp;&nbsp;$$ \Rightarrow $$&nbsp;&nbsp;ac = $$ \pm $$ $${{1 \over {16}}}$$ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . (3) <br><br>From (1), (2) and (3), we get; <br><br>$$a \pm {1 \over {16a}}$$ = $${1 \over 2}$$ &nbsp;$$ \Rightarrow $$&nbsp;16a<sup>2</sup> $$-$$ 8a $$ \pm $$ 1 = 0 <br><br><b>Case I </b>: 16a<sup>2</sup> $$-$$ 8a + 1 = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$a = $${1 \over 4}$$ (not possible as a &lt; b) <br><br><b>Case II:</b> 16a<sup>2</sup> $$-$$ 8a $$-$$ 1 = 0&nbsp; <br><br>$$ \Rightarrow $$$$\,\,\,$$ a = $${{8 \pm \sqrt {128} } \over {32}}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ a = $${1 \over 4} \pm {1 \over {2\sqrt 2 }}$$ <br><br>$$ \therefore $$$$\,\,\,$$ a = $${1 \over 4} - {1 \over {2\sqrt 2 }}$$ &nbsp;&nbsp;($$ \because $$ a &lt; b)
mcq
jee-main-2018-online-15th-april-evening-slot
m3xNcW58RdFGXh2LILIzd
maths
sequences-and-series
geometric-progression-(g.p)
If three distinct numbers a, b, c are in G.P. and the equations ax<sup>2</sup> + 2bx + c = 0 and dx<sup>2</sup> + 2ex + ƒ = 0 have a common root, then which one of the following statements is correct?
[{"identifier": "A", "content": "$$d \\over a$$, $$e \\over b$$, $$f \\over c$$ are in G.P."}, {"identifier": "B", "content": "d, e, \u0192 are in A.P"}, {"identifier": "C", "content": "d, e, \u0192 are in G.P"}, {"identifier": "D", "content": "$$d \\over a$$, $$e \\over b$$, $$f \\over c$$ are in A.P."}]
["D"]
null
Given, a, b, c are in G.P. <br><br>$$ \therefore $$ b<sup>2</sup> = ac <br><br>In this equation ax<sup>2</sup> + 2bx + c = 0, <br><br>Discrimant, D = 4b<sup>2</sup> - 4ac <br><br>= 4ac - 4ac <br><br>= 0 <br><br>Discrimant = 0 meand roots of the equation are equal. <br><br>Let both the roots of the equation = $$\alpha $$ <br><br>$$ \therefore $$ 2$$\alpha $$ = $$ - {{2b} \over a}$$ <br><br>$$ \Rightarrow $$ $$\alpha $$ = $$ - {b \over a}$$ <br><br>As both the equations ax<sup>2</sup> + 2bx + c = 0 and dx<sup>2</sup> + 2ex + ƒ = 0 have a common root, <br><br>so $$ - {b \over a}$$ is also root of the equation dx<sup>2</sup> + 2ex + ƒ = 0. <br><br>$$ \therefore $$ $$ - {b \over a}$$ satisfy the equation dx<sup>2</sup> + 2ex + ƒ = 0. <br><br>$$ \therefore $$ $$d{\left( { - {b \over a}} \right)^2} + 2e\left( { - {b \over a}} \right) + f = 0$$ <br><br>$$ \Rightarrow $$ $$d{b^2} - 2aeb + f{a^2} = 0$$ <br><br>$$ \Rightarrow $$ $$dac - 2aeb + f{a^2} = 0$$ <br><br>$$ \Rightarrow $$ $$dc - 2eb + fa = 0$$ <br><br>$$ \Rightarrow $$ $${{dc} \over {ac}} - {{2eb} \over {ac}} + {{fa} \over {ac}} = 0$$ <br><br>$$ \Rightarrow $$ $${{dc} \over {ac}} - {{2eb} \over {{b^2}}} + {{fa} \over {ac}} = 0$$ <br><br>$$ \Rightarrow $$ $${d \over a} - {{2e} \over b} + {f \over c} = 0$$ <br><br>$$ \Rightarrow $$ $${{2e} \over b} = {d \over a} + {f \over c}$$ <br><br>$$ \therefore $$ $$d \over a$$, $$e \over b$$, $$f \over c$$ are in A.P.
mcq
jee-main-2019-online-8th-april-evening-slot
jOGbNFYRMg8wfAaE013rsa0w2w9jx2b2rv6
maths
sequences-and-series
geometric-progression-(g.p)
Let $$a$$, b and c be in G.P. with common ratio r, where $$a$$ $$ \ne $$ 0 and 0 &lt; r $$ \le $$ $${1 \over 2}$$ . If 3$$a$$, 7b and 15c are the first three terms of an A.P., then the 4<sup>th</sup> term of this A.P. is :
[{"identifier": "A", "content": "$$a$$"}, {"identifier": "B", "content": "$${7 \\over 3}a$$"}, {"identifier": "C", "content": "5$$a$$"}, {"identifier": "D", "content": "$${2 \\over 3}a$$"}]
["A"]
null
a = a, b = ar and c = ar<sup>2</sup><br><br> 3a, 7b, 15c $$ \to $$ A.P.<br><br> 14b = 3a + 15c<br><br> 14(ar) = 3a + 15(ar<sup>2</sup>)<br><br> 15r<sup>2</sup> – 14r + 3 = 0<br><br> $$ \Rightarrow r = {1 \over 3},{3 \over 5}(rejected)$$<br><br> Common difference = 7b – 3a<br><br> = 7ar – 3a<br><br> $$ \Rightarrow $$ $${{7a} \over 3} - 3a = - {2 \over 3}a$$<br><br> 4<sup>th</sup> term is $$ \Rightarrow $$ $$15c - {2 \over 3}a = {{15} \over 9}a - {2 \over 3}a = a$$
mcq
jee-main-2019-online-10th-april-evening-slot
Fnn2C32pKxBkXMQh8M8iF
maths
sequences-and-series
geometric-progression-(g.p)
The product of three consecutive terms of a G.P. is 512. If 4 is added to each of the first and the second of these terms, the three terms now form an A.P. Then the sum of the original three terms of the given G.P. is :
[{"identifier": "A", "content": "36"}, {"identifier": "B", "content": "28"}, {"identifier": "C", "content": "32"}, {"identifier": "D", "content": "24"}]
["B"]
null
Let terms are $${a \over r},a,ar \to G.P$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$${a^3}$$ = 512 &nbsp;$$ \Rightarrow $$&nbsp;a = 8 <br><br>$${8 \over r} + 4,12,8r \to A.P.$$ <br><br>24 = $${8 \over r} + 4 + 8r$$ <br><br>r = 2, r = $${1 \over 2}$$ <br><br>r = 2(4, 8, 16) <br><br>r = $${1 \over 2}$$ (16, 8, 4) <br><br>Sum = 28
mcq
jee-main-2019-online-12th-january-morning-slot
JASdaZ2MclBZMbjgwCTi1
maths
sequences-and-series
geometric-progression-(g.p)
Let a<sub>1</sub>, a<sub>2</sub>, . . . . . ., a<sub>10</sub> be a G.P.    If $${{{a_3}} \over {{a_1}}} = 25,$$ then $${{{a_9}} \over {{a_5}}}$$ equals
[{"identifier": "A", "content": "5<sup>3</sup>"}, {"identifier": "B", "content": "2(5<sup>2</sup>)"}, {"identifier": "C", "content": "4(5<sup>2</sup>)"}, {"identifier": "D", "content": "5<sup>4</sup>"}]
["D"]
null
a<sub>1</sub>, a<sub>2</sub>, . . . . ., a<sub>10</sub> are in G.P., <br><br>Let the common ratio be r <br><br>$${{{a_3}} \over {{a_1}}} = 25 \Rightarrow {{{a_1}{r^2}} \over {{a_1}}} = 25 \Rightarrow {r^2} = 25$$ <br><br>$${{{a_9}} \over {{a_5}}} = {{{a_1}{r^8}} \over {{a_1}{r^4}}} = {r^4} = {5^4}$$
mcq
jee-main-2019-online-11th-january-morning-slot
bCZmTgEn73Gkw9JiQJNZG
maths
sequences-and-series
geometric-progression-(g.p)
The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $${{27} \over {19}}$$.Then the common ratio of this series is :
[{"identifier": "A", "content": "$${4 \\over 9}$$"}, {"identifier": "B", "content": "$${1 \\over 3}$$"}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${2 \\over 9}$$"}]
["C"]
null
$${a \over {1 - r}} = 3\,\,\,\,\,\,\,.....(1)$$ <br><br>$${{{a^3}} \over {1 - {r^3}}} = {{27} \over {19}} \Rightarrow {{27{{\left( {1 - r} \right)}^3}} \over {1 - {r^3}}} = {{27} \over {19}}$$ <br><br>$$ \Rightarrow 6{r^2} - 13r + 6 = 0$$ <br><br>$$ \Rightarrow r = {2 \over 3}\,\,$$ <br><br>as&nbsp;&nbsp;$$\left| r \right| &lt; 1$$
mcq
jee-main-2019-online-11th-january-morning-slot
ccIa2Uu7f8juJqgTd5Eiy
maths
sequences-and-series
geometric-progression-(g.p)
Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..... a<sub>10</sub> be in G.P. with a<sub>i</sub> &gt; 0 for i = 1, 2, ….., 10 and S be the set of pairs (r, k), r, k $$ \in $$ N (the set of natural numbers) for which <br/><br/>$$\left| {\matrix{ {{{\log }_e}\,{a_1}^r{a_2}^k} &amp; {{{\log }_e}\,{a_2}^r{a_3}^k} &amp; {{{\log }_e}\,{a_3}^r{a_4}^k} \cr {{{\log }_e}\,{a_4}^r{a_5}^k} &amp; {{{\log }_e}\,{a_5}^r{a_6}^k} &amp; {{{\log }_e}\,{a_6}^r{a_7}^k} \cr {{{\log }_e}\,{a_7}^r{a_8}^k} &amp; {{{\log }_e}\,{a_8}^r{a_9}^k} &amp; {{{\log }_e}\,{a_9}^r{a_{10}}^k} \cr } } \right|$$ $$=$$ 0. <br/><br/>Then the number of elements in S, is -
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "infinitely many"}]
["D"]
null
Apply <br><br>C<sub>3</sub> $$ \to $$ C<sub>3</sub><sub></sub> $$-$$ C<sub>2</sub> <br><br>C<sub>2</sub><sub></sub> $$ \to $$ C<sub>2</sub> $$-$$ C<sub>1</sub> <br><br>We get D = 0
mcq
jee-main-2019-online-10th-january-evening-slot
sIssaJfB1HmzkLOvnfDcl
maths
sequences-and-series
geometric-progression-(g.p)
If a, b, c be three distinct real numbers in G.P. and a + b + c = xb , then x <b>cannot</b> be
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "-3"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "-2"}]
["A"]
null
a, b, c are in G.P. <br><br>So, b = ar <br><br>and c = ar<sup>2</sup> <br><br>given &nbsp;&nbsp;a + b + c = xb <br><br>$$ \Rightarrow $$&nbsp;&nbsp;a + br + ar<sup>2</sup> = x(ar) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;1 + r + r<sup>2</sup> = xr <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x = 1 + r + $${1 \over r}$$ <br><br>let sum of r + $${1 \over r}$$ = M <br><br>$$ \therefore $$&nbsp;&nbsp;r<sup>2</sup> + 1 = Mr <br><br>$$ \Rightarrow $$&nbsp;&nbsp;r<sup>2</sup> $$-$$ Mr + 1 = 0 <br><br>this quadratic equation will have <br><br>real solution when discriminant is $$ \ge $$ 0 <br><br>$$ \therefore $$&nbsp;&nbsp;b<sup>2</sup> $$-$$ 4ac $$ \ge $$ 0 <br><br>M<sup>2</sup> $$-$$ 4.1.1 $$ \ge $$ 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;M<sup>2</sup> $$ \ge $$ 4 <br><br>M $$ \ge $$ 2 or M $$ \le $$ $$-$$ 2 <br><br>$$ \therefore $$&nbsp;&nbsp;M $$ \in $$ ($$-$$ $$ \propto $$, $$-$$ 2] $$ \cup $$ [2, $$ \propto $$) <br><br>As &nbsp;&nbsp;x = 1 + r + $${1 \over r}$$ <br><br>= 1 + M <br><br>$$ \therefore $$&nbsp;&nbsp;x $$ \in $$ ($$-$$ $$ \propto $$, $$-$$ 1] $$ \cup $$ [3, $$ \propto $$) <br><br>$$ \therefore $$&nbsp;&nbsp;x can't be 0, 1, 2.
mcq
jee-main-2019-online-9th-january-morning-slot
4x6CObgJQXDZB4of137k9k2k5fj4i71
maths
sequences-and-series
geometric-progression-(g.p)
Let $${a_1}$$ , $${a_2}$$ , $${a_3}$$ ,....... be a G.P. such that <br/>$${a_1}$$ &lt; 0, $${a_1}$$ + $${a_2}$$ = 4 and $${a_3}$$ + $${a_4}$$ = 16. <br/>If $$\sum\limits_{i = 1}^9 {{a_i}} = 4\lambda $$, then $$\lambda $$ is equal to:
[{"identifier": "A", "content": "171"}, {"identifier": "B", "content": "-171"}, {"identifier": "C", "content": "-513"}, {"identifier": "D", "content": "$${{511} \\over 3}$$"}]
["B"]
null
$${a_1}$$ + $${a_2}$$ = 4 <br><br>$$ \Rightarrow $$ $${a_1}$$ + $${a_1}$$r = 4 ...(1) <br><br>$${a_3}$$ + $${a_4}$$ = 16 <br><br>$$ \Rightarrow $$ $${a_1}$$r<sup>2</sup> + $${a_1}$$r<sup>3</sup> = 16 ...(2) <br><br>Doing (1) $$ \div $$ (2), we get <br><br>r = $$ \pm $$ 2 <br><br>If r = 2, then a<sub>1</sub> = $${4 \over 3}$$ <br><br>If r = -2, then a<sub>1</sub> = -4 <br><br>Given $${a_1}$$ &lt; 0 <br><br>$$ \therefore $$ a<sub>1</sub> = -4 <br><br>$$ \therefore $$ $$\sum\limits_{i = 1}^9 {{a_i}}$$ = $${{a\left( {{r^9} - 1} \right)} \over {r - 1}}$$ = 4$$\lambda $$ <br><br>$$ \Rightarrow $$ $${{ - 4\left( {{{\left( { - 2} \right)}^9} - 1} \right)} \over { - 2 - 1}}$$ = 4$$\lambda $$ <br><br>$$ \Rightarrow $$ $$\lambda $$ = -171
mcq
jee-main-2020-online-7th-january-evening-slot
94MqkDoVjiepQoAoLy7k9k2k5khy3qy
maths
sequences-and-series
geometric-progression-(g.p)
Let a<sub>n</sub> be the n<sup>th</sup> term of a G.P. of positive terms.<br/><br/> $$\sum\limits_{n = 1}^{100} {{a_{2n + 1}} = 200} $$ and $$\sum\limits_{n = 1}^{100} {{a_{2n}} = 100} $$, <br/><br/> then $$\sum\limits_{n = 1}^{200} {{a_n}} $$ is equal to :
[{"identifier": "A", "content": "150"}, {"identifier": "B", "content": "175"}, {"identifier": "C", "content": "225"}, {"identifier": "D", "content": "300"}]
["A"]
null
$$\sum\limits_{n = 1}^{100} {{a_{2n + 1}} = 200} $$ <br><br>$$ \Rightarrow $$ a<sub>3</sub> + a<sub>5</sub> + a<sub>7</sub> + .... + a<sub>201</sub> = 200 <br><br>$$ \Rightarrow $$ $$a{r^2}{{\left( {{r^{200}} - 1} \right)} \over {\left( {{r^2} - 1} \right)}}$$ = 200 ....(1) <br><br>$$\sum\limits_{n = 1}^{100} {{a_{2n}} = 100} $$ <br><br>$$ \Rightarrow $$ a<sub>2</sub> + a<sub>4</sub> + a<sub>6</sub> + ... + a<sub>200</sub> = 100 <br><br>$$ \Rightarrow $$ $$ar{{\left( {{r^{200}} - 1} \right)} \over {\left( {{r^2} - 1} \right)}}$$ = 100 ....(2) <br><br>dividing (1) by (2) <br><br>we get, r = 2 <br><br>adding both (1) and (2), we get <br><br>a<sub>2</sub> + a<sub>3</sub> + a<sub>4</sub> + a<sub>5</sub> + ..... + a<sub>201</sub> = 300 <br><br>$$ \Rightarrow $$ r(a<sub>1</sub> + a<sub>2</sub> + ..... + a<sub>200</sub>) = 300 <br><br>$$ \Rightarrow $$ a<sub>1</sub> + a<sub>2</sub> + ..... + a<sub>200</sub> = $${{300} \over r}$$ <br><br>$$ \Rightarrow $$ $$\sum\limits_{n = 1}^{200} {{a_n}} $$ = $${{300} \over 2}$$ = 150
mcq
jee-main-2020-online-9th-january-evening-slot
rg1izz7VKPhZqiYMlojgy2xukews3ll8
maths
sequences-and-series
geometric-progression-(g.p)
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in :
[{"identifier": "A", "content": "[-3, $$\\infty $$)"}, {"identifier": "B", "content": "(-$$ \\propto $$, 9]"}, {"identifier": "C", "content": "(-$$ \\propto $$, -9] $$ \\cup $$ [-3, $$\\infty $$)"}, {"identifier": "D", "content": "(-$$ \\propto $$, -3] $$ \\cup $$ [9, $$\\infty $$)"}]
["D"]
null
Let three terms of G.P. are $${a \over r}$$, a, ar <br><br>$$ \therefore $$ $$a\left( {{1 \over r} + 1 + r} \right)$$ = S ...(1) <br><br>and a<sup>3</sup> = 27 <br><br>$$ \Rightarrow $$ a = 3 <br><br>$$ \therefore $$ $$3\left( {{1 \over r} + 1 + r} \right)$$ = S <br><br>$$ \Rightarrow $$ $${{1 \over r} + r = {S \over 3} - 1}$$ <br><br>$$ \Rightarrow $$ As $${{1 \over r} + r \ge 2}$$ or $${{1 \over r} + r \le - 2}$$ <br><br>$$ \therefore $$ $${{S \over 3} - 1 \ge 2}$$ or $${{S \over 3} - 1 \le - 2}$$ <br><br>$$ \Rightarrow $$ $${{S \over 3} \ge 3}$$ or $${{S \over 3} \le - 1}$$ <br><br>$$ \Rightarrow $$ S $$ \ge $$ 9 or S$$ \le $$ -3 <br><br>$$ \therefore $$ S $$ \in $$ (-$$ \propto $$, -3] $$ \cup $$ [9, $$\infty $$)
mcq
jee-main-2020-online-2nd-september-morning-slot
jvyQgYboQpU3UgCLRYjgy2xukf0znhpx
maths
sequences-and-series
geometric-progression-(g.p)
The value of $${\left( {0.16} \right)^{{{\log }_{2.5}}\left( {{1 \over 3} + {1 \over {{3^2}}} + ....to\,\infty } \right)}}$$ is equal to ______.
[]
null
4
Given, $${\left( {0.16} \right)^{{{\log }_{2.5}}\left( {{1 \over 3} + {1 \over {{3^2}}} + ....to\,\infty } \right)}}$$ <br><br>As sum of GP upto infinity = $${a \over {1 - r}}$$ <br><br>$$ \therefore $$ $${1 \over 3} + {1 \over {{3^2}}} + {1 \over {{3^3}}} + ....\infty $$ = $${{{1 \over 3}} \over {1 - {1 \over 3}}}$$ = $${1 \over 2}$$ <br><br>$$ \therefore $$ $${\left( {0.16} \right)^{{{\log }_{2.5}}\left( {{1 \over 3} + {1 \over {{3^2}}} + ....to\,\infty } \right)}}$$ <br><br>= $${\left( {0.16} \right)^{{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}$$ <br><br>= $${\left( {{{16} \over {100}}} \right)^{{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}$$ <br><br>= $${\left( {{4 \over {10}}} \right)^{{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}$$ <br><br>= $${\left[ {{{\left( {{{10} \over 4}} \right)}^{ - 2}}} \right]^{{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}$$ <br><br>= $${\left[ {{{\left( {2.5} \right)}^{ - 2}}} \right]^{{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}$$ <br><br>= $${{{\left( {2.5} \right)}^{ - 2{{\log }_{2.5}}\left( {{1 \over 2}} \right)}}}$$ <br><br>= $${{{\left( {{1 \over 2}} \right)}^{ - 2}}}$$ = 4
integer
jee-main-2020-online-3rd-september-morning-slot
uGscaepOHl8oit0YBgjgy2xukfqat3me
maths
sequences-and-series
geometric-progression-(g.p)
If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is :
[{"identifier": "A", "content": "$${2 \\over {13}}\\left( {{3^{50}} - 1} \\right)$$"}, {"identifier": "B", "content": "$${1 \\over {13}}\\left( {{3^{50}} - 1} \\right)$$"}, {"identifier": "C", "content": "$${1 \\over {26}}\\left( {{3^{49}} - 1} \\right)$$"}, {"identifier": "D", "content": "$${1 \\over {26}}\\left( {{3^{50}} - 1} \\right)$$"}]
["D"]
null
Let first term = a &gt; 0 <br><br>Common ratio = r &gt; 0 <br><br>ar + ar<sup>2</sup> + ar<sup>3</sup> = 3 ....(i) <br><br>ar<sup>5</sup> + ar<sup>6</sup> + ar<sup>7</sup> = 243 ....(ii) <br><br>$$ \Rightarrow $$ r<sup>4</sup>(ar + ar<sup>2</sup> + ar<sup>3</sup>) = 243 <br><br>$$ \Rightarrow $$ r<sup>4</sup>(3) = 243 <br><br>$$ \Rightarrow $$ r = 3 as r &gt; 0 <br><br>from (i) <br><br>3a + 9a + 27a = 3 <br><br>$$ \Rightarrow $$ a = $${1 \over {13}}$$ <br><br>$$ \therefore $$ S<sub>50</sub> = $${{a\left( {{r^{50}} - 1} \right)} \over {\left( {r - 1} \right)}}$$ <br><br>= $${1 \over {26}}\left( {{3^{50}} - 1} \right)$$
mcq
jee-main-2020-online-5th-september-evening-slot
eCdigtUaSTPW33VdAAjgy2xukfuv26o5
maths
sequences-and-series
geometric-progression-(g.p)
Let a , b, c , d and p be any non zero distinct real numbers such that <br/>(a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup>)p<sup>2</sup> – 2(ab + bc + cd)p + (b<sup>2</sup> + c<sup>2</sup> + d<sup>2</sup>) = 0. Then :
[{"identifier": "A", "content": "a, c, p are in G.P."}, {"identifier": "B", "content": "a, b, c, d are in G.P."}, {"identifier": "C", "content": "a, b, c, d are in A.P. "}, {"identifier": "D", "content": "a, c, p are in A.P."}]
["B"]
null
(a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup>)p<sup>2</sup> – 2(ab + bc + cd)p + (b<sup>2</sup> + c<sup>2</sup> + d<sup>2</sup>) = 0 <br><br>$$ \Rightarrow $$ (a<sup>2</sup>p<sup>2</sup> + 2abp + b<sup>2</sup> ) + (b<sup>2</sup>p<sup>2</sup> + 2bcp + c<sup>2</sup> ) + (c<sup>2</sup> p<sup>2</sup> + 2cdp + d<sup>2</sup>) = 0 <br><br>$$ \Rightarrow $$ (ab + b)<sup>2</sup> + (bp + c)<sup>2</sup> + (cp + d)<sup>2</sup> = 0 <br><br><b>Note :</b> If sum of two or more positive quantity is zero then they are all zero. <br><br>$$ \therefore $$ ap + b = 0 and bp + c = 0 and cp + d = 0 <br><br>p = $$ - {b \over a}$$ = $$ - {c \over b}$$ = $$ - {d \over c}$$ <br><br>or $${b \over a}$$ = $${c \over b}$$ = $${d \over c}$$ <br><br>$$ \therefore $$ a, b, c, d are in G.P.
mcq
jee-main-2020-online-6th-september-morning-slot
C38geiuYcGLB2P3ZAY1klrmzqlk
maths
sequences-and-series
geometric-progression-(g.p)
The sum of first four terms of a geometric progression (G. P.) is $${{65} \over {12}}$$ and the sum of their respective reciprocals is $${{65} \over {18}}$$. If the product of first three terms of the G.P. is 1, and the third term is $$\alpha$$, then 2$$\alpha$$ is _________.
[]
null
3
Let the terms are $$a,ar,a{r^2},a{r^3}$$<br><br>$$a + ar + a{r^2} + a{r^3} = {{65} \over {12}}$$ ..........(1)<br><br>$${1 \over a} + {1 \over {ar}} + {1 \over {a{r^2}}} + {1 \over {a{r^3}}} = {{65} \over {18}}$$<br><br>$${1 \over a}\left( {{{{r^3} + {r^2} + r + 1} \over {{r^3}}}} \right) = {{65} \over {18}}$$ ...............(2)<br><br>Doing $${{(1)} \over {(2)}},$$ <br><br>$${a^2}{r^3} = {{18} \over {12}} = {3 \over 2}$$<br><br>Also given, $${a^3}{r^3} = 1 \Rightarrow a\left( {{3 \over 2}} \right) = 1 \Rightarrow a = {2 \over 3}$$<br><br>$${4 \over 9}{r^3} = {3 \over 2} \Rightarrow {r^3} = {{{3^3}} \over {{2^3}}} \Rightarrow r = {3 \over 2}$$<br><br>$$\alpha = a{r^2} = {2 \over 3}.{\left( {{3 \over 2}} \right)^2} = {3 \over 2}$$<br><br>$$2\alpha = 3$$
integer
jee-main-2021-online-24th-february-evening-slot
qJBoOi84bbZpOZlOUr1kls5n6t7
maths
sequences-and-series
geometric-progression-(g.p)
Let A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, ....... be squares such that for each n $$ \ge $$ 1, the length of the side of A<sub>n</sub> equals the length of diagonal of A<sub>n+1</sub>. If the length of A<sub>1</sub> is 12 cm, then the smallest value of n for which area of A<sub>n</sub> is less than one, is __________.
[]
null
9
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266517/exam_images/rfwj0y3zp4ddisjyhq5w.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th February Morning Shift Mathematics - Sequences and Series Question 146 English Explanation"> <br><br>$$ \therefore $$ Side lengths are in G.P.<br><br>$${T_n} = {{12} \over {{{\left( {\sqrt 2 } \right)}^{n - 1}}}}$$<br><br>$$ \therefore $$ Area $$ = {{144} \over {{2^{n - 1}} }}$$ &lt; 1<br><br>$$ \Rightarrow {2^{n - 1}} &gt; 144$$<br><br>Smallest n = 9
integer
jee-main-2021-online-25th-february-morning-slot
9AKsFRmmitCwyDhceD1kluhfa4b
maths
sequences-and-series
geometric-progression-(g.p)
In an increasing geometric series, the sum of the second and the sixth term is $${{25} \over 2}$$ and the product of the third and fifth term is 25. Then, the sum of 4<sup>th</sup>, 6<sup>th</sup> and 8<sup>th</sup> terms is equal to :
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "32"}, {"identifier": "C", "content": "26"}, {"identifier": "D", "content": "35"}]
["D"]
null
a, ar, ar<sup>2</sup>, .....<br><br>$${T_2} + {T_6} = {{25} \over 2} \Rightarrow ar(1 + {r^4}) = {{25} \over 2}$$<br><br>$${a^2}{r^2}{(1 + {r^4})^2} = {{625} \over 4}$$ .... (1)<br><br>$${T_3}.{T_5} = 25 \Rightarrow (a{r^2})(a{r^4}) = 25$$<br><br>$${a^2}{r^6} = 25$$ .....(2)<br><br>On dividing (1) by (2)<br><br>$${{{{(1 + {r^4})}^2}} \over {{r^4}}} = {{25} \over 4}$$<br><br>$$4{r^8} - 14{r^4} + 4 = 0$$<br><br>$$(4{r^4} - 1)({r^4} - 4) = 0$$<br><br>$${r^4} = {1 \over 4},4 \Rightarrow {r^4} = 4$$ (an increasing geometric series)<br><br>$${a^2}{r^6} = 25 \Rightarrow {(a{r^3})^2} = 25$$<br><br>$${T_4} + {T_6} + {T_8} = a{r^3} + a{r^5} + a{r^7}$$<br><br>$$ = a{r^3}(1 + {r^2} + {r^4})$$<br><br>$$ = 5(1 + 2 + 4) = 35$$
mcq
jee-main-2021-online-26th-february-morning-slot
y5OVsMxprZsXF3XuT31kmhzkrrq
maths
sequences-and-series
geometric-progression-(g.p)
Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to ___________.
[]
null
3
A.P. from the set will be 11, 16, 21, 26 ..... <br><br>G.P. from the set will be 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 ..... <br><br>So common terms are 16, 256, 4096.
integer
jee-main-2021-online-16th-march-morning-shift
SVaD9jBaTrJAspxagr1kmizc846
maths
sequences-and-series
geometric-progression-(g.p)
Let $${1 \over {16}}$$, a and b be in G.P. and $${1 \over a}$$, $${1 \over b}$$, 6 be in A.P., where a, b &gt; 0. Then 72(a + b) is equal to ___________.
[]
null
14
$${a^2} = {b \over {16}}$$ and $${2 \over b} = {1 \over a} + 6$$<br><br>Solving, we get $$a = {1 \over {12}}$$ or $$a = - {1 \over 4}$$ [rejected]<br><br>if $$a = {1 \over {12}} \Rightarrow b = {1 \over 9}$$<br><br>$$ \therefore $$ $$72(a + b) = 72\left( {{1 \over {12}} + {1 \over 9}} \right) = 14$$
integer
jee-main-2021-online-16th-march-evening-shift
1ktbfqwpt
maths
sequences-and-series
geometric-progression-(g.p)
If the sum of an infinite GP a, ar, ar<sup>2</sup>, ar<sup>3</sup>, ....... is 15 and the sum of the squares of its each term is 150, then the sum of ar<sup>2</sup>, ar<sup>4</sup>, ar<sup>6</sup>, ....... is :
[{"identifier": "A", "content": "$${5 \\over 2}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${25 \\over 2}$$"}, {"identifier": "D", "content": "$${9 \\over 2}$$"}]
["B"]
null
Sum of infinite terms :<br><br>$${a \over {1 - r}} = 15$$ ..... (i)<br><br>Series formed by square of terms :<br><br>a<sup>2</sup>, a<sup>2</sup>r<sup>2</sup>, a<sup>2</sup>r<sup>4</sup>, a<sup>2</sup>r<sup>6</sup> .......<br><br>Sum = $${{{a^2}} \over {1 - {r^2}}} = 150$$<br><br>$$ \Rightarrow {a \over {1 - r}}.{a \over {1 + r}} = 150 \Rightarrow 15.{a \over {1 + r}} = 150$$<br><br>$$ \Rightarrow {a \over {1 + r}} = 10$$ ...... (ii)<br><br>by (i) and (ii), a = 12; r = $${1 \over 5}$$<br><br>Now, series : ar<sup>2</sup>, ar<sup>4</sup>, ar<sup>6</sup><br><br>Sum = $${{a{r^2}} \over {1 - {r^2}}} = {{12.\left( {{1 \over {25}}} \right)} \over {1 - {1 \over {25}}}} = {1 \over 2}$$
mcq
jee-main-2021-online-26th-august-morning-shift
1ktd3ojty
maths
sequences-and-series
geometric-progression-(g.p)
Let a<sub>1</sub>, a<sub>2</sub>, ......., a<sub>10</sub> be an AP with common difference $$-$$ 3 and b<sub>1</sub>, b<sub>2</sub>, ........., b<sub>10</sub> be a GP with common ratio 2. Let c<sub>k</sub> = a<sub>k</sub> + b<sub>k</sub>, k = 1, 2, ......, 10. If c<sub>2</sub> = 12 and c<sub>3</sub> = 13, then $$\sum\limits_{k = 1}^{10} {{c_k}} $$ is equal to _________.
[]
null
2021
$$a_{1}, a_{2}, a_{3}, \ldots, a_{10}$$ are in AP common difference $$=-3$$<br/><br/> $$b_{1}, b_{2}, b_{3}, \ldots, b_{10}$$ are in GP common ratio $$=2$$<br/><br/> Since, $$c_{k}=a_{k}+b_{k}, k=1,2,3 \ldots \ldots, 10$$<br/><br/> $$\therefore c_{2} =a_{2}+b_{2}=12$$<br/><br/> $$ c_{3} =a_{3}+b_{3}=13$$<br/><br/> Now, $$\mathrm{C}_{3}-\mathrm{C}_{2}=1$$<br/><br/> $$ \begin{array}{ll} \Rightarrow & \left(a_{3}-a_{2}\right)+\left(b_{3}-b_{2}\right) \neq 1 \Rightarrow-3+\left(2 b_{2}-b_{2}\right) \neq 1 \\ \Rightarrow & b_{2}=4 \\ \therefore & a_{2}=8 \end{array} $$<br/><br/> So, AP is $$11,8,5, \ldots$$. <br/><br/> Now, $$\sum_{k=1}^{10} C_{k}=\sum_{k=1}^{10} a_{k}+\sum_{k=1}^{10} b_{k}$$<br/><br/> $$ \begin{aligned} &=\left(\frac{10}{2}\right)[22+9(-3)]+2\left(\frac{2^{10}-1}{2-1}\right) \\ &=5(22-27)+2(1023)=2046-25 \\ &=2021 \end{aligned} $$
integer
jee-main-2021-online-26th-august-evening-shift
1ktipg9jo
maths
sequences-and-series
geometric-progression-(g.p)
Three numbers are in an increasing geometric progression with common ratio r. If the middle number is doubled, then the new numbers are in an arithmetic progression with common difference d. If the fourth term of GP is 3 r<sup>2</sup>, then r<sup>2</sup> $$-$$ d is equal to :
[{"identifier": "A", "content": "7 $$-$$ 7$$\\sqrt 3 $$"}, {"identifier": "B", "content": "7 + $$\\sqrt 3 $$"}, {"identifier": "C", "content": "7 $$-$$ $$\\sqrt 3 $$"}, {"identifier": "D", "content": "7 + 3$$\\sqrt 3 $$"}]
["B"]
null
Let numbers be $${a \over r}$$, a, ar $$\to$$ G.P.<br><br>$${a \over r}$$, 2a, ar $$\to$$ A.P. $$\Rightarrow$$ 4a = $${a \over r}$$ + ar $$\Rightarrow$$ r + $${1 \over r}$$ = 4<br><br>r = 2 $$\pm$$ $$\sqrt 3 $$<br><br>4<sup>th</sup> form of G.P. = 3r<sup>2</sup> $$\Rightarrow$$ ar<sup>2</sup> = 3r<sup>2</sup> $$\Rightarrow$$ a = 3<br><br>r = 2 + $$\sqrt 3 $$, a = 3, d = 2a $$-$$ $${a \over r}$$ = 3$$\sqrt 3 $$<br><br>r<sup>2</sup> $$-$$ d = (2 + $$\sqrt 3 $$)<sup>2</sup> $$-$$ 3$$\sqrt 3 $$<br><br>= 7 + 4$$\sqrt 3 $$ $$-$$ 3$$\sqrt 3 $$<br><br>= 7 + $$\sqrt 3 $$
mcq
jee-main-2021-online-31st-august-morning-shift
1l55j37xx
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let for n = 1, 2, ......, 50, S<sub>n</sub> be the sum of the infinite geometric progression whose first term is n<sup>2</sup> and whose common ratio is $${1 \over {{{(n + 1)}^2}}}$$. Then the value of <br/><br/>$${1 \over {26}} + \sum\limits_{n = 1}^{50} {\left( {{S_n} + {2 \over {n + 1}} - n - 1} \right)} $$ is equal to ___________.</p>
[]
null
41651
<p>$${S_n} = {{{n^2}} \over {1 - {1 \over {{{(n + 1)}^2}}}}} = {{n{{(n + 1)}^2}} \over {n + 2}} = ({n^2} + 1) - {2 \over {n + 2}}$$</p> <p>Now $${1 \over {26}} + \sum\limits_{n = 1}^{50} {\left( {{S_n} + {2 \over {n + 1}} - n - 1} \right)} $$</p> <p>$$ = {1 \over {26}} + \sum\limits_{n = 1}^{50} {\left\{ {({n^2} - n) + 2\left( {{1 \over {n + 1}} - {1 \over {n + 2}}} \right)} \right\}} $$</p> <p>$$ = {1 \over {26}} + {{50 \times 51 \times 101} \over 6} - {{50 \times 51} \over 2} + 2\left( {{1 \over 2} - {1 \over {52}}} \right)$$</p> <p>$$ = 1 + 25 \times 17(101 - 3)$$</p> <p>$$ = 41651$$</p>
integer
jee-main-2022-online-28th-june-evening-shift
1l566am8y
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, ....... be an increasing geometric progression of positive real numbers. If A<sub>1</sub>A<sub>3</sub>A<sub>5</sub>A<sub>7</sub> = $${1 \over {1296}}$$ and A<sub>2</sub> + A<sub>4</sub> = $${7 \over {36}}$$, then the value of A<sub>6</sub> + A<sub>8</sub> + A<sub>10</sub> is equal to</p>
[{"identifier": "A", "content": "33"}, {"identifier": "B", "content": "37"}, {"identifier": "C", "content": "43"}, {"identifier": "D", "content": "47"}]
["C"]
null
<p>$${{{A_4}} \over {{r^3}}}.\,{{{A_4}} \over r}.\,{A_4}r\,.\,{A_4}{r^3} = {1 \over {1296}}$$</p> <p>$${A_4} = {1 \over 6}$$</p> <p>$${A_2} = {7 \over {36}} - {1 \over 6} = {1 \over {36}}$$</p> <p>So $${A_6} + {A_8} + {A_{10}} = 1 + 6 + 36 = 43$$</p>
mcq
jee-main-2022-online-28th-june-morning-shift
1l58h3pwb
maths
sequences-and-series
geometric-progression-(g.p)
<p>If a<sub>1</sub> (&gt; 0), a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, a<sub>5</sub> are in a G.P., a<sub>2</sub> + a<sub>4</sub> = 2a<sub>3</sub> + 1 and 3a<sub>2</sub> + a<sub>3</sub> = 2a<sub>4</sub>, then a<sub>2</sub> + a<sub>4</sub> + 2a<sub>5</sub> is equal to ___________.</p>
[]
null
40
<p>Let G.P. be a<sub>1</sub> = a, a<sub>2</sub> = ar, a<sub>3</sub> = ar<sup>2</sup>, .........</p> <p>$$\because$$ 3a<sub>2</sub> + a<sub>3</sub> = 2a<sub>4</sub></p> <p>$$\Rightarrow$$ 3ar + ar<sup>2</sup> = 2ar<sup>3</sup></p> <p>$$\Rightarrow$$ 2ar<sup>2</sup> $$-$$ r $$-$$ 3 = 0</p> <p>$$\therefore$$ r = $$-$$1 or $${3 \over 2}$$</p> <p>$$\because$$ a<sub>1</sub> = a > 0 then r $$\ne$$ $$-$$1</p> <p>Now, a<sub>2</sub> + a<sub>4</sub> = 2a<sub>3</sub> + 1</p> <p>ar + ar<sup>3</sup> = 2ar<sup>2</sup> + 1</p> <p>$$a\left( {{3 \over 2} + {{27} \over 8} - {9 \over 2}} \right) = 1$$</p> <p>$$\therefore$$ a = $${8 \over 3}$$</p> <p>$$\therefore$$ a<sub>2</sub> + a<sub>4</sub> + 2a<sub>5</sub> = a(r + r<sup>3</sup> + 2r<sup>4</sup>)</p> <p>$$ = {8 \over 3}\left( {{3 \over 2} + {{27} \over 8} + {{81} \over 8}} \right) = 40$$</p>
integer
jee-main-2022-online-26th-june-evening-shift
1l6kjt9ea
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $$\frac{98}{25}$$. Then the sum of the first 21 terms of an AP, whose first term is $$10\mathrm{a r}, \mathrm{n}^{\text {th }}$$ term is $$\mathrm{a}_{\mathrm{n}}$$ and the common difference is $$10 \mathrm{ar}^{2}$$, is equal to :</p>
[{"identifier": "A", "content": "$$21 \\,\\mathrm{a}_{11}$$"}, {"identifier": "B", "content": "$$22 \\,\\mathrm{a}_{11}$$"}, {"identifier": "C", "content": "$$15 \\,\\mathrm{a}_{16}$$"}, {"identifier": "D", "content": "$$14 \\,\\mathrm{a}_{16}$$"}]
["A"]
null
<p>Let first term of G.P. be a and common ratio is r</p> <p>Then, $${a \over {1 - r}} = 5$$ ...... (i)</p> <p>$$a{{({r^5} - 1)} \over {(r - 1)}} = {{98} \over {25}} \Rightarrow 1 - {r^5} = {{98} \over {125}}$$</p> <p>$$\therefore$$ $${r^5} = {{27} \over {125}},\,r = {\left( {{3 \over 5}} \right)^{{3 \over 5}}}$$</p> <p>$$\therefore$$ Then, $${S_{21}} = {{21} \over 2}\left[ {2 \times 10ar + 20 \times 10a{r^2}} \right]$$</p> <p>$$ = 21\left[ {10ar + 10\,.\,10a{r^2}} \right]$$</p> <p>$$ = 21\,{a_{11}}$$</p>
mcq
jee-main-2022-online-27th-july-evening-shift
1ldprmen7
maths
sequences-and-series
geometric-progression-(g.p)
<p>If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296 , respectively, then the sum of common ratios of all such GPs is</p>
[{"identifier": "A", "content": "7"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$$\\frac{9}{2}$$"}]
["A"]
null
$\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}(\mathrm{a}, \mathrm{r}>0)$ <br/><br/>$a^{4} r^{6}=1296$ <br/><br/>$a^{2} r^{3}=36$ <br/><br/>$a=\frac{6}{r^{3 / 2}}$ <br/><br/>$a+a r+a r^{2}+a r^{3}=126$ <br/><br/>$\frac{1}{\mathrm{r}^{3 / 2}}+\frac{\mathrm{r}}{\mathrm{r}^{3 / 2}}+\frac{\mathrm{r}^{2}}{\mathrm{r}^{3 / 2}}+\frac{\mathrm{r}^{3}}{\mathrm{r}^{3 / 2}}=\frac{126}{6}=21$ <br/><br/>$\left(r^{-3 / 2}+r^{3 / 2}\right)+\left(r^{1 / 2}+r^{-1 / 2}\right)=21$ <br/><br/>$\mathrm{r}^{1 / 2}+\mathrm{r}^{-1 / 2}=\mathrm{A}$ <br/><br/>$\mathrm{r}^{-3 / 2}+\mathrm{r}^{3 / 2}+3 \mathrm{~A}=\mathrm{A}^{3}$ <br/><br/>$\mathrm{A}^{3}-3 \mathrm{~A}+\mathrm{A}=21$ <br/><br/>$\mathrm{A}^{3}-2 \mathrm{~A}=21$ <br/><br/>$A=3$ <br/><br/>$\sqrt{\mathrm{r}}+\frac{1}{\sqrt{\mathrm{r}}}=3$ <br/><br/>$\mathrm{r}+1=3 \sqrt{\mathrm{r}}$ <br/><br/>$r^{2}+2 r+1=9 r$ <br/><br/>$r^{2}-7 r+1=0$ <br/><br/>$\Rightarrow r_{1}+r_{2}=7$
mcq
jee-main-2023-online-31st-january-morning-shift
ldqw0prh
maths
sequences-and-series
geometric-progression-(g.p)
Let $a, b, c&gt;1, a^3, b^3$ and $c^3$ be in A.P., and $\log _a b, \log _c a$ and $\log _b c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b+c}{10}$ is $-444$, then $a b c$ is equal to :
[{"identifier": "A", "content": "343"}, {"identifier": "B", "content": "216"}, {"identifier": "C", "content": "$\\frac{343}{8}$"}, {"identifier": "D", "content": "$\\frac{125}{8}$"}]
["B"]
null
<p>$$2{b^3} = {a^3} + {c^3}$$</p> <p>$${\left( {{{\log a} \over {\log c}}} \right)^2} = \left( {{{\log b} \over {\log a}}} \right)\left( {{{\log c} \over {\log b}}} \right)$$</p> <p>$$ \Rightarrow {(\log a)^3} = {(\log c)^3}$$</p> <p>$$ \Rightarrow \log a = \log c$$</p> <p>$$ \Rightarrow a = c$$</p> <p>$$ \Rightarrow a = b = c$$</p> <p>$${T_1} = 2a,d = - {{3a} \over 5}$$</p> <p>$${S_{20}} = - 444$$</p> <p>$$ \Rightarrow {{20} \over 2}\left( {2(2a) + (19)\left( { - {{3a} \over 5}} \right)} \right) = - 444$$</p> <p>$$ \Rightarrow 10{{(20a - 57a)} \over 5} = - 444$$</p> <p>$$ \Rightarrow 37a = 222$$</p> <p>$$ \Rightarrow a = 6$$</p> <p>$$ \Rightarrow abc = {(6)^3} = 216$$</p>
mcq
jee-main-2023-online-30th-january-evening-shift
1ldsgdvt5
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$\{ {a_k}\} $$ and $$\{ {b_k}\} ,k \in N$$, be two G.P.s with common ratios $${r_1}$$ and $${r_2}$$ respectively such that $${a_1} = {b_1} = 4$$ and $${r_1} &lt; {r_2}$$. Let $${c_k} = {a_k} + {b_k},k \in N$$. If $${c_2} = 5$$ and $${c_3} = {{13} \over 4}$$ then $$\sum\limits_{k = 1}^\infty {{c_k} - (12{a_6} + 8{b_4})} $$ is equal to __________.</p>
[]
null
9
<p>$$\{ {a_k}\} $$ be a G.P. with $${a_1} = 4,r = {r_1}$$</p> <p>And</p> <p>$$\{ {b_k}\} $$ be G.P. with $${b_1} = 4,r = {r_2}$$ $$({r_1} < {r_2})$$</p> <p>Now</p> <p>$${C_k} = {a_k} + {b_k}$$</p> <p>$${c_1} = 4 + 4 = 8$$ and $${c_2} = 5$$<p> <p>$${a_2} + {b_2} = 5$$</p> <p>$$\therefore$$ $${r_1} + {r_2} = {5 \over 4}$$</p> <p>and $${c_3} = {{13} \over 4} \Rightarrow r_4^2 + r_2^2 = {{13} \over {16}}$$</p> <p>$$\therefore$$ $${{25} \over {16}} - 2{r_1}{r_2} = {{13} \over {16}} \Rightarrow 2{r_1}{r_2} = {3 \over 4}$$</p> <p>$$\therefore$$ $${r_2} - {r_1} = \sqrt {{{25} \over {16}} - {3 \over 2}} = {1 \over 4}$$</p> <p>$$\therefore$$ $${r_2} = {3 \over 4},{r_1} = {1 \over 2}$$</p> <p>$$\therefore$$ $${a_6} = 4 \times {1 \over {{2^5}}} = {1 \over 8},{b_4} = 4 \times {{27} \over {64}} = {{27} \over {16}}$$</p> <p>and $$\sum\limits_{K = 1}^\infty {{C_K} = 4\left[ {{1 \over {1 - {1 \over 2}}} + {1 \over {1 - {3 \over 4}}}} \right] = 24} $$</p> <p>$$\therefore$$ $$\sum\limits_{K = 1}^\infty {{C_K} - (12{a_6} + 8{b_4}) = 09} $$</p>
integer
jee-main-2023-online-29th-january-evening-shift
1ldswm61u
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$a_1,a_2,a_3,...$$ be a $$GP$$ of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $$a_1a_9+a_2a_4a_9+a_5+a_7$$ is equal to __________.</p>
[]
null
60
Let $r$ be the common ratio of the G.P <br/><br/> $\therefore a_{1} r^{3} \times a_{1} r^{5}=9$ <br/><br/> $a_{1}^{2} r^{8}=9 \Rightarrow a_{1} r^{4}=3$ <br/><br/> And <br/><br/> $$ \begin{aligned} & a_{1}\left(r^{4}+r^{6}\right)=24 \\\\ \Rightarrow & 3\left(1+r^{2}\right)=24 \\\\ \therefore & r^{2}=7 \text { and } a_{1}=\frac{3}{49} \end{aligned} $$ <br/><br/> Now <br/><br/> $$ \begin{aligned} & a_{1} a_{9}+a_{2} a_{4} a_{9}+a_{5}+a_{7} \\\\ & =a_{1}^{2} r^{8}+a_{1}^{3} r^{12}+24 \\\\ & =24+\frac{9}{7^{4}} \times 7^{4}+\frac{27}{7^{6}} \cdot 7^{6}=60 \end{aligned} $$
integer
jee-main-2023-online-29th-january-morning-shift
1ldu65bcm
maths
sequences-and-series
geometric-progression-(g.p)
<p>For the two positive numbers $$a,b,$$ if $$a,b$$ and $$\frac{1}{18}$$ are in a geometric progression, while $$\frac{1}{a},10$$ and $$\frac{1}{b}$$ are in an arithmetic progression, then $$16a+12b$$ is equal to _________.</p>
[]
null
3
$$ \begin{aligned} & \mathrm{a}, \mathrm{b}, \frac{1}{18} \rightarrow \mathrm{GP} \\\\ & \frac{\mathrm{a}}{18}=\mathrm{b}^2\quad...(i) \\\\ & \frac{1}{\mathrm{a}}, 10, \frac{1}{\mathrm{~b}} \rightarrow \mathrm{AP} \\\\ & \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=20 \\\\ & \Rightarrow \mathrm{a}+\mathrm{b}=20 \mathrm{ab}, \text { from eq. (i) } ; \text { we get } \\\\ & \Rightarrow 18 \mathrm{~b}^2+\mathrm{b}=360 \mathrm{~b}^3 \\\\ & \Rightarrow 360 \mathrm{~b}^2-18 \mathrm{~b}-1=0 \quad\{\because \mathrm{b} \neq 0\} \\\\ & \Rightarrow \mathrm{b}=\frac{18 \pm \sqrt{324+1440}}{720} \\\\ & \Rightarrow b =\frac{18+\sqrt{1764}}{720} \quad\{\because \mathrm{b}>0\} \\\\ & \Rightarrow b = \frac{1}{12} \\\\ & \Rightarrow \mathrm{a}=18 \times \frac{1}{144}=\frac{1}{8} \\\\ & \text{Now},16\mathrm{a}+12 \mathrm{~b}=16 \times \frac{1}{8}+12 \times \frac{1}{12}=3 \end{aligned} $$
integer
jee-main-2023-online-25th-january-evening-shift
1ldyc0ddl
maths
sequences-and-series
geometric-progression-(g.p)
<p>The 4$$^\mathrm{th}$$ term of GP is 500 and its common ratio is $$\frac{1}{m},m\in\mathbb{N}$$. Let $$\mathrm{S_n}$$ denote the sum of the first n terms of this GP. If $$\mathrm{S_6 &gt; S_5 + 1}$$ and $$\mathrm{S_7 &lt; S_6 + \frac{1}{2}}$$, then the number of possible values of m is ___________</p>
[]
null
12
$T_{4}=500$ <br/><br/> $$ a r^{3}=500 \Rightarrow a=\frac{500}{r^{3}} $$ <br/><br/> Now, <br/><br/> $$ \begin{aligned} & S_{6} > S_{5}+1 \\\\ & \frac{a\left(1-r^{6}\right)}{1-r}-\frac{a\left(1-r^{5}\right)}{1-r} > 1 \\\\ & a r^{5} > 1 \\\\ & \text { Now, } r=\frac{1}{m} \text { and } a=\frac{500}{r^{3}} \\\\ & \Rightarrow \quad m^{2} < 500 \\\\ & \because m > 0 \Rightarrow m \in(0,10 \sqrt{5}) \\\\ & \quad S_{7} < S_{6}+\frac{1}{2} \\\\ & \quad \frac{a\left(1-r^{6}\right)}{1-r}<\frac{a\left(1-r^{6}\right)}{1-r}+\frac{1}{2} \\\\ & \quad a r^{6}<\frac{1}{2} \end{aligned} $$ <br/><br/> $\because r=\frac{1}{m}$ and $a=\frac{500}{r^{5}}$ <br/><br/> $$ \frac{1}{m^{3}}<\frac{1}{1000} $$ <br/><br/> $\Rightarrow m \in(10, \infty)$ <br/><br/> Possible values of $m$ is $\{11,12,....22 \}$ <br/><br/> $\because m \in N$ <br/><br/> Total 12 values
integer
jee-main-2023-online-24th-january-morning-shift
1lgow1w1l
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let a$$_1$$, a$$_2$$, a$$_3$$, .... be a G.P. of increasing positive numbers. Let the sum of its 6<sup>th</sup> and 8<sup>th</sup> terms be 2 and the product of its 3<sup>rd</sup> and 5<sup>th</sup> terms be $$\frac{1}{9}$$. Then $$6(a_2+a_4)(a_4+a_6)$$ is equal to</p>
[{"identifier": "A", "content": "2$$\\sqrt2$$"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3$$\\sqrt3$$"}, {"identifier": "D", "content": "3"}]
["D"]
null
<p>Given the conditions :</p> <ol> <li>$a_6 + a_8 = 2 \Rightarrow a r^5 + a r^7 = 2$</li> <li>$a_3 \cdot a_5 = \frac{1}{9} \Rightarrow a^2 \cdot r^2 \cdot r^4 = \frac{1}{9} \Rightarrow a r^3 = \frac{1}{3}$</li> </ol> <p>From this, we can form the equation $\frac{r^2}{3} + \frac{r^4}{3} = 2$, which simplifies to $r^4 + r^2 = 6$.</p> <p>This can be factored to give $\left(r^2 - 2\right)\left(r^2 + 3\right) = 0$, yielding $r^2 = 2$ (since $r^2$ cannot be $-3$ for real $r$).</p> <p>So, we have $r = \sqrt{2}$.</p> <p>Substituting $r = \sqrt{2}$ into the equation $a r = \frac{1}{6}$, we get $a = \frac{1}{6\sqrt{2}}$.</p> <p>Now, we find the value of $6(a_2+a_4)(a_4+a_6)$:</p> <p>$6(a_2+a_4)(a_4+a_6) = 6\left(a r + a r^3\right)\left(a r^3 + a r^5\right)$</p> <p>$= 6\left(\frac{1}{6\sqrt{2}} + \frac{1}{3\sqrt{2}}\right)\left(\frac{1}{3\sqrt{2}} + \frac{2}{3\sqrt{2}}\right)$</p> <p>$= 6 \cdot \frac{1}{2} \cdot 1 = 3$.</p>
mcq
jee-main-2023-online-13th-april-evening-shift
1lgxw30j8
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let the first term $$\alpha$$ and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three terms is 33033, then the sum of these three terms is equal to</p>
[{"identifier": "A", "content": "241"}, {"identifier": "B", "content": "231"}, {"identifier": "C", "content": "220"}, {"identifier": "D", "content": "210"}]
["B"]
null
Given that the first term $a$ and common ratio $r$ of a geometric progression be positive integer. So, their 1st three terms are $a, a r, a r^2$ <br/><br/>According to the question, $a^2+a^2 r^2+a^2 r^4=33033$ <br/><br/>$$ \begin{aligned} \Rightarrow a^2\left(1+r^2+r^4\right) & =3 \times 7 \times 11 \times 11 \times 13 \\ & =3 \times 7 \times 13 \times 11^2 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \therefore \quad a^2=11^2 \\\\ & \Rightarrow \quad a=11 \\\\ & \text { and } 1+r^2+r^4=273 \\\\ & \Rightarrow r^2+r^4=272 \\\\ & \Rightarrow r^4+r^2-272=0 \\\\ & \Rightarrow\left(r^2+17\right)\left(r^2-16\right)=0 \\\\ & \Rightarrow r^2=-17(not ~possible),\\\\ & \Rightarrow r^2-16=0 \\\\ & \text { } \Rightarrow r= \pm 4 \\\\ & \Rightarrow r=4 ~~( \because r > 0) \end{aligned} $$ <br/><br/>So, sum of these first three terms is $a+a r+a r^2$ $=11+44+176=231$
mcq
jee-main-2023-online-10th-april-morning-shift
1lh2z2v5w
maths
sequences-and-series
geometric-progression-(g.p)
<p>If <br/><br/>$$(20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17}+\ldots+20(21)^{19}=k(20)^{19}$$, <br/><br/>then $$k$$ is equal to ___________.</p>
[]
null
400
$\begin{aligned} &(20)^{19}+2(21)(20)^{18}+3(21)^2(20)^{17} \\ & \quad+\ldots \ldots+20(21)^{19}=k(20)^{19} \\\\ & \Rightarrow(20)^{19}\left[1+2\left(\frac{21}{20}\right)+3\left(\frac{21}{20}\right)^2+\ldots+20\left(\frac{21}{20}\right)^{19}\right]=k(20)^{19} \\\\ & \Rightarrow k=1+2\left(\frac{21}{20}\right)+3\left(\frac{21}{20}\right)^2+\ldots+20\left(\frac{21}{20}\right)^{19} ..........(i)\end{aligned}$ <br/><br/>Now, <br/><br/>$\begin{aligned} k\left(\frac{21}{20}\right)=\left(\frac{21}{20}\right) & +2\left(\frac{21}{20}\right)^2+3\left(\frac{21}{20}\right)^3 +\ldots+20\left(\frac{21}{20}\right)^{20}\end{aligned}$ ........(ii) <br/><br/>On subtracting Equation (ii) from Equation (i), we get <br/><br/>$$ \begin{aligned} & k\left(\frac{-1}{20}\right)=1+\frac{21}{20}+\left(\frac{21}{20}\right)^2+\ldots \ldots+\left(\frac{21}{20}\right)^{19}-20\left(\frac{21}{20}\right)^{20} \\\\ & \Rightarrow k\left(\frac{-1}{20}\right)=\frac{1\left(\left(\frac{21}{20}\right)^{20}-1\right)}{\frac{21}{20}-1}-20\left(\frac{21}{20}\right)^{20} \\\\ & \Rightarrow k\left(\frac{-1}{20}\right)=20\left(\left(\frac{21}{20}\right)^{20}-1\right)-20\left(\frac{21}{20}\right)^{20} \\\\ & =20\left(\frac{21}{20}\right)^{20}-20-20\left(\frac{21}{20}\right)^{20} \\\\ & \Rightarrow k\left(\frac{-1}{20}\right)=-20 \\\\ & \Rightarrow k=400 \end{aligned} $$
integer
jee-main-2023-online-6th-april-evening-shift
lsan9avi
maths
sequences-and-series
geometric-progression-(g.p)
If three successive terms of a G.P. with common ratio $\mathrm{r}(\mathrm{r}&gt;1)$ are the lengths of the sides of a triangle and $[r]$ denotes the greatest integer less than or equal to $r$, then $3[r]+[-r]$ is equal to _____________.
[]
null
1
<p>To solve this problem, let&#39;s first denote the three successive terms of a geometric progression (G.P.) with common ratio $r$ as $a$, $ar$, and $ar^2$, where $a$ is the first term and $r &gt; 1$. These three terms represent the lengths of the sides of a triangle.</p> <p>According to the triangle inequality theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. Therefore, for the three terms to form a triangle, the following inequalities must hold:</p> <p>$$ 1) \ a + ar &gt; ar^2 \\\\ $$ <br/><br/>$$2) \ a + ar^2 &gt; ar $$ <br/><br/>$$ 3) \ ar + ar^2 &gt; a $$</p> <p>Given that $r &gt; 1$, inequalities 2 and 3 will always hold because:</p> <p>$$ ar &lt; ar^2 \ \text{and} \ a &lt; ar, $$</p> <p>indicating that both $a + ar^2$ and $ar + ar^2$ will be greater than $ar$ and $a$ respectively. Therefore, we only need to check the first inequality to ensure that the three terms can form a triangle:</p> <p>$$ a + ar &gt; ar^2 $$</p> <p>Simplifying this, we get:</p> <p>$$ a(1 + r) &gt; a r^2 $$</p> <p>Since $a$ is positive (as it represents the length of a side of a triangle), we can divide both sides of the inequality by $a$ without changing the direction of the inequality:</p> <p>$$ 1 + r &gt; r^2 $$</p> <p>We can then subtract $r$ from both sides:</p> <p>$$ 1 &gt; r^2 - r $$</p> <p>Simplifying the right side by factoring $r$:</p> <p>$$ 1 &gt; r(r - 1) $$</p> <p>Given that $r &gt; 1$, the quantity $(r - 1)$ is positive; hence, $r(r - 1)$ is also positive. This means the actual value for $r$ to satisfy the inequality is within the interval $(1, \sqrt{2})$ because $r(r - 1)$ increases with increasing $r$, and it would be 1 when $r = \sqrt{2}$. It should be greater than 1, and less than $\sqrt{2}$ such that $r^2 - r$ stays below 1.</p> <p>Now let’s consider the expressions $[r]$ and $[-r]$. The symbol $[x]$ denotes the greatest integer less than or equal to $x$ (also known as the floor function).</p> <p>Since $1 &lt; r &lt; \sqrt{2}$, $[r] = 1$, because 1 is the greatest integer less than $r$ within that interval.</p> <p>For $[-r]$, we need the greatest integer less than or equal to $-r$. Since $-r$ is negative and less than $-1$ (because $r &gt; 1$), $[-r] = -2$, as this is the greatest integer that does not exceed the negative value of $r$ (which lies between $-\sqrt{2}$ and $-1$).</p> <p>Now we can substitute these values into the expression:</p> <p>$$ 3[r] + [-r] = 3 \cdot 1 + (-2) = 3 - 2 = 1 $$</p> <p>Therefore $3[r] + [-r]$ is equal to 1.</p>
integer
jee-main-2024-online-1st-february-evening-shift
jaoe38c1lsd4o6jt
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$2^{\text {nd }}, 8^{\text {th }}$$ and $$44^{\text {th }}$$ terms of a non-constant A. P. be respectively the $$1^{\text {st }}, 2^{\text {nd }}$$ and $$3^{\text {rd }}$$ terms of a G. P. If the first term of the A. P. is 1, then the sum of its first 20 terms is equal to -</p>
[{"identifier": "A", "content": "990"}, {"identifier": "B", "content": "980"}, {"identifier": "C", "content": "960"}, {"identifier": "D", "content": "970"}]
["D"]
null
<p>$$\begin{aligned} & 1+d, \quad 1+7 d, 1+43 d \text { are in GP } \\ & (1+7 d)^2=(1+d)(1+43 d) \\ & 1+49 d^2+14 d=1+44 d+43 d^2 \\ & 6 d^2-30 d=0 \\ & d=5 \\ & S_{20}=\frac{20}{2}[2 \times 1+(20-1) \times 5] \\ & \quad=10[2+95] \\ & \quad=970 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lseyfkoa
maths
sequences-and-series
geometric-progression-(g.p)
<p>If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to</p>
[{"identifier": "A", "content": "7"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "4"}]
["B"]
null
<p>$$\begin{aligned} & a+a r+a r^2+a r^3+\ldots .+a r^{63} \\ & =7\left(a+a r^2+a r^4 \ldots .+a r^{62}\right) \\ & \Rightarrow \frac{a\left(1-r^{64}\right)}{1-r}=\frac{7 a\left(1-r^{64}\right)}{1-r^2} \\ & r=6 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsfktybb
maths
sequences-and-series
geometric-progression-(g.p)
<p>If each term of a geometric progression $$a_1, a_2, a_3, \ldots$$ with $$a_1=\frac{1}{8}$$ and $$a_2 \neq a_1$$, is the arithmetic mean of the next two terms and $$S_n=a_1+a_2+\ldots . .+a_n$$, then $$S_{20}-S_{18}$$ is equal to</p>
[{"identifier": "A", "content": "$$-2^{15}$$\n"}, {"identifier": "B", "content": "$$2^{15}$$\n"}, {"identifier": "C", "content": "$$-2^{18}$$\n"}, {"identifier": "D", "content": "$$2^{18}$$"}]
["A"]
null
<p>Let $$r^{\prime}$$th term of the GP be $$a^{n-1}$$. Given,</p> <p>$$\begin{aligned} & 2 a_r=a_{r+1}+a_{r+2} \\ & 2 a r^{n-1}=a r^n+a r^{n+1} \\ & \frac{2}{r}=1+r \\ & r^2+r-2=0 \end{aligned}$$</p> <p>Hence, we get, $$r=-2$$ (as $$r \neq 1$$)</p> <p>So, $$\mathrm{S}_{20}-\mathrm{S}_{18}=$$ (Sum upto 20 terms) $$-$$ (Sum upto 18 terms) $$=\mathrm{T}_{19}+\mathrm{T}_{20}$$</p> <p>$$\mathrm{~T}_{19}+\mathrm{T}_{20}=\mathrm{ar}^{18}(1+\mathrm{r})$$</p> <p>Putting the values $$\mathrm{a}=\frac{1}{8}$$ and $$\mathrm{r}=-2$$;</p> <p>we get $$T_{19}+T_{20}=-2^{15}$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
1lsg3p684
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$a$$ and $$b$$ be be two distinct positive real numbers. Let $$11^{\text {th }}$$ term of a GP, whose first term is $$a$$ and third term is $$b$$, is equal to $$p^{\text {th }}$$ term of another GP, whose first term is $$a$$ and fifth term is $$b$$. Then $$p$$ is equal to</p>
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "24"}, {"identifier": "C", "content": "21"}, {"identifier": "D", "content": "25"}]
["C"]
null
<p>The problem involves finding a relation between terms of two different geometric progressions (GPs) which share common first terms but have different terms equated to the same value. We solve this by setting up equations based on the given conditions for each GP and comparing the terms specified to be equal.</p><p>For the first GP, with first term $$a$$ and third term $$b$$:</p><ul><li>The third term is given by $$t_3 = ar^2 = b$$, leading to $$r^2 = \frac{b}{a}$$.</li><li>The eleventh term is $$t_{11} = ar^{10} = a\left(\frac{b}{a}\right)^5$$.</li></ul><p>For the second GP, with first term $$a$$ and fifth term $$b$$:</p><ul><li>The fifth term is $$T_5 = ar^4 = b$$, yielding $$r^4 = \frac{b}{a}$$ and $$r = \left(\frac{b}{a}\right)^{1/4}$$.</li><li>The $$p^{\text{th}}$$ term is thus $$T_p = ar^{p-1} = a\left(\frac{b}{a}\right)^{\frac{p-1}{4}}$$.</li></ul><p>Equating the eleventh term of the first GP to the $$p^{\text{th}}$$ term of the second GP gives: $$a\left(\frac{b}{a}\right)^5 = a\left(\frac{b}{a}\right)^{\frac{p-1}{4}}$$.</p><p>Simplifying, we find that $$5 = \frac{p-1}{4}$$, leading to $$p = 21$$, which is the solution.</p>
mcq
jee-main-2024-online-30th-january-evening-shift
luxwd2ht
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$a, a r, a r^2$$, ............ be an infinite G.P. If $$\sum_\limits{n=0}^{\infty} a r^n=57$$ and $$\sum_\limits{n=0}^{\infty} a^3 r^{3 n}=9747$$, then $$a+18 r$$ is equal to</p>
[{"identifier": "A", "content": "27"}, {"identifier": "B", "content": "38"}, {"identifier": "C", "content": "31"}, {"identifier": "D", "content": "46"}]
["C"]
null
<p>$$\begin{array}{ll} \sum_{n=0}^{\infty} a r^n=57 & \Rightarrow \frac{a}{1-r}=57 \quad \text{.... (i)}\\ \sum_{n=0}^{\infty} a^3 r^{3 n}=9747 & \Rightarrow \frac{a^3}{1-r^3}=9747 \quad \text{.... (ii)} \end{array}$$</p> <p>$$\begin{aligned} & \frac{\left(1-r^3\right)}{(1-r)^3}=\frac{(57)^3}{9747}=19 \\ & \Rightarrow \quad \frac{(1-r)\left(1+r+r^2\right)}{(1-r)^3}=19 \\ & \Rightarrow \quad 18 r^2-39 r+18=0 \\ & \Rightarrow \quad r=\frac{2}{3}, \frac{3}{2} \text { (rejected) } \\ & \therefore \quad a=19 \\ & \quad a+18 r \\ & \quad=19+12=31 \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
lv0vxcyd
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let the first three terms 2, p and q, with $$q \neq 2$$, of a G.P. be respectively the $$7^{\text {th }}, 8^{\text {th }}$$ and $$13^{\text {th }}$$ terms of an A.P. If the $$5^{\text {th }}$$ term of the G.P. is the $$n^{\text {th }}$$ term of the A.P., then $n$ is equal to:</p>
[{"identifier": "A", "content": "151"}, {"identifier": "B", "content": "177"}, {"identifier": "C", "content": "163"}, {"identifier": "D", "content": "169"}]
["C"]
null
<p>$$\begin{aligned} & \text { Let } p=2 r, q=2 r^2 \\ & T_7=2, T_8=2 r, T_{13}=2 r^2 \\ & d=2 r-2=2(r-1) \\ & 2 r^2=T_7+6 d=2+6(2)(r-1)=12 r-10 \\ & \Rightarrow r^2-6 r+5=0 \\ & \Rightarrow(r-1)(r-5)=0 \\ & \therefore r=1,5 \\ & r=1 \text { (rejected) as } q \neq 2 \\ & \therefore r=5 \end{aligned}$$</p> <p>$$5^{\text {th }}$$ term of G.P $$=2 . r^4=2.5^4$$</p> <p>Let $$1^{\text {st }}$$ term of A.P $$b a=a, d=8$$</p> <p>$$2=a+(6)(8) \Rightarrow a=-46$$</p> <p>$$\mathrm{n}^{\text {th }}$$ term of A.P $$=-46+(n-1) 8=8 n-54$$</p> <p>$$\begin{aligned} & 2.5^4=8 n-54 \\ & \Rightarrow 1250+54=8 n \\ & \Rightarrow n=\frac{1304}{8}=163 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv3veby6
maths
sequences-and-series
geometric-progression-(g.p)
<p>In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $$\frac{70}{3}$$ and the product of the third and fifth terms is 49. Then the sum of the $$4^{\text {th }}, 6^{\text {th }}$$ and $$8^{\text {th }}$$ terms is equal to:</p>
[{"identifier": "A", "content": "78"}, {"identifier": "B", "content": "96"}, {"identifier": "C", "content": "91"}, {"identifier": "D", "content": "84"}]
["C"]
null
<p>Let's denote the first term of the geometric progression by $$a$$ and the common ratio by $$r$$. The terms of the geometric progression can be written as follows:</p> <p>First term: $$a$$</p> <p>Second term: $$ar$$</p> <p>Third term: $$(ar^2)$$</p> <p>Fourth term: $$(ar^3)$$</p> <p>Fifth term: $$(ar^4)$$</p> <p>Sixth term: $$(ar^5)$$</p> <p>Eighth term: $$(ar^7)$$</p> <p>We are given two key pieces of information:</p> <p>1. The sum of the second and sixth terms is $$\frac{70}{3}$$:</p> <p>$$ar + ar^5 = \frac{70}{3}$$</p> <p>2. The product of the third and fifth terms is 49:</p> <p>$$(ar^2) \cdot (ar^4) = 49$$</p> <p>$$a^2 r^6 = 49$$</p> <p>$$a^2 = \frac{49}{r^6}$$</p> <p>$$a = \frac{7}{r^3}$$</p> <p>Substituting $$a = \frac{7}{r^3}$$ into the first equation:</p> <p>$$\frac{7}{r^3} \cdot r + \frac{7}{r^3} \cdot r^5 = \frac{70}{3}$$</p> <p>$$\frac{7r}{r^3} + \frac{7r^5}{r^3} = \frac{70}{3}$$</p> <p>$$\frac{7}{r^2} + \frac{7r^2}{1} = \frac{70}{3}$$</p> <p>Let $$x = r^2$$. Then:</p> <p>$$\frac{7}{x} + 7x = \frac{70}{3}$$</p> <p>Multiply through by 3x to clear the denominator:</p> <p>$$21 + 21x^2 = 70x$$</p> <p>Rearrange into a standard quadratic equation:</p> <p>$$21x^2 - 70x + 21 = 0$$</p> <p>Divide by 7 to simplify:</p> <p>$$3x^2 - 10x + 3 = 0$$</p> <p>Solve this quadratic equation using the quadratic formula:</p> <p>$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$</p> <p>Where $$a = 3$$, $$b = -10$$, and $$c = 3$$. Thus:</p> <p>$$x = \frac{10 \pm \sqrt{100 - 36}}{6}$$</p> <p>$$x = \frac{10 \pm \sqrt{64}}{6}$$</p> <p>$$x = \frac{10 \pm 8}{6}$$</p> <p>$$x = 3$$ or $$x = \frac{1}{3}$$</p> <p>Since $$x = r^2$$ and $$r$$ is positive, we get $$r = \sqrt{3}$$ or $$r = \frac{1}{\sqrt{3}}$$. We need to choose the value that results in positive, increasing terms:</p> <p>If $$r = \sqrt{3}$$:</p> <p>$$a = \frac{7}{r^3} = \frac{7}{(\sqrt{3})^3} = \frac{7}{3\sqrt{3}} = \frac{7}{3} \cdot \frac{1}{\sqrt{3}} = \frac{7\sqrt{3}}{9}$$</p> <p>Now we can determine the sum of the 4th, 6th, and 8th terms:</p> <p>The 4th term is: $$ar^3 = \frac{7\sqrt{3}}{9} \cdot 3\sqrt{3} = 7$$</p> <p>The 6th term is: $$ar^5 = \frac{7\sqrt{3}}{9} \cdot 9\sqrt{3} = 21$$</p> <p>The 8th term is: $$ar^7 = \frac{7\sqrt{3}}{9} \cdot 27(\sqrt{3}) = 49$$</p> <p>Adding these together:</p> <p>$$(4th + 6th + 8th terms) = 7 + 21 + 63 = 91$$</p> <p>Therefore, the sum of the 4th, 6th, and 8th terms is 91.</p> <p>Correct answer:</p> <p><strong>Option C: 91</strong></p> <p></p>
mcq
jee-main-2024-online-8th-april-evening-shift
lvb294nj
maths
sequences-and-series
geometric-progression-(g.p)
<p>Let $$A B C$$ be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle $$A B C$$ and the same process is repeated infinitely many times. If $$\mathrm{P}$$ is the sum of perimeters and $$Q$$ is be the sum of areas of all the triangles formed in this process, then :</p>
[{"identifier": "A", "content": "$$\\mathrm{P}^2=72 \\sqrt{3} \\mathrm{Q}$$\n"}, {"identifier": "B", "content": "$$\\mathrm{P}^2=36 \\sqrt{3} \\mathrm{Q}$$\n"}, {"identifier": "C", "content": "$$\\mathrm{P}=36 \\sqrt{3} \\mathrm{Q}^2$$\n"}, {"identifier": "D", "content": "$$\\mathrm{P}^2=6 \\sqrt{3} \\mathrm{Q}$$"}]
["B"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwac04ho/c0187de2-d2dd-45ec-8dc9-5238b7084f24/51988fc0-141b-11ef-aad1-15919f5484e3/file-1lwac04hp.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwac04ho/c0187de2-d2dd-45ec-8dc9-5238b7084f24/51988fc0-141b-11ef-aad1-15919f5484e3/file-1lwac04hp.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Evening Shift Mathematics - Sequences and Series Question 4 English Explanation"></p> <p>$$\triangle A B C$$ is an equilateral triangle having side $$=a$$ unit</p> <p>Now, perimeter $$=$$ sum of all sides $$=3 a$$</p> <p>Area $$=\frac{\sqrt{3}}{4} a^2$$</p> <p>Now, $$\ln \triangle D E F, D E=\frac{a}{2}=E F=D F$$</p> <p>$$\begin{aligned} &amp; \text { Perimeter }=3 \times \frac{a}{2}=\frac{3 a}{2} \\ &amp; \text { Area }=\frac{\sqrt{3}}{4} \times\left(\frac{a}{2}\right)^2=\frac{\sqrt{3} a^2}{16} \end{aligned}$$</p> <p>Now, $$P=3 a+\frac{3 a}{2}+\frac{3 a}{4}+\cdots$$</p> <p>$$Q=\frac{\sqrt{3}}{4} a^2+\frac{\sqrt{3}}{16} a^2+\frac{\sqrt{3}}{64} a^2+\cdots$$</p> <p>$$P=\frac{3 a}{1-\frac{1}{2}}=3 a \times 2 \Rightarrow P=6 a \quad \text{.... (i)}$$</p> <p>$$Q=\frac{\frac{\sqrt{3}}{4} a^2}{1-\frac{1}{4}}=\frac{4}{3} \times \frac{\sqrt{3}}{4} a^2 \quad Q=\frac{\sqrt{3}}{3} a^2 \quad \text{.... (ii)}$$</p> <p>From equation (i) &amp; (ii)</p> <p>$$\begin{aligned} &amp; P=6 a \\ &amp; Q=\frac{\sqrt{3}}{3} a^2 \\ &amp; Q=\frac{\sqrt{3}}{3} \times \frac{P^2}{36} \\ &amp; P^2=36 \sqrt{3} Q \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-evening-shift
UKf6HoT18gPVSASW
maths
sequences-and-series
harmonic-progression-(h.p)
If $$x = \sum\limits_{n = 0}^\infty {{a^n},\,\,y = \sum\limits_{n = 0}^\infty {{b^n},\,\,z = \sum\limits_{n = 0}^\infty {{c^n},} } } \,\,$$ where a, b, c are in A.P and $$\,\left| a \right| &lt; 1,\,\left| b \right| &lt; 1,\,\left| c \right| &lt; 1$$ then x, y, z are in
[{"identifier": "A", "content": "G.P."}, {"identifier": "B", "content": "A.P."}, {"identifier": "C", "content": "Arithmetic-Geometric Progression"}, {"identifier": "D", "content": "H.P."}]
["D"]
null
$$x = \sum\limits_{n = 0}^\infty {{a^n}} = {1 \over {1 - a}}\,\,\,\,\,\,\,\,\,\,a = 1 - {1 \over x}$$ <br><br>$$y = \sum\limits_{n = 0}^\infty {{b^n}} = {1 \over {1 - b}}\,\,\,\,\,\,\,\,\,\,b = 1 - {1 \over y}$$ <br><br>$$z = \sum\limits_{n = 0}^\infty {{c^n}} = {1 \over {1 - c}}\,\,\,\,\,\,\,\,\,\,c = 1 - {1 \over z}$$ <br><br>$$a,b,c$$ are in $$A.P.$$ OR $$2b = a + c$$ <br><br>$$2\left( {1 - {1 \over y}} \right) = 1 - {1 \over x} + 1 - {1 \over y}$$ <br><br>$${2 \over y} = {1 \over x} + {1 \over z} \Rightarrow x,y,z$$ are in $$H.P.$$
mcq
aieee-2005
VdoDcdBuFZIwxtlr
maths
sequences-and-series
harmonic-progression-(h.p)
If $${{a_1},{a_2},....{a_n}}$$ are in H.P., then the expression $${{a_1}\,{a_2} + \,{a_2}\,{a_3}\, + .... + {a_{n - 1}}\,{a_n}}$$ is equal to
[{"identifier": "A", "content": "$$n({a_1}\\, - {a_n})$$ "}, {"identifier": "B", "content": "$$(n - 1)({a_1}\\, - {a_n})$$ "}, {"identifier": "C", "content": "$$n{a_1}{a_n}$$ "}, {"identifier": "D", "content": "$$(n - 1)\\,\\,{a_1}{a_n}$$ "}]
["D"]
null
$${1 \over {{a_2}}} - {1 \over {{a_1}}} = {1 \over {{a_3}}} - {1 \over {{a_2}}} = .........$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {{a_n}}} - {1 \over {{a_{n - 1}}}} = d$$ (say) <br><br>Then $${a_1}{a_2} = {{{a_1} - a{}_2} \over d},\,{a_2}{a_3} = {{{a_2} - {a_3}} \over d},$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......,\,{a_{n - 1}}{a_n} = {{{a_{n - 1}} - {a_n}} \over d}$$ <br><br>$$\therefore$$ $${a_1}a{}_2 + {a_2}{a_3} + ......... + {a_{n - 1}}{a_n}$$ <br><br>$$ = {{{a_1} - {a_2}} \over d} + {{{a_2} - {a_3}} \over d} + ......$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{{a_{n - 1}} - {a_n}} \over d}$$ <br><br>$$ = {1 \over a}\left[ {{a_1}} \right. - {a_2} + {a_2} - {a_3} + .......$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. { + {a_{n - 1}} - an} \right] = {{{a_1} - {a_n}} \over d}$$ <br><br>Also, $${1 \over {{a_n}}} = {1 \over {{a_1}}} + \left( {n - 1} \right)d$$ <br><br>$$ \Rightarrow {{{a_1} - {a_n}} \over {{a_1}{a_n}}} = \left( {n - 1} \right)d$$ <br><br>$$ \Rightarrow {{{a_1} - {a_n}} \over d} = \left( {n - 1} \right){a_1}{a_n}$$ <br><br>Which is the required result.
mcq
aieee-2006
1l57nygjf
maths
sequences-and-series
harmonic-progression-(h.p)
<p>$$x = \sum\limits_{n = 0}^\infty {{a^n},y = \sum\limits_{n = 0}^\infty {{b^n},z = \sum\limits_{n = 0}^\infty {{c^n}} } } $$, where a, b, c are in A.P. and |a| &lt; 1, |b| &lt; 1, |c| &lt; 1, abc $$\ne$$ 0, then :</p>
[{"identifier": "A", "content": "x, y, z are in A.P."}, {"identifier": "B", "content": "x, y, z are in G.P."}, {"identifier": "C", "content": "$${1 \\over x}$$, $${1 \\over y}$$, $${1 \\over z}$$ are in A.P."}, {"identifier": "D", "content": "$${1 \\over x}$$ + $${1 \\over y}$$ + $${1 \\over z}$$ = 1 $$-$$ (a + b + c)"}]
["C"]
null
<p>$$x = \sum\limits_{n = 0}^\infty {{a^n} = {1 \over {1 - a}};\,y = \sum\limits_{n = 0}^\infty {{b^n} = {1 \over {1 - b}};\,z = \sum\limits_{n = 0}^\infty {{c^n} = {1 \over {1 - c}}} } } $$</p> <p>Now,</p> <p>a, b, c $$\to$$ AP</p> <p>1 $$-$$ a, 1 $$-$$ b, 1 $$-$$ c $$\to$$ AP</p> <p>$${1 \over {1 - a}},\,{1 \over {1 - b}},\,{1 \over {1 - c}} \to HP$$</p> <p>x, y, z $$\to$$ HP</p> <p>$$\therefore$$ $${1 \over x},{1 \over y},{1 \over z} \to AP$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
U1oLUueqALYqitPf
maths
sequences-and-series
summation-of-series
$${1^3} - \,\,{2^3} + {3^3} - {4^3} + ... + {9^3} = $$
[{"identifier": "A", "content": "425"}, {"identifier": "B", "content": "- 425"}, {"identifier": "C", "content": "475"}, {"identifier": "D", "content": "- 475"}]
["A"]
null
$${1^3} - {2^3} + {3^3} - {4^3} + ...... + {9^3}$$ <br><br>$$ = {1^3} + {2^3} + {3^3} + ...... + {9^3}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\, - 2\left( {{2^3} + {4^3} + {6^3} + {8^3}} \right)$$ <br><br>$$ = {\left[ {{{9 \times 10} \over 2}} \right]^2} - {2.2^3}\left[ {{1^3} + {2^3} + {3^3} + {4^3}} \right]$$ <br><br>$$ = {\left( {45} \right)^2} - 16.{\left[ {{{4 \times 5} \over 2}} \right]^2}$$ <br><br>$$ = 2025 - 1600 = 425$$
mcq
aieee-2002
r5pz1x4onggAO3Gd
maths
sequences-and-series
summation-of-series
The value of $$\,{2^{1/4}}.\,\,{4^{1/8}}.\,{8^{1/16}}...\infty $$ is
[{"identifier": "A", "content": "1 "}, {"identifier": "B", "content": "2 "}, {"identifier": "C", "content": "3/2 "}, {"identifier": "D", "content": "4"}]
["B"]
null
The product is $$p = {2^{1/4}}{.2^{2/8}}{.2^{3/16}}........$$ <br><br>$$ = {2^{1/4 + 2/8 + 3/16 + .......\infty }}$$ <br><br>Now let <br><br>$$S = {1 \over 4} + {2 \over 8} + {3 \over {16}} + .......\infty \,\,\,\,........\left( 1 \right)$$ <br><br>$${1 \over 2}S = {1 \over 8} + {2 \over {16}} + .......\infty \,\,\,\,........\left( 2 \right)$$ <br><br>Subtracting $$(2)$$ from $$(1)$$ <br><br>$$ \Rightarrow {1 \over 2}S = {1 \over 4} + {1 \over 8} + {1 \over {16}} + .......\infty $$ <br><br>or $${1 \over 2}S = {{1/4} \over {1 - 1/2}} = {1 \over 2} \Rightarrow S = 1$$ <br><br>$$\therefore$$ $$P = {2^S} = 2$$
mcq
aieee-2002
lUgZFx9XzBXy4yRV
maths
sequences-and-series
summation-of-series
The sum of the serier $${1 \over {1.2}} - {1 \over {2.3}} + {1 \over {3.4}}..............$$ up to $$\infty $$ is equal to
[{"identifier": "A", "content": "$$\\log {\\,_e}\\left( {{4 \\over e}} \\right)\\,\\,$$ "}, {"identifier": "B", "content": "$$2\\,\\log {\\,_e}2$$ "}, {"identifier": "C", "content": "$$\\log {\\,_e}2 - 1\\,$$ "}, {"identifier": "D", "content": "$$\\log {\\,_e}2$$ "}]
["A"]
null
$${1 \over {1.2}} - {1 \over {2.3}} + {1 \over {3.4}}..........\infty $$ <br><br>$$\left| {{T_n}} \right| = {1 \over {n\left( {n + 1} \right)}} = \left( {{1 \over n} - {1 \over {n + 1}}} \right)$$ <br><br>$$S = {T_1} - {T_2} + {T_3} - {T_4} + {T_5}.........\infty $$ <br><br>$$ = \left( {{1 \over 1} - {1 \over 2}} \right) - \left( {{1 \over 2} - {1 \over 3}} \right) + \left( {{1 \over 3} - {1 \over 4}} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \left( {{1 \over 4} - {1 \over 5}} \right).......$$ <br><br>$$ = 1 - 2\left[ {{1 \over 2} - {1 \over 3} + {1 \over 4} - {1 \over 5}.........\infty } \right]$$ <br><br>$$ = 1 - 2\left[ { - \log \left( {1 + 1} \right) + 1} \right]$$ <br><br>$$ = 2\log 2 - 1 = \log \left( {{4 \over e}} \right)$$
mcq
aieee-2003
PL99UcmXmNOIsJPr
maths
sequences-and-series
summation-of-series
The sum of the first n terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + ....\,is\,{{n{{(n + 1)}^2}} \over 2}$$ when n is even. When n is odd the sum is
[{"identifier": "A", "content": "$${\\left[ {{{n(n + 1)} \\over 2}} \\right]^2}$$ "}, {"identifier": "B", "content": "$${{{n^2}(n + 1)} \\over 2}$$ "}, {"identifier": "C", "content": "$${{n{{(n + 1)}^2}} \\over 4}$$ "}, {"identifier": "D", "content": "$$\\,{{3n(n + 1)} \\over 2}$$ "}]
["B"]
null
If $$n$$ is odd, the required sum is <br><br>$${1^2} + {2.2^2} + {3^2} + {2.4^2} + ......$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2.{\left( {n - 1} \right)^2} + {n^2}$$ <br><br>$$ = {{\left( {n - 1} \right){{\left( {n - 1 + 1} \right)}^2}} \over 2} + {n^2}$$ <br><br>[ As $$\left( {n - 1} \right)$$ is even <br><br>$$\therefore$$ using given formula for the sum of $$\left( {n - 1} \right)$$ terms.] <br><br>$$ = \left( {{{n - 1} \over 2} + 1} \right){n^2} = {{{n^2}\left( {n + 1} \right)} \over 2}$$
mcq
aieee-2004
n9ha6c4bh8MQnUGo
maths
sequences-and-series
summation-of-series
The sum of series $${1 \over {2\,!}} + {1 \over {4\,!}} + {1 \over {6\,!}} + ........$$ is
[{"identifier": "A", "content": "$${{\\left( {{e^2} - 2} \\right)} \\over e}\\,$$ "}, {"identifier": "B", "content": "$${{{{\\left( {e - 1} \\right)}^2}} \\over {2e}}$$ "}, {"identifier": "C", "content": "$${{\\left( {{e^2} - 1} \\right)} \\over {2e}}\\,$$ "}, {"identifier": "D", "content": "$${{\\left( {{e^2} - 1} \\right)} \\over 2}$$ "}]
["B"]
null
We know that <br><br>$$e = 1 + {1 \over {1!}} + {1 \over {2!}} + {1 \over {3!}} + ..........$$ <br><br>and <br><br>$${e^{ - 1}} = 1 - {1 \over {1!}} + {1 \over {2!}} - {1 \over {3!}} + .........$$ <br><br>$$\therefore$$ $$e + {e^{ - 1}} = 2\left[ {1 + {1 \over {2!}} + {1 \over {4!}} + ......} \right]$$ <br><br>$$\therefore$$ $${1 \over {2!}} + {1 \over {4!}} + {1 \over {6!}} + .......$$ <br><br>$$ = {{e + {e^{ - 1}}} \over 2} - 1$$ <br><br>$$ = {{{e^2} + 1 - 2e} \over {2e}}$$ <br><br>$$ = {{{{\left( {e - 1} \right)}^2}} \over {2e}}$$
mcq
aieee-2004
M5gWDJeqiWRmB7hX
maths
sequences-and-series
summation-of-series
The sum of the series $$1 + {1 \over {4.2!}} + {1 \over {16.4!}} + {1 \over {64.6!}} + .......$$ ad inf. is
[{"identifier": "A", "content": "$${{e - 1} \\over {\\sqrt e }}\\,$$ "}, {"identifier": "B", "content": "$${{e + 1} \\over {\\sqrt e }}$$ "}, {"identifier": "C", "content": "$${{e - 1} \\over {2\\sqrt e }}$$ "}, {"identifier": "D", "content": "$${{e + 1} \\over {2\\sqrt e }}$$ "}]
["D"]
null
$${{{e^x} + {e^{ - x}}} \over 2}$$ <br><br>$$ = 1 + {{{x^2}} \over {2!}} + {{{x^4}} \over {4!}} + {{{x^6}} \over {6!}}.........$$ <br><br>Putting $$x = {1 \over 2}$$ we get <br><br>$$1 + {1 \over {4.2!}} + {1 \over {16.4!}} + {1 \over {64.6!}} + .......$$ <br><br>$$\infty = {{{e^{{1 \over 2}}} + {e^{{{ - 1} \over 2}}}} \over 2} = {{\sqrt e + {1 \over {\sqrt e }}} \over 2}$$ <br><br>$$ = {{e + 1} \over {2\sqrt e }}$$
mcq
aieee-2005
4spZL4XKlmGNYvXy
maths
sequences-and-series
summation-of-series
The sum of series $${1 \over {2!}} - {1 \over {3!}} + {1 \over {4!}} - .......$$ upto infinity is
[{"identifier": "A", "content": "$${e^{ - {1 \\over 2}}}$$ "}, {"identifier": "B", "content": "$${e^{ + {1 \\over 2}}}$$"}, {"identifier": "C", "content": "$${e^{ - 2}}$$ "}, {"identifier": "D", "content": "$${e^{ - 1}}$$"}]
["D"]
null
We know that $${e^x} = 1 + x + {{{x^2}} \over {2!}} + {{{x^3}} \over {3!}} + ........\infty $$ <br><br>Put $$x=-1$$ <br><br>$$\therefore$$ $${e^{ - 1}} = 1 - 1 + {1 \over {2!}} - {1 \over {3!}} + {1 \over {4!}}..........\infty $$ <br><br>$$\therefore$$ $${e^{ - 1}} = {1 \over {2!}} - {1 \over {3!}} + {1 \over {4!}} - {1 \over {5!}}........\infty $$
mcq
aieee-2007
dEB3aGohwKvD17AB
maths
sequences-and-series
summation-of-series
The sum to infinite term of the series $$1 + {2 \over 3} + {6 \over {{3^2}}} + {{10} \over {{3^3}}} + {{14} \over {{3^4}}} + .....$$ is
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "2"}]
["A"]
null
We have <br><br>$$S = 1 + {2 \over 3} + {6 \over {{3^2}}} + {{10} \over {{3^3}}} + {{14} \over {{3^4}}} + ........\infty \,\,\,\,\,...\left( 1 \right)$$ <br><br>Multiplying both sides by $${1 \over 3}$$ we get <br><br>$${1 \over 3}S = {1 \over 3} + {2 \over {{3^2}}} + {6 \over {{3^3}}} + {{10} \over {{3^4}}} + .......\,\,\,\,\,...\left( 2 \right)$$ <br><br>Subtracting eqn. $$(2)$$ from eqn. $$(1)$$ we get <br><br>$${2 \over 3}S = 1 + {1 \over 3} + {4 \over {{3^2}}} + {4 \over {{3^3}}} + {4 \over {{3^4}}} + .....\infty $$ <br><br>$$ \Rightarrow {2 \over 3}S = {4 \over 3} + {4 \over {{3^2}}} + {4 \over {{3^3}}} + {4 \over {{3^4}}} + .....\infty $$ <br><br>$$ \Rightarrow {2 \over 3}S = {{{4 \over 3}} \over {1 - {1 \over 3}}} = {4 \over 3} \times {3 \over 2}$$ <br><br>$$ \Rightarrow S - 3$$
mcq
aieee-2009
HGW0sDmHzjbMJRmV
maths
sequences-and-series
summation-of-series
<p> <b> Statement-1: </b> The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) +.....+ (361 + 380 + 400) is 8000. </p><p> <b> Statement-2: </b> $$\sum\limits_{k = 1}^n {\left( {{k^3} - {{(k - 1)}^3}} \right)} = {n^3}$$, for any natural number n.</p>
[{"identifier": "A", "content": "Statement-1 is false, Statement-2 is true."}, {"identifier": "B", "content": "Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1."}, {"identifier": "C", "content": "Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1."}, {"identifier": "D", "content": "Statement-1 is true, Statement-2 is false."}]
["B"]
null
$$n$$<sup>th </sup> term of the given series <br><br>$$ = {T_n} = {\left( {n - 1} \right)^2} + \left( {n - 1} \right)n + {n^2}$$ <br><br>$$ = {{\left( {{{\left( {n - 1} \right)}^3} - {n^3}} \right)} \over {\left( {n - 1} \right) - n}}$$ <br><br>$$ = {n^3} - {\left( {n - 1} \right)^3}$$ <br><br>$$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left[ {{k^3} - {{\left( {k - 1} \right)}^3}} \right]} $$ <br><br>$$ \Rightarrow 8000 = {n^3}$$ <br><br>$$ \Rightarrow n = 20\,\,$$ which is a natural number. <br><br>Now, put $$n = 1,2,3,.....20$$ <br><br>$${T_1} = {1^3} - {0^3}$$ <br><br>$${T_2} = {2^3} - {1^3}$$ <br><br>. <br><br>. <br><br>. <br><br>$${T_{20}} = {20^3} - {19^3}$$ <br><br>Now, $${T_1} + {T_2} + ..... + {T_{20}} = {S_{20}}$$ <br><br>$$ \Rightarrow {S_{20}} = {20^3} - {0^3} = 8000$$ <br><br>Hence, both the given statements are true and statement $$2$$ supports statement $$1.$$
mcq
aieee-2012
lh5wc3i1Vj06rYEy
maths
sequences-and-series
summation-of-series
The sum of first 20 terms of the sequence 0.7, 0.77, 0.777,........,is
[{"identifier": "A", "content": "$${7 \\over {81}}\\left( {179 - {{10}^{ - 20}}} \\right)$$ "}, {"identifier": "B", "content": "$$\\,{7 \\over 9}\\left( {99 - {{10}^{ - 20}}} \\right)$$ "}, {"identifier": "C", "content": "$${7 \\over {81}}\\left( {179 + {{10}^{ - 20}}} \\right)$$ "}, {"identifier": "D", "content": "$${7 \\over 9}\\left( {99 + {{10}^{ - 20}}} \\right)$$ "}]
["C"]
null
Given sequence can be written as <br><br>$${7 \over {10}} + {{77} \over {100}} + {{777} \over {{{10}^3}}} + ..... + $$ up to $$20$$ terms <br><br>$$ = 7\left[ {{1 \over {10}} + {{11} \over {100}} + {{111} \over {{{10}^3}}} + ...... + } \right.\,\,$$ up to $$20$$ terms ] <br><br>Multiply and divide by $$9$$ <br><br>$$ = {7 \over 9}\left[ {{9 \over {10}} + {{99} \over {100}} + {{999} \over {1000}} + ......} \right.\,\,$$ $$+$$ up to $$20$$ terms ] <br><br>$$ = {7 \over 9}\left[ {\left( {1 - {1 \over {10}}} \right)} \right. + \left( {1 - {1 \over {{{10}^2}}}} \right) + \left( {1 - {1 \over {{{10}^3}}}} \right) + ......$$ $$+$$ up to $$20$$ terms ] <br><br>$$ = {7 \over 9}\left[ {20 - {{{1 \over {10}}\left( {1 - {{\left( {{1 \over {10}}} \right)}^{20}}} \right)} \over {1 - {1 \over {10}}}}} \right]$$ <br><br>$$ = {7 \over 9}\left[ {{{179} \over 9} + {1 \over 9}{{\left( {{1 \over {10}}} \right)}^{20}}} \right]$$ <br><br>$$ = {7 \over {81}}\left[ {179 + {{\left( {10} \right)}^{ - 20}}} \right]$$
mcq
jee-main-2013-offline
4PDGIePDoIDBwloQ
maths
sequences-and-series
summation-of-series
If $${(10)^9} + 2{(11)^1}\,({10^8}) + 3{(11)^2}\,{(10)^7} + ......... + 10{(11)^9} = k{(10)^9},$$, then k is equal to :
[{"identifier": "A", "content": "100 "}, {"identifier": "B", "content": "110"}, {"identifier": "C", "content": "$${{121} \\over {10}}$$ "}, {"identifier": "D", "content": "$${{441} \\over {100}}$$ "}]
["A"]
null
Let $${10^9} + 2.\left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ...$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$$ <br><br>Let $$x = {10^9} + 2.\left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ..... + 10{\left( {11} \right)^9}$$ <br><br>Multiplied by $${{11} \over {10}}$$ on both the sides <br><br>$${{11} \over {10}}x = {11.10^8} + 2.{\left( {11} \right)^2}.{\left( {10} \right)^7} + .....$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 9\left( {11} \right){}^9 + {11^{10}}$$ <br><br>$$x\left( {1 - {{11} \over {10}}} \right) = {10^9} + 11{\left( {10} \right)^8} + 11{}^2 \times {\left( {10} \right)^7}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ... + {11^9} - {11^{10}}$$ <br><br>$$ \Rightarrow - {x \over {10}} = {10^9}\left[ {{{{{\left( {{{11} \over {10}}} \right)}^{10}} - 1} \over {{{11} \over {10}} - 1}}} \right] - {11^{10}}$$ <br><br>$$ \Rightarrow - {x \over {10}} = \left( {{{11}^{10}} - {{10}^{10}}} \right) - {11^{10}} = - {10^{10}}$$ <br><br>$$ \Rightarrow x = {10^{11}} = k{.10^9}$$ <br><br>Given $$ \Rightarrow k = 100$$
mcq
jee-main-2014-offline
ZdSGnALvwlIDEdX3
maths
sequences-and-series
summation-of-series
The sum of first 9 terms of the series. <br/><br/>$${{{1^3}} \over 1} + {{{1^3} + {2^3}} \over {1 + 3}} + {{{1^3} + {2^3} + {3^3}} \over {1 + 3 + 5}} + ......$$
[{"identifier": "A", "content": "142"}, {"identifier": "B", "content": "192"}, {"identifier": "C", "content": "71"}, {"identifier": "D", "content": "96"}]
["D"]
null
$${n^{th}}$$ term of series <br><br>$$ = {{\left[ {{{n\left( {n + 1} \right)} \over 2}} \right]} \over {{n^2}}} = {1 \over 4}{\left( {n + 1} \right)^2}$$ <br><br>Sum of $$n$$ term $$ = \sum {{1 \over 4}} {\left( {n + 1} \right)^2}$$ <br><br>$$ = {1 \over 4}\left[ {\sum {n{}^2} + 2\sum n + n} \right]$$ <br><br>$$ = {1 \over 4}\left[ {{{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6} + {{2n\left( {n + 1} \right)} \over 2} + n} \right]$$ <br><br>Sum of $$9$$ terms <br><br>$$ = {1 \over 4}\left[ {{{9 \times 10 \times 19} \over 6} + {{18 \times 10} \over 2} + 9} \right] = {{384} \over 4} = 96$$
mcq
jee-main-2015-offline
FaNkL9CszrtfuIWo
maths
sequences-and-series
summation-of-series
If the sum of the first ten terms of the series $${\left( {1{3 \over 5}} \right)^2} + {\left( {2{2 \over 5}} \right)^2} + {\left( {3{1 \over 5}} \right)^2} + {4^2} + {\left( {4{4 \over 5}} \right)^2} + .......is\,{{16} \over 5}m,$$ then m is equal to :
[{"identifier": "A", "content": "100"}, {"identifier": "B", "content": "99"}, {"identifier": "C", "content": "102"}, {"identifier": "D", "content": "101"}]
["D"]
null
$${\left( {{8 \over 5}} \right)^2} + {\left( {{{12} \over 5}} \right)^2} + {\left( {{{16} \over 5}} \right)^2}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\left( {{{20} \over 5}} \right)^2}.... + {\left( {{{44} \over 5}} \right)^2}$$ <br><br>$$S = {{16} \over {25}}\left( {{2^2} + {3^2} + {4^2} + ...... + {{11}^2}} \right)$$ <br><br>$$ = {{16} \over {25}}\left( {{{11\left( {11 + 1} \right)\left( {22 + 1} \right)} \over 6} - 1} \right)$$ <br><br>$$ = {{16} \over {25}} \times 505 = {{16} \over 5} \times 101$$ <br><br>$$ \Rightarrow {{16} \over 5}m = {{16} \over 5} \times 101$$ <br><br>$$ \Rightarrow m = 101.$$
mcq
jee-main-2016-offline
2JtY6v5Vo1VAChH2hqDWK
maths
sequences-and-series
summation-of-series
Let z = 1 + ai be a complex number, a &gt; 0, such that z<sup>3</sup> is a real number. <br/><br/>Then the sum 1 + z + z<sup>2</sup> + . . . . .+ z<sup>11</sup> is equal to :
[{"identifier": "A", "content": "$$ - 1250\\,\\sqrt 3 \\,i$$ "}, {"identifier": "B", "content": "$$ 1250\\,\\sqrt 3 \\,i$$ "}, {"identifier": "C", "content": "$$1365\\,\\sqrt 3 i$$"}, {"identifier": "D", "content": "$$-$$ $$1365\\,\\sqrt 3 i$$"}]
["D"]
null
z = 1 + ai <br><br>z<sup>2</sup> = 1 $$-$$ a<sup>2</sup> + 2ai <br><br>z<sup>2</sup> . z = {(1 $$-$$ a<sup>2</sup>) + 2ai} &nbsp;&nbsp;{1 + ai} <br><br>= (1 $$-$$ a<sup>2</sup>) + 2ai + (1 $$-$$ a<sup>2</sup>) &nbsp;&nbsp; ai $$-$$ 2a<sup>2</sup> <br><br>$$ \because $$&nbsp;&nbsp;&nbsp; z<sup>3</sup> is real &nbsp;$$ \Rightarrow $$&nbsp;&nbsp;2a + (1 $$-$$ a<sup>2</sup>) a = 0 <br><br>a (3 $$-$$ a<sup>2</sup>) = 0 &nbsp;&nbsp;$$ \Rightarrow $$&nbsp;&nbsp;a = $$\sqrt 3 $$ (a &gt; 0) <br><br>1 + z + z<sup>2</sup> . . . . . . . z<sup>11</sup> = $${{{z^{12}} - 1} \over {z - 1}} = {{{{\left( {1 + \sqrt 3 i} \right)}^{12}} - 1} \over {1 + \sqrt 3 i - 1}}$$ <br><br>= $${{{{\left( {1 + \sqrt 3 i} \right)}^{12}} - 1} \over {\sqrt 3 i}}$$ <br><br>(1 + $${\sqrt 3 i}$$)<sup>12</sup> = 2<sup>12</sup> $${\left( {{1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^{12}}$$ <br><br>= 2<sup>12</sup> (cos$${\pi \over 3}$$ + isin$${\pi \over 3}$$)<sup>12</sup> = 2<sup>12</sup> (cos4$$\pi $$ + isin4$$\pi $$) = 2<sup>12</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp; &nbsp;$${{{2^{12}} - 1} \over {\sqrt 3 i}} = {{4095} \over {\sqrt 3 i}} = - {{4095} \over 3}\sqrt 3 i = - 1365\sqrt 3 i$$
mcq
jee-main-2016-online-10th-april-morning-slot
xuwfSpE7OV4mQBpm
maths
sequences-and-series
summation-of-series
For any three positive real numbers a, b and c, <br/><br/>9(25$${a^2}$$ + b<sup>2</sup>) + 25(c<sup>2</sup> - 3$$a$$c) = 15b(3$$a$$ + c). <br/>Then
[{"identifier": "A", "content": "b, c and $$a$$ are in G.P."}, {"identifier": "B", "content": "b, c and $$a$$ are in A.P."}, {"identifier": "C", "content": "$$a$$, b and c are in A.P."}, {"identifier": "D", "content": "$$a$$, b and c are in G.P."}]
["B"]
null
9(25$${a^2}$$ + b<sup>2</sup>) + 25(c<sup>2</sup> - 3$$a$$c) = 15b(3$$a$$ + c) <br><br> $$ \Rightarrow 225{a^2} + 9{b^2} + 25{c^2} - 75ac = 45ab + 15bc$$ <br><br>$$ \Rightarrow {\left( {15a} \right)^2} + {\left( {3b} \right)^2} + {\left( {5c} \right)^2} - 75ac = 45ab + 15bc$$ <br><br>$$ \Rightarrow $$ $${1 \over 2}\left[ {{{\left( {15a - 3b} \right)}^2} + {{\left( {3b - 5c} \right)}^2} + {{\left( {5c - 15a} \right)}^2}} \right] = 0$$ <br><br>it is possible when 15a – 3b = 0, 3b – 5 c = 0 and 5c – 15a = 0 <br><br>$$ \Rightarrow $$ 15a = 3b = 5c <br><br>$$ \Rightarrow $$ b = $${{5c} \over 3}$$, a = $${c \over 3}$$ <br><br>$$ \Rightarrow $$ a + b = $${c \over 3} + {{5c} \over 3}$$ = $${{6c} \over 3}$$ = 2c <br><br>$$ \therefore $$ b, c, a are in A.P.
mcq
jee-main-2017-offline
cNdhbmgFjjDuKylw4LXXW
maths
sequences-and-series
summation-of-series
Let <br/><br/>S<sub>n</sub> = $${1 \over {{1^3}}}$$$$ + {{1 + 2} \over {{1^3} + {2^3}}} + {{1 + 2 + 3} \over {{1^3} + {2^3} + {3^3}}} + ......... + {{1 + 2 + ....... + n} \over {{1^3} + {2^3} + ...... + {n^3}}}.$$ <br/><br/>If 100 S<sub>n</sub> = n, then n is equal to :
[{"identifier": "A", "content": "199"}, {"identifier": "B", "content": "99"}, {"identifier": "C", "content": "200"}, {"identifier": "D", "content": "19"}]
["A"]
null
n<sup>th</sup> term, T<sub>n</sub> = $${{1 + 2 + .... + n} \over {{1^2} + {2^2} + .... + {n^2}}}$$ <br><br>T<sub>n</sub> = $${{{{n\left( {n + 1} \right)} \over 2}} \over {{{\left( {{{n\left( {n + 1} \right)} \over 2}} \right)}^2}}}$$ <br><br>$$ \Rightarrow $$ T<sub>n</sub> = $${2 \over {n\left( {n + 1} \right)}}$$ = $$2\left[ {{1 \over n} - {1 \over {n + 1}}} \right]$$ <br><br>$$ \therefore $$ S<sub>n</sub> = $$\sum {{T_n}} $$ <br><br>= $$2\sum\limits_{n = 1}^n {\left[ {{1 \over n} - {1 \over {n + 1}}} \right]} $$ <br><br>= $$2\left( {1 - {1 \over n}} \right)$$ <br><br>= $${{{2n} \over {n + 1}}}$$ <br><br>Given that, <br><br>100 S<sub>n</sub> = n <br><br>$$ \Rightarrow $$ 100 $$ \times $$ $${{{2n} \over {n + 1}}}$$ = n <br><br>$$ \Rightarrow $$ n + 1 = 200 <br><br>$$ \Rightarrow $$ n = 199
mcq
jee-main-2017-online-9th-april-morning-slot
OME7QaClOHVLgwxtyldwp
maths
sequences-and-series
summation-of-series
If the sum of the first n terms of the series $$\,\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$$ is $$435\sqrt 3 ,$$ then n equals :
[{"identifier": "A", "content": "18"}, {"identifier": "B", "content": "15"}, {"identifier": "C", "content": "13"}, {"identifier": "D", "content": "29"}]
["B"]
null
Given, <br><br>$$\sqrt 3 $$ + $$\sqrt {75} $$ + $$\sqrt {243} $$ + $$\sqrt {507} $$ + . . . . . .+ n terms <br><br>= $$\sqrt 3 $$ + $$\sqrt {25 \times 3} $$ + $$\sqrt {81 \times 3} $$ + $$\sqrt {169 \times 3} $$ + . . . . . .+ n terms <br><br>= $$\sqrt 3 $$ + 5$$\sqrt 3 $$ + 9$$\sqrt 3 $$ + 13$$\sqrt 3 $$ + . . . . . .+ n terms <br><br>= $$\sqrt 3 $$ [ 1 + 5 + 9 + 13 + . . . . .+ n terms] <br><br>= $$\sqrt 3 $$ $$\left[ {{n \over 2}\left( {2.1 + \left( {n - 1} \right)4} \right)} \right]$$ <br><br>= $$\sqrt 3 $$ $$\left[ {{n \over 2}\left( {2 + 4n - 4} \right)} \right]$$ <br><br>= $$\sqrt 3 $$ $$\left[ {{n \over 2}\left( {4n - 2} \right)} \right]$$ <br><br>= $$\sqrt 3 $$ [n (2n $$-$$ 1)] <br><br>According to question, <br><br>$$\sqrt 3 $$ [n (2n $$-$$ 1)] = 435$$\sqrt 3 $$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ 2n<sup>2</sup> $$-$$ n = 435 <br><br>$$\therefore\,\,\,$$ n = $${{1 \pm \sqrt {1 + 4 \times 2 \times 435} } \over 4}$$ = $${{1 \pm 59} \over 4}$$ <br><br>$$\therefore\,\,\,$$ n = $${{1 + 59} \over 4}$$ = 15 &nbsp;&nbsp;or&nbsp;&nbsp; $${{1 - 59} \over 4}$$ = $$-$$ 14.5 <br><br>$$\therefore\,\,\,$$ n = 15 (as &nbsp;&nbsp; n &nbsp;can't be $$-$$ve)
mcq
jee-main-2017-online-8th-april-morning-slot
OJSjRBTgKunyFAcA
maths
sequences-and-series
summation-of-series
Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series <br/>1<sup>2</sup> + 2.2<sup>2</sup> + 3<sup>2</sup> + 2.4<sup>2</sup> + 5<sup>2</sup> + 2.6<sup>2</sup> ........... <br/>If B - 2A = 100$$\lambda $$, then $$\lambda $$ is equal to
[{"identifier": "A", "content": "496"}, {"identifier": "B", "content": "232"}, {"identifier": "C", "content": "248"}, {"identifier": "D", "content": "464"}]
["C"]
null
<b><u>Note</u> : </b> <br><br>Sum of square of first n odd terms <br><br>1<sup>2</sup> + 3<sup>2</sup> + 5<sup>2</sup> + . . . . .+ n<sup>2</sup> = $${{n\left( {2n - 1} \right)\left( {2n + 1} \right)} \over 3}$$ <br><br>Given, <br><br>1<sup>2</sup> + 2. 2<sup>2</sup> + 3<sup>2</sup> + 2.4<sup>2</sup> + 5<sup>2</sup> + 2.6<sup>2</sup> + . . . . . . <br><br>A = Sum of first 20 terms <br><br>$$\therefore\,\,\,$$A = 1<sup>2</sup> + 2.2<sup>2</sup> + 3<sup>2</sup> + 24<sup>2</sup> + 5<sup>2</sup> + 2.6<sup>2</sup> + . . . . . .20 terms <br><br>Arrange those terms this way, <br><br>A = [1<sup>2</sup> + 3<sup>2</sup> + 5<sup>2</sup> + . . . . . 10 terms] + [ 2.2<sup>2</sup> + 2.4<sup>2</sup> + 2.6<sup>2</sup> + . . . . 10 terms] <br><br>A = [ 1<sup>2</sup> + 3<sup>2</sup> + 5<sup>2</sup> + . . . . 10 terms ] + 2.<sup>2</sup> [ 1<sup>2</sup> + 2<sup>2</sup> + 3<sup>2</sup> + . . . .10 terms ] <br><br>A = $$ {{10 \times \left( {2.10 - 1} \right)\left( {2.10 + 1} \right)} \over 3} + {2.2^2}\left[ {{{10 \times 11 \times 21} \over 6}} \right]$$ <br><br>A = $$ {{10 \times 19 \times 21} \over 3} + 8 \times {{10 \times 11 \times 21} \over 6}$$ <br><br>A =70 $$ \times $$ 19 + 70 $$ \times $$ 44 <br><br>A = 70 $$ \times $$ 63 <br><br>B = Sum of first 40 terms <br><br>Arrange those terms this way. <br><br>B = [1<sup>2</sup>+ 3<sup>2</sup> + 5<sup>2</sup> +. . . . 20 terms ] + [2.2<sup>2</sup> + 2.4<sup>2</sup> +. . . . . 20 terms ] <br><br>B = [1<sup>2</sup> + 3<sup>2</sup> + 5<sup>2</sup> + . . . . 20 terms] + 2.2<sup>2</sup> [1<sup>2</sup> + 2<sup>2</sup> + . . . 20 terms ] <br><br>B = $${{20 \times 39 \times 41} \over 3} + \,\,8\,\, \times {{20 \times 21 \times 41} \over 6}$$ <br><br>B = 260 $$ \times $$ 41 + 560 $$ \times $$ 41 <br><br>B = 41 $$ \times \,\,\,820$$ <br><br>$$\therefore\,\,\,$$ B $$-$$ 2A = 41 $$ \times \,$$ 820 $$-$$ 2 $$ \times \,$$ 70 $$ \times \,$$ 63 = 24800 <br><br>Given that B $$-$$ 2A = 100 $$\lambda $$ <br><br>$$\therefore\,\,\,$$ 100 $$\lambda $$ = 24800 <br><br>$$ \Rightarrow \,\,\,\lambda $$ = 248
mcq
jee-main-2018-offline
QtfYNrtuTFProPJ2lotH6
maths
sequences-and-series
summation-of-series
The sum of the first 20 terms of the series <br/><br/>$$1 + {3 \over 2} + {7 \over 4} + {{15} \over 8} + {{31} \over {16}} + ...,$$ is :
[{"identifier": "A", "content": "$$38 + {1 \\over {{2^{19}}}}$$"}, {"identifier": "B", "content": "$$38 + {1 \\over {{2^{20}}}}$$"}, {"identifier": "C", "content": "$$39 + {1 \\over {{2^{20}}}}$$"}, {"identifier": "D", "content": "$$39 + {1 \\over {{2^{19}}}}$$"}]
["A"]
null
1 + $${3 \over 2}$$ + $${7 \over 4}$$ + $${15 \over 8}$$ + $${31 \over 16}$$ + . . . . <br><br>=&nbsp; (2 $$-$$ 1) + (2 $$-$$ $${1 \over 2}$$ ) + (2 $$-$$ $${1 \over 4}$$) + (2 $$-$$ $${1 \over 8}$$) + . . . . .+ 20 terms <br><br>= &nbsp; (2 + 2 + . . . . . 20 terms) $$-$$ (1 + $${1 \over 2}$$ + $${1 \over 4}$$ + . . . . . 20 terms) <br><br>= &nbsp; 2 $$ \times $$ 20 $$-$$ $$\left( {{{1 - {{\left( {{1 \over 2}} \right)}^{20}}} \over {1 - {1 \over 2}}}} \right)$$ <br><br>= &nbsp; 40 $$-$$ 2 + 2 $${\left( {{1 \over 2}} \right)^{20}}$$ <br><br>=&nbsp; 38 + $${1 \over {{2^{19}}}}$$
mcq
jee-main-2018-online-16th-april-morning-slot
BLiwgey2PSssP0DBRJxwz
maths
sequences-and-series
summation-of-series
Let    A<sub>n</sub> = $$\left( {{3 \over 4}} \right) - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3}$$ $$-$$. . . . . + ($$-$$1)<sup>n-1</sup> $${\left( {{3 \over 4}} \right)^n}$$    and    B<sub>n</sub> = 1 $$-$$ A<sub>n</sub>. <br/>Then, the least dd natural numbr p, so that B<sub>n</sub> &gt; A<sub>n</sub> , for all n$$ \ge $$ p, is :
[{"identifier": "A", "content": "9 "}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "11"}, {"identifier": "D", "content": "5"}]
["B"]
null
A<sub>n</sub> = $$\left( {{3 \over 4}} \right) - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3} - .... + {\left( { - 1} \right)^{n - 1}}{\left( {{3 \over 4}} \right)^n}$$ <br><br>Which in a G.P. with a = $${{3 \over 4}}$$, r = $${{{ - 3} \over 4}}$$ and number of terms = n <br><br>$$\therefore\,\,\,$$ A<sub>n</sub> = $${{{3 \over 4}\left( {1 - {{\left( {{{ - 3} \over 4}} \right)}^n}} \right)} \over {1 - \left( {{{ - 3} \over 4}} \right)}} = {{{3 \over 4} \times \left( {1 - {{\left( {{{ - 3} \over 4}} \right)}^n}} \right)} \over {{7 \over 4}}}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$A<sub>n</sub> = $${{3 \over 7}}$$$$\left[ {1 - {{\left( {{{ - 3} \over 4}} \right)}^n}} \right]$$ $$\,\,\,\,\,\,\,\,\,$$ . . . . . . . . . .(1) <br><br>As, B<sub>n</sub> = 1 $$-$$ A<sub>n</sub> <br><br>For least odd natural number p, such that B<sub>n</sub> &gt; A<sub>n</sub> <br><br>$$ \Rightarrow $$$$\,\,\,$$ 1 $$-$$ A<sub>n</sub> &gt; A<sub>n</sub> $$ \Rightarrow $$ 1 &gt; 2 $$ \times $$ A<sub>n</sub> $$ \Rightarrow $$ A<sub>n</sub> &lt; $${{1 \over 2}}$$ <br><br>From eqn. (1), we get <br><br>$${{3 \over 7}}$$$$ \times $$ $$\left[ {1 - {{\left( {{{ - 3} \over 4}} \right)}^n}} \right] &lt; {1 \over 2}$$ $$ \Rightarrow $$ 1 $$-$$ $${\left( {{{ - 3} \over 4}} \right)^n} &lt; {7 \over 6}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ 1 $$-$$ $${7 \over 6}$$ &lt; $${\left( {{{ - 3} \over 4}} \right)^n}$$ &nbsp;&nbsp;$$ \Rightarrow $$&nbsp;&nbsp; $${{ - 1} \over 6} &lt; {\left( {{{ - 3} \over 4}} \right)^n}$$ <br><br>As n is odd, then $${\left( {{{ - 3} \over 4}} \right)^n}$$ = $$-$$ $${{{{3^n}} \over 4}}$$ <br><br>So $${{ - 1} \over 6}$$ &lt; $$-$$ $${\left( {{3 \over 4}} \right)^n}$$ $$ \Rightarrow $$ $${1 \over 6}$$ &gt; $${\left( {{3 \over 4}} \right)^n}$$ <br><br>log$$\left( {{1 \over 6}} \right)$$ = n log$$\left( {{3 \over 4}} \right)$$ $$ \Rightarrow $$ 6.228 &lt; n <br><br>Hence, n should be 7.
mcq
jee-main-2018-online-15th-april-evening-slot
VB4N8NG5lJI3jk4QxM3rsa0w2w9jx5edf2b
maths
sequences-and-series
summation-of-series
For x $$\varepsilon $$ R, let [x] denote the greatest integer $$ \le $$ x, then the sum of the series $$\left[ { - {1 \over 3}} \right] + \left[ { - {1 \over 3} - {1 \over {100}}} \right] + \left[ { - {1 \over 3} - {2 \over {100}}} \right] + .... + \left[ { - {1 \over 3} - {{99} \over {100}}} \right]$$ is :
[{"identifier": "A", "content": "- 153"}, {"identifier": "B", "content": "- 135"}, {"identifier": "C", "content": "- 133"}, {"identifier": "D", "content": "- 131"}]
["C"]
null
$$\left[ {{{ - 1} \over 3}} \right] + \left[ {{{ - 1} \over 3} - {1 \over {100}}} \right] + \left[ {{{ - 1} \over 3} - {2 \over {100}}} \right] +$$<br><br> $$ ....... + \left[ {{{ - 1} \over 3} - {{99} \over {100}}} \right]$$<br><br> $$ \Rightarrow ( - 1 - 1 - 1 - .....67\,times) + ( - 2 - 2 - 2 - .....33\,times)$$<br><br> $$ \Rightarrow $$ -133
mcq
jee-main-2019-online-12th-april-morning-slot
JcmjVvCtosFouYLOtS3rsa0w2w9jx1zojez
maths
sequences-and-series
summation-of-series
The sum <br/>$$1 + {{{1^3} + {2^3}} \over {1 + 2}} + {{{1^3} + {2^3} + {3^3}} \over {1 + 2 + 3}} + ...... + {{{1^3} + {2^3} + {3^3} + ... + {{15}^3}} \over {1 + 2 + 3 + ... + 15}}$$$$ - {1 \over 2}\left( {1 + 2 + 3 + ... + 15} \right)$$ is equal to :
[{"identifier": "A", "content": "620"}, {"identifier": "B", "content": "1240"}, {"identifier": "C", "content": "1860"}, {"identifier": "D", "content": "660"}]
["A"]
null
$$Sum = \sum\limits_{n = 1}^{15} {{{{1^3} + {2^3} + .... + {n^3}} \over {1 + 2 + .... + n}}} - {1 \over 2}{{15 \times 16} \over 2}$$<br><br> $$ = \sum\limits_{n = 1}^{15} {{{n(n + 1)} \over 2}} - 60$$<br><br> $$ = {1 \over 2}\sum\limits_{n = 1}^{15} {{n^2}} + {1 \over 2}\sum\limits_{n = 1}^{15} {n - 60} $$<br><br> $$ = {1 \over 2} \times {{15 \times 16 \times 31} \over 6} + {1 \over 2} \times {{15 \times 16} \over 2} - 60$$<br><br> = 620
mcq
jee-main-2019-online-10th-april-evening-slot
HCoDSSB4LAVjlrMorg3rsa0w2w9jwxuogih
maths
sequences-and-series
summation-of-series
The sum <br/>$${{3 \times {1^3}} \over {{1^3}}} + {{5 \times ({1^3} + {2^3})} \over {{1^2} + {2^2}}} + {{7 \times \left( {{1^3} + {2^3} + {3^3}} \right)} \over {{1^2} + {2^2} + {3^2}}} + .....$$ upto 10 terms is:
[{"identifier": "A", "content": "600"}, {"identifier": "B", "content": "660"}, {"identifier": "C", "content": "680"}, {"identifier": "D", "content": "620"}]
["B"]
null
$${T_r} = {{(2r + 1)({1^3} + {2^3} + {3^3} + ...... + {r^3})} \over {{1^2} + {2^2} + {3^2} + ...... + {r^2}}}$$<br><br> $${T_r} = (2r + 1){\left( {{{r(r + 1)} \over 2}} \right)^2} \times {6 \over {r(r + 1)(2r + 1)}}$$<br><br> $${T_r} = {{3r(r + 1)} \over 2}$$<br><br> Now, $$S = \sum\limits_{r = 1}^{10} {{T_r}} = {3 \over 2}\sum\limits_{r = 1}^{10} {({r^2} + r)} $$<br><br> $$ \Rightarrow {3 \over 2}\left\{ {{{10 \times (10 + 1)(2 \times 10 + 1)} \over 6} + {{10 \times 11} \over 2}} \right\}$$<br><br> $$ \Rightarrow {3 \over 2}\left\{ {{{10 \times 11 \times 21} \over 6} + 5 \times 11} \right\}$$<br><br> $$ \Rightarrow {3 \over 2} \times 5 \times 11 \times 8 = 660$$
mcq
jee-main-2019-online-10th-april-morning-slot
7PpCk7Hi0qXclaNmDM18hoxe66ijvww22ey
maths
sequences-and-series
summation-of-series
The sum of the series 1 + 2 × 3 + 3 × 5 + 4 × 7 +.... upto 11th term is :-
[{"identifier": "A", "content": "945"}, {"identifier": "B", "content": "916"}, {"identifier": "C", "content": "915"}, {"identifier": "D", "content": "946"}]
["D"]
null
S = 1 + 2 × 3 + 3 × 5 + 4 × 7 +.... upto 11th term <br><br>General term T<sub>n</sub> = n (2n - 1) <br><br>$$ \therefore $$ S<sub>n</sub> = $$\sum {{T_n}} $$ <br><br>$$ \Rightarrow $$ S<sub>n</sub> = $$\sum {\left( {2{n^2} - n} \right)} $$ <br><br>$$ \Rightarrow $$ S<sub>n</sub> = $$2\sum {{n^2} - \sum r } $$ <br><br>$$ \Rightarrow $$ S<sub>n</sub> = $$2\left( {{{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}} \right) - {{n\left( {n + 1} \right)} \over 2}$$ <br><br>$$ \therefore $$ S<sub>11</sub> = $$2\left( {{{11\left( {12} \right)\left( {23} \right)} \over 6}} \right) - {{11\left( {12} \right)} \over 2}$$ <br><br>$$ \Rightarrow $$ S<sub>11</sub> = 946
mcq
jee-main-2019-online-9th-april-evening-slot
50wym4bFg664eLPHoskkF
maths
sequences-and-series
summation-of-series
The sum $$\sum\limits_{k = 1}^{20} {k{1 \over {{2^k}}}} $$ is equal to
[{"identifier": "A", "content": "$$2 - {11 \\over {{2^{19}}}}$$"}, {"identifier": "B", "content": "$$2 - {3 \\over {{2^{17}}}}$$"}, {"identifier": "C", "content": "$$1 - {11 \\over {{2^{20}}}}$$"}, {"identifier": "D", "content": "$$2 - {21 \\over {{2^{20}}}}$$"}]
["A"]
null
Let S = $$\sum\limits_{k = 1}^{20} {k{1 \over {{2^k}}}} $$ <br><br>$$ \Rightarrow $$ S = $${1 \over 2} + {2 \over {{2^2}}} + {3 \over {{2^3}}} + {4 \over {{2^4}}} + ....... + {{20} \over {{2^{20}}}}$$ .......(1) <br><br>This is an Arithmetic Geometric Sequence. Here numerator is in A.P and denominator is in G.P. <br><br>To solve Arithmetic Geometric Sequence, we multiply the series S with the common ratio of G.P. Here common ratio of G.P is $${1 \over 2}$$. <br><br>By multiplying (1) with $${1 \over 2}$$ we get, <br><br>$${S \over 2} = {1 \over {{2^2}}} + {2 \over {{2^3}}} + {3 \over {{2^4}}} + {4 \over {{2^5}}} + ....... + {{19} \over {{2^{20}}}} + {{20} \over {{2^{21}}}}$$ ....(2) <br><br>Subtract (2) from (1), <br><br>S - $${S \over 2}$$ = $${1 \over 2} + {1 \over {{2^2}}} + {1 \over {{2^3}}} + {1 \over {{2^4}}} + ....... + {1 \over {{2^{20}}}} - {{20} \over {{2^{21}}}}$$ <br><br>$$ \Rightarrow $$ $${S \over 2}$$ = $${{{1 \over 2}\left( {1 - {1 \over {{2^{20}}}}} \right)} \over {1 - {1 \over 2}}}$$ - $${{20} \over {{2^{21}}}}$$ <br><br>$$ \Rightarrow $$ S = $$2\left( {1 - {1 \over {{2^{20}}}}} \right) - {{20} \over {{2^{20}}}}$$ <br><br>$$ \Rightarrow $$ S = $$2 - {2 \over {{2^{20}}}} - {{20} \over {{2^{20}}}}$$ <br><br>$$ \Rightarrow $$ S = $$2 - {{22} \over {{2^{20}}}}$$ <br><br>$$ \Rightarrow $$ S = $$2 - {{11} \over {{2^{19}}}}$$
mcq
jee-main-2019-online-8th-april-evening-slot
PUNoOi9Ml37qcJFZvBpIU
maths
sequences-and-series
summation-of-series
If the sum of the first 15 terms of the series $${\left( {{3 \over 4}} \right)^3} + {\left( {1{1 \over 2}} \right)^3} + {\left( {2{1 \over 4}} \right)^3} + {3^3} + {\left( {3{3 \over 4}} \right)^3} + ....$$ is equal to 225 k, then k is equal to :
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "108"}, {"identifier": "C", "content": "27"}, {"identifier": "D", "content": "54"}]
["C"]
null
S = $${\left( {{3 \over 4}} \right)^3} + {\left( {{6 \over 4}} \right)^3} + {\left( {{9 \over 4}} \right)^3} + {\left( {{{12} \over 4}} \right)^3} + \,........15$$ term <br><br>= $${{27} \over {64}}$$ $$\sum\limits_{r = 1}^{15} {{r^3}} $$ <br><br>= $${{27} \over {64.}}{\left[ {{{15\left( {15 + 1} \right)} \over 2}} \right]^2}$$ <br><br>= 225 K (Given in question) <br><br>K = 27
mcq
jee-main-2019-online-12th-january-evening-slot
wUMtiArnVk8GEbYuJ01FI
maths
sequences-and-series
summation-of-series
Let  S<sub>k</sub> = $${{1 + 2 + 3 + .... + k} \over k}.$$ If   $$S_1^2 + S_2^2 + .....\, + S_{10}^2 = {5 \over {12}}$$A,  then A is equal to :
[{"identifier": "A", "content": "283"}, {"identifier": "B", "content": "156"}, {"identifier": "C", "content": "301"}, {"identifier": "D", "content": "303"}]
["D"]
null
S<sub>k</sub> = $${{K + 1} \over 2}$$ <br><br>$$\sum {S_k^2} = {5 \over {12}}$$ A <br><br>$$\sum\limits_{K = 1}^{10} {{{\left( {{{K + 1} \over 2}} \right)}^2}} = {{{2^2} + {3^2} + - - + {{11}^2}} \over 4} = {5 \over {12}}$$ A <br><br>$${{11 \times 12 \times 23} \over 6} - 1 = {5 \over 3}$$ A <br><br>505 $$ = {5 \over 3}$$ A, &nbsp;&nbsp;A = 303
mcq
jee-main-2019-online-12th-january-morning-slot
qOmtyXLtSaFKZemyMR1Mj
maths
sequences-and-series
summation-of-series
The sum of the following series <br/><br/>$$1 + 6 + {{9\left( {{1^2} + {2^2} + {3^2}} \right)} \over 7} + {{12\left( {{1^2} + {2^2} + {3^2} + {4^2}} \right)} \over 9}$$ <br/><br/>       $$ + {{15\left( {{1^2} + {2^2} + ... + {5^2}} \right)} \over {11}} + .....$$ up to 15 terms, is :
[{"identifier": "A", "content": "7520"}, {"identifier": "B", "content": "7510"}, {"identifier": "C", "content": "7830"}, {"identifier": "D", "content": "7820"}]
["D"]
null
$$1 + 6 + {{9\left( {{1^2} + {2^2} + {3^2}} \right)} \over 7} + {{12\left( {{1^2} + {2^2} + {3^2} + {4^2}} \right)} \over 9} + {{15\left( {{1^2} + {2^2} + ... + {5^2}} \right)} \over {11}} + .....\,15$$ <br><br>$$ = {{3\left( {{1^2}} \right)} \over 3} + {{6\left( {{1^2} + {2^2}} \right)} \over 5} + {{9\left( {{1^2} + {2^2} + {3^2}} \right)} \over 7} + {{12} \over 9}\left( {{1^2} + {2^2} + {3^2} + {4^2}} \right) + ......$$ <br><br>$${T_r} = {{3r} \over {2r + 1}}\left( {{1^2} + {2^2} + .... + {r^2}} \right)$$ <br><br>$${T_r} = {{3r} \over {2r + 1}}{{r\left( {r + 1} \right)\left( {2r + 1} \right)} \over 6} = {1 \over 2}{r^2}\left( {r + 1} \right)$$ <br><br>Sum of $$n$$ terms $$ = \sum\limits_{r = 1}^n {{T_r}} = {1 \over 2}\sum\limits_{r = 1}^n {\left( {{r^3} + {r^2}} \right)} $$ <br><br>$$ = {1 \over 2}\left[ {{{{n^2}{{\left( {n + 1} \right)}^2}} \over 4} + {{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}} \right]$$ <br><br>Sum upto 15 terms $$ \Rightarrow $$&nbsp;then put $$n$$ = 15 <br><br>$$ = {1 \over 2}\left( {{{{{\left( {15 \times 16} \right)}^2}} \over 4} + {{15 \times 16 \times 31} \over 6}} \right) = 7820$$
mcq
jee-main-2019-online-9th-january-evening-slot
QRFlNrjhUGdaY1JzcO18hoxe66ijvwq8ul6
maths
sequences-and-series
summation-of-series
Some identical balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second row consists of two balls and so on. If 99 more identical balls are addded to the total number of balls used in forming the equilaterial triangle, then all these balls can be arranged in a square whose each side contains exactly 2 balls less than the number of balls each side of the triangle contains. Then the number of balls used to form the equilateral triangle is :-
[{"identifier": "A", "content": "262"}, {"identifier": "B", "content": "190"}, {"identifier": "C", "content": "157"}, {"identifier": "D", "content": "225"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264552/exam_images/ooaanpllsv7wqqhp4zns.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th April Evening Slot Mathematics - Sequences and Series Question 185 English Explanation 1"> <br><br>As triangle is equilateral so each side of triangle has n-balls. <br><br>At the top of the triangle there is 1 ball then next line has 2 balls. Similarly last line has n balls. <br><br>$$ \therefore $$ Total no of balls used to create this triangle <br><br>= 1 + 2 + 3 + ..............+ n <br><br>= $${{n\left( {n + 1} \right)} \over 2}$$ <img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264168/exam_images/piff2idkgob8rasda4s6.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th April Evening Slot Mathematics - Sequences and Series Question 185 English Explanation 2"> <br>Here Number of balls in each side of square is = (n – 2) <br><br>$$ \therefore $$ Total no of balls used to create this square <br><br>= (n – 2)<sup>2</sup> <br><br>According to the question, <br><br>$${{n\left( {n + 1} \right)} \over 2}$$ + 99 = (n – 2)<sup>2</sup> <br><br>$$ \Rightarrow $$ n<sup>2</sup> - 9n - 190 = 0 <br><br>$$ \Rightarrow $$ (n - 19) (n + 10) = 0 <br><br>$$ \therefore $$ n = 19 <br><br>So total balls used to form triangle <br><br>= $${{n\left( {n + 1} \right)} \over 2}$$ = $${{19\left( {20} \right)} \over 2}$$ = 190
mcq
jee-main-2019-online-9th-april-evening-slot
U9xxSdQCH7SEff1HPajgy2xukfg6hk2u
maths
sequences-and-series
summation-of-series
If 2<sup>10</sup> + 2<sup>9</sup>.3<sup>1</sup> + 2<sup>8</sup> .3<sup>2</sup> +.....+ 2.3<sup>9</sup> + 3<sup>10</sup> = S - 2<sup>11</sup>, then S is equal to :
[{"identifier": "A", "content": "$${{{3^{11}}} \\over 2} + {2^{10}}$$"}, {"identifier": "B", "content": "3<sup>11</sup> \u2014 2<sup>12</sup>"}, {"identifier": "C", "content": "2.3<sup>11</sup>"}, {"identifier": "D", "content": "3<sup>11</sup>"}]
["D"]
null
Let S<sub>1</sub> = 2<sup>10</sup> + 2<sup>9</sup>.3<sup>1</sup> + 2<sup>8</sup> .3<sup>2</sup> +.....+ 2.3<sup>9</sup> + 3<sup>10</sup> ....(1) <br><br>Also $${{3{S_1}} \over 2}$$ = 2<sup>9</sup>.3<sup>1</sup> + 2<sup>8</sup> .3<sup>2</sup> +.....+ 2.3<sup>9</sup> + 3<sup>10</sup> + $${{{3^{11}}} \over 2}$$ ......(2) <br><br>Performing (1) - (2), we get <br><br>$$ - {{{S_1}} \over 2} = {2^{10}} - {{{3^{11}}} \over 2}$$ <br><br>$$ \Rightarrow $$ S<sub>1</sub> = 3<sup>11</sup> - 2<sup>11</sup> <br><br>According to question, <br><br>3<sup>11</sup> - 2<sup>11</sup> = S - 2<sup>11</sup> <br><br>$$ \Rightarrow $$ S = 3<sup>11</sup>
mcq
jee-main-2020-online-5th-september-morning-slot
q6m7BJB7vRxsb0PkbGjgy2xukfqd7bft
maths
sequences-and-series
summation-of-series
If the sum of the first 20 terms of the series <br/>$${\log _{\left( {{7^{1/2}}} \right)}}x + {\log _{\left( {{7^{1/3}}} \right)}}x + {\log _{\left( {{7^{1/4}}} \right)}}x + ...$$ is 460, <br/>then x is equal to :
[{"identifier": "A", "content": "e<sup>2</sup>"}, {"identifier": "B", "content": "7<sup>1/2</sup>"}, {"identifier": "C", "content": "7<sup>2</sup>"}, {"identifier": "D", "content": "7<sup>46/21</sup>"}]
["C"]
null
460 = log<sub>7</sub> <sup>x</sup>·(2 + 3 + 4 + ..... + 20 + 21) <br><br>$$ \Rightarrow $$ 460 = log<sub>7</sub> <sup>x</sup>. $$\left( {{{21 \times 22} \over 2} - 1} \right)$$ <br><br>$$ \Rightarrow $$ 460 = 230. log<sub>7</sub> <sup>x</sup> <br><br>$$ \Rightarrow $$ log<sub>7</sub> <sup>x</sup> = 2 <br><br>$$ \Rightarrow $$ x = 49
mcq
jee-main-2020-online-5th-september-evening-slot
6CDZ22WJaLTtjOakazjgy2xukf7gbwk0
maths
sequences-and-series
summation-of-series
If 1+(1–2<sup>2</sup>.1)+(1–4<sup>2</sup>.3)+(1-6<sup>2</sup>.5)+......+(1-20<sup>2</sup>.19)= $$\alpha $$ - 220$$\beta $$, <br/>then an ordered pair $$\left( {\alpha ,\beta } \right)$$ is equal to:
[{"identifier": "A", "content": "(11, 103)"}, {"identifier": "B", "content": "(10, 103)"}, {"identifier": "C", "content": "(10, 97)"}, {"identifier": "D", "content": "(11, 97)"}]
["A"]
null
$$1 + (1 - {2^2}.1) + (1 - {4^2}.3) + (1 - {6^2}.5) + ....(1 - {20^2}.19)$$<br><br>$$S = 1 + \sum\limits_{r = 1}^{10} {\left[ {1 - {{(2r)}^2}(2r - 1)} \right] = 1 + \sum\limits_{r = 1}^{10} {\left( {1 - 8{r^3} + 4{r^2}} \right)} = 1 + 10 - } \sum\limits_{r = 1}^{10} {\left( {8{r^3} - 4{r^2}} \right)} $$<br><br>$$= 11 - 8{\left( {{{10 \times 11} \over 2}} \right)^2} + 4 \times \left( {{{10 \times 11 \times 21} \over 6}} \right)$$<br><br>$$ = 11 - 2 \times {(110)^2} + 4 \times 55 \times 7$$<br><br>$$ = 11 - 220(110 - 7)$$<br><br>$$ = 11 - 220 \times 103 = \alpha - 220\beta $$ <br><br>$$\Rightarrow \alpha = 11,\beta = 103$$
mcq
jee-main-2020-online-4th-september-morning-slot
iitp3b1OAO5bXqqUlkjgy2xukf44u0jj
maths
sequences-and-series
summation-of-series
If the sum of the series <br/><br/>20 + 19$${3 \over 5}$$ + 19$${1 \over 5}$$ + 18$${4 \over 5}$$ + ... <br/><br/>upto nth term is 488 and the n<sup>th</sup> term is negative, then :
[{"identifier": "A", "content": "n = 41"}, {"identifier": "B", "content": "n = 60"}, {"identifier": "C", "content": "n<sup>th</sup> term is \u20134"}, {"identifier": "D", "content": "n<sup>th</sup> term is -4$${2 \\over 5}$$"}]
["C"]
null
$$S = {{100} \over 5} + {{98} \over 5} + {{96} \over 5} + {{94} \over 5} + ...\,n$$<br><br>$$\,{S_n} = {n \over 2}\left( {2 \times {{100} \over 5} + (n - 1)\left( {{{ - 2} \over 5}} \right)} \right) = 188$$<br><br>$$ \Rightarrow $$ $$n(100 - n + 1) = 488 \times 5$$<br><br>$$ \Rightarrow $$ $${n^2} - 101n + 488 \times 5 = 0$$<br><br>$$ \Rightarrow $$ $$n = 61,\,40$$ <br><br>For negative term n = 61 <br><br>$$\,{T_n} = a + (n - 1)d = {{100} \over 5} - {2 \over 5} \times 60$$<br><br>$$ = 20 - 24 = - 4$$
mcq
jee-main-2020-online-3rd-september-evening-slot
grhqiUH1FX5lb2FWm3jgy2xukezf3clg
maths
sequences-and-series
summation-of-series
Let S be the sum of the first 9 terms of the series : <br/>{x + k$$a$$} + {x<sup>2</sup> + (k + 2)$$a$$} + {x<sup>3</sup> + (k + 4)$$a$$} <br/>+ {x<sup>4</sup> + (k + 6)$$a$$} + .... where a $$ \ne $$ 0 and x $$ \ne $$ 1. <br/><br/>If S = $${{{x^{10}} - x + 45a\left( {x - 1} \right)} \over {x - 1}}$$, then k is equal to :
[{"identifier": "A", "content": "-3"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "-5"}, {"identifier": "D", "content": "3"}]
["A"]
null
S = {x + k$$a$$} + {x<sup>2</sup> + (k + 2)$$a$$} + {x<sup>3</sup> + (k + 4)$$a$$} <br>+ {x<sup>4</sup> + (k + 6)$$a$$} + ....<br><br> $$S = \left( {x + {x^2} + {x^3} + ....\,9terms} \right) + $$<br>&nbsp;&nbsp;&nbsp;$$a\left( {k + \left( {k + 2} \right) + (k + 4) + (k + 6) + ....9terms} \right)$$<br><br> $$S = {{x\left( {{x^9} - 1} \right)} \over {\left( {x - 1} \right)}} + a\left[ {{9 \over 2}\left[ {2k + \left( {9 - 1} \right)2} \right]} \right]$$<br><br> $$S = {{{x^{10}} - x} \over {x - 1}} + 9a\left( {k + 8} \right)$$<br><br> $$S = {{{x^{10}} - x + 9a\left( {k + 8} \right)\left( {x - 1} \right)} \over {x - 1}}$$<br><br> $$S = {{{x^{10}} - x + 9\left( {k + 8} \right)a\left( {x - 1} \right)} \over {x - 1}}$$<br><br> Compare with given sum, then we get<br><br> $${9\left( {k + 8} \right) = 45}$$<br><br> $$ \Rightarrow \left( {k + 8} \right) = 5$$<br><br> $$ \Rightarrow k = - 3$$
mcq
jee-main-2020-online-2nd-september-evening-slot
iYlXL3LrAQdpyM6ikm7k9k2k5is98y3
maths
sequences-and-series
summation-of-series
The product $${2^{{1 \over 4}}}{.4^{{1 \over {16}}}}{.8^{{1 \over {48}}}}{.16^{{1 \over {128}}}}$$ ... to $$\infty $$ is equal to :
[{"identifier": "A", "content": "$${2^{{1 \\over 4}}}$$"}, {"identifier": "B", "content": "$${2^{{1 \\over 2}}}$$"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["B"]
null
$${2^{{1 \over 4}}}{.4^{{1 \over {16}}}}{.8^{{1 \over {48}}}}{.16^{{1 \over {128}}}}$$ ... <br><br>= $${2^{{1 \over 4} + {2 \over {16}} + {3 \over {48}} + ...\infty }}$$ <br><br>= $${2^{{1 \over 4} + {1 \over 8} + {1 \over {16}} + ...\infty }}$$ <br><br>= $${2^{\left( {{{{1 \over 4}} \over {1 - {1 \over 2}}}} \right)}}$$ <br><br>= $${2^{{1 \over 2}}}$$
mcq
jee-main-2020-online-9th-january-morning-slot
jfd0PqVwAR7IawfFqN7k9k2k5hke3hj
maths
sequences-and-series
summation-of-series
The sum, $$\sum\limits_{n = 1}^7 {{{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 4}} $$ is equal to ________.
[]
null
504
$$\sum\limits_{n = 1}^7 {{{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 4}} $$ <br><br>= $${1 \over 4}\sum\limits_{n = 1}^7 {\left( {2{n^3} + 3{n^2} + n} \right)} $$ <br><br>= $${1 \over 2}\sum\limits_{n = 1}^7 {{n^3}} $$ + $${3 \over 4}\sum\limits_{n = 1}^7 {{n^2}} $$ + $${1 \over 4}\sum\limits_{n = 1}^7 n $$ <br><br>= $${1 \over 2}{\left( {{{7\left( {7 + 1} \right)} \over 2}} \right)^2}$$ + $${3 \over 4}\left( {{{7\left( {7 + 1} \right)\left( {14 + 1} \right)} \over 6}} \right)$$ + $${1 \over 4}{{7\left( 8 \right)} \over 2}$$ <br><br>= (49)(8) + (15$$ \times $$7) + (7) <br><br>= 392 + 105 + 7 = 504
integer
jee-main-2020-online-8th-january-evening-slot
mYMcFJJVdAchWsiX9b7k9k2k5h0a9ty
maths
sequences-and-series
summation-of-series
The sum $$\sum\limits_{k = 1}^{20} {\left( {1 + 2 + 3 + ... + k} \right)} $$ is :
[]
null
1540
$$\sum\limits_{k = 1}^{20} {\left( {1 + 2 + 3 + ... + k} \right)} $$ <br><br>= $$\sum\limits_{k = 1}^{20} {{{k\left( {k + 1} \right)} \over 2}} $$ <br><br>= $$\sum\limits_{k = 1}^{20} {{{{k^2}} \over 2}} + \sum\limits_{k = 1}^{20} {{k \over 2}} $$ <br><br>= $${1 \over 2} \times {{20 \times 21 \times 41} \over 6} + {1 \over 2} \times {{20 \times 21} \over 2}$$ <br><br>= 1540
integer
jee-main-2020-online-8th-january-morning-slot
vRpvwMQFOTlboi3Zw47k9k2k5fmzvev
maths
sequences-and-series
summation-of-series
If the sum of the first 40 terms of the series, <br/>3 + 4 + 8 + 9 + 13 + 14 + 18 + 19 + ..... is (102)m, then m is equal to :
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "25"}]
["A"]
null
3 + 4 + 8 + 9 + 13 + 14 +…….upto 40 terms <br><br>$$ \Rightarrow $$ 7 + 17 + 27 +…….20 terms <br><br>S = $${{20} \over 2}$$ [2 × 7 + 19 × 10] <br><br> = 102 × 20 = 102 m <br><br>$$ \therefore $$ m = 20
mcq
jee-main-2020-online-7th-january-evening-slot
tUvK0XGzjI8Hr4plFFjgy2xukewmjblr
maths
sequences-and-series
summation-of-series
If |x| &lt; 1, |y| &lt; 1 and x $$ \ne $$ y, then the sum to infinity of the following series <br/><br/>(x + y) + (x<sup>2</sup>+xy+y<sup>2</sup>) + (x<sup>3</sup>+x<sup>2</sup>y + xy<sup>2</sup>+y<sup>3</sup>) + ....
[{"identifier": "A", "content": "$${{x + y - xy} \\over {\\left( {1 + x} \\right)\\left( {1 + y} \\right)}}$$"}, {"identifier": "B", "content": "$${{x + y - xy} \\over {\\left( {1 - x} \\right)\\left( {1 - y} \\right)}}$$"}, {"identifier": "C", "content": "$${{x + y + xy} \\over {\\left( {1 + x} \\right)\\left( {1 + y} \\right)}}$$"}, {"identifier": "D", "content": "$${{x + y + xy} \\over {\\left( {1 - x} \\right)\\left( {1 - y} \\right)}}$$"}]
["B"]
null
(x + y) + (x<sup>2</sup>+xy+y<sup>2</sup>) + (x<sup>3</sup>+x<sup>2</sup>y + xy<sup>2</sup>+y<sup>3</sup>) + .... <br><br>By multiplying and dividing x – y : <br><br>$${{\left( {{x^2} - {y^2}} \right) + \left( {{x^3} - {y^3}} \right) + \left( {{x^4} - {y^4}} \right) + ...} \over {x - y}}$$ <br><br>= $${{\left( {{x^2} + {x^3} + {x^4} + ....} \right) - \left( {{y^2} + {y^3} + {y^4} + ...} \right)} \over {x - y}}$$ <br><br>= $${{{{{x^2}} \over {1 - x}} - {{{y^2}} \over {1 - y}}} \over {x - y}}$$ <br><br>= $${{\left( {{x^2} - {y^2}} \right) - xy\left( {x - y} \right)} \over {\left( {1 - x} \right)\left( {1 - y} \right)\left( {x - y} \right)}}$$ <br><br>= $${{x + y - xy} \over {\left( {1 - x} \right)\left( {1 - y} \right)}}$$
mcq
jee-main-2020-online-2nd-september-morning-slot
yuKByka9gb3axlQDX41kls445x1
maths
sequences-and-series
summation-of-series
If $$0 &lt; \theta ,\phi &lt; {\pi \over 2},x = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta } ,y = \sum\limits_{n = 0}^\infty {{{\sin }^{2n}}\phi } $$ and $$z = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta .{{\sin }^{2n}}\phi } $$ then :
[{"identifier": "A", "content": "xy $$-$$ z = (x + y)z"}, {"identifier": "B", "content": "xyz = 4"}, {"identifier": "C", "content": "xy + z = (x + y)z"}, {"identifier": "D", "content": "xy + yz + zx = z"}]
["C"]
null
$$x = 1 + {\cos ^2}\theta + ..........\infty $$<br><br>$$x = {1 \over {1 - {{\cos }^2}\theta }} = {1 \over {{{\sin }^2}\theta }}$$ .......(1)<br><br>$$y = 1 + {\sin ^2}\phi + ........\infty $$<br><br>$$y = {1 \over {1 - {{\sin }^2}\phi }} = {1 \over {{{\cos }^2}\phi }}$$ ....... (2)<br><br>$$z = {1 \over {1 - {{\cos }^2}\theta .{{\sin }^2}\phi }} = {1 \over {1 - \left( {1 - {1 \over x}} \right)\left( {1 - {1 \over y}} \right)}} = {{xy} \over {xy - (x - 1)(y - 1)}}$$<br><br>$$ \Rightarrow $$ $$xz + yz - z = xy$$<br><br>$$ \Rightarrow $$ $$xy + z = (x + y)z$$
mcq
jee-main-2021-online-25th-february-morning-slot