question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
lv2ergyt
maths
probability
probability-distribution-of-a-random-variable
<p>If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :</p> <p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 547px"> <colgroup> <col style="width: 114px"/> <col style="width: 78px"/> <col style="width: 83px"/> <col style="width: 90px"/> <col style="width: 91px"/> <col style="width: 91px"/> </colgroup> <thead> <tr> <th class="tg-baqh">$$\mathrm{X}$$</th> <th class="tg-baqh">0</th> <th class="tg-baqh">2</th> <th class="tg-baqh">4</th> <th class="tg-baqh">6</th> <th class="tg-baqh">8</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$\mathrm{P(X)}$$</td> <td class="tg-baqh">$$a$$</td> <td class="tg-baqh">$$2a$$</td> <td class="tg-baqh">$$a+b$$</td> <td class="tg-baqh">$$2b$$</td> <td class="tg-baqh">$$3b$$</td> </tr> </tbody> </table></p> <p>is $$\frac{46}{9}$$, then the variance of the distribution is</p>
[{"identifier": "A", "content": "$$\\frac{581}{81}$$\n"}, {"identifier": "B", "content": "$$\\frac{566}{81}$$\n"}, {"identifier": "C", "content": "$$\\frac{151}{27}$$\n"}, {"identifier": "D", "content": "$$\\frac{173}{27}$$"}]
["B"]
null
<p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 422px"> <colgroup> <col style="width: 69px"> <col style="width: 69px"> <col style="width: 71px"> <col style="width: 71px"> <col style="width: 71px"> <col style="width: 71px"> </colgroup> <thead> <tr> <th class="tg-baqh">$$X$$</th> <th class="tg-baqh">0</th> <th class="tg-baqh">2</th> <th class="tg-baqh">4</th> <th class="tg-baqh">6</th> <th class="tg-baqh">8</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$P(X)$$</td> <td class="tg-baqh">$$a$$</td> <td class="tg-baqh">$$2a$$</td> <td class="tg-baqh">$$a+b$$</td> <td class="tg-baqh">$$2b$$</td> <td class="tg-baqh">$$3b$$</td> </tr> </tbody> </table></p> <p>$$\begin{aligned} & \text { Mean }=\sum x_i P\left(x_i\right) \\ & \frac{46}{9}=4 a+4 a+4 b+12 b+24 b \\ & \frac{46}{9}=8 a+40 b \\ & \frac{23}{9}=4 a+20 b \\ & 36 a+180 b=23 \quad \text{.... (1)} \end{aligned}$$</p> <p>Sum of probability is 1</p> <p>$$\Rightarrow 4 a+6 b=1 \quad \text{... (2)}$$</p> <p>$$\begin{aligned} & \text { Solving (1) and (2) } \\ & a=\frac{1}{12}, b=\frac{1}{9} \\ & \sigma^2=\sum x_i^2 P\left(x_i\right)-\left(\sum x_i P\left(x_i\right)\right)^2 \\ & =4 \times 2 a+16(a+b)+36(2 b)+64(3 b)-\left(\frac{46}{9}\right)^2 \\ & =8(a+2(a+b)+9 b+24 b)-\left(\frac{46}{9}\right)^2 \\ & =8(3 a+35 b)-\left(\frac{46}{9}\right)^2 \\ & =8\left(\frac{3}{12}+\frac{35}{9}\right)-\left(\frac{46}{9}\right)^2 \\ & =8\left(\frac{149}{36}\right)-\left(\frac{46}{9}\right)^2=\frac{566}{81} \\ \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
lv5gs180
maths
probability
probability-distribution-of-a-random-variable
<p>Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables $$X$$ and $$Y$$ respectively denote the number of blue and yellow balls. If $$\bar{X}$$ and $$\bar{Y}$$ are the means of $$X$$ and $$Y$$ respectively, then $$7 \bar{X}+4 \bar{Y}$$ is equal to ___________.</p>
[]
null
17
<p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 232px"> <colgroup> <col style="width: 46px"> <col style="width: 49px"> <col style="width: 47px"> <col style="width: 44px"> <col style="width: 46px"> </colgroup> <thead> <tr> <th class="tg-baqh">$$X$$</th> <th class="tg-baqh">3</th> <th class="tg-baqh">2</th> <th class="tg-baqh">1</th> <th class="tg-baqh">0</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$Y$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">1</td> <td class="tg-baqh">2</td> <td class="tg-baqh">3</td> </tr> </tbody> </table></p> <p>$$\begin{aligned} & \bar{X}=\sum X p(X) \\ & \bar{Y}=\sum Y p(Y) \\ & P(X=3)=P(Y=0)=\frac{{ }^5 C_3 \cdot C_0}{{ }^9 C_3}=\frac{{ }^5 C_2}{{ }^9 C_3}=\frac{5}{42} \\ & P(X=2)=P(Y=1)=\frac{{ }^5 C_2 \cdot C_1}{{ }^9 C_3}=\frac{10}{21} \\ & P(X=1)=P(Y=2)=\frac{{ }^5 C_1 \cdot C_2}{{ }^9 C_3}=\frac{5}{14} \\ & P(X=0)=P(Y=3)=\frac{{ }^5 C_0 \cdot C_3}{{ }^9 C_3}=\frac{4}{84}=\frac{1}{21} \\ & \bar{X}=3 \times \frac{5}{42}+2 \times \frac{10}{21}+\frac{5}{14}+0 \times \frac{1}{21}=\frac{15+40+15}{42}=\frac{70}{42} \\ & \bar{Y}=0 \times \frac{5}{42}+1 \times \frac{10}{21}+2 \times \frac{5}{14}+3 \times \frac{1}{21}=\frac{20+30+6}{42}=\frac{56}{42} \\ & 7 \bar{X}+4 \bar{Y}=17 \end{aligned}$$</p>
integer
jee-main-2024-online-8th-april-morning-shift
lv7v3quo
maths
probability
probability-distribution-of-a-random-variable
<p>From a lot of 10 items, which include 3 defective items, a sample of 5 items is drawn at random. Let the random variable $$X$$ denote the number of defective items in the sample. If the variance of $$X$$ is $$\sigma^2$$, then $$96 \sigma^2$$ is equal to __________.</p>
[]
null
56
<p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 592px"> <colgroup> <col style="width: 88px"> <col style="width: 114px"> <col style="width: 115px"> <col style="width: 137px"> <col style="width: 138px"> </colgroup> <thead> <tr> <th class="tg-baqh">$$x$$</th> <th class="tg-baqh">0</th> <th class="tg-baqh">1</th> <th class="tg-baqh">2</th> <th class="tg-baqh">3</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$P(x)$$</td> <td class="tg-baqh">$$<br>\frac{{ }^7 C_5}{{ }^{10} C_5}=\frac{1}{12}<br>$$</td> <td class="tg-baqh">$$<br>\frac{C_4 \cdot{ }^3 C_1}{{ }^{10} C_5}=\frac{5}{12}<br>$$</td> <td class="tg-baqh">$$<br>\frac{{ }^7 C_3 \cdot{ }^3 C_2}{{ }^{10} C_5}=\frac{5}{12}<br>$$</td> <td class="tg-baqh">$$<br>\frac{{ }^7 C_2 \cdot{ }^3 C_3}{{ }^{10} C_5}=\frac{1}{12}<br>$$</td> </tr> <tr> <td class="tg-baqh">$$xP(x)$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">$$\frac{5}{12}$$</td> <td class="tg-baqh">$$\frac{10}{12}$$</td> <td class="tg-baqh">$$\frac{3}{12}$$</td> </tr> </tbody> </table></p> <p>$$\begin{aligned} & \mu=\sum x P(x)=0+\frac{5}{12}+\frac{10}{12}+\frac{3}{12}=\frac{3}{2} \\ & \sigma^2=\sum(x-\mu) P(x)=\sum\left(x-\frac{3}{2}\right)^2 P(x) \\ & =\frac{9}{4} \times \frac{1}{12}+\frac{1}{4} \times \frac{5}{12}+\frac{1}{4} \times \frac{5}{12}+\frac{9}{4} \times \frac{1}{12}=\frac{7}{12} \end{aligned}$$</p> <p>$$\Rightarrow \sigma^2 \cdot 96=8 \times 7=56$$</p>
integer
jee-main-2024-online-5th-april-morning-shift
lvb2954k
maths
probability
probability-distribution-of-a-random-variable
<p>From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable $$X$$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $$X$$ is $$\frac{m}{n}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$n-m$$ is equal to _________.</p>
[]
null
71
<p>Given a lot of 12 items, 3 are defective.</p> <p>Good items, $$12-3=9$$</p> <p>Let $$X$$ denote the number of defective items.</p> <p>So, value of $$X=0,1,2,3$$</p> <p>A sample of $$S$$ items is drawn.</p> <p>$$P(X=0)=G G G G G$$</p> <p>(here $$G$$ is good item and $$d$$ is defective)</p> <p>$$\begin{aligned} & \frac{9}{12} \cdot \frac{8}{11} \cdot \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8}=\frac{21}{132}=\frac{7}{44} \\ & P(X=1)=5\left[\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 3}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{21}{44} \\ & P(X=2)=5\left[\frac{9 \cdot 8 \cdot 7 \cdot 3 \cdot 2}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{14}{44} \\ & P(X=3)=5\left[\frac{3 \cdot 2 \cdot 1 \cdot 9 \cdot 8}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{2}{44} \\ & P(X=4)=0 \\ & P(X=5)=0 \end{aligned}$$</p> <p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 588px"> <colgroup> <col style="width: 85px"> <col style="width: 90px"> <col style="width: 86px"> <col style="width: 77px"> <col style="width: 81px"> <col style="width: 85px"> <col style="width: 84px"> </colgroup> <thead> <tr> <th class="tg-baqh">$$X$$</th> <th class="tg-baqh">0</th> <th class="tg-baqh">1</th> <th class="tg-baqh">2</th> <th class="tg-baqh">3</th> <th class="tg-baqh">4</th> <th class="tg-baqh">5</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$P(X)$$</td> <td class="tg-baqh">$$<br>\frac{7}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{21}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{14}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{2}{44}<br>$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">0</td> </tr> <tr> <td class="tg-baqh">$$XP(X)$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">$$<br>\frac{21}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{28}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{6}{44}<br>$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">0</td> </tr> <tr> <td class="tg-baqh">$$X^2P(X)$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">$$<br>\frac{21}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{56}{44}<br>$$</td> <td class="tg-baqh">$$<br>\frac{18}{44}<br>$$</td> <td class="tg-baqh">0</td> <td class="tg-baqh">0</td> </tr> </tbody> </table></p> <p>$$\begin{aligned} & \sigma_x^2=\sum X^2 P(x)-\left(\sum x P(x)\right)^2 \\ & =\frac{95}{44}-\left(\frac{55}{44}\right)^2 \\ & =\frac{4180-3025}{1936}=\frac{1155}{1936}=\frac{105}{176}=\frac{m}{n} \\ & =n-m=71 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-evening-shift
NlmoqFBur2q2cMiy
maths
probability
total-probability-theorem
A bag contains 4 red and 6 black balls. A ball is drawn at random from the bag, its colour is observed and this ball along with two additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red, is :
[{"identifier": "A", "content": "$${3 \\over 4}$$"}, {"identifier": "B", "content": "$${3 \\over 10}$$"}, {"identifier": "C", "content": "$${2 \\over 5}$$"}, {"identifier": "D", "content": "$${1 \\over 5}$$"}]
["C"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264051/exam_images/ijwqqvgif3jlthy0b2tu.webp" loading="lazy" alt="JEE Main 2018 (Offline) Mathematics - Probability Question 169 English Explanation"> <br><br>If we follow path 1, then probability of getting 1st ball black $$ = {6 \over {10}}$$ and probability of getting 2nd ball red when there is 4 R and 8 B balls = $${4 \over {12}}$$. <br><br>So, the probability of getting 1st ball black and 2nd ball red = $${6 \over {10}} \times {4 \over {12}}$$. <br><br>If we follow path 2, then the probability of getting 1st ball red $$ = {4 \over {10}}$$ and probability of getting 2nd ball red when in the bag there is 6 red and 6 black balls = $${6 \over {12}}$$ <br><br>$$\therefore\,\,\,$$ Probability of getting 2nd ball as red <br><br>$$ = {6 \over {10}} \times {4 \over {12}} + {4 \over {10}} \times {6 \over {12}}$$ <br><br>$$ = {1 \over 5} + {1 \over 5}$$ <br><br>$$ = {2 \over 5}$$
mcq
jee-main-2018-offline
lgnxp7gc
maths
probability
total-probability-theorem
A bag contains 6 white and 4 black balls. A die is rolled once and the number of balls equal to the number obtained on the die are drawn from the bag at random. The probability that all the balls drawn are white is :
[{"identifier": "A", "content": "$\\frac{1}{4}$"}, {"identifier": "B", "content": "$\\frac{9}{50}$"}, {"identifier": "C", "content": "$\\frac{1}{5}$"}, {"identifier": "D", "content": "$\\frac{11}{50}$"}]
["C"]
null
Let $X$ be the number rolled on the die, and let $W$ be the event that all balls drawn are white. We want to find the probability $P(W)$, which can be calculated using the law of total probability as follows : <br/><br/>$$P(W) = \sum\limits_{x=1}^{6} P(W|X=x)P(X=x)$$ <br/><br/>The probability of rolling any number from 1 to 6 on the die is equal, so $P(X=x) = \frac{1}{6}$ for all $x \in \{1, 2, 3, 4, 5, 6\}$. <br/><br/>Now let's calculate the conditional probabilities $P(W|X=x)$ for each possible value of $x$ : <br/><br/>1. $P(W|X=1) = {{{}^6{C_1}} \over {{}^{10}{C_1}}}= \frac{6}{10} = \frac{3}{5}$, since there are 6 white balls out of a total of 10 balls. <br/><br/>2. $P(W|X=2) = {{{}^6{C_2}} \over {{}^{10}{C_2}}} = \frac{15}{45} = \frac{1}{3}$, since there are 15 ways to choose 2 white balls out of 6, and 45 ways to choose 2 balls out of 10. <br/><br/>3. $P(W|X=3) = {{{}^6{C_3}} \over {{}^{10}{C_3}}} = \frac{20}{120} = \frac{1}{6}$, since there are 20 ways to choose 3 white balls out of 6, and 120 ways to choose 3 balls out of 10. <br/><br/>4. $P(W|X=4) = {{{}^6{C_4}} \over {{}^{10}{C_4}}} = \frac{15}{210} = \frac{1}{14}$, since there are 15 ways to choose 4 white balls out of 6, and 210 ways to choose 4 balls out of 10. <br/><br/>5. $P(W|X=5) = {{{}^6{C_5}} \over {{}^{10}{C_5}}} = \frac{6}{252} = \frac{1}{42}$, since there are 6 ways to choose 5 white balls out of 6, and 252 ways to choose 5 balls out of 10. <br/><br/>6. $P(W|X=6) = {{{}^6{C_6}} \over {{}^{10}{C_6}}} = \frac{1}{210}$, since there are 1 ways to choose 6 white balls out of 6, and 210 ways to choose 6 balls out of 10. <br/><br/>Using the law of total probability, we have : <br/><br/>$$P(W) = \frac{1}{6} \left(P(W|X=1) + P(W|X=2) + P(W|X=3) + P(W|X=4) + P(W|X=5) + P(W|X=6)\right)$$ <br/><br/>$$P(W) = \frac{1}{6} \left(\frac{3}{5} + \frac{1}{3} + \frac{1}{6} + \frac{1}{14} + \frac{1}{42} + \frac{1}{210}\right)$$ <br/><br/>To simplify this expression, find a common denominator : <br/><br/>$$P(W) = \frac{1}{6} \left(\frac{126}{210} + \frac{70}{210} + \frac{35}{210} + \frac{15}{210} + \frac{5}{210} + \frac{1}{210}\right)$$ <br/><br/>Add the fractions : <br/><br/>$$P(W) = \frac{1}{6}\left(\frac{126+70+35+15+5+1}{210}\right)=\frac{42}{210}=\frac{1}{5}$$
mcq
jee-main-2023-online-15th-april-morning-shift
lsao86jd
maths
probability
total-probability-theorem
A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is :
[{"identifier": "A", "content": "$\\frac{2}{5}$"}, {"identifier": "B", "content": "$\\frac{2}{7}$"}, {"identifier": "C", "content": "$\\frac{1}{7}$"}, {"identifier": "D", "content": "$\\frac{1}{5}$"}]
["B"]
null
$\begin{aligned} & \mathrm{P}(4 \mathrm{~W} 4 \mathrm{~B} / 2 \mathrm{~W} 2 \mathrm{~B})= \\\\ & \frac{P(4 W 4 B) \times P(2 W 2 B / 4 W 4 B)}{P(2 W 6 B) \times P(2 W 2 B / 2 W 6 B)+P(3 W 5 B) \times P(2 W 2 B / 3 W 5 B)} \\ & +\ldots \ldots \ldots \ldots+P(6 W 2 B) \times P(2 W 2 B / 6 W 2 B)\end{aligned}$ <br/><br/>$\begin{aligned} & =\frac{\frac{1}{5} \times \frac{{ }^4 \mathrm{C}_2 \times{ }^4 \mathrm{C}_2}{{ }^8 \mathrm{C}_4}}{\frac{1}{5} \times \frac{{ }^2 \mathrm{C}_2 \times{ }^6 \mathrm{C}_2}{{ }^8 \mathrm{C}_4}+\frac{1}{5} \times \frac{{ }^3 \mathrm{C}_2 \times{ }^5 \mathrm{C}_2}{{ }^8 \mathrm{C}_4}+\ldots+\frac{1}{5} \times \frac{{ }^6 \mathrm{C}_2 \times{ }^2 \mathrm{C}_2}{{ }^8 \mathrm{C}_4}} \\\\ & =\frac{2}{7}\end{aligned}$
mcq
jee-main-2024-online-1st-february-morning-shift
q6vgte5MQsjwFa1v
maths
probability
venn-diagram-and-set-theory
A problem in mathematics is given to three students $$A,B,C$$ and their respective probability of solving the problem is $${1 \over 2},{1 \over 3}$$ and $${1 \over 4}.$$ Probability that the problem is solved is :
[{"identifier": "A", "content": "$${3 \\over 4}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$ "}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["A"]
null
Given $$P\left( A \right) = {1 \over 2}$$, $$P\left( B \right) = {1 \over 3}$$, $$P\left( C \right) = {1 \over 4}$$ <br><br>So, $$P\left( {\overline A } \right) = {1 \over 2}$$ (Probablity that the problem can't be solve by A) <br>$$P\left( {\overline B } \right) = {2 \over 3}$$ (Probablity that the problem can't be solve by B) <br>and $$P\left( {\overline C } \right) = {3 \over 4}$$ (Probablity that the problem can't be solve by C) <br><br>Now the probablity that the problem is solved by any one student of A, B and C = 1 - the probablity that the problem is solved by none of the students of A, B and C <br><br>$$P\left( {A \cup B \cup C} \right)$$ = 1 - $$P\left( {\overline A } \right)P\left( {\overline B } \right)P\left( {\overline C } \right)$$ <br><br>$$ = 1 - {1 \over 2} \times {2 \over 3} \times {3 \over 4}$$ <br>$$=$$ $${3 \over 4}$$
mcq
aieee-2002
Inc63WUwWyWr1GZE
maths
probability
venn-diagram-and-set-theory
$$A$$ and $$B$$ are events such that $$P\left( {A \cup B} \right) = 3/4$$,$$P\left( {A \cap B} \right) = 1/4,$$ <br/>$$P\left( {\overline A } \right) = 2/3$$ then $$P\left( {\overline A \cap B} \right)$$ is :
[{"identifier": "A", "content": "$$5/12$$"}, {"identifier": "B", "content": "$$3/8$$"}, {"identifier": "C", "content": "$$5/8$$ "}, {"identifier": "D", "content": "$$1/4$$ "}]
["A"]
null
Given $$P\left( {A \cup B} \right) = 3/4$$, <br>$$P\left( {A \cap B} \right) = 1/4,$$ <br>$$P\left( {\overline A } \right) = 2/3$$ <br><br>We know, $$P\left( A \right)$$ = 1 - $$P\left( {\overline A } \right)$$ <br>$$\therefore$$ $$P\left( A \right)$$ = 1 - $${2 \over 3}$$ = $${1 \over 3}$$ <br><br>We know $$P\left( {A \cup B} \right)$$ = $$P\left( A \right)$$ + $$P\left( B \right)$$ - $$P\left( {A \cap B} \right)$$ <br><br>$$ \Rightarrow $$$${3 \over 4}$$ = $${1 \over 3}$$ + $$P\left( B \right)$$ - $${1 \over 3}$$ <br><br>$$ \Rightarrow $$ 1 = $${1 \over 3}$$ + $$P\left( B \right)$$ <br><br>$$ \Rightarrow $$ $$P\left( B \right)$$ = $${2 \over 3}$$ <br><br>We know $$P\left( {\overline A \cap B} \right)$$ = $$P\left( B \right)$$ - $$P\left( {A \cap B} \right)$$ <br><br>So $$P\left( {\overline A \cap B} \right)$$ = $${2 \over 3}$$ - $${1 \over4}$$ = $${5 \over 12}$$
mcq
aieee-2002
m09Dh9Fy3uo4ADUI
maths
probability
venn-diagram-and-set-theory
Events $$A, B, C$$ are mutually exclusive events such that $$P\left( A \right) = {{3x + 1} \over 3},$$ $$P\left( B \right) = {{1 - x} \over 4}$$ and $$P\left( C \right) = {{1 - 2x} \over 2}$$ The set of possible values of $$x$$ are in the interval.
[{"identifier": "A", "content": "$$\\left[ {0,1} \\right]$$ "}, {"identifier": "B", "content": "$$\\left[ {{1 \\over 3},{1 \\over 2}} \\right]$$ "}, {"identifier": "C", "content": "$$\\left[ {{1 \\over 3},{2 \\over 3}} \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {{1 \\<br>3},{13 \\over 3}} \\right]$$"}]
["B"]
null
Given $$P\left( A \right) = {{3x + 1} \over 3},$$ $$P\left( B \right) = {{1 - x} \over 4}$$ and $$P\left( C \right) = {{1 - 2x} \over 2}$$ <br><br>We know for any event X, $$0 \le P\left( X \right) \le 1$$ <br><br>$$\therefore$$ $$0 \le {{3x + 1} \over 3} \le 1$$ <br>$$ \Rightarrow - 1 \le 3x \le 2$$ <br>$$ \Rightarrow - {1 \over 3} \le x \le {2 \over 3}$$ <br><br> $$0 \le {{1 - x} \over 4} \le 1$$ <br>$$ \Rightarrow - 3 \le x \le 1$$ <br><br> $$0 \le {{1 - 2x} \over 2} \le 1$$ <br>$$ \Rightarrow - 1 \le 2x \le 1$$ <br>$$ \Rightarrow - {1 \over 2} \le x \le {1 \over 2}$$ <br><br>In the question given that A, B and C are mutually exclusive <br>So $$P\left( {A \cup B \cup C} \right)$$ = $$P\left( {A} \right)$$ + $$P\left( {B} \right)$$ + $$P\left( {C} \right)$$ <br>&nbsp;<br>$$ \Rightarrow P\left( {A \cup B \cup C} \right)$$ = $${{3x + 1} \over 3}$$ + $${{1 - x} \over 4}$$ + $${{1 - 2x} \over 2}$$ <br><br>$$\therefore$$ 0 $$ \le $$ $${{3x + 1} \over 3}$$ + $${{1 - x} \over 4}$$ + $${{1 - 2x} \over 2}$$ $$ \le $$ 1 <br><br>0 $$ \le $$ 13 - 3$$x$$ $$ \le $$ 12 <br><br>$$ \Rightarrow {1 \over 3} \le x \le {{13} \over 3}$$ <br><br>From all those relations, we get <br><br>$$\max \left\{ { - {1 \over 3}, - 3, - {1 \over 2},{1 \over 3}} \right\}$$ $$ \le $$ $$x$$ $$ \le $$ $$\min \left\{ {{2 \over 3},1,{1 \over 2},{{13} \over 3}} \right\}$$ <br><br>So, $${1 \over 3} \le x \le {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $$ \Rightarrow x \in \left[ {{1 \over 3},{1 \over 2}} \right]$$
mcq
aieee-2003
kJkLQp3LNsJbLPI9
maths
probability
venn-diagram-and-set-theory
Let $$A$$ and $$B$$ two events such that $$P\left( {\overline {A \cup B} } \right) = {1 \over 6},$$ $$P\left( {A \cap B} \right) = {1 \over 4}$$ and $$P\left( {\overline A } \right) = {1 \over 4},$$ where $${\overline A }$$ stands for complement of event $$A$$. Then events $$A$$ and $$B$$ are :
[{"identifier": "A", "content": "equally likely and mutually exclusive"}, {"identifier": "B", "content": "equally likely but not independent "}, {"identifier": "C", "content": "independent but not equally likely"}, {"identifier": "D", "content": "mutually exclusive and independent"}]
["C"]
null
<p>Given that,</p> <p>$$P(\overline {A \cup B} ) = {1 \over 6}$$, $$P(A \cap B) = {1 \over 4}$$, $$P(\overline A ) = {1 \over 4}$$</p> <p>$$\because$$ $$P(\overline {A \cup B} ) = {1 \over 6}$$</p> <p>$$ \Rightarrow 1 - P(A \cup B) = {1 \over 6}$$</p> <p>$$ \Rightarrow 1 - P(A) - P(B) + P(A \cap B) = {1 \over 6}$$</p> <p>$$ \Rightarrow P(\overline A ) - P(B) + {1 \over 4} = {1 \over 6}$$</p> <p>$$ \Rightarrow P(B) = {1 \over 4} + {1 \over 4} - {1 \over 6}$$</p> <p>$$ \Rightarrow P(B) = {1 \over 3}$$ and $$P(A) = {3 \over 4}$$</p> <p>Clearly, $$P(A \cap B) = P(A)P(B)$$,</p> <p>so, the events A and B are independent events but not equally likely.</p>
mcq
aieee-2005
CvljnrLZQyp22oGR
maths
probability
venn-diagram-and-set-theory
For three events A, B and C, <br/><br/>P(Exactly one of A or B occurs) <br/>= P(Exactly one of B or C occurs) <br/>= P (Exactly one of C or A occurs) = $${1 \over 4}$$ <br/>and P(All the three events occur simultaneously) = $${1 \over {16}}$$. <br/><br/> Then the probability that at least one of the events occurs, is :
[{"identifier": "A", "content": "$${7 \\over {16}}$$"}, {"identifier": "B", "content": "$${7 \\over {64}}$$"}, {"identifier": "C", "content": "$${3 \\over {16}}$$"}, {"identifier": "D", "content": "$${7 \\over {32}}$$"}]
["A"]
null
Given, P (A $$ \cap $$ B $$ \cap $$ C) = $${1 \over {16}}$$ <br><br>P (exactly one of A or B occurs) <br><br>= P(A) + P (B) – 2P (A $$ \cap $$ B) = $${1 \over 4}$$ .....(1) <br><br>P (Exactly one of B or C occurs) <br><br>= P(B) + P (C) – 2P (B $$ \cap $$ C) = $${1 \over 4}$$ .....(2) <br><br>P (Exactly one of C or A occurs) <br><br>= P(C) + P(A) – 2P (C $$ \cap $$ A) = $${1 \over 4}$$ .....(3) <br><br>Adding (1), (2) and (3),we get <br><br>2[ P(A) + P(B) + P (C) - P (A $$ \cap $$ B) <br><br>- P (B $$ \cap $$ C) - P (C $$ \cap $$ A)] = $${3 \over 4}$$ <br><br>$$ \Rightarrow $$ P(A) + P(B) + P (C) - P (A $$ \cap $$ B) <br><br>- P (B $$ \cap $$ C) - P (C $$ \cap $$ A) = $${3 \over 8}$$ <br><br>$$ \therefore $$ P(atleast one event occurs) <br><br>= P (A $$ \cup $$ B $$ \cup $$ C) <br><br>= P(A) + P(B) + P (C) - P (A $$ \cap $$ B) <br><br>- P (B $$ \cap $$ C) - P (C $$ \cap $$ A) + P (A $$ \cap $$ B $$ \cap $$ C) <br><br>= $${3 \over 8} + {1 \over {16}}$$ = $${7 \over {16}}$$
mcq
jee-main-2017-offline
dGx2Muc10197ojWmZcE9D
maths
probability
venn-diagram-and-set-theory
In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 opted for both NCC and NSS. If one of these students is selected at random, then the probability that the students selected has opted neither for NCC nor for NSS is :
[{"identifier": "A", "content": "$${1 \\over 3}$$"}, {"identifier": "B", "content": "$${1 \\over 6}$$"}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${5 \\over 6}$$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264827/exam_images/atidu8b68l8usxxqwsp4.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th January Evening Slot Mathematics - Probability Question 146 English Explanation"> <br>A $$ \to $$ opted NCC <br><br>B $$ \to $$ opted NSS <br><br>$$ \therefore $$&nbsp;&nbsp;P (nither A nor B) $$=$$ $${{10} \over {60}} = z{1 \over 6}$$
mcq
jee-main-2019-online-12th-january-evening-slot
QkHi8fNAnBXDglkK9K7k9k2k5hjz0pp
maths
probability
venn-diagram-and-set-theory
Let A and B be two events such that the probability that exactly one of them occurs is $${2 \over 5}$$ and the probability that A or B occurs is $${1 \over 2}$$ , then the probability of both of them occur together is :
[{"identifier": "A", "content": "0.20"}, {"identifier": "B", "content": "0.02"}, {"identifier": "C", "content": "0.01"}, {"identifier": "D", "content": "0.10"}]
["D"]
null
Probability that exactly one of them occurs <br><br>P(A) + P(B) – 2P (A $$ \cap $$ B) = $${2 \over 5}$$ .....(1) <br><br>Probability that A or B occurs is <br><br>P(A) + P(B) – P(A $$ \cap $$ B) = $${1 \over 2}$$ ......(2) <br><br>Doing (2) - (1) <br><br>P(A $$ \cap $$ B) = $${1 \over 2} - {2 \over 5}$$ = 0.10
mcq
jee-main-2020-online-8th-january-evening-slot
eziF1WqbTH9NrxKj6Hjgy2xukg0cfpa9
maths
probability
venn-diagram-and-set-theory
The probabilities of three events A, B and C are given by <br/>P(A) = 0.6, P(B) = 0.4 and P(C) = 0.5. <br/>If P(A$$ \cup $$B) = 0.8, P(A$$ \cap $$C) = 0.3, P(A$$ \cap $$B$$ \cap $$C) = 0.2, P(B$$ \cap $$C) = $$\beta $$<br/> and P(A$$ \cup $$B$$ \cup $$C) = $$\alpha $$, where 0.85 $$ \le \alpha \le $$ 0.95, then $$\beta $$ lies in the interval :
[{"identifier": "A", "content": "[0.35, 0.36]\n"}, {"identifier": "B", "content": "[0.20, 0.25]"}, {"identifier": "C", "content": "[0.25, 0.35]"}, {"identifier": "D", "content": "[0.36, 0.40]"}]
["C"]
null
P(A $$ \cup $$ B) = P(A) + P(B) – P(A $$ \cup $$ B) <br><br>$$ \Rightarrow $$ 0.8 = 0.6 + 0.4 – P(A $$ \cap $$ B) <br><br>$$ \Rightarrow $$ P(A $$ \cap $$ B) = 0.2 <br><br>P(A$$ \cup $$B$$ \cup $$C) = P(A) + P(B) + P(C) – P(A $$ \cap $$ B) – P(B $$ \cap $$ C) –P(C $$ \cap $$ A) + P(A $$ \cap $$ B $$ \cap $$ C) <br><br>$$ \Rightarrow $$ $$\alpha $$ = 0.6 + 0.4 + 0.5 - 0.2 - $$\beta $$ - 0.3 + 0.2 <br><br>$$ \Rightarrow $$ $$\alpha $$ + $$\beta $$ = 1.2 <br><br>$$ \Rightarrow $$ $$\alpha $$ = 1.2 - $$\beta $$ <br><br>Given, 0.85 $$ \le \alpha \le $$ 0.95 <br><br>$$ \Rightarrow $$ 0.85 $$ \le $$ 1.2 - $$\beta $$ $$ \le $$ 0.95 <br><br>$$ \Rightarrow $$ 0.25 $$ \le \beta \le $$ 0.35
mcq
jee-main-2020-online-6th-september-evening-slot
1krrr6wf1
maths
probability
venn-diagram-and-set-theory
Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1 $$-$$ k), the probability that exactly one of B and C occurs is (1 $$-$$ 2k), the probability that exactly one of C and A occurs is (1 $$-$$ k) and the probability of all A, B and C occur simultaneously is k<sup>2</sup>, where 0 &lt; k &lt; 1. Then the probability that at least one of A, B and C occur is :
[{"identifier": "A", "content": "greater than $${1 \\over 8}$$ but less than $${1 \\over 4}$$"}, {"identifier": "B", "content": "greater than $${1 \\over 2}$$"}, {"identifier": "C", "content": "greater than $${1 \\over 4}$$ but less than $${1 \\over 2}$$"}, {"identifier": "D", "content": "exactly equal to $${1 \\over 2}$$"}]
["B"]
null
$$P(\overline A \cap B) + P(A \cap \overline B ) = 1 - k$$<br><br>$$P(\overline A \cap C) + P(A \cap \overline C ) = 1 - 2k$$<br><br>$$P(\overline B \cap C) + P(B \cap \overline C ) = 1 - k$$<br><br>$$P(A \cap B \cap C) = {k^2}$$<br><br>$$P(A) + P(B) - 2P(A \cap B) = 1 - k$$ .....(i)<br><br>$$P(B) + P(C) - 2P(B \cap C) = 1 - k$$ ..... (ii)<br><br>$$P(C) + P(A) - 2P(A \cap C) = 1 - 2k$$ ..... (iii)<br><br>$$(i) + (ii) + (iii)$$<br><br>$$P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) = {{ - 4k + 3} \over 2}$$<br><br>So,<br><br>$$P(A \cup B \cup C) = {{ - 4k + 3} \over 2} + {k^2}$$<br><br>$$P(A \cup B \cup C) = {{2{k^2} - 4k + 3} \over 2}$$<br><br>$$ = {{2{{(k - 1)}^2} + 1} \over 2}$$<br><br>$$P(A \cup B \cup C) &gt; {1 \over 2}$$
mcq
jee-main-2021-online-20th-july-evening-shift
1l54tbhne
maths
probability
venn-diagram-and-set-theory
<p>The probability that a relation R from {x, y} to {x, y} is both symmetric and transitive, is equal to :</p>
[{"identifier": "A", "content": "$${5 \\over {16}}$$"}, {"identifier": "B", "content": "$${9 \\over {16}}$$"}, {"identifier": "C", "content": "$${11 \\over {16}}$$"}, {"identifier": "D", "content": "$${13 \\over {16}}$$"}]
["A"]
null
Total number of relations $=2^{2^{2}}=2^{4}=16$ <br/><br/> Relations that are symmetric as well as transitive are <br/><br/> $\phi,\{(x, x)\},\{(y, y)\},\{(x, x),(x, y),(y, y),(y, x)\},\{(x, x),(y, y)\}$ <br/><br/> $\therefore \quad$ favourable cases $=5$ <br/><br/> $\therefore \quad P_{r}=\frac{5}{16}$
mcq
jee-main-2022-online-29th-june-evening-shift
1l6givpji
maths
probability
venn-diagram-and-set-theory
<p>Let $$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$$ be three mutually exclusive events such that $$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2+3 \mathrm{p}}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2-\mathrm{p}}{8}$$ and $$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1-\mathrm{p}}{2}$$. If the maximum and minimum values of $$\mathrm{p}$$ are $$\mathrm{p}_{1}$$ and $$\mathrm{p}_{2}$$, then $$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{2}{3}$$"}, {"identifier": "B", "content": "$$\\frac{5}{3}$$"}, {"identifier": "C", "content": "$$\\frac{5}{4}$$"}, {"identifier": "D", "content": "1"}]
["B"]
null
<p>$$0 \le {{2 + 3P} \over 6} \le 1 \Rightarrow P \in \left[ { - {2 \over 3},{4 \over 3}} \right]$$</p> <p>$$0 \le {{2 - P} \over 8} \le 1 \Rightarrow P \in [ - 6,2]$$</p> <p>$$0 \le {{1 - P} \over 2} \le 1 \Rightarrow P \in [ - 1,1]$$</p> <p>$$0 < P({E_1}) + P({E_2}) + P({E_3}) \le 1$$</p> <p>$$0 < {{13} \over {12}} - {P \over 8} \le 1$$</p> <p>$$P \in \left[ {{2 \over 3},{{26} \over 3}} \right]$$</p> <p>Taking intersection of all</p> <p>$$P \in \left[ {{2 \over 3},1} \right)$$</p> <p>$${P_1} + {P_2} = {5 \over 3}$$</p>
mcq
jee-main-2022-online-26th-july-morning-shift
1l6p2wf0h
maths
probability
venn-diagram-and-set-theory
<p>Let $$S=\{1,2,3, \ldots, 2022\}$$. Then the probability, that a randomly chosen number n from the set S such that $$\mathrm{HCF}\,(\mathrm{n}, 2022)=1$$, is :</p>
[{"identifier": "A", "content": "$$\\frac{128}{1011}$$"}, {"identifier": "B", "content": "$$\\frac{166}{1011}$$"}, {"identifier": "C", "content": "$$\\frac{127}{337}$$"}, {"identifier": "D", "content": "$$\\frac{112}{337}$$"}]
["D"]
null
<p>S = {1, 2, 3, .......... 2022}</p> <p>HCF (n, 2022) = 1</p> <p>$$\Rightarrow$$ n and 2022 have no common factor</p> <p>Total elements = 2022</p> <p>2022 = 2 $$\times$$ 3 $$\times$$ 337</p> <p>M : numbers divisible by 2.</p> <p>{2, 4, 6, ........, 2022}$$\,\,\,\,$$ n(M) = 1011</p> <p>N : numbers divisible by 3.</p> <p>{3, 6, 9, ........, 2022}$$\,\,\,\,$$ n(N) = 674</p> <p>L : numbers divisible by 6.</p> <p>{6, 12, 18, ........, 2022}$$\,\,\,\,$$ n(L) = 337</p> <p>n(M $$\cup$$ N) = n(M) + n(N) $$-$$ n(L)</p> <p>= 1011 + 674 $$-$$ 337</p> <p>= 1348</p> <p>0 = Number divisible by 337 but not in M $$\cup$$ N</p> <p>{337, 1685}</p> <p>Number divisible by 2, 3 or 337</p> <p>= 1348 + 2 = 1350</p> <p>Required probability $$ = {{2022 - 1350} \over {2022}}$$</p> <p>$$ = {{672} \over {2022}}$$</p> <p>$$ = {{112} \over {337}}$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1ldo6jbm8
maths
probability
venn-diagram-and-set-theory
<p>Two dice are thrown independently. Let $$\mathrm{A}$$ be the event that the number appeared on the $$1^{\text {st }}$$ die is less than the number appeared on the $$2^{\text {nd }}$$ die, $$\mathrm{B}$$ be the event that the number appeared on the $$1^{\text {st }}$$ die is even and that on the second die is odd, and $$\mathrm{C}$$ be the event that the number appeared on the $$1^{\text {st }}$$ die is odd and that on the $$2^{\text {nd }}$$ is even. Then :</p>
[{"identifier": "A", "content": "A and B are mutually exclusive"}, {"identifier": "B", "content": "the number of favourable cases of the events A, B and C are 15, 6 and 6 respectively"}, {"identifier": "C", "content": "B and C are independent"}, {"identifier": "D", "content": "the number of favourable cases of the event $$(\\mathrm{A\\cup B)\\cap C}$$ is 6"}]
["D"]
null
$\begin{aligned} & A=\{(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)\} \\\\ & n(A)=15 \\\\ & B=\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)\} \\\\ & n(B)=9 \\\\ & C=\{(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)\} \\\\ & n(C)=9\end{aligned}$ <br/><br/>$$ (4,5) \in A \text { and }(4,5) \in B $$ <br/><br/>$\therefore A$ and $B$ are not exclusive events <br/><br/>$$ \begin{aligned} & n((A \cup B) \cap C)=n(A \cap C)+n(B \cap C)-n(A \cap B \cap C) \\\\ = & 3+3-0 \\\\ = & 6 \end{aligned} $$ <br/><br/>Option (D) is correct. <br/><br/>$$ \begin{aligned} & n(B)=\frac{9}{36}, n(C)=\frac{9}{36}, n(B \cap C)=0 \\\\ & \Rightarrow n(B) \cdot n(C) \neq n(B \cap C) \\\\ & \therefore B \text { and } C \text { are not independent. } \end{aligned} $$
mcq
jee-main-2023-online-1st-february-evening-shift
1lsgb3d4o
maths
probability
venn-diagram-and-set-theory
<p>A group of 40 students appeared in an examination of 3 subjects - Mathematics, Physics and Chemistry. It was found that all students passed in atleast one of the subjects, 20 students passed in Mathematics, 25 students passed in Physics, 16 students passed in Chemistry, atmost 11 students passed in both Mathematics and Physics, atmost 15 students passed in both Physics and Chemistry, atmost 15 students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is _________.</p>
[]
null
10
$\begin{aligned} &amp; n(M)=20 \\\\ &amp; n(P)=25 \\\\ &amp; n(C)=16 \\\\ &amp; n(M \cap P)=11 \\\\ &amp; n(P \cap C)=15 \\\\ &amp; n(M \cap C)=15\end{aligned}$ <br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqnvub5/791e93e6-65e8-4ec4-acf1-6dac1a0eab27/74eb5a10-cde5-11ee-a0d3-7b75c4537559/file-6y3zli1lsqnvub6.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqnvub5/791e93e6-65e8-4ec4-acf1-6dac1a0eab27/74eb5a10-cde5-11ee-a0d3-7b75c4537559/file-6y3zli1lsqnvub6.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 30th January Morning Shift Mathematics - Probability Question 15 English Explanation"> <br>$$ \begin{aligned} &amp; n(C \cup P \cup M) \leq n(U)=40 . \\\\ &amp; n(C)+n(P)+n(M)-n(C \cap M)-n(P \cap M)-n(C \cap \\\\ &amp; P)+n(C \cap P \cap M) \leq 40 \\\\ &amp; 20+25+16-11-15-15+x \leq 40 \\\\ &amp; x \leq 20 \end{aligned} $$ <br><br>But $11-x \geq 0$ and $15-x \geq 0$ <br><br>$$ \Rightarrow x \geq 11 $$
integer
jee-main-2024-online-30th-january-morning-shift
PuWjyRwOQzS1fiJs
maths
properties-of-triangle
area-of-triangle
If in a $$\Delta ABC$$, the altitudes from the vertices $$A, B, C$$ on opposite sides are in H.P, then $$\sin A,\sin B,\sin C$$ are in :
[{"identifier": "A", "content": "G. P."}, {"identifier": "B", "content": "A. P."}, {"identifier": "C", "content": "A.P-G.P."}, {"identifier": "D", "content": "H. P"}]
["B"]
null
$$\Delta = {1 \over 2}{p_1}a = {1 \over 2}{p_2}b = {1 \over 2}{p_3}b$$ <br><br>$${p_1},{p_2},{p_3},$$ are in $$H.P.$$ <br><br>$$ \Rightarrow {{2\Delta } \over a},{{2\Delta } \over b},{{2\Delta } \over c}$$ are in $$H.P.$$ <br><br>$$ \Rightarrow {1 \over a},{1 \over b},{1 \over c},$$ are in $$H.P.$$ <br><br>$$ \Rightarrow a,b,c$$ are in $$A.P.$$ <br><br>$$ \Rightarrow $$ $$K\sin A,K\sin B,K\sin C$$ are in $$A.P.$$ <br><br>$$ \Rightarrow $$ $$\sin A,\sin B,\sin C$$ are in $$A.P.$$
mcq
aieee-2005
uF5vBTaoRp0w8iRS
maths
properties-of-triangle
area-of-triangle
In a $$\Delta PQR,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} $$ If $$3{\mkern 1mu} \sin {\mkern 1mu} P + 4{\mkern 1mu} \cos {\mkern 1mu} Q = 6$$ and $$4\sin Q + 3\cos P = 1,$$ then the angle R is equal to :
[{"identifier": "A", "content": "$${{5\\pi } \\over 6}$$ "}, {"identifier": "B", "content": "$${{\\pi } \\over 6}$$"}, {"identifier": "C", "content": "$${{\\pi } \\over 4}$$"}, {"identifier": "D", "content": "$${{3\\pi } \\over 4}$$"}]
["B"]
null
Given $$3$$ $$\sin \,P + 4\cos Q = 6$$ $$\,\,\,\,\,\,\,\,...\left( i \right)$$ <br><br>$$4\sin Q + 3\cos P = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$ <br><br>Squaring and adding $$(i)$$ &amp; $$(ii)$$ we get <br><br>$$9\,{\sin ^2}P + 16{\cos ^2}Q + 24\sin P\cos Q$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 16\,{\sin ^2}Q + 9{\cos ^2}P + 24\sin Q\cos P$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$ = 36 + 1 = 37$$ <br><br>$$ \Rightarrow 9\left( {{{\sin }^2}p + {{\cos }^2}P} \right) + 16\left( {{{\sin }^2}Q + {{\cos }^2}q} \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 24\left( {\sin P\cos Q + \cos P\sin Q} \right) = 37$$ <br><br>$$ \Rightarrow 9 + 16 + 24\sin \left( {P + Q} \right) = 37$$ <br><br>[ As $${\sin ^2}\theta + {\cos ^2}\theta = 1$$ and <br><br>$$\sin A\cos B + \cos A\sin B$$ $$ = \sin \left( {A + B} \right)$$ ] <br><br>$$ \Rightarrow \sin \left( {P + Q} \right) = {1 \over 2}$$ <br><br>$$ \Rightarrow P + Q = {\pi \over 6}$$ or $${{5\pi } \over 6}$$ <br><br>$$ \Rightarrow R = {{5\pi } \over 6}$$ or $${\pi \over 6}$$ <br><br>(as $$P + Q + R = \pi $$ ) <br><br>If $$R = {{5\pi } \over 6}$$ then $$0 &lt; P,Q &lt; {\pi \over 6}$$ <br><br>$$ \Rightarrow \cos Q &lt; 1$$ and $$\sin P &lt; {1 \over 2}$$ <br><br>$$ \Rightarrow 3\sin P + 4\cos Q &lt; {{11} \over 2}$$ which is not true. <br><br>So $$R = {\pi \over 6}$$
mcq
aieee-2012
fdmnaeLrvX4aMdxOwkjgy2xukf7gxjfo
maths
properties-of-triangle
area-of-triangle
A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If $$\angle BAC = {90^o}$$ and area$$\left( {\Delta ABC} \right) = 5\sqrt 5 $$ s units, then the abscissa of the vertex C is :
[{"identifier": "A", "content": "$$1 + 2\\sqrt 5 $$"}, {"identifier": "B", "content": "$$ 2\\sqrt 5 - 1$$"}, {"identifier": "C", "content": "$$1 + \\sqrt 5 $$"}, {"identifier": "D", "content": "$$2 + \\sqrt 5 $$"}]
["A"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264973/exam_images/fxiejzh5aeuzbgfxdpro.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267653/exam_images/matb2vixbiqzmc3xsv1z.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263515/exam_images/n3r9nhavsa80zjogtt4n.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264717/exam_images/ycmesahtltfopnsuq3ta.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 4th September Morning Slot Mathematics - Properties of Triangle Question 19 English Explanation"></picture> <br>Distance between A and B<br><br>$$ = \sqrt {{{(2)}^2} + {{( - 1)}^2}} = \sqrt 5 $$<br><br>Area of triangle = $$5\sqrt 5 $$<br><br>$$ \Rightarrow {1 \over 2} \times \sqrt 5 \times x = 5\sqrt 5 $$<br><br>$$ \Rightarrow x = 10$$<br><br>Slope of AB, $${m_{AB}} = {{1 - 2} \over {3 - 1}} = - {1 \over 2}$$<br><br>AC is perpendicular to AB.<br><br>$$ \therefore $$ $${m_{AB}}\,.\,{m_{AC}} = - 1$$<br><br>$$ \Rightarrow {m_{AC}} = 2 = \tan \theta $$<br><br>So, $$\sin \theta = {2 \over {\sqrt 5 }}$$, $$\cos \theta = {1 \over {\sqrt 5 }}$$<br><br>$$ \therefore $$ $$a = {x_A} + r\cos \theta $$<br><br>$$ = 1 + 10 \times {1 \over {\sqrt 5 }}$$<br><br>$$ = 1 + 2\sqrt 5 $$
mcq
jee-main-2020-online-4th-september-morning-slot
JPpOTLK1LgUoYqsvMt1kluxiym4
maths
properties-of-triangle
area-of-triangle
The triangle of maximum area that can be inscribed in a given circle of radius 'r' is :
[{"identifier": "A", "content": "An equilateral triangle having each of its side of length $$\\sqrt 3 $$r."}, {"identifier": "B", "content": "An equilateral triangle of height $${{2r} \\over 3}$$."}, {"identifier": "C", "content": "A right angle triangle having two of its sides of length 2r and r."}, {"identifier": "D", "content": "An isosceles triangle with base equal to 2r."}]
["A"]
null
Area of triangle ABC<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266363/exam_images/t4j7msbaucclnkye1pro.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Evening Shift Mathematics - Properties of Triangle Question 17 English Explanation"><br><br>$$A = {1 \over 2} \times BC \times AM$$<br><br>$$ = {1 \over 2} \times 2\sqrt {{r^2} - {x^2}} \times (r + x)$$<br><br>$$A = (r + x)\sqrt {{r^2} - {x^2}} $$<br><br>$${{dA} \over {dx}} = \sqrt {{r^2} - {x^2}} - {x \over {\sqrt {{r^2} - {x^2}} }} \times (r + x) $$ <br><br>$$= {{{r^2} - {x^2} - rx - {x^2}} \over {\sqrt {{r^2} - {x^2}} }} = {{{r^2} - rx - 2{x^2}} \over {\sqrt {{r^2} - {x^2}} }} = {{ - (x + r)(2x - r)} \over {\sqrt {{r^2} - {x^2}} }}$$<br><br>$${{dA} \over {dx}} = 0 \Rightarrow x = {r \over 2}$$<br><br>Sign change of $${{dA} \over {dx}}$$ at $$x = {r \over 2}$$ <br><br>$$ \Rightarrow $$ A has maximum at $$x = {r \over 2}$$ <br><br>$$BC = 2\sqrt {{r^2} - {x^2}} = \sqrt 3 r$$, <br><br>$$AM = r + {1 \over 2}r$$ = $${3 \over 2}r$$<br><br>$$ \Rightarrow AB = AC = \sqrt 3 r$$
mcq
jee-main-2021-online-26th-february-evening-slot
d8zoYrCZDGgB8OMG3I1kmhzdcqe
maths
properties-of-triangle
area-of-triangle
Let ABCD be a square of side of unit length. Let a circle C<sub>1</sub> centered at A with unit radius is drawn. Another circle C<sub>2</sub> which touches C<sub>1</sub> and the lines AD and AB are tangent to it, is also drawn. Let a tangent line from the point C to the circle C<sub>2</sub> meet the side AB at E. If the length of EB is $$\alpha$$ + $${\sqrt 3 }$$ $$\beta$$, where $$\alpha$$, $$\beta$$ are integers, then $$\alpha$$ + $$\beta$$ is equal to ____________.
[]
null
1
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266007/exam_images/gqh1muo7zwcf1cjiz3fa.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Morning Shift Mathematics - Properties of Triangle Question 16 English Explanation"><br><br>(i) $$\sqrt 2 r + r = 1$$<br><br>$$r = {1 \over {\sqrt 2 + 1}}$$<br><br>$$r = \sqrt 2 - 1$$<br><br>(ii) $$C{C_2} = 2\sqrt 2 - 2 = 2\left( {\sqrt 2 - 1} \right)$$<br><br>From $$\Delta C{C_2}N = \sin \phi = {{\sqrt 2 - 1} \over {2\left( {\sqrt 2 - 1} \right)}}$$<br><br>$$\phi = 30^\circ $$<br><br>(iii) In $$\Delta$$ACE apply sine law<br><br>$${{AE} \over {\sin \phi }} = {{AC} \over {\sin 105^\circ }}$$<br><br>$$AE = {1 \over 2} \times {{\sqrt 2 } \over {\sqrt 3 + 1}}.2\sqrt 2 $$<br><br>$$AE = {2 \over {\sqrt 3 + 1}} = \sqrt 3 - 1$$<br><br>$$ \therefore $$ $$EB = 1 - \left( {\sqrt 3 - 1} \right)$$<br><br>= $$2 - \sqrt 3 $$<br><br>$$ \therefore $$ $$\alpha$$ = 2, $$\beta$$ = $$-$$1 $$ \Rightarrow $$ $$\alpha$$ + $$\beta$$ = 1
integer
jee-main-2021-online-16th-march-morning-shift
ZzEH5xuVZGeyr66uaK1kmiznmbw
maths
properties-of-triangle
area-of-triangle
In $$\Delta$$ABC, the lengths of sides AC and AB are 12 cm and 5 cm, respectively. If the area of $$\Delta$$ABC is 30 cm<sup>2</sup> and R and r are respectively the radii of circumcircle and incircle of $$\Delta$$ABC, then the value of 2R + r (in cm) is equal to ___________.
[]
null
15
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264566/exam_images/c0o3n3zizv5saixvrv1t.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Evening Shift Mathematics - Properties of Triangle Question 15 English Explanation 1"><br><br>Area = $${1 \over 2}(5)(12)\sin \theta = 30$$<br><br>$$\sin \theta = 1 \Rightarrow \theta = {\pi \over 2}$$<br><br>$$\Delta$$ is right angle $$\Delta$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264122/exam_images/hwpbih4rxxssh7b0owih.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Evening Shift Mathematics - Properties of Triangle Question 15 English Explanation 2"><br><br>$$r = (s - a)\tan {A \over 2}$$<br><br>$$r = (s - a)$$$$\tan {{90} \over 2}$$<br><br>$$r = (s - a)$$<br><br>$$2R + r = s$$, (As $$a = 2R$$)<br><br>$$2R + r = {{5 + 12 + 13} \over 2} = 15$$
integer
jee-main-2021-online-16th-march-evening-shift
1krzr2ib8
maths
properties-of-triangle
area-of-triangle
If a rectangle is inscribed in an equilateral triangle of side length $$2\sqrt 2 $$ as shown in the figure, then the square of the largest area of such a rectangle is _____________.<br/><br/><img src=""/>
[]
null
3
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266129/exam_images/ouqduiix1vmfx5nsutac.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263970/exam_images/qsqsvhbym8ueyy7jh4jv.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265279/exam_images/jk4yiktnfvwoeb8wtrgr.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267504/exam_images/tv5bb82om3ehrf6ij6ri.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263590/exam_images/tc0blbpawukgwb0ll2x0.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Evening Shift Mathematics - Properties of Triangle Question 13 English Explanation"></picture> <br><br>In $$\Delta$$DBF<br><br>$$\tan 60^\circ = {{2b} \over {2\sqrt 2 - l}} \Rightarrow b = {{\sqrt 3 \left( {2\sqrt 2 - l} \right)} \over 2}$$<br><br>A = Area of rectangle = l $$\times$$ b<br><br>$$A = l \times {{\sqrt 3 } \over 2}\left( {2\sqrt 2 - l} \right)$$<br><br>$${{dA} \over {dl}} = {{\sqrt 3 } \over 2}\left( {2\sqrt 2 - l} \right) - {{l.\sqrt 3 } \over 2} = 0$$<br><br>$$l = \sqrt 2 $$<br><br>$$A = l \times b = \sqrt 2 \times {{\sqrt 3 } \over 2}\left( {\sqrt 2 } \right) = \sqrt 3 $$<br><br>$$\Rightarrow$$ A<sup>2</sup> = 3
integer
jee-main-2021-online-25th-july-evening-shift
1l57o61t8
maths
properties-of-triangle
area-of-triangle
<p>The lengths of the sides of a triangle are 10 + x<sup>2</sup>, 10 + x<sup>2</sup> and 20 $$-$$ 2x<sup>2</sup>. If for x = k, the area of the triangle is maximum, then 3k<sup>2</sup> is equal to :</p>
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "12"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5q9umae/dcd93d6b-ea7f-4626-9b1a-432648434cd3/99642f60-0655-11ed-903e-c9687588b3f3/file-1l5q9umaf.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5q9umae/dcd93d6b-ea7f-4626-9b1a-432648434cd3/99642f60-0655-11ed-903e-c9687588b3f3/file-1l5q9umaf.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 27th June Morning Shift Mathematics - Properties of Triangle Question 11 English Explanation"></p> <p>$$CD = \sqrt {{{(10 + {x^2})}^2} - {{(10 - {x^2})}^2}} = 2\sqrt {10} |x|$$</p> <p>Area $$ = {1 \over 2} \times CD \times AB = {1 \over 2} \times 2\sqrt {10} |x|(20 - 2{x^2})$$</p> <p>$$A = \sqrt {10} |x|(10 - {x^2})$$</p> <p>$${{dA} \over {dx}} = \sqrt {10} {{|x|} \over x}(10 - {x^2}) + \sqrt {10} |x|( - 2x) = 0$$</p> <p>$$ \Rightarrow 10 - {x^2} = 2{x^2}$$</p> <p>$$3{x^2} = 10$$</p> <p>$$x = k$$</p> <p>$$3{k^2} = 10$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1ldr5mq8n
maths
properties-of-triangle
area-of-triangle
<p>A straight line cuts off the intercepts $$\mathrm{OA}=\mathrm{a}$$ and $$\mathrm{OB}=\mathrm{b}$$ on the positive directions of $$x$$-axis and $$y$$ axis respectively. If the perpendicular from origin $$O$$ to this line makes an angle of $$\frac{\pi}{6}$$ with positive direction of $$y$$-axis and the area of $$\triangle \mathrm{OAB}$$ is $$\frac{98}{3} \sqrt{3}$$, then $$\mathrm{a}^{2}-\mathrm{b}^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{392}{3}$$"}, {"identifier": "B", "content": "98"}, {"identifier": "C", "content": "196"}, {"identifier": "D", "content": "$$\\frac{196}{3}$$"}]
["A"]
null
<p>$${1 \over 2}ab = {{98\sqrt 3 } \over 3}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1leq0ppnt/4e6ea50d-9a35-4fc8-8434-5621ca292f68/d132e190-b85f-11ed-8195-4f3c56fa1eb5/file-1leq0ppnu.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1leq0ppnt/4e6ea50d-9a35-4fc8-8434-5621ca292f68/d132e190-b85f-11ed-8195-4f3c56fa1eb5/file-1leq0ppnu.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 30th January Morning Shift Mathematics - Properties of Triangle Question 8 English Explanation"></p> <p>$$ \Rightarrow \sqrt 3 ab = 196$$ ..... (i)</p> <p>$$OP = OB\cos 30^\circ = OA\cos 60^\circ $$</p> <p>$$ \Rightarrow {{b\sqrt 3 } \over 2} = {a \over 2}$$</p> <p>$$ \Rightarrow \sqrt 3 b = a$$ ..... (ii)</p> <p>By (i) and (ii)</p> <p>$${a^2} = 196$$</p> <p>$$a = 14$$</p> <p>$${b^2} = {{{a^2}} \over 3}$$</p> <p>$${a^2} - {b^2} = {{2{a^2}} \over 3} = {{392} \over 3}$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1lgvqyw2i
maths
properties-of-triangle
area-of-triangle
<p>In the figure, $$\theta_{1}+\theta_{2}=\frac{\pi}{2}$$ and $$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$$. If the area of $$\triangle \mathrm{CAB}$$ is $$2 \sqrt{3}-3$$ unit $${ }^{2}$$, when $$\frac{\theta_{2}}{\theta_{1}}$$ is the largest, then the perimeter (in unit) of $$\triangle \mathrm{CED}$$ is equal to _________.</p> <p><img src=""/></p>
[]
null
6
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnk6r0mj/2e1e2dc2-1bc0-46e6-95cc-c6b581c795c0/aac42bb0-6758-11ee-a06a-699a057b80c4/file-6y3zli1lnk6r0mk.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnk6r0mj/2e1e2dc2-1bc0-46e6-95cc-c6b581c795c0/aac42bb0-6758-11ee-a06a-699a057b80c4/file-6y3zli1lnk6r0mk.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Evening Shift Mathematics - Properties of Triangle Question 5 English Explanation"> <br><br>We have, $\theta_1+\theta_2=\frac{\pi}{2}$ and $\sqrt{3}(B E)=4 A B$ <br><br>Let $A B=x$ unit <br><br>$$ \begin{aligned} &amp; A C=x \tan \theta_1 \\\\ &amp; E D=x \tan \theta_2 \\\\ &amp; B E=B D+D E \end{aligned} $$ <br><br>$$ \begin{array}{rlrl} &amp; \Rightarrow \frac{4}{\sqrt{3}} x =x\left(\tan \theta_1+\tan \theta_2\right) {[\because \sqrt{3} B E=4 A B]} \\\\ &amp; \Rightarrow \frac{4}{\sqrt{3}}=\tan \theta_1+\tan \left(\frac{\pi}{2}-\theta_1\right) {\left[\because \theta_1+\theta_2=\frac{\pi}{2}\right]} \end{array} $$ <br><br>$$ \begin{aligned} &amp; \Rightarrow \tan \theta_1+\cot \theta_1=\frac{4}{\sqrt{3}}=\sqrt{3}+\frac{1}{\sqrt{3}} \\\\ &amp; \Rightarrow \tan \theta_1=\sqrt{3} \text { or } \theta_1=\frac{\pi}{3} \text { and } \theta_2=\frac{\pi}{6} \\\\ &amp; \operatorname{or} \theta_1=\frac{\pi}{6} \text { and } \theta_2=\frac{\pi}{3} \end{aligned} $$ <br><br>$\because \frac{\theta_2}{\theta_1}$ is largest <br><br>$$ \therefore \theta_1=\frac{\pi}{6} \text { and } \theta_2=\frac{\pi}{3} $$ <br><br>$$ \begin{aligned} &amp; \text { Area of } \triangle C A B=\frac{1}{2} \times x \times x \tan \theta_1 \\\\ &amp; \Rightarrow \frac{x^2 \tan \theta_1}{2}=2 \sqrt{3}-3 \\\\ &amp; \Rightarrow x^2=\frac{2(2 \sqrt{3}-3)}{\tan \frac{\pi}{6}}=12-6 \sqrt{3} \\\\\ &amp; \Rightarrow x=3-\sqrt{3} \end{aligned} $$ <br><br>$$ \text { Also, } C E=\sqrt{x^2+x^2 \tan ^2 \frac{\pi}{3}}=(3-\sqrt{3}) \times 2=6-2 \sqrt{3} $$ <br><br>Perimeter of $\triangle C E D$ <br><br>$$ \begin{aligned} &amp; =C D+D E+C E \\\\ &amp; =(3-\sqrt{3})+(3-\sqrt{3}) \tan \frac{\pi}{3}+6-2 \sqrt{3} \\\\ &amp; =3-\sqrt{3}+3 \sqrt{3}-3+6-2 \sqrt{3}=6 \end{aligned} $$
integer
jee-main-2023-online-10th-april-evening-shift
jaoe38c1lseyc1v8
maths
properties-of-triangle
circumcenter,-incenter-and-orthocenter
<p>Let $$\left(5, \frac{a}{4}\right)$$ be the circumcenter of a triangle with vertices $$\mathrm{A}(a,-2), \mathrm{B}(a, 6)$$ and $$C\left(\frac{a}{4},-2\right)$$. Let $$\alpha$$ denote the circumradius, $$\beta$$ denote the area and $$\gamma$$ denote the perimeter of the triangle. Then $$\alpha+\beta+\gamma$$ is</p>
[{"identifier": "A", "content": "60"}, {"identifier": "B", "content": "62"}, {"identifier": "C", "content": "53"}, {"identifier": "D", "content": "30"}]
["C"]
null
<p>$$\begin{aligned} & A(a,-2), B(a, 6), C\left(\frac{a}{4},-2\right), O\left(5, \frac{a}{4}\right) \\ & A O=B O \\ & (a-5)^2+\left(\frac{a}{4}+2\right)^2=(a-5)^2+\left(\frac{a}{4}-6\right)^2 \\ & a=8 \\ & A B=8, A C=6, B C=10 \\ & \alpha=5, \beta=24, \gamma=24 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
luxwe7pg
maths
properties-of-triangle
circumcenter,-incenter-and-orthocenter
<p>Two vertices of a triangle $$\mathrm{ABC}$$ are $$\mathrm{A}(3,-1)$$ and $$\mathrm{B}(-2,3)$$, and its orthocentre is $$\mathrm{P}(1,1)$$. If the coordinates of the point $$\mathrm{C}$$ are $$(\alpha, \beta)$$ and the centre of the of the circle circumscribing the triangle $$\mathrm{PAB}$$ is $$(\mathrm{h}, \mathrm{k})$$, then the value of $$(\alpha+\beta)+2(\mathrm{~h}+\mathrm{k})$$ equals</p>
[{"identifier": "A", "content": "81"}, {"identifier": "B", "content": "15"}, {"identifier": "C", "content": "51"}, {"identifier": "D", "content": "5"}]
["D"]
null
<p>$$\begin{aligned} &amp; m_{P A}=\frac{2}{-2}=-1 \\ &amp; \therefore \quad m_{B C}=1 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw1m11ba/909a9c7c-64f8-4f41-9021-c0d2d0a9d656/7865b860-0f4f-11ef-ad52-af909612c772/file-1lw1m11bb.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw1m11ba/909a9c7c-64f8-4f41-9021-c0d2d0a9d656/7865b860-0f4f-11ef-ad52-af909612c772/file-1lw1m11bb.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 9th April Evening Shift Mathematics - Properties of Triangle Question 3 English Explanation"></p> <p>$$\begin{aligned} &amp; B C: y=x+5 \\ &amp; m_{B P}=\frac{2}{-3}=\frac{-2}{3} \\ &amp; \therefore m_{A C}=\frac{3}{2} \\ &amp; A C: y=\frac{3}{2} x-\frac{11}{2} \quad \Rightarrow 2 y=3 x-11 \\ &amp; \therefore \quad C:(21,26) \end{aligned}$$</p> <p>Let the circumcentre be $$(h, k)$$</p> <p>$$\begin{aligned} &amp; (h-1)^2+(k-1)^2=(h+2)^2+(k-3)^2 \quad \text{... (i)}\\ &amp; (h-1)^2+(k-1)^2=(h-3)^2+(k+1)^2 \quad \text{... (ii)} \end{aligned}$$</p> <p>Solving (i) and (ii)</p> <p>$$\begin{aligned} &amp; h=\frac{-19}{2}, k=\frac{-23}{2} \\ &amp; \alpha+\beta+2(h+k) \\ &amp; =21+26-19-23 \\ &amp; =2+3=5 \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
lv2erz6q
maths
properties-of-triangle
cosine-rule
<p>Consider a triangle $$\mathrm{ABC}$$ having the vertices $$\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$$ and $$\mathrm{C}(\gamma, \delta)$$ and angles $$\angle A B C=\frac{\pi}{6}$$ and $$\angle B A C=\frac{2 \pi}{3}$$. If the points $$\mathrm{B}$$ and $$\mathrm{C}$$ lie on the line $$y=x+4$$, then $$\alpha^2+\gamma^2$$ is equal to _______.</p>
[]
null
14
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwhhd8gk/a86d447c-ca28-4c88-a2d0-2170f95b6e56/c85f5d40-1809-11ef-b156-f754785ad3ce/file-1lwhhd8gl.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwhhd8gk/a86d447c-ca28-4c88-a2d0-2170f95b6e56/c85f5d40-1809-11ef-b156-f754785ad3ce/file-1lwhhd8gl.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Evening Shift Mathematics - Properties of Triangle Question 2 English Explanation 1"></p> <p>$$\begin{aligned} &amp; P=\frac{|2-1-4|}{\sqrt{1^2+1^2}}=\frac{3}{\sqrt{2}} \\ &amp; \sin \left(\frac{\pi}{6}\right)=\frac{3 / \sqrt{2}}{A B}=\frac{1}{2} \Rightarrow A B=\frac{6}{\sqrt{2}} \\ &amp; \Rightarrow(\alpha-1)^2+(\alpha+4-2)^2=18 \end{aligned}$$</p> <p>$$\Rightarrow 2 \alpha^2+2 \alpha-13=0 \rightarrow \alpha$$ and $$\gamma$$ satisfy same equation</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwhhhojv/60e45a27-3bf3-4540-bde6-9ba4a53c1429/440a25b0-180a-11ef-b156-f754785ad3ce/file-1lwhhhojw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwhhhojv/60e45a27-3bf3-4540-bde6-9ba4a53c1429/440a25b0-180a-11ef-b156-f754785ad3ce/file-1lwhhhojw.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Evening Shift Mathematics - Properties of Triangle Question 2 English Explanation 2"></p> <p>$$\begin{aligned} &amp; \Rightarrow \alpha^2+\gamma^2=(\alpha+\gamma)^2-2 \alpha \gamma \\ &amp; =(-1)^2-2\left(\frac{-13}{2}\right)=1+13=14 \end{aligned}$$</p>
integer
jee-main-2024-online-4th-april-evening-shift
lvb294yu
maths
properties-of-triangle
cosine-rule
<p>In a triangle $$\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$$ and $$\cos \mathrm{A}=\frac{2}{3}$$. If $$49 \cos (3 \mathrm{C})+42=\frac{\mathrm{m}}{\mathrm{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$m+n$$ is equal to _________.</p>
[]
null
39
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwap0izi/fd6cee3f-e437-4a65-830c-d11ed7b1c7a4/3378e3e0-144e-11ef-860c-d121cbcdd1fc/file-1lwap0izj.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwap0izi/fd6cee3f-e437-4a65-830c-d11ed7b1c7a4/3378e3e0-144e-11ef-860c-d121cbcdd1fc/file-1lwap0izj.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Evening Shift Mathematics - Properties of Triangle Question 1 English Explanation"></p> <p>$$\begin{aligned} &amp; \cos A=\frac{2}{3}=\frac{\alpha^2+8^2-7^2}{2 \cdot \alpha \cdot 8} \\ &amp; \Rightarrow\left(\alpha^2+15\right) 3=32 \alpha \\ &amp; 3 \alpha^2-32 \alpha+45=0 \\ &amp; \Rightarrow \alpha=\frac{5}{3}, 9 \\ &amp; \because \alpha \in N \Rightarrow \alpha=9 \\ &amp; \cos C=\frac{7^2+8^2-9^2}{2 \cdot 7 \cdot 8}=\frac{2}{7} \end{aligned}$$</p> <p>$$ \begin{aligned} \cos 3 C &amp; =4 \cos ^3 C-3 \cos C \\ = &amp; \frac{4 \times 8}{7^3}-\frac{6}{7} \\ 49 \cos 3 C &amp; =\frac{32}{7}-42 \\ \Rightarrow \quad &amp; 49 \cos 3 C+42=\frac{32}{7} \\ \Rightarrow \quad &amp; m+n =39 \end{aligned} $$</p>
integer
jee-main-2024-online-6th-april-evening-shift
L8Rjt2UM5OY6mLNw
maths
properties-of-triangle
ex-circle
In a triangle with sides $$a, b, c,$$ $${r_1} &gt; {r_2} &gt; {r_3}$$ (which are the ex-radii) then :
[{"identifier": "A", "content": "$$a&gt;b&gt;c$$"}, {"identifier": "B", "content": "$$a &lt; b &lt; c$$ "}, {"identifier": "C", "content": "$$a &gt; b$$ and $$b &lt; c$$ "}, {"identifier": "D", "content": "$$a &lt; b$$ and $$b &gt; c$$ "}]
["A"]
null
$${r_1} &gt; {r_2} &gt; {r_3}$$ <br><br>$$ \Rightarrow {\Delta \over {s - a}} &gt; {\Delta \over {s - b}} &gt; {\Delta \over {s - c}};$$ <br><br>$$ \Rightarrow s - a &lt; s - b &lt; s - c$$ <br><br>$$ \Rightarrow - a &lt; - b &lt; - c$$ <br><br>$$ \Rightarrow a &gt; b &gt; c$$
mcq
aieee-2002
R4DzEtYltigsfO3b
maths
properties-of-triangle
half-angle-formulae
The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a, $$ is :
[{"identifier": "A", "content": "$${a \\over 4}\\cot \\left( {{\\pi \\over {2n}}} \\right)$$ "}, {"identifier": "B", "content": "$$a\\cot \\left( {{\\pi \\over {n}}} \\right)$$"}, {"identifier": "C", "content": "$${a \\over 2}\\cot \\left( {{\\pi \\over {2n}}} \\right)$$"}, {"identifier": "D", "content": "$$a\\cot \\left( {{\\pi \\over {2n}}} \\right)$$ "}]
["C"]
null
$$\tan \left( {{\pi \over n}} \right) = {a \over {2r}};\,\,\sin \left( {{\pi \over n}} \right) = {a \over {2R}}$$ <br><br>$$r + R = {a \over 2}\left[ {\cot {\pi \over n} + \cos ec{\pi \over n}} \right]$$ <br><br> <br>$$ = {a \over 2}\left[ {{{\cos {\pi \over n} + 1} \over {\sin {\pi \over n}}}} \right]$$ <br><br>$$ = {a \over 2}\left[ {{{2{{\cos }^2}{\pi \over {2n}}} \over {2\sin {\pi \over {2n}}\cos {\pi \over {2n}}}}} \right]$$ <br><br>$$ = {a \over 2}\cot {\pi \over {2\pi }}$$<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kwj5c728/3dbfb32f-aec8-426a-86ca-495696731c70/859754f0-503c-11ec-87d6-07ff3bfe6155/file-1kwj5c729.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="AIEEE 2003 Mathematics - Properties of Triangle Question 33 English Explanation">
mcq
aieee-2003
9HMUIzA8ObB5e9Yg
maths
properties-of-triangle
half-angle-formulae
If in a $$\Delta ABC$$ $$a\,{\cos ^2}\left( {{C \over 2}} \right) + c\,{\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2},$$ then the sides $$a, b$$ and $$c$$ :
[{"identifier": "A", "content": "satisfy $$a+b=c$$"}, {"identifier": "B", "content": "are in A.P"}, {"identifier": "C", "content": "are in G.P "}, {"identifier": "D", "content": "are in H.P"}]
["B"]
null
If $$a\,{\cos ^2}\left( {{C \over 2}} \right) + c\,{\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2}$$ <br><br>$$a\left[ {\cos C + 1} \right] + c\left[ {\cos A + 1} \right] = 3b$$ <br><br>$$\left( {a + c} \right) + \left( {a\cos C + c\cos \,B} \right) = 3b$$ <br><br>$$a + c + b = 3b$$ or $$a + c = 2b$$ <br><br>or $$a,b,c$$ are in $$A.P.$$
mcq
aieee-2003
Y0Ghl4TgTp0GRL5s
maths
properties-of-triangle
half-angle-formulae
For a regular polygon, let $$r$$ and $$R$$ be the radii of the inscribed and the circumscribed circles. A $$false$$ statement among the following is :
[{"identifier": "A", "content": "There is a regular polygon with $${r \\over R} = {1 \\over {\\sqrt 2 }}$$ "}, {"identifier": "B", "content": "There is a regular polygon with $${r \\over R} = {2 \\over 3}$$ "}, {"identifier": "C", "content": "There is a regular polygon with $${r \\over R} = {{\\sqrt 3 } \\over 2}$$ "}, {"identifier": "D", "content": "There is a regular polygon with $${r \\over R} = {1 \\over 2}$$ "}]
["B"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265911/exam_images/oijmrfmejq2eg8qdfmzd.webp" loading="lazy" alt="AIEEE 2010 Mathematics - Properties of Triangle Question 27 English Explanation"> <br><br>If $$O$$ is center of polygon and <br><br>$$AB$$ is one of the side, then by figure <br><br>$$\cos {\pi \over n} = {r \over R}$$ <br><br>$$ \Rightarrow {r \over R} = {1 \over 2},{1 \over {\sqrt 2 }},{{\sqrt 3 } \over 2}\,\,for$$ <br><br>$$n = 3,4,6$$ respectively.
mcq
aieee-2010
lgnyq5za
maths
properties-of-triangle
half-angle-formulae
If the line $x=y=z$ intersects the line <br/><br/>$x \sin A+y \sin B+z \sin C-18=0=x \sin 2 A+y \sin 2 B+z \sin 2 C-9$, <br/><br/>where $A, B, C$ are the angles of a triangle $A B C$, then $80\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)$ <br/><br/>is equal to ______________.
[]
null
5
$$ \begin{aligned} &x= y=z=k(\text { let }) \\\\ &\therefore k(\sin A+\sin B+\sin C)=18 \\\\ &\Rightarrow k\left(4 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}\right)=18 \\\\ & k(\sin 2 A+\sin 2 B+\sin 2 C)=9 \\\\ &\Rightarrow k(4 \sin A \cdot \sin B \cdot \sin C)=9 \ldots \text { (ii) } \\\\ & \text {(ii)} /\text {(i)} \\\\ & 8 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}=\frac{9}{18} \\\\ &\Rightarrow 80 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}=5 \end{aligned} $$
integer
jee-main-2023-online-15th-april-morning-shift
6TY7IytUNsnzYJJy
maths
properties-of-triangle
mediun-and-angle-bisector
In a triangle $$ABC$$, medians $$AD$$ and $$BE$$ are drawn. If $$AD=4$$, <br/>$$\angle DAB = {\pi \over 6}$$ and $$\angle ABE = {\pi \over 3}$$, then the area of the $$\angle \Delta ABC$$ is :
[{"identifier": "A", "content": "$${{64} \\over 3}$$ "}, {"identifier": "B", "content": "$${8 \\over 3}$$ "}, {"identifier": "C", "content": "$${{16} \\over 3}$$ "}, {"identifier": "D", "content": "$${{32} \\over {3\\sqrt 3 }}$$ "}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264957/exam_images/mahs6riio0a6znddsa2r.webp" loading="lazy" alt="AIEEE 2003 Mathematics - Properties of Triangle Question 32 English Explanation"> <br><br>$$AP = {2 \over 3}AD = {8 \over 3};\,\,PD = {4 \over 3};\,\,$$ <br><br>Let $$PB=x$$ <br><br>$$\tan {60^ \circ } = {{8/3} \over x}$$ <br><br>or $$x = {8 \over {3\sqrt 3 }}$$ <br><br>Area of $$\Delta ABD$$ <br><br>$$ = {1 \over 2} \times 4 \times {8 \over {3\sqrt 3 }} = {{16} \over {3\sqrt 3 }}$$ <br><br>$$\therefore$$ Area of $$\Delta ABC$$ <br><br>$$ = 2 \times {{16} \over {3\sqrt 3 }} = {{32} \over {3\sqrt 3 }}$$ <br><br>$$\left[ \, \right.$$ As median of a $$\Delta $$ divides it into two $$\Delta 's$$ of equal area. $$\left. \, \right]$$
mcq
aieee-2003
aZw5wVknZ2tAwD4dSv3rsa0w2w9jxadfk62
maths
properties-of-triangle
mediun-and-angle-bisector
A triangle has a vertex at (1, 2) and the mid points of the two sides through it are (–1, 1) and (2, 3). Then the centroid of this triangle is :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 3},2} \\right)$$"}, {"identifier": "B", "content": "$$\\left( {{1 \\over 3},{5 \\over 3}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {1,{7 \\over 3}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{1 \\over 3},1} \\right)$$"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265818/exam_images/u883z0iudbpn9rsvcpfy.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Evening Slot Mathematics - Properties of Triangle Question 20 English Explanation"><br> Centroid = $$\left( {{{1 + 3 - 3} \over 3},{{2 + 0 + 4} \over 3}} \right) = \left( {{1 \over 3},2} \right)$$
mcq
jee-main-2019-online-12th-april-evening-slot
2Pi5cD2rl2m48jUoBJ1klrkm8wt
maths
properties-of-triangle
mediun-and-angle-bisector
Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, c), (2, b) and (a, b) be $$\left( {{{10} \over 3},{7 \over 3}} \right)$$. If $$\alpha$$, $$\beta$$ are the roots of the equation $$a{x^2} + bx + 1 = 0$$, then the value of $${\alpha ^2} + {\beta ^2} - \alpha \beta $$ is :
[{"identifier": "A", "content": "$${{69} \\over {256}}$$"}, {"identifier": "B", "content": "$${{71} \\over {256}}$$"}, {"identifier": "C", "content": "$$ - {{71} \\over {256}}$$"}, {"identifier": "D", "content": "$$ - {{69} \\over {256}}$$"}]
["C"]
null
2b = a + c<br><br>$${{2a + 2} \over 3} = {{10} \over 3}$$ and $${{2b + c} \over 3} = {7 \over 3}$$<br><br>a = 4, <br><br>$$\left\{ \matrix{ 2b + c = 7 \hfill \cr 2b - c = 4 \hfill \cr} \right\}$$, solving<br><br>$$b = {{11} \over 4}$$<br><br>$$c = {3 \over 2}$$<br><br>$$ \therefore $$ Quadratic Equation is $$4{x^2} + {{11} \over 4}x + 1 = 0$$<br><br>$$ \therefore $$ The value of <br><br>$${\alpha ^2} + {\beta ^2} - \alpha \beta $$ <br><br>= $${\alpha ^2} + {\beta ^2} + 2\alpha \beta - 3\alpha \beta $$ <br><br>= $${(\alpha + \beta )^2} - 3\alpha \beta $$ <br><br>$$= {{121} \over {256}} - {3 \over 4} = - {{71} \over {256}}$$
mcq
jee-main-2021-online-24th-february-evening-slot
oNsrvtAu54sUcSHeU7ufP
maths
properties-of-triangle
sine-rule
In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If x<sup>2</sup> – c<sup>2</sup> = y, where c is the length of the third side of the triangle, then the circumradius of the triangle is :
[{"identifier": "A", "content": "$${y \\over {\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${c \\over 3}$$"}, {"identifier": "C", "content": "$${c \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${3 \\over 2}$$y"}]
["C"]
null
Given a + b = x and ab = y <br><br>If x<sup>2</sup> $$-$$ c<sup>2</sup> = y $$ \Rightarrow $$ (a + b)<sup>2</sup> $$-$$ c<sup>2</sup> = ab <br><br>$$ \Rightarrow $$&nbsp;&nbsp;a<sup>2</sup> + b<sup>2</sup> $$-$$ c<sup>2</sup> = $$-$$ ab <br><br>$$ \Rightarrow $$&nbsp;&nbsp; $${{{a^2} + {b^2} - {c^2}} \over {2ab}} = - {1 \over 2}$$ <br><br>$$ \Rightarrow \cos C = - {1 \over 2}$$ <br><br>$$ \Rightarrow \angle C = {{2\pi } \over 3}$$ <br><br>$$R = {c \over {2\sin C}} = {c \over {\sqrt 3 }}$$
mcq
jee-main-2019-online-11th-january-morning-slot
T5cYEycLTxY97vpIuZ3rsa0w2w9jx22m6nv
maths
properties-of-triangle
sine-rule
The angles A, B and C of a triangle ABC are in A.P. and a : b = 1 : $$\sqrt 3 $$. If c = 4 cm, then the area (in sq. cm) of this triangle is :
[{"identifier": "A", "content": "2$$\\sqrt 3 $$"}, {"identifier": "B", "content": "4$$\\sqrt 3 $$"}, {"identifier": "C", "content": "$${4 \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${2 \\over {\\sqrt 3 }}$$"}]
["A"]
null
From the question 2B = A + C &amp; A + B + C = $$\pi $$<br><br> $$ \Rightarrow $$ 3B = $$\pi $$<br><br> $$ \Rightarrow $$ B = $${\pi \over 3}$$<br><br> $$ \therefore A + C = {{2\pi } \over 3}\sigma $$<br><br> $${a \over b} = {1 \over {\sqrt 3 }}$$<br><br> $${{2R\sin A} \over {2R\sin B}} = {1 \over {\sqrt 3 }}$$<br><br> sin A = $${1 \over 2}$$<br><br> $$ \therefore $$ A = 30<sup>o</sup><br><br> $$ \therefore $$ a = 2, b = 2$$\sqrt 3$$, c = 4<br><br> $$\Delta = {1 \over 2} \times 2\sqrt 3 \times 2 = 2\sqrt 3 $$
mcq
jee-main-2019-online-10th-april-evening-slot
1krpur0db
maths
properties-of-triangle
sine-rule
If in a triangle ABC, AB = 5 units, $$\angle B = {\cos ^{ - 1}}\left( {{3 \over 5}} \right)$$ and radius of circumcircle of $$\Delta$$ABC is 5 units, then the area (in sq. units) of $$\Delta$$ABC is :
[{"identifier": "A", "content": "$$10 + 6\\sqrt 2 $$"}, {"identifier": "B", "content": "$$8 + 2\\sqrt 2 $$"}, {"identifier": "C", "content": "$$6 + 8\\sqrt 3 $$"}, {"identifier": "D", "content": "$$4 + 2\\sqrt 3 $$"}]
["C"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l14vgj3y/f007ae64-29a9-4ba7-a06b-961129209c7b/fea546d0-ab5f-11ec-ba67-db8ddd9d738c/file-1l14vgj3z.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l14vgj3y/f007ae64-29a9-4ba7-a06b-961129209c7b/fea546d0-ab5f-11ec-ba67-db8ddd9d738c/file-1l14vgj3z.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 20th July Morning Shift Mathematics - Properties of Triangle Question 14 English Explanation"><br>As, $$\cos B = {3 \over 5} \Rightarrow B = 53^\circ $$<br><br>As, $$R = 5 \Rightarrow {c \over {\sin c}} = 2R$$<br><br>$$ \Rightarrow {5 \over {10}} = \sin c \Rightarrow C = 30^\circ $$<br><br>Now, $${b \over {\sin B}} = 2R \Rightarrow b = 2(5)\left( {{4 \over 5}} \right) = 8$$<br><br>Now, by cosine formula<br><br>$$\cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}}$$<br><br>$$ \Rightarrow {3 \over 5} = {{{a^2} + 25 - 64} \over {2(5)a}}$$<br><br>$$ \Rightarrow {a^2} - 6a - 3g = 0$$<br><br>$$\therefore$$ $$a = {{6 \pm \sqrt {192} } \over 2} = {{6 \pm 8\sqrt 3 } \over 2}$$<br><br>$$ \Rightarrow 3 + 4\sqrt 3 $$ (Reject $$a = 3 - 4\sqrt 3 $$)<br><br>Now, $$\Delta = {{abc} \over {4R}} = {{(3 + 4\sqrt 3 )(8)(5)} \over {4(5)}} = 2(3 + 4\sqrt 3 )$$<br><br>$$ \Rightarrow \Delta = (6 + 8\sqrt 3 )$$<br><br>$$\Rightarrow$$ Option (3) is correct.
mcq
jee-main-2021-online-20th-july-morning-shift
1ktemdhtu
maths
properties-of-triangle
sine-rule
Let $${{\sin A} \over {\sin B}} = {{\sin (A - C)} \over {\sin (C - B)}}$$, where A, B, C are angles of triangle ABC. If the lengths of the sides opposite these angles are a, b, c respectively, then :
[{"identifier": "A", "content": "b<sup>2</sup> $$-$$ a<sup>2</sup> = a<sup>2</sup> + c<sup>2</sup>"}, {"identifier": "B", "content": "b<sup>2</sup>, c<sup>2</sup>, a<sup>2</sup> are in A.P."}, {"identifier": "C", "content": "c<sup>2</sup>, a<sup>2</sup>, b<sup>2</sup> are in A.P."}, {"identifier": "D", "content": "a<sup>2</sup>, b<sup>2</sup>, c<sup>2</sup> are in A.P."}]
["B"]
null
$${{\sin A} \over {\sin B}} = {{\sin (A - C)} \over {\sin (C - B)}}$$<br><br>As A, B, C are angles of triangle.<br><br>A + B + C = $$\pi$$<br><br>A = $$\pi$$ $$-$$ (B + C) ...... (1)<br><br>Similarly sinB = sin(A + C) ..... (2)<br><br>From (1) and (2)<br><br>$${{\sin (B + C)} \over {\sin (A + C)}} = {{\sin (A - C)} \over {\sin (C - B)}}$$<br><br>$$\sin (C + B).\sin (C - B) = \sin (A - C)\sin (A + C)$$<br><br>$${\sin ^2}C - {\sin ^2}B = {\sin ^2}A - {\sin ^2}C$$<br><br>$$\because$$ $$\{ \sin (x + y)\sin (x - y) = {\sin ^2}x - {\sin ^2}y\} $$<br><br>$$2{\sin ^2}C = {\sin ^2}A + {\sin ^2}B$$<br><br>By sine rule<br><br>$$2{c^2} = {a^2} + {b^2}$$<br><br>$$\Rightarrow$$ b<sup>2</sup>, c<sup>2</sup> and a<sup>2</sup> are in A.P.
mcq
jee-main-2021-online-27th-august-morning-shift
sz85xbGPliuKueJlPT7k9k2k5irbfkf
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
The number of real roots of the equation, <br/>e<sup>4x</sup> + e<sup>3x</sup> – 4e<sup>2x</sup> + e<sup>x</sup> + 1 = 0 is :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "4"}]
["A"]
null
e<sup>4x</sup> + e<sup>3x</sup> – 4e<sup>2x</sup> + e<sup>x</sup> + 1 = 0 <br><br>Dividing by e<sup>2x</sup>, we get <br><br>e<sup>2x</sup> + e<sup>x</sup> - 4 + $${1 \over {{e^x}}}$$ + $${1 \over {{e^{2x}}}}$$ = 0 <br><br>$$ \Rightarrow $$ $$\left( {{e^{2x}} + {1 \over {{e^{2x}}}}} \right) + \left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0 <br><br>$$ \Rightarrow $$ $${\left( {{e^x} + {1 \over {{e^x}}}} \right)^2} - 2$$ + $$\left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0 <br><br>Let $${{e^x} + {1 \over {{e^x}}} = z}$$ <br><br>(z<sup>2</sup> – 2) + (z) – 4 = 0 <br><br>$$ \Rightarrow $$ z<sup>2</sup> + z – 6 = 0 <br><br>$$ \Rightarrow $$ z = –3, 2 <br><br>$$ \therefore $$ $${{e^x} + {1 \over {{e^x}}} = 2}$$ <br><br>$$ \Rightarrow $$ (e<sup>x</sup> – 1)<sup>2</sup> = 0 $$ \Rightarrow $$ x = 0. <br><br>$$ \therefore $$ Number of real roots = 1
mcq
jee-main-2020-online-9th-january-morning-slot
2aAWMYAQBGnzJe5QFG1kluhn0w9
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
The sum of 162<sup>th</sup> power of the roots of the equation x<sup>3</sup> $$-$$ 2x<sup>2</sup> + 2x $$-$$ 1 = 0 is ________.
[]
null
3
x<sup>3</sup> $$-$$ 2x<sup>2</sup> + 2x $$-$$ 1 = 0<br><br>x = 1 satisfying the equation<br><br>$$ \therefore $$ x $$-$$ 1 is factor of <br><br>x<sup>3</sup> $$-$$ 2x<sup>2</sup> + 2x $$-$$ 1<br><br>= (x $$-$$ 1) (x<sup>2</sup> $$-$$ x + 1) = 0<br><br>x = 1, $${{1 + i\sqrt 3 } \over 2},{{1 - i\sqrt 3 } \over 2}$$<br><br>x = 1, $$-$$ $$\omega$$<sup>2</sup>, $$-$$$$\omega$$<br><br>Sum of 162<sup>th</sup> power of roots<br><br>= (1)<sup>162</sup> + ($$-$$$$\omega$$<sup>2</sup>)<sup>162</sup> + ($$-$$$$\omega$$)<sup>162</sup><br><br>= 1 + ($$\omega$$)<sup>324</sup> + ($$\omega$$)<sup>162</sup><br><br>= 1 + 1 + 1 = 3
integer
jee-main-2021-online-26th-february-morning-slot
1krw18wj6
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
The number of real roots of the equation $${e^{6x}} - {e^{4x}} - 2{e^{3x}} - 12{e^{2x}} + {e^x} + 1 = 0$$ is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "1"}]
["A"]
null
$${e^{6x}} - {e^{4x}} - 2{e^{3x}} - 12{e^{2x}} + {e^x} + 1 = 0$$<br><br>$$ \Rightarrow {\left( {{e^{3x}} - 1} \right)^2} - {e^x}\left( {{e^{3x}} - 1} \right) = 12{e^{2x}}$$<br><br>$${\left( {{e^{3x}} - 1} \right)^2}\left( {{e^x} - {e^{ - x}} - {e^{ - 2x}}} \right) = 12$$<br><br>$$ \Rightarrow \underbrace {{e^x} - {e^{ - x}} - {e^{ - 2x}}}_{increa{\mathop{\rm sing}\nolimits} \,(let\,f(x))} = {{12} \over {\underbrace {{e^{3x}} - 1}_{decrea{\mathop{\rm sing}\nolimits} \,(let\,g(x))}}}$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263594/exam_images/bip7efus8gpxzmiurj3w.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Morning Shift Mathematics - Quadratic Equation and Inequalities Question 79 English Explanation"><br>$$\Rightarrow$$ No. of real roots = 2
mcq
jee-main-2021-online-25th-july-morning-shift
1krygctud
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
The number of real roots of the equation e<sup>4x</sup> $$-$$ e<sup>3x</sup> $$-$$ 4e<sup>2x</sup> $$-$$ e<sup>x</sup> + 1 = 0 is equal to ______________.
[]
null
2
t<sup>4</sup> $$-$$ t<sup>3</sup> $$-$$ 4t<sup>2</sup> $$-$$ t + 1 = 0, e<sup>x</sup> = t &gt; 0<br><br>$$ \Rightarrow {t^2} - t - 4 - {1 \over t} + {1 \over {{t^2}}} = 0$$<br><br>$$ \Rightarrow {\alpha ^2} - \alpha - 6 = 0,\alpha = t + {1 \over t} \ge 2$$<br><br>$$ \Rightarrow \alpha = 3, - 2$$ (reject)<br><br>$$ \Rightarrow t + {1 \over t} = 3$$<br><br>$$\Rightarrow$$ The number of real roots = 2
integer
jee-main-2021-online-27th-july-evening-shift
1ks09h31j
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
Let $$\alpha$$, $$\beta$$ be two roots of the <br/><br/>equation x<sup>2</sup> + (20)<sup>1/4</sup>x + (5)<sup>1/2</sup> = 0. Then $$\alpha$$<sup>8</sup> + $$\beta$$<sup>8</sup> is equal to
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "100"}, {"identifier": "C", "content": "50"}, {"identifier": "D", "content": "160"}]
["C"]
null
x<sup>2</sup> + (20)<sup>1/4</sup>x + (5)<sup>1/2</sup> = 0 <br/><br/>$$ \Rightarrow $$ x<sup>2</sup> + $$\sqrt 5$$ = - (20)<sup>1/4</sup>x <br/><br/>Squaring both sides, we get <br/><br/>$${\left( {{x^2} + \sqrt 5 } \right)^2} = \sqrt {20} {x^2}$$<br><br>$$ \Rightarrow $$ x<sup>4</sup> = $$-$$5 $$\Rightarrow$$ x<sup>8</sup> = 25<br><br>$$ \Rightarrow $$ $$\alpha$$<sup>8</sup> + $$\beta$$<sup>8</sup> = 50
mcq
jee-main-2021-online-27th-july-morning-shift
1ktk93082
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
The sum of the roots of the equation <br/><br/>$$x + 1 - 2{\log _2}(3 + {2^x}) + 2{\log _4}(10 - {2^{ - x}}) = 0$$, is :
[{"identifier": "A", "content": "log<sub>2</sub> 14"}, {"identifier": "B", "content": "log<sub>2</sub> 11"}, {"identifier": "C", "content": "log<sub>2</sub> 12"}, {"identifier": "D", "content": "log<sub>2</sub> 13"}]
["B"]
null
$$x + 1 - 2{\log _2}(3 + {2^x}) + 2{\log _4}(10 - {2^{ - x}}) = 0$$<br><br>$${\log _2}({2^{x + 1}}) - {\log _2}{(3 + {2^x})^2} + {\log _2}(10 - {2^{ - x}}) = 0$$<br><br>$$lo{g_2}\left( {{{{2^{x + 1}}.(10 - {2^{ - x}})} \over {{{(3 + {2^x})}^2}}}} \right) = 0$$<br><br>$${{2({{10.2}^{ - x}} - 1)} \over {{{(3 + {2^x})}^2}}} = 1$$<br><br>$$ \Rightarrow {20.2^x} - 2 = 9 + {2^{2x}} + {6.2^x}$$<br><br>$$\therefore$$ $${({2^x})^2} - 14({2^x}) + 11 = 0$$<br><br>Roots are 2<sup>x<sub>1</sub></sup> &amp; 2<sup>x<sub>2</sub></sup><br><br>$$\therefore$$ 2<sup>x<sub>1</sub></sup> . 2<sup>x<sub>2</sub></sup> = 11<br><br>x<sub>1</sub> + x<sub>2</sub> = log<sub>2</sub>(11)
mcq
jee-main-2021-online-31st-august-evening-shift
1ktob9klc
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
Let f(x) be a polynomial of degree 3 such that<br/> $$f(k) = - {2 \over k}$$ for k = 2, 3, 4, 5. Then the value of 52 $$-$$ 10f(10) is equal to :
[]
null
26
$$k\,f(k) + 2 = \lambda (x - 2)(x - 3)(x - 4)(x - 5)$$ .... (1)<br><br>put x = 0<br><br>we get $$\lambda = {1 \over {60}}$$<br><br>Now, put $$\lambda$$ in equation (1)<br><br>$$ \Rightarrow kf(k) + 2 = {1 \over {60}}(x - 2)(x - 3)(x - 4)(x - 5)$$<br><br>Put x = 10<br><br>$$ \Rightarrow 10f(10) + 2 = {1 \over {60}}(8)(7)(6)(5)$$<br><br>$$ \Rightarrow 52 - 10f(10) = 52 - 26 = 26$$
integer
jee-main-2021-online-1st-september-evening-shift
1l54aj2cv
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>Let $$\alpha$$ be a root of the equation 1 + x<sup>2</sup> + x<sup>4</sup> = 0. Then, the value of $$\alpha$$<sup>1011</sup> + $$\alpha$$<sup>2022</sup> $$-$$ $$\alpha$$<sup>3033</sup> is equal to :</p>
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "$$\\alpha$$"}, {"identifier": "C", "content": "1 + $$\\alpha$$"}, {"identifier": "D", "content": "1 + 2$$\\alpha$$"}]
["A"]
null
<p>Given, $$\alpha$$ is a root of the equation 1 + x<sup>2</sup> + x<sup>4</sup> = 0</p> <p>$$\therefore$$ $$\alpha$$ will satisfy the equation.</p> <p>$$\therefore$$ 1 + $$\alpha$$<sup>2</sup> + $$\alpha$$<sup>4</sup> = 0</p> <p>$${\alpha ^2} = {{ - 1 \pm \sqrt {1 - 4} } \over 2}$$</p> <p>$$ = {{ - 1 \pm \sqrt 3 i} \over 2}$$</p> <p>$$\therefore$$ $${\alpha ^2} = \omega \,ar\,{\omega ^2}$$</p> <p>Now,</p> <p>$${\alpha ^{1011}} + {\alpha ^{2022}} - {\alpha ^{3033}}$$</p> <p>$$ = \alpha \,.\,{({\alpha ^2})^{505}} + {({\alpha ^2})^{1011}} - \alpha \,.\,{({\alpha ^2})^{1516}}$$</p> <p>$$ = \alpha {(\omega )^{505}} + {(\omega )^{1011}} - \alpha \,.\,{(\omega )^{1516}}$$</p> <p>$$ = \alpha \,.\,{({\omega ^3})^{168}}\,.\,\omega + {({\omega ^3})^{337}} - \alpha \,.\,{({\omega ^3})^{505}}\,.\,\omega $$</p> <p>$$ = \alpha \,\omega + 1 - \alpha \,\omega $$</p> <p>$$ = 1$$</p>
mcq
jee-main-2022-online-29th-june-evening-shift
1l57oztwx
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>If the sum of all the roots of the equation <br/><br/>$${e^{2x}} - 11{e^x} - 45{e^{ - x}} + {{81} \over 2} = 0$$ is $${\log _e}p$$, then p is equal to ____________.</p>
[]
null
45
Given that <br/><br/>$$e^{2 x}-11 e^x-45 e^{-x}+\frac{81}{2}=0 $$ <br/><br/>$$\Rightarrow 2 e^{3 x}-22 e^{2 x}-90+81 e^x=0 $$ <br/><br/>$$\Rightarrow 2\left(e^x\right)^3-22\left(e^x\right)^2+81 e^x-90=0$$ <br/><br/>Let $ e^x=y$ <br/><br/>$$ \Rightarrow 2 y^3-22 y^2+81 y-90=0 $$ <br/><br/>Product of roots $\left(y_1, y_2, y_3\right)$ <br/><br/>$$ y_1 \cdot y_2 \cdot y_3=\frac{-(-90)}{2}=45 $$ <br/><br/>Let $x_1, x_2$, and $x_3$ be roots of given equation <br/><br/>$$\Rightarrow e^{x_1} \cdot e^{x_2} \cdot e^{x_3} = 45 $$ <br/><br/>$$\Rightarrow e^{x_1+x_2+x_3} =45$$ <br/><br/>$$\Rightarrow x_1+x_2+x_3 =\log _e 45=\log _e p $$ <br/><br/>$$\Rightarrow p = 45$$
integer
jee-main-2022-online-27th-june-morning-shift
1l6duvpmp
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>If $$\alpha, \beta, \gamma, \delta$$ are the roots of the equation $$x^{4}+x^{3}+x^{2}+x+1=0$$, then $$\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021}$$ is equal to :</p>
[{"identifier": "A", "content": "$$-$$4"}, {"identifier": "B", "content": "$$-$$1"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "4"}]
["B"]
null
<p>When, $${x^5} = 1$$</p> <p>then $${x^5} - 1 = 0$$</p> <p>$$ \Rightarrow (x - 1)({x^4} + {x^3} + {x^2} + x + 1) = 0$$</p> <p>Given, $${x^4} + {x^3} + {x^2} + x + 1 = 0$$ has roots $$\alpha$$, $$\beta$$, $$\gamma$$ and 8.</p> <p>$$\therefore$$ Roots of $${x^5} - 1 = 0$$ are 1, $$\alpha$$, $$\beta$$, $$\gamma$$ and 8.</p> <p>We know, Sum of p<sup>th</sup> power of n<sup>th</sup> roots of unity = 0. (If p is not multiple of n) or n (If p is multiple of n)</p> <p>$$\therefore$$ Here, Sum of p<sup>th</sup> power of n<sup>th</sup> roots of unity</p> <p>$$ = {1^p} + {\alpha ^p} + {\beta ^p} + {\gamma ^p} + {8^p} = \left\{ {\matrix{ 0 & ; & {\mathrm{If\,p\,is\,not\,multiple\,of\,5}} \cr 5 & ; & {\mathrm{If\,p\,is\,multiple\,of\,5}} \cr } } \right.$$</p> <p>Here, $$p = 2021$$, which is not multiple of 5.</p> <p>$$\therefore$$ $${1^{2021}} + {\alpha ^{2021}} + {\beta ^{2021}} + {\gamma ^{2021}} + {8^{2021}} = 0$$</p> <p>$$ \Rightarrow {\alpha ^{2021}} + {\beta ^{2021}} + {\gamma ^{2021}} + {8^{2021}} = - 1$$</p> <p></p>
mcq
jee-main-2022-online-25th-july-morning-shift
jaoe38c1lscn5p78
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>If $$\alpha, \beta$$ are the roots of the equation, $$x^2-x-1=0$$ and $$S_n=2023 \alpha^n+2024 \beta^n$$, then :</p>
[{"identifier": "A", "content": "$$2 S_{12}=S_{11}+S_{10}$$\n"}, {"identifier": "B", "content": "$$S_{12}=S_{11}+S_{10}$$\n"}, {"identifier": "C", "content": "$$S_{11}=S_{10}+S_{12}$$\n"}, {"identifier": "D", "content": "$$2 S_{11}=S_{12}+S_{10}$$"}]
["B"]
null
<p>$$\begin{aligned} & x^2-x-1=0 \\ & S_n=2023 \alpha^n+2024 \beta^n \\ & S_{n-1}+S_{n-2}=2023 \alpha^{n-1}+2024 \beta^{n-1}+2023 \alpha^{n-2}+2024 \beta^{n-2} \\ & =2023 \alpha^{n-2}[1+\alpha]+2024 \beta^{n-2}[1+\beta] \\ & =2023 \alpha^{n-2}\left[\alpha^2\right]+2024 \beta^{n-2}\left[\beta^2\right] \\ & =2023 \alpha^n+2024 \beta^n \\ & S_{n-1}+S_{n-2}=S_n \\ & P_{u t} n=12 \\ & S_{11}+S_{10}=S_{12} \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsfl1j5e
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>Let the set $$C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$$. Then $$\sum_\limits{(x, y) \in C}(x+y)$$ is equal to _________.</p>
[]
null
46
<p>First, let's consider the equation $$x^2 - 2^y = 2023$$ where $$x$$ and $$y$$ are natural numbers. Our goal is to find all the pairs $$(x, y)$$ that satisfy this equation and then sum the values of $$x+y$$ for each pair in set $$C$$. <p>Since $$2023$$ is an odd number, and $$x^2$$, the square of any natural number, is even when $$x$$ is even and odd when $$x$$ is odd, we can determine that for the left-hand side of the equation to be odd (thus equal to $$2023$$), $$x$$ must be odd since the right-hand side of the equation ($$2^y$$) is always even as it represents a power of two.</p> <p>Also, $$2023$$ can be factored into prime factors to further analyze the possible solutions:</p> <p>$$2023 = 7 \times 17 \times 17$$</p> <p>Thus, allowing us to rewrite the equation as:</p> <p>$$x^2 - 2^y = 7 \times 17^2$$</p> <p>The next step is to check for potential values of $$x$$ that would fit the equation, keeping in mind that $$x$$ must be odd. We can try to express $$x^2$$ as $$7 \times 17^2$$ plus a power of $$2$$, recognizing that we are looking for the decomposition of the form:</p> <p>$$x^2 = 7 \times 17^2 + 2^y$$</p> <p>By examining the powers of $$2$$ and keeping in mind that they grow very quickly, we can reason that $$y$$ cannot be very large because $$x^2$$ must not exceed $$2023$$ by a large margin.</p> <p>Let's start by trying the lowest values for $$y$$ since that would make $$2^y$$ small and $$x$$ has a better chance of being a natural number:</p> <ol> <li>For $$y=1$$:</li> </ol> <p>$$x^2 = 2023 + 2^1 = 2023 + 2 = 2025$$</p> <p>Surprisingly, we find a perfect square since $$45^2 = 2025$$. Therefore, $$(x, y) = (45, 1)$$ is one solution.</p> <ol> <li>For $$y=2$$ or higher:</li> </ol> <p>$$2^y$$ becomes at least $$4$$ and increases exponentially, so $$x^2$$ must be at least $$2027$$ or higher in such cases. There's no natural number between $$45$$ and $$46$$, and $$46^2$$ far exceeds the target (2116), making it impossible for $$x^2$$ to be less than $$2116$$ for any larger $$y$$.</p> <p>Hence, it appears there is only one possible solution: $$(x, y) = (45, 1)$$.</p> <p>Therefore, the sum $$\sum_\limits{(x, y) \in C}(x+y)$$ for this set will consist of only this one pair:</p> <p>$$\sum_\limits{(x, y) \in C}(x+y) = 45 + 1 = 46$$</p> <p>So the answer is $$46$$. </p></p>
integer
jee-main-2024-online-29th-january-evening-shift
lvc57nwy
maths
quadratic-equation-and-inequalities
algebraic-equations-of-higher-degree
<p>Let $$x_1, x_2, x_3, x_4$$ be the solution of the equation $$4 x^4+8 x^3-17 x^2-12 x+9=0$$ and $$\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$$. Then the value of $$m$$ is _________.</p>
[]
null
221
<p>$$\begin{aligned} &amp; 4 x^4+8 x^3-17 x^2-12 x+9=0 \\ &amp; (x+1)\left(4 x^3+4 x^2-21 x+9\right)=0 \\ &amp; (x+1)(x+3)\left(4 x^2-8 x+3\right)=0 \\ &amp; (x+1)(x+3)\left(4 x^2-6 x-2 x+3\right)=0 \\ &amp; (x+1)(x+3)(2 x(2 x-3)-1(2 x-3))=0 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwd5jqj1/376c6606-3ddf-4373-89b3-5a3bdffa64e6/6d099bd0-15a8-11ef-99cc-63deb36dcc4a/file-1lwd5jqj2.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwd5jqj1/376c6606-3ddf-4373-89b3-5a3bdffa64e6/6d099bd0-15a8-11ef-99cc-63deb36dcc4a/file-1lwd5jqj2.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Morning Shift Mathematics - Quadratic Equation and Inequalities Question 1 English Explanation"></p> <p>$$\begin{aligned} &amp; (4+1)(4+9)\left(4+\frac{1}{4}\right)\left(4+\frac{9}{4}\right)=\frac{125}{16} m \\ &amp; 5 \times 13 \times\left(\frac{17}{4}\right) \times\left(\frac{25}{4}\right)=\frac{125}{16} m \\ &amp; \frac{125}{16} \times[13 \times 17]=\frac{125}{16} m \\ &amp; m=13 \times 17 \\ &amp; m=221 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-morning-shift
i4NFcZin92dKvntr
maths
quadratic-equation-and-inequalities
common-roots
If one root of the equation $${x^2} + px + 12 = 0$$ is 4, while the equation $${x^2} + px + q = 0$$ has equal roots, <br/>then the value of $$'q'$$ is
[{"identifier": "A", "content": "4 "}, {"identifier": "B", "content": "12 "}, {"identifier": "C", "content": "3 "}, {"identifier": "D", "content": "$${{49} \\over 4}$$ "}]
["D"]
null
$$4$$ is a root of $${x^2} + px + 12 = 0$$ <br><br>$$ \Rightarrow 16 + 4p + 12 = 0$$ <br><br>$$ \Rightarrow p = - 7$$ <br><br>Now, the equation $${x^2} + px + q = 0$$ <br><br>has equal roots. <br><br>$$\therefore$$ $${p^2} - 4q = 0$$ $$ \Rightarrow q = {{{p^2}} \over 4} = {{49} \over 4}$$
mcq
aieee-2004
Y1ywUGSBBkETN6q8
maths
quadratic-equation-and-inequalities
common-roots
The quadratic equations $${x^2} - 6x + a = 0$$ and $${x^2} - cx + 6 = 0$$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is
[{"identifier": "A", "content": "1 "}, {"identifier": "B", "content": "4 "}, {"identifier": "C", "content": "3 "}, {"identifier": "D", "content": "2"}]
["D"]
null
Let the roots of equation $${x^2} - 6x + a = 0$$ be $$\alpha $$ <br><br>and $$4$$ $$\beta $$ and that of the equation <br><br>$${x^2} - cx + 6 = 0$$ be $$\alpha $$ and $$3\beta .$$ Then <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\alpha + 4\beta = 6;\,\,\,\,\,\,\,4\alpha \beta = a$$ <br><br>and $$\,\,\,\,\,\,\,\,\,\,\,\,\,\alpha + 3\beta = c;\,\,\,\,\,\,\,3\alpha \beta = 6$$ <br><br>$$ \Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,a = 8$$ <br><br>$$\therefore$$ The equation becomes <br><br>$${x^2} - 6x + 8 = 0$$ <br><br>$$ \Rightarrow \left( {x - 2} \right)\left( {x - 4} \right) = 0$$ <br><br>$$ \Rightarrow $$ roots are $$2$$ and $$4$$ <br><br>$$ \Rightarrow \alpha = 2,\beta = 1$$ <br><br>$$\therefore$$ Common root is $$2.$$
mcq
aieee-2008
hpSOJ5blAQVflwER
maths
quadratic-equation-and-inequalities
common-roots
If the equations $${x^2} + 2x + 3 = 0$$ and $$a{x^2} + bx + c = 0,$$ $$a,\,b,\,c\, \in \,R,$$ have a common root, then $$a\,:b\,:c\,$$ is
[{"identifier": "A", "content": "$$1:2:3$$ "}, {"identifier": "B", "content": "$$3:2:1$$"}, {"identifier": "C", "content": "$$1:3:2$$"}, {"identifier": "D", "content": "$$3:1:2$$"}]
["A"]
null
Given equations are <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,{x^2} + 2x + 3 = 0\,\,\,\,\,...\left( i \right)$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,a{x^2} + bx + c = 0\,\,\,...\left( {ii} \right)$$ <br><br>Roots of equation $$(i)$$ are imaginary roots. <br><br>According to the question $$(ii)$$ will also have both roots same as $$(i).$$ <br><br>Thus $${a \over 1} = {b \over 2} = {c \over 3} = \lambda \left( {say} \right)$$ <br><br>$$ \Rightarrow a = \lambda ,b = 2\lambda ,c = 3\lambda $$ <br><br>Hence, required ratio is $$1:2:3$$
mcq
jee-main-2013-offline
pHnNgwGeazDuA1PHdH1JN
maths
quadratic-equation-and-inequalities
common-roots
If the equations x<sup>2</sup> + bxβˆ’1 = 0 and x<sup>2</sup> + x + b = 0 have a common root different from βˆ’1, then $$\left| b \right|$$ is equal to :
[{"identifier": "A", "content": "$$\\sqrt 2 $$"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$$\\sqrt 3 $$"}]
["D"]
null
Given, <br><br>x<sup>2</sup> + bx $$-$$ 1 = 0 . . . . .(1) <br><br>and x<sup>2</sup> + x + b = 0 . . . . . (2) <br><br>Performing (1) $$-$$ (2) we get, <br><br>bx $$-$$ 1 $$-$$ x $$-$$ b = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; x(b $$-$$ 1) = b + 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;x = $${{b + 1} \over {b - 1}}$$ <br><br>putting value of x in equation (2), <br><br>$${\left( {{{b + 1} \over {b - 1}}} \right)^2} + \left( {{{b + 1} \over {b - 1}}} \right) + b = 0$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(b + 1)<sup>2</sup> + (b + 1) (b $$-$$ 1) + b (b $$-$$ 1)<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; b<sup>2</sup> + 2b + 1 + b<sup>2</sup> $$-$$ 1 + b (b<sup>2</sup> $$-$$ 2b + 1) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; 2b<sup>3</sup> + 2b + b<sup>3</sup> $$-$$ 2b<sup>2</sup> + b = 0 <br><br>$$ \Rightarrow $$ &nbsp;&nbsp;&nbsp; b<sup>3</sup> + 3b = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; b(b<sup>2</sup> + 3) = 0 <br><br>b<sup>2</sup> = $$-$$ 3, b = 0 <br><br>$$ \therefore $$ &nbsp;&nbsp;&nbsp;b = $$ \pm \sqrt 3 i$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; $$\left| b \right|$$ = $$\sqrt 3 $$
mcq
jee-main-2016-online-9th-april-morning-slot
2ZbFQGhj0vnf1RUxo53rsa0w2w9jxaoprqa
maths
quadratic-equation-and-inequalities
common-roots
If $$\alpha $$, $$\beta $$ and $$\gamma $$ are three consecutive terms of a non-constant G.P. such that the equations $$\alpha $$x <sup>2</sup> + 2$$\beta $$x + $$\gamma $$ = 0 and x<sup>2</sup> + x – 1 = 0 have a common root, then $$\alpha $$($$\beta $$ + $$\gamma $$) is equal to :
[{"identifier": "A", "content": "$$\\alpha $$$$\\gamma $$"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "$$\\beta $$$$\\gamma $$"}, {"identifier": "D", "content": "$$\\alpha $$$$\\beta $$"}]
["C"]
null
Let the common ratio of G.P is <b>r</b><br><br> Then the equation of $$\alpha {x^2} + 2\beta x + \gamma = 0$$<br><br> $$ \Rightarrow $$ $$\alpha {x^2} + 2\alpha rx + \alpha {r^2} = 0$$<br><br> $$ \Rightarrow $$ x<sup>2</sup> + 2rx + r<sup>2</sup> = 0 ........<b>(i)</b><br> Equation (i) and x<sup>2</sup> + x - 1 = 0 ......... <b>(ii)</b> has a common root.<br><br> Now (i) - (ii) $$ \Rightarrow $$ (2r-1)x + (r<sup>2</sup>+1) = 0<br><br> $$ \Rightarrow $$ x = $${{ - \left( {{r^2} + 1} \right)} \over {2r - 1}}$$ ....... <b>(iii)</b><br><br> Now putting (iii) in equation (ii) <br><br> $$ \Rightarrow $$ (r<sup>2</sup>+1)<sup>2</sup> - (r<sup>2</sup>+1) (2r - 1) - (2r - 1)<sup>2</sup> = 0<br><br> $$ \Rightarrow $$ r<sup>4</sup> - 2r<sup>3</sup> - r<sup>2</sup> + 2r + 1 = 0 ..........<b> (iv)</b><br><br> dividing equation (iv) by r<sup>2</sup><br><br> $$ \Rightarrow $$ r<sup>2</sup> - 2r - 1 + $${2 \over r} + {1 \over {{r^2}}} = 0$$<br><br> $$ \Rightarrow $$ $${\left( {r - {1 \over r}} \right)^2} - 2\left( {r - {1 \over r}} \right) + 1 = 0$$<br><br> $$ \Rightarrow $$ $${\left( {r - {1 \over r} - r} \right)^2} = 0$$<br><br> $$ \Rightarrow $$ $${{{r^2} - 1} \over r} = 1$$ $$ \Rightarrow $$ r<sup>2</sup> = 1 + r<br><br> Now $$\alpha $$($$\beta $$ + $$\gamma $$) $$ \Rightarrow $$ $$\alpha $$($$\alpha $$r + $$\alpha $$r<sup>2</sup>)<br><br> $$ \Rightarrow $$ $$\alpha ^2 r (1 + r)$$ &nbsp;&nbsp;[$$ \because $$ r<sup>2</sup> = 1 + r]<br><br> $$ \Rightarrow $$ $$\alpha ^2 r . r^2$$ $$ \Rightarrow $$ $$( \alpha r )\,( \alpha r^2 )$$ $$ \Rightarrow $$ $$\beta $$$$\gamma $$
mcq
jee-main-2019-online-12th-april-evening-slot
zmYqIAqG6Q4t0K97bk7k9k2k5k7hec6
maths
quadratic-equation-and-inequalities
common-roots
Let a, b $$ \in $$ R, a $$ \ne $$ 0 be such that the equation, ax<sup>2</sup> – 2bx + 5 = 0 has a repeated root $$\alpha $$, which is also a root of the equation, x<sup>2</sup> – 2bx – 10 = 0. If $$\beta $$ is the other root of this equation, then $$\alpha $$<sup>2</sup> + $$\beta $$<sup>2</sup> is equal to :
[{"identifier": "A", "content": "28"}, {"identifier": "B", "content": "24"}, {"identifier": "C", "content": "26"}, {"identifier": "D", "content": "25"}]
["D"]
null
Roots of equation ax<sup>2</sup> – 2bx + 5 = 0 are $$\alpha $$, $$\alpha $$. <br><br>$$ \therefore $$ $$\alpha $$ + $$\alpha $$ = $${{2b} \over a}$$ <br><br>$$ \Rightarrow $$ 2$$\alpha $$ = $${{2b} \over a}$$ <br><br>$$ \Rightarrow $$ $$\alpha $$ = $${{b} \over a}$$ ....(1) <br><br>and $$\alpha $$<sup>2</sup> = $${5 \over a}$$ ....(2) <br><br>From (1) and (2), we get <br><br>$${{{b^2}} \over {{a^2}}} = {5 \over a}$$ <br><br>$$ \Rightarrow $$ b<sup>2</sup> = 5a <br><br>$$\alpha $$, $$\beta $$ are the roots of equation x<sup>2</sup> – 2bx – 10 = 0 <br><br>$$ \therefore $$ $$\alpha $$ + $$\beta $$ = 2b <br><br>and $$\alpha $$$$\beta $$ = -10 <br><br>As $$\alpha $$ is a root of the equation x<sup>2</sup> – 2bx – 10 = 0. <br><br>$$ \therefore $$ $$\alpha $$<sup>2</sup> - 2b$$\alpha $$ - 10 = 0 <br><br>$$ \Rightarrow $$ $${{{b^2}} \over {{a^2}}} - {{2{b^2}} \over a} - 10 = 0$$ <br><br>$$ \Rightarrow $$ $${{5a} \over {{a^2}}} - {{10a} \over a} - 10 = 0$$ <br><br>$$ \Rightarrow $$ $${5 \over a} - 10 - 10 = 0$$ <br><br>$$ \Rightarrow $$ $$a$$ = $${1 \over 4}$$ <br><br>$$ \Rightarrow $$ $${\alpha ^2}$$ = 20 <br><br>$$\alpha $$$$\beta $$ = -10 <br><br>$$ \Rightarrow $$$${\beta ^2}$$ = 5 <br><br>$$ \therefore $$ $${\alpha ^2} + {\beta ^2}$$ = 20 + 5 = 25
mcq
jee-main-2020-online-9th-january-evening-slot
1ktd4mp2o
maths
quadratic-equation-and-inequalities
common-roots
Let $$\lambda$$ $$\ne$$ 0 be in R. If $$\alpha$$ and $$\beta$$ are the roots of the equation x<sup>2</sup> $$-$$ x + 2$$\lambda$$ = 0, and $$\alpha$$ and $$\gamma$$ are the roots of equation 3x<sup>2</sup> $$-$$ 10x + 27$$\lambda$$ = 0, then $${{\beta \gamma } \over \lambda }$$ is equal to ____________.
[]
null
18
3$$\alpha$$<sup>2</sup> $$-$$ 10$$\alpha$$ + 27$$\lambda$$ = 0 ..... (1)<br><br>$$\alpha$$<sup>2</sup> $$-$$ $$\alpha$$ + 2$$\lambda$$ = 0 ...... (2)<br><br>(1) $$-$$ 3(2) gives<br><br>$$-$$7$$\alpha$$ + 21$$\lambda$$ = 0 $$\Rightarrow$$ $$\alpha$$ = 3$$\lambda$$<br><br>Put $$\alpha$$ = 3$$\lambda$$ in equation (1) we get<br><br>9$$\lambda$$<sup>2</sup> $$-$$ 3$$\lambda$$ + 2$$\lambda$$ $$-$$ 0<br><br>9$$\lambda$$<sup>2</sup> = $$\lambda$$ $$\Rightarrow$$ $$\lambda$$ = $${1 \over 9}$$ as $$\lambda$$ $$\ne$$ 0<br><br>Now, $$\alpha$$ = 3$$\lambda$$ $$\Rightarrow$$ $$\lambda$$ = $${1 \over 3}$$ <br><br>$$\alpha$$ + $$\beta$$ = 1 $$\Rightarrow$$ $$\beta$$ = 2/3<br><br>$$\alpha$$ + $$\gamma$$ = $${10 \over 3}$$ $$\Rightarrow$$ $$\gamma$$ = 3<br><br>$${{\beta \gamma } \over \lambda } = {{{2 \over 3} \times 3} \over {{1 \over 9}}} = 18$$
integer
jee-main-2021-online-26th-august-evening-shift
1l59jpipu
maths
quadratic-equation-and-inequalities
common-roots
<p>Let a, b $$\in$$ R be such that the equation $$a{x^2} - 2bx + 15 = 0$$ has a repeated root $$\alpha$$. If $$\alpha$$ and $$\beta$$ are the roots of the equation $${x^2} - 2bx + 21 = 0$$, then $${\alpha ^2} + {\beta ^2}$$ is equal to :</p>
[{"identifier": "A", "content": "37"}, {"identifier": "B", "content": "58"}, {"identifier": "C", "content": "68"}, {"identifier": "D", "content": "92"}]
["B"]
null
<p>$$a{x^2} - 2bx + 15 = 0$$ has repeated root so $${b^2} = 15a$$ and $$\alpha = {{15} \over b}$$</p> <p>$$\because$$ $$\alpha$$ is a root of $${x^2} - 2bx + 21 = 0$$</p> <p>So $${{225} \over {{b^2}}} = 9 \Rightarrow {b^2} = 25$$</p> <p>Now $${\alpha ^2} + {\beta ^2} = {(\alpha + \beta )^2} - 2\alpha \beta = 4{b^2} - 42 = 100 - 42 = 58$$</p>
mcq
jee-main-2022-online-25th-june-evening-shift
1l6gj9sdd
maths
quadratic-equation-and-inequalities
common-roots
<p>If for some $$\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathbf{R}$$, not all have same sign, one of the roots of the equation $$\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) x^{2}-2 \mathrm{q}(\mathrm{p}+\mathrm{r}) x+\mathrm{q}^{2}+\mathrm{r}^{2}=0$$ is also a root of the equation $$x^{2}+2 x-8=0$$, then $$\frac{\mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{p}^{2}}$$ is equal to ____________,</p>
[]
null
272
<p>Let roots of</p> <p> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7nbuiql/3cbb58ae-c17d-4fc8-9ae2-606226e918d5/7db780d0-2c4f-11ed-9dc0-a1792fcc650d/file-1l7nbuiqm.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7nbuiql/3cbb58ae-c17d-4fc8-9ae2-606226e918d5/7db780d0-2c4f-11ed-9dc0-a1792fcc650d/file-1l7nbuiqm.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 26th July Morning Shift Mathematics - Quadratic Equation and Inequalities Question 49 English Explanation"> </p> <p>$$\therefore$$ $$\alpha$$ + $$\beta$$ &gt; 0 and $$\alpha$$$$\beta$$ &gt; 0</p> <p>Also, it has a common root with $${x^2} + 2x - 8 = 0$$</p> <p>$$\therefore$$ The common root between above two equations is 4.</p> <p>$$ \Rightarrow 16({p^2} + {q^2}) - 8q(p + r) + {q^2} + {r^2} = 0$$</p> <p>$$ \Rightarrow (16{p^2} - 8pq + {q^2}) + (16{q^2} - 8qr + {r^2}) = 0$$</p> <p>$$ \Rightarrow {(4p - q)^2} + {(4q - r)^2} = 0$$</p> <p>$$ \Rightarrow q = 4p$$ and $$r = 16p$$</p> <p>$$\therefore$$ $${{{q^2} + {r^2}} \over {{p^2}}} = {{16{p^2} + 256{p^2}} \over {{p^2}}} = 272$$</p>
integer
jee-main-2022-online-26th-july-morning-shift
ldr04kaw
maths
quadratic-equation-and-inequalities
common-roots
If the value of real number $a&gt;0$ for which $x^2-5 a x+1=0$ and $x^2-a x-5=0$ <br/><br/>have a common real root is $\frac{3}{\sqrt{2 \beta}}$ then $\beta$ is equal to ___________.
[]
null
13
<p>$${x^2} - 5\alpha x + 1 = 0$$ ..... (1)</p> <p>$${x^2} - \alpha x - 5 = 0$$ ...... (2)</p> <p>have a common root.</p> <p>Subtracting (1) with (2) we'll get $$x = {6 \over {4\alpha }}$$</p> <p>Substituting in (1)</p> <p>$${{36} \over {16{\alpha ^2}}} - {{30} \over 4} + 1 = 0$$</p> <p>$$ \Rightarrow {\alpha ^2} = {9 \over {26}}$$</p> <p>$$\alpha = {3 \over {\sqrt {2 \times 13} }}$$</p> <p>$$\therefore$$ $$\beta = 13$$</p>
integer
jee-main-2023-online-30th-january-evening-shift
Jkj398nu3J6NteP2
maths
quadratic-equation-and-inequalities
graph-and-sign-of-quadratic-expression
If both the roots of the quadratic equation $${x^2} - 2kx + {k^2} + k - 5 = 0$$ are less than 5, then $$k$$ lies in the interval
[{"identifier": "A", "content": "$$\\left( {5,6} \\right]$$ "}, {"identifier": "B", "content": "$$\\left( {6,\\,\\infty } \\right)$$ "}, {"identifier": "C", "content": "$$\\left( { - \\infty ,\\,4} \\right)$$ "}, {"identifier": "D", "content": "$$\\left[ {4,\\,5} \\right]$$ "}]
["C"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267782/exam_images/zwhawncrjdcscooeyd20.webp" loading="lazy" alt="AIEEE 2005 Mathematics - Quadratic Equation and Inequalities Question 154 English Explanation"> <br><br>both roots are less than $$5,$$ <br><br>then $$(i)$$ Discriminant $$ \ge 0$$ <br><br>$$\left( {ii} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,p\left( 5 \right) &gt; 0$$ <br><br>$$\left( {iii} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{Sum\,\,of\,\,roots} \over 2} &lt; 5$$ <br><br>Hence $$\left( i \right)\,\,\,\,\,\,4{k^2} - 4\left( {{k^2} + k - 5} \right) \ge 0$$ <br><br>$$4{k^2} - 4{k^2} - 4k + 20 \ge 0$$ <br><br>$$4k \le 20 \Rightarrow k \le 5$$ <br><br>$$\left( {ii} \right)\,\,\,\,\,f\left( 5 \right) &gt; 0;25 - 10k + {k^2} + k - 5 &gt; 0$$ <br><br>or $${k^2} - 9k + 20 &gt; 0$$ <br><br>or $$k\left( {k - 4} \right) - 5\left( {k - 4} \right) &gt; 0$$ <br><br>or $$\left( {k - 5} \right)\left( {k - 4} \right) &gt; 0$$ <br><br>$$ \Rightarrow k \in \left( { - \infty ,4} \right) \cup \left( { - \infty ,5} \right)$$ <br><br>$$\left( {iii} \right)\,\,\,\,\,\,{{Sum\,\,of\,\,roots} \over 2}$$ <br><br>$$ = - {b \over {2a}} = {{2k} \over 2} &lt; 5$$ <br><br>The intersection of $$(i)$$, $$(ii)$$ &amp; $$(iii)$$ gives <br><br>$$k \in \left( { - \infty ,4} \right).$$
mcq
aieee-2005
krncAZPJvsT4aI3N
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
If $$a \in R$$ and the equation $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$ (where [$$x$$] denotes the greater integer $$ \le x$$) has no integral solution, then all possible values of a lie in the interval :
[{"identifier": "A", "content": "$$\\left( { - 2, - 1} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( { - \\infty , - 2} \\right) \\cup \\left( {2,\\infty } \\right)$$ "}, {"identifier": "C", "content": "$$\\left( { - 1,0} \\right) \\cup \\left( {0,1} \\right)$$ "}, {"identifier": "D", "content": "$$\\left( {1,2} \\right)$$ "}]
["C"]
null
Given, $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$ <br>As we know, $$\left[ x \right] + \left\{ x \right\} = x$$ <br>where $$\left[ x \right]$$ is integral part and $$\left\{ x \right\}$$ is fractional part. <br>$$\therefore$$$$\left\{ x \right\} = x - \left[ x \right]$$ <br>Now put $$\left\{ x \right\}$$ inplace of $$x - \left[ x \right]$$ in the equation. <br>The new equation is $$ - 3{\left\{ x \right\}^2} + 2\left\{ x \right\} + {a^2} = 0$$ <p>[<b>Note :</b> Question says this equation has no integral solution, it means $$\left\{ x \right\} \ne $$ 0. So, $$x$$ is not a integer.]</p> $$\therefore$$ $$\left\{ x \right\}$$ = $${{ - 2 \pm \sqrt {4 - 4 \times \left( { - 3} \right){a^2}} } \over { - 6}}$$ <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= $${{ - 2 \pm \sqrt {4 + 12{a^2}} } \over { - 6}}$$ <br>As $$\left\{ x \right\}$$ is fractional part so it is lies between 0 to 1($$0 \le \left\{ x \right\} &lt; 1$$). <br><br>By considering positive sign, we get <br><br>$$0 \le {{ - 2 + \sqrt {4 + 12{a^2}} } \over { - 6}} &lt; 1$$ <br><br>$$ \Rightarrow $$$$0 \ge - 2 + \sqrt {4 + 12{a^2}} &gt; - 6$$ <br><br>$$ \Rightarrow $$$$2 \ge + \sqrt {4 + 12{a^2}} &gt; - 4$$ <br><br>$$\because$$$$ + \sqrt {4 + 12{a^2}} $$ is always positive which is greater than any negative no. So can ignore the inequality $$ + \sqrt {4 + 12{a^2}} &gt; - 4$$ <br><br>Consider this inequality, <br>$$2 \ge + \sqrt {4 + 12{a^2}} $$ <br>$$ \Rightarrow $$ $$4 \ge 4 + 12{a^2}$$ <br>$$ \Rightarrow $$ $$12{a^2} \le 0$$ <br>$$ \Rightarrow $$ $${a^2} \le 0$$ <br>$$ \Rightarrow $$ $${a^2} = 0$$ <br>$$ \Rightarrow $$ $${a} = 0$$ <br><br>If $$a$$ = 0 then $$ - 3{\left\{ x \right\}^2} + 2\left\{ x \right\} = 0$$ so $$\left\{ x \right\}$$ becomes 0 but question says $$\left\{ x \right\}$$ $$ \ne $$ 0. <br>So $$a$$ can't be 0. <br><br>Now by considering negative sign, we get <br><br><br>$$0 \le {{ - 2 - \sqrt {4 + 12{a^2}} } \over { - 6}} &lt; 1$$ <br><br>$$ \Rightarrow $$$$0 \ge - 2 - \sqrt {4 + 12{a^2}} &gt; - 6$$ <br><br>$$ \Rightarrow $$$$2 \ge - \sqrt {4 + 12{a^2}} &gt; - 4$$ <br><br>As 2 is always greater than $${ - \sqrt {4 + 12{a^2}} }$$. Ignore this inequality. <br><br>Now consider this inequality, <br><br>$$ - \sqrt {4 + 12{a^2}} &gt; - 4$$ <br><br>$$ \Rightarrow $$ $$\sqrt {4 + 12{a^2}} &lt; 4$$ <br><br>$$ \Rightarrow $$ $$4 + 12{a^2} &lt; 16$$ <br><br>$$ \Rightarrow $$ $$12{a^2} &lt; 12$$ <br><br>$$ \Rightarrow $$ $${a^2} &lt; 1$$ <br><br>$$ \Rightarrow $$ $$\left( {{a^2} - 1} \right) &lt; 0$$ <br><br>$$ \Rightarrow $$ $$\left( {a + 1} \right)\left( {a - 1} \right) &lt; 0$$ <br><br>$$ \Rightarrow $$ $$ - 1 &lt; a &lt; 1$$ <br><br>But earlier we found that $$a$$ $$ \ne $$ 0. <br><br>So, the range of $$a$$ is = $$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$
mcq
jee-main-2014-offline
t5TJfuWEpRBw5JFGnLjgy2xukf7fkxwm
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
Let [t] denote the greatest integer $$ \le $$ t. Then the equation in x, <br/>[x]<sup>2</sup> + 2[x+2] - 7 = 0 has :
[{"identifier": "A", "content": "no integral solution."}, {"identifier": "B", "content": "exactly two solutions."}, {"identifier": "C", "content": "exactly four integral solutions."}, {"identifier": "D", "content": "infinitely many solutions.\n"}]
["D"]
null
$${[x]^2} + 2[x + 2] - 7 = 0$$ <br><br>$$ \Rightarrow $$ $${[x]^2} + 2[x] + 4 - 7 = 0$$ <br><br>Using the property [x + n] = [x] + n ; n $$ \in $$ I <br><br>$$ \Rightarrow $$ $${[x]^2} + 2[x] - 3 = 0$$<br><br>let [x] = y<br><br>$${y^2} + 3y - y - 3 = 0$$<br><br>$$ \Rightarrow $$ $$(y - 1)(y + 3) = 0$$<br><br>$$[x] = 1\,or\,[x] = - 3$$<br><br>$$ \therefore $$ $$x \in \left[ {1,2} \right)\,\&amp; \, \in \left[ { - 3, - 2} \right)$$
mcq
jee-main-2020-online-4th-september-morning-slot
1kru42urc
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
Let [x] denote the greatest integer less than or equal to x. Then, the values of x$$\in$$R satisfying the equation $${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$$ lie in the interval :
[{"identifier": "A", "content": "$$\\left[ {0,{1 \\over e}} \\right)$$"}, {"identifier": "B", "content": "[log<sub>e</sub>2, log<sub>e</sub>3)"}, {"identifier": "C", "content": "[1, e)"}, {"identifier": "D", "content": "[0, log<sub>e</sub>2)"}]
["D"]
null
$${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$$<br><br>$$ \Rightarrow {[{e^x}]^2} + [{e^x}] + 1 - 3 = 0$$<br><br>Let $$[{e^x}] = t$$<br><br>$$ \Rightarrow {t^2} + t - 2 = 0$$<br><br>$$ \Rightarrow t = - 2,1$$<br><br>$$[{e^x}] = - 2$$ (Not possible)<br><br>or $$[{e^x}] = 1$$ $$\therefore$$ $$1 \le {e^x} &lt; 2$$<br><br>$$ \Rightarrow \ln (1) \le x &lt; \ln (2)$$<br><br>$$ \Rightarrow 0 \le x &lt; \ln (2)$$<br><br>$$ \Rightarrow x \in [0,\ln 2)$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krzmnrse
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
If [x] be the greatest integer less than or equal to x, <br/><br/>then $$\sum\limits_{n = 8}^{100} {\left[ {{{{{( - 1)}^n}n} \over 2}} \right]} $$ is equal to :
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "$$-$$2"}, {"identifier": "D", "content": "2"}]
["B"]
null
$$\sum\limits_{n = 8}^{100} {\left[ {{{{{( - 1)}^n}n} \over 2}} \right]} $$<br><br>= [4] + [-4.5] + [5] + [-5.5] + [6] +..... + [-49.5] + [50] <br><br>= 4 - 5 + 5 - 6 + 6 ......-50 + 50 <br><br> = 4
mcq
jee-main-2021-online-25th-july-evening-shift
1ldybbre4
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
<p>The equation $${x^2} - 4x + [x] + 3 = x[x]$$, where $$[x]$$ denotes the greatest integer function, has :</p>
[{"identifier": "A", "content": "exactly two solutions in ($$-\\infty,\\infty$$)"}, {"identifier": "B", "content": "no solution"}, {"identifier": "C", "content": "a unique solution in ($$-\\infty,\\infty$$)"}, {"identifier": "D", "content": "a unique solution in ($$-\\infty,1$$)"}]
["C"]
null
<p>$${x^2} - 4x + [x] + 3 = x[x]$$</p> <p>$$ \Rightarrow {x^2} - 4x + [x] + 3 - x[x] = 0$$</p> <p>$$ \Rightarrow (x - 1)(x - 3) - [x](x - 1) = 0$$</p> <p>$$ \Rightarrow (x - 1)(x - [x] - 3) = 0$$</p> <p>$$\therefore$$ $$x = 1$$</p> <p>or</p> <p>$$x - [x] - 3 = 0$$</p> <p>$$ \Rightarrow \{ x\} - 3 = 0$$ [As $$\{ x\} = x - [x]$$]</p> <p>$$ \Rightarrow \{ x\} = 3$$</p> <p>But we know, $$0 < \{ x\} < 1$$</p> <p>$$\therefore$$ $$\{ x\} \ne 3$$</p> <p>$$\therefore$$ $$x$$ has only one solution in ($$-\infty,\infty$$) which is $$x = 1$$.</p>
mcq
jee-main-2023-online-24th-january-morning-shift
1lgoy6y4d
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
<p>Let $$[\alpha]$$ denote the greatest integer $$\leq \alpha$$. Then $$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots+[\sqrt{120}]$$ is equal to __________</p>
[]
null
825
$$ \begin{aligned} & {[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots .+[120]} \\\\ & E=1+1+1+2+2+2+2+2+3+3+3+3+3 \\\\ & +3+3+4+4+\ldots \\\\ & E=3 \times 1+5 \times 2+7 \times 3+\ldots .+19 \times 9+10 \times 21 \\\\ & =\sum_{r=1}^{10}(2 r+1) r=2\left[\frac{10 \times 11 \times 21}{6}\right]+\frac{10 \times 11}{2} \\\\ & =770+55 \\\\ & =825 \\\\ & \end{aligned} $$
integer
jee-main-2023-online-13th-april-evening-shift
1lh1zzike
maths
quadratic-equation-and-inequalities
greatest-integer-and-fractional-part-functions
<p>Let $$A = \{ x \in R:[x + 3] + [x + 4] \le 3\} ,$$ <br/><br/>$$B = \left\{ {x \in R:{3^x}{{\left( {\sum\limits_{r = 1}^\infty {{3 \over {{{10}^r}}}} } \right)}^{x - 3}} &lt; {3^{ - 3x}}} \right\},$$ where [t] denotes greatest integer function. Then,</p>
[{"identifier": "A", "content": "$$B \\subset C,A \\ne B$$"}, {"identifier": "B", "content": "$$A \\subset B,A \\ne B$$"}, {"identifier": "C", "content": "$$A = B$$"}, {"identifier": "D", "content": "$$A \\cap B = \\phi $$"}]
["C"]
null
We have, <br/><br/>$$ \begin{aligned} & A=\{x \in R:[x+3]+[x+4] \leq 3\} \\\\ & \text { Here, }[x+3]+[x+4] \leq 3 \\\\ & \Rightarrow [x]+3+[x]+4 \leq 3 \\\\ & (\because[x+n]=[x]+n, n \in I) \\\\ & \Rightarrow 2[x]+4 \leq 0 \Rightarrow[x] \leq-2 \\\\ & \Rightarrow x \in(-\infty,-1) \\\\ & A \equiv(-\infty,-1) ...........(i) \end{aligned} $$ <br/><br/>Also, <br/><br/>$$ B=\left\{x \in R: 3^x\left(\sum\limits_{r=1}^{\infty} \frac{3}{10^r}\right)^{x-3}<3^{-3 x}\right\} $$ <br/><br/>Here, <br/><br/>$$ \begin{aligned} & 3^x\left(\frac{3}{10}+\frac{3}{10^2}+\frac{3}{10^3}+\ldots\right)^{x-3}<3^{-3 x} \\\\ \Rightarrow & 3^x\left(\frac{\frac{3}{10}}{1-\frac{1}{10}}\right)^{x-3}<3^{-3 x} \\\\ \Rightarrow & 3^x\left(\frac{1}{3}\right)^{x-3}<3^{-3 x} \end{aligned} $$ <br/><br/>$$ \begin{array}{ll} \Rightarrow & 3^{x-x+3}<3^{-3 x} \Rightarrow 3^3<3^{-3 x} \\\\ \Rightarrow & -3 x>3 \Rightarrow x<-1 \\\\ \Rightarrow & x \in(-\infty,-1) \\\\ \Rightarrow & B \equiv(-\infty,-1) ...........(ii) \end{array} $$ <br/><br/>From equations (i) and (ii), we get <br/><br/>$$ A=B $$
mcq
jee-main-2023-online-6th-april-morning-shift
GvxG3TohU0ETSsR9
maths
quadratic-equation-and-inequalities
inequalities
If $$a,\,b,\,c$$ are distinct $$ + ve$$ real numbers and $${a^2} + {b^2} + {c^2} = 1$$ then $$ab + bc + ca$$ is
[{"identifier": "A", "content": "less than 1 "}, {"identifier": "B", "content": "equal to 1 "}, {"identifier": "C", "content": "greater than 1 "}, {"identifier": "D", "content": "any real no."}]
["A"]
null
As $$\,\,\,\,\,{\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} &gt; 0$$ <br><br>$$ \Rightarrow 2\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) &gt; 0$$ <br><br>$$ \Rightarrow 2 &gt; 2\left( {ab + bc + ca} \right)$$ <br><br>$$ \Rightarrow ab + bc + ca &lt; 1$$
mcq
aieee-2002
1hqxM4JgTHL47dSP
maths
quadratic-equation-and-inequalities
inequalities
<b>STATEMENT - 1 :</b> For every natural number $$n \ge 2,$$ $$${1 \over {\sqrt 1 }} + {1 \over {\sqrt 2 }} + ........ + {1 \over {\sqrt n }} &gt; \sqrt n .$$$ <p><b>STATEMENT - 2 :</b> For every natural number $$n \ge 2,$$, $$$\sqrt {n\left( {n + 1} \right)} &lt; n + 1.$$$</p>
[{"identifier": "A", "content": "Statement - 1 is false, Statement - 2 is true "}, {"identifier": "B", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for statement - 1"}, {"identifier": "C", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1 "}, {"identifier": "D", "content": "Statement - 1 is true, Statement - 2 is false "}]
["B"]
null
Statements $$2$$ is $$\sqrt {n\left( {n + 1} \right)} &lt; n + 1,n \ge 2$$ <br><br>$$ \Rightarrow \sqrt n &lt; \sqrt {n + 1} ,n \ge 2$$ which is true <br><br>$$ \Rightarrow \sqrt 2 &lt; \sqrt 3 &lt; \sqrt 4 &lt; \sqrt 5 &lt; - - - - - - \sqrt n $$ <br><br>Now $$\sqrt 2 &lt; \sqrt n \Rightarrow {1 \over {\sqrt 2 }} &gt; {1 \over {\sqrt n }}$$ <br><br>$$\sqrt 3 &lt; \sqrt n \Rightarrow {1 \over {\sqrt 3 }} &gt; {1 \over {\sqrt n }};$$ <br><br>$$\sqrt n \le \sqrt n \Rightarrow {1 \over {\sqrt n }} \ge {1 \over {\sqrt n }}$$ <br><br>Also $${1 \over {\sqrt 1 }} &gt; {1 \over {\sqrt n }}$$ <br><br>$$\therefore$$ Adding all, we get <br><br>$${1 \over {\sqrt 1 }} + {1 \over {\sqrt 2 }} + {1 \over {\sqrt 3 }} + ....... + {1 \over n} &gt; {n \over {\sqrt n }} = \sqrt n $$ <br><br>Hence both the statements are correct and statement $$2$$ is a correct explanation of statement $$-1.$$
mcq
aieee-2008
4ho1wNjg6e6O80jXth3rsa0w2w9jwxdf2pn
maths
quadratic-equation-and-inequalities
inequalities
All the pairs (x, y) that satisfy the inequality <br/>$${2^{\sqrt {{{\sin }^2}x - 2\sin x + 5} }}.{1 \over {{4^{{{\sin }^2}y}}}} \le 1$$ <br/>also satisfy the equation
[{"identifier": "A", "content": "sin x = |sin y|"}, {"identifier": "B", "content": "sin x = 2sin y"}, {"identifier": "C", "content": "2 sin x = sin y"}, {"identifier": "D", "content": "2 |sin x | = 3 sin y"}]
["A"]
null
$${2^{\sqrt {{{\sin }^2}x - 2\sin x + 5} }} \le {2^{2{{\sin }^2}y}}$$<br><br> $$ \Rightarrow $$ $$\sqrt {{{\sin }^2}x - 2\sin x + 5} \le 2{\sin ^2}y$$<br><br> $$ \Rightarrow \sqrt {{{\left( {\sin x - 1} \right)}^2} + 4} \le 2{\sin ^2}y$$<br><br> it is true when sinx = 1, |siny| = 1<br><br> so sinx = |siny|
mcq
jee-main-2019-online-10th-april-morning-slot
VdoWy5AixI4ojhT7Ph1klrgdqnh
maths
quadratic-equation-and-inequalities
inequalities
Let p and q be two positive numbers such that p + q = 2 and p<sup>4</sup>+q<sup>4</sup> = 272. Then p and q are roots of the equation :
[{"identifier": "A", "content": "x<sup>2</sup> \u2013 2x + 8 = 0"}, {"identifier": "B", "content": "x<sup>2</sup> - 2x + 136=0"}, {"identifier": "C", "content": "x<sup>2</sup> \u2013 2x + 16 = 0"}, {"identifier": "D", "content": "x<sup>2</sup> \u2013 2x + 2 = 0"}]
["C"]
null
$${p^2} + {q^2} = {(p + q)^2} - 2pq$$<br><br>$$ = 4 - 2pq$$<br><br>Now, $${\left( {{p^2} + {q^2}} \right)^2} = {p^4} + {q^4} + 2{p^2}{q^2}$$<br><br>$$ \Rightarrow {\left( {4 - 2pq} \right)^2} = 272 + 2{p^2}{q^2}$$<br><br>$$ \Rightarrow 16 + 4{p^2}{q^2} - 16pq = 272 + 2{p^2}{q^2}$$<br><br>$$ \Rightarrow 2{p^2}{q^2} - 16pq - 256 = 0$$<br><br>$$ \Rightarrow {p^2}{q^2} - 8pq - 128 = 0$$<br><br>$$ \Rightarrow (pq - 16)(pq + 8) = 0$$<br><br>$$ \Rightarrow pq = 16, - 8$$ <br/><br/>Here, pq = - 8 is not possible as p and q are positive. <br/><br/>$$ \therefore $$ pq = 16 <br/><br/>Now, the equation whose roots are p and q is <br><br>$${x^2} - 2x + 16 = 0$$
mcq
jee-main-2021-online-24th-february-morning-slot
ABe8PX8aWeMsgSLkwa1kls48put
maths
quadratic-equation-and-inequalities
inequalities
The integer 'k', for which the inequality x<sup>2</sup> $$-$$ 2(3k $$-$$ 1)x + 8k<sup>2</sup> $$-$$ 7 &gt; 0 is valid for every x in R, is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "0"}]
["C"]
null
$${x^2} - 2(3k - 1)x + 8{k^2} - 7 &gt; 0$$<br><br>Now, D &lt; 0<br><br>$$ \Rightarrow 4{(3k - 1)^2} - 4 \times 1 \times (8{k^2} - 7) &lt; 0$$<br><br>$$ \Rightarrow 9{k^2} - 6k + 1 - 8{k^2} + 7 &lt; 0$$<br><br>$$ \Rightarrow {k^2} - 6k + 8 &lt; 0$$<br><br>$$ \Rightarrow (k - 4)(k - 2) &lt; 0$$<br><br>2 &lt; k &lt; 4 <br><br>then k = 3
mcq
jee-main-2021-online-25th-february-morning-slot
1krzrgqrk
maths
quadratic-equation-and-inequalities
inequalities
If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup> is equal to ______________.
[]
null
13
(a + b + c)<sup>2</sup> = 1 <br><br>$$ \Rightarrow $$ a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> + 2(ab + bc + ca) = 1 <br><br>$$ \Rightarrow $$ a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> = – 3 ….(i) <br><br>$$ \Rightarrow $$ ab + bc + ca = 2 ….(ii) <br><br>Squaring of equation (ii), <br><br>$$ \Rightarrow $$ a<sup>2</sup>b<sup>2</sup> + b<sup>2</sup>c<sup>2</sup> + c<sup>2</sup>a<sup>2</sup> + 2(ab<sup>2</sup>c + bc<sup>2</sup>a + ca<sup>2</sup>b) = 4 <br><br>$$ \Rightarrow $$ a<sup>2</sup>b<sup>2</sup> + b<sup>2</sup>c<sup>2</sup> + c<sup>2</sup>a<sup>2</sup> + 2abc(a + b + c) = 4 <br><br>$$ \Rightarrow $$ a<sup>2</sup>b<sup>2</sup> + b<sup>2</sup>c<sup>2</sup> + c<sup>2</sup>a<sup>2</sup> + 6 = 4 <br><br>$$ \Rightarrow $$ a<sup>2</sup>b<sup>2</sup> + b<sup>2</sup>c<sup>2</sup> + c<sup>2</sup>a<sup>2</sup> = – 2 ….(iii) <br><br>Squaring of equation (i), <br><br>$$ \Rightarrow $$ a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup> + 2(a<sup>2</sup>b<sup>2</sup> + b<sup>2</sup>c<sup>2</sup> + c<sup>2</sup>a<sup>2</sup>) = 9 <br><br>$$ \Rightarrow $$ a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup> – 4 = 9 <br><br>$$ \Rightarrow $$ a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup> = 13
integer
jee-main-2021-online-25th-july-evening-shift
1l5vz0zg9
maths
quadratic-equation-and-inequalities
inequalities
<p>Let $${S_1} = \left\{ {x \in R - \{ 1,2\} :{{(x + 2)({x^2} + 3x + 5)} \over { - 2 + 3x - {x^2}}} \ge 0} \right\}$$ and $${S_2} = \left\{ {x \in R:{3^{2x}} - {3^{x + 1}} - {3^{x + 2}} + 27 \le 0} \right\}$$. Then, $${S_1} \cup {S_2}$$ is equal to :</p>
[{"identifier": "A", "content": "$$( - \\infty , - 2] \\cup (1,2)$$"}, {"identifier": "B", "content": "$$( - \\infty , - 2] \\cup [1,2]$$"}, {"identifier": "C", "content": "$$( - 2,1] \\cup [2,\\infty )$$"}, {"identifier": "D", "content": "$$( - \\infty ,2]$$"}]
["B"]
null
<p>Given,</p> <p>$${{(x + 2)({x^2} + 3x + 5)} \over { - 2 + 3x - {x^2}}} \ge 0$$</p> <p>$${x^2} + 3x + 5$$ is a quadratic equation</p> <p>$$a = 1 &gt; 0$$ and $$D = {( - 3)^2} - 4\,.\,1\,.\,5 = - 11 &lt; 0$$</p> <p>$$\therefore$$ $${x^2} + 3x + 5 &gt; 0$$ (always)</p> <p>So, we can ignore this quadratic term</p> <p>$${{(x + 2)} \over { - 2 + 3x - {x^2}}} \ge 0$$</p> <p>$$ \Rightarrow {{x + 2} \over { - ({x^2} - 3x + 2)}} \ge 0$$</p> <p>$$ \Rightarrow {{x + 2} \over {{x^2} - 3x + 2}} \le 0$$</p> <p>$$ \Rightarrow {{x + 2} \over {{x^2} - 2x - x + 2}} \le 0$$</p> <p>$$ \Rightarrow {{x + 2} \over {(x - 1)(x - 2)}} \le 0$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5xuvzep/d1d9533f-57ee-41d4-a9fe-c531cfba2e5b/5b97b000-0a81-11ed-808f-7334e319a570/file-1l5xuvzeq.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5xuvzep/d1d9533f-57ee-41d4-a9fe-c531cfba2e5b/5b97b000-0a81-11ed-808f-7334e319a570/file-1l5xuvzeq.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Quadratic Equation and Inequalities Question 52 English Explanation 1"></p> <p>$$\therefore$$ $$x \in ( - \alpha , - 2] \cup (1,2)$$</p> <p>$$\therefore$$ $${S_1} = ( - \alpha , - 2] \cup (1,2)$$</p> <p>Now,</p> <p>$${3^{2x}} - {3^{x + 1}} - {3^{x + 2}} + 27 \le 0$$</p> <p>$$ \Rightarrow {({3^x})^2} - 3\,.\,{3^x} - {3^2}\,.\,{3^x} + 27 \le 0$$</p> <p>Let $${3^x} = t$$</p> <p>$$ \Rightarrow {t^2} - 3\,.\,t - {3^2}\,.\,t + 27 \le 0$$</p> <p>$$ \Rightarrow t(t - 3) - 9(t - 3) \le 0$$</p> <p>$$ \Rightarrow (t - 3)(t - 9) \le 0$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5xuwndt/2f07a224-3889-4add-a96c-03b381708852/6e1d0d10-0a81-11ed-808f-7334e319a570/file-1l5xuwndu.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5xuwndt/2f07a224-3889-4add-a96c-03b381708852/6e1d0d10-0a81-11ed-808f-7334e319a570/file-1l5xuwndu.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Quadratic Equation and Inequalities Question 52 English Explanation 2"></p> <p>$$\therefore$$ $$3 \le t \le 9$$</p> <p>$$ \Rightarrow {3^1} \le {3^x} \le {3^2}$$</p> <p>$$ \Rightarrow 1 \le x \le 2$$</p> <p>$$\therefore$$ $$x \in [1,2]$$</p> <p>$$\therefore$$ $${S_2} = [1,2]$$</p> <p>$$\therefore$$ $${S_1} \cup {S_2} = ( - \alpha ,2] \cup (1,2) \cup [1,2]$$</p> <p>$$ = ( - \alpha ,2] \cup [1,2]$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
jaoe38c1lse4uha6
maths
quadratic-equation-and-inequalities
inequalities
<p>Let $$\mathrm{S}$$ be the set of positive integral values of $$a$$ for which $$\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} &lt; 0, \forall x \in \mathbb{R}$$. Then, the number of elements in $$\mathrm{S}$$ is :</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "$$\\infty$$"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "1"}]
["A"]
null
$x^2-8 x+32>0 \forall x \in R$ as discriminant of this quadratic is $64-4 \times 32<0$ <br/><br/>$$ \Rightarrow a x^2+2(a+1) x+9 a+4<0 \forall x \in R $$ <br/><br/>$\Rightarrow$ Only possible when $a<0$ and $D<0$ <br/><br/>$\Rightarrow$ Since $S$ is set of positive values of $a \Rightarrow S$ is a null set <br/><br/>$$ \Rightarrow n(S)=0 $$
mcq
jee-main-2024-online-31st-january-morning-shift
pQ8kOFxyh1NO0kIK
maths
quadratic-equation-and-inequalities
location-of-roots
All the values of $$m$$ for which both roots of the equation $${x^2} - 2mx + {m^2} - 1 = 0$$ are greater than $$ - 2$$ but less then 4, lie in the interval
[{"identifier": "A", "content": "$$ - 2 &lt; m &lt; 0$$ "}, {"identifier": "B", "content": "$$m &gt; 3$$ "}, {"identifier": "C", "content": "$$ - 1 &lt; m &lt; 3$$ "}, {"identifier": "D", "content": "$$1 &lt; m &lt; 4$$ "}]
["C"]
null
Equation $${x^2} - 2mx + {m^2} - 1 = 0$$ <br><br>$${\left( {x - m} \right)^2} - 1 = 0$$ <br><br>or $$\left( {x - m + 1} \right)\left( {x - m - 1} \right) = 0$$ <br><br>$$x = m - 1,m + 1$$ <br><br>$$m - 1 &gt; - 2$$ and $$m + 1 &lt; 4$$ <br><br>$$ \Rightarrow m &gt; - 1$$ and $$m&lt;3$$ <br><br>or $$\,\,\, - 1 &lt; m &lt; 3$$
mcq
aieee-2006
pX6k4PzHt3u5DKh2xhfDB
maths
quadratic-equation-and-inequalities
location-of-roots
If both the roots of the quadratic equation x<sup>2</sup> $$-$$ mx + 4 = 0 are real and distinct and they lie in the interval [1, 5], then m lies in the interval :
[{"identifier": "A", "content": "($$-$$5, $$-$$4)"}, {"identifier": "B", "content": "(4, 5)"}, {"identifier": "C", "content": "(5, 6)"}, {"identifier": "D", "content": "(3, 4)"}]
["B"]
null
x<sup>2</sup> $$-$$mx + 4 = 0 <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264994/exam_images/bkaah5pafcac92p7jsty.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th January Evening Slot Mathematics - Quadratic Equation and Inequalities Question 124 English Explanation"> <b>Case-I :</b> <br><br>D &gt; 0 <br><br>m<sup>2</sup> $$-$$ 16 &gt; 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;m $$ \in $$ ($$-$$ $$\infty $$, $$-$$ 4) $$ \cup $$ (4, $$\infty $$) <br><br><b>Case-II :</b> <br><br>$$ \Rightarrow \,\,1 &lt; {{ - b} \over {2a}} &lt; 5$$ <br><br>$$ \Rightarrow \,\,1 &lt; {m \over 2} &lt; 5 \Rightarrow \,m \in \left( {2,10} \right)$$ <br><br><b>Case-III :</b> <br><br>f(1) &gt; 0&nbsp;&nbsp;&nbsp;and f(5) &gt; 0 <br><br>1 $$-$$ m + 4 &gt; 0&nbsp;&nbsp;&nbsp;and 25 $$-$$ 5m + 4 &gt; 0 <br><br>m &lt; 5&nbsp;&nbsp;&nbsp;and m &lt; $${{29} \over 5}$$ <br><br><b>Case-IV :</b> <br><br>Let one root is x = 1 <br><br>1 $$-$$ m + 4 = 0 <br><br>m = 5 <br><br>Now equation x<sup>2</sup> $$-$$ 5x + 4 = 0 <br><br>(x $$-$$ 1) (x $$-$$ 4) = 0 <br><br>x = 1 i.e. m = 5 is also included <br><br>hence m $$ \in $$ (4, 5] <br><br>So given option is (4, 5)
mcq
jee-main-2019-online-9th-january-evening-slot
mSNXXAHDAMqkcYrI59bPZ
maths
quadratic-equation-and-inequalities
location-of-roots
Consider the quadratic equation (c – 5)x<sup>2</sup> – 2cx + (c – 4) = 0, c $$ \ne $$ 5. Let S be the set of all integral values of c for which one root of the equation lies in the interval (0, 2) and its other root lies in the interval (2, 3). Then the number of elements in S is -
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "18"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "11"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267172/exam_images/rziw7accnofwe87kl8ml.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Morning Slot Mathematics - Quadratic Equation and Inequalities Question 122 English Explanation"> <br><br>Let f(x) = (c $$-$$ 5)x<sup>2</sup> $$-$$ 2cx + c $$-$$ 4 <br><br>$$ \therefore $$&nbsp;&nbsp;f(0)f(2) &lt; 0 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(1) <br><br>&amp; f(2)f(3) &lt; 0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(2) <br><br>from (1) and (2) <br><br>(c $$-$$ 4)(c $$-$$ 24) &lt; 0 <br><br>&amp; (c $$-$$ 24)(4c $$-$$ 49) &lt; 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{49} \over 4}$$ &lt; c &lt; 24 <br><br>$$ \therefore $$&nbsp;&nbsp;s = {113, 14, 15, . . . . . 23} <br><br>Number of elements in set S = 11
mcq
jee-main-2019-online-10th-january-morning-slot
NjnfwqqKfFebUKmJODjgy2xukf44aor4
maths
quadratic-equation-and-inequalities
location-of-roots
The set of all real values of $$\lambda $$ for which the quadratic equations, <br/>($$\lambda $$<sup>2</sup> + 1)x<sup>2</sup> – 4$$\lambda $$x + 2 = 0 always have exactly one root in the interval (0, 1) is :
[{"identifier": "A", "content": "(\u20133, \u20131)"}, {"identifier": "B", "content": "(2, 4]"}, {"identifier": "C", "content": "(0, 2)"}, {"identifier": "D", "content": "(1, 3]"}]
["D"]
null
Given quadratic equation,<br><br>$$({\lambda ^2} + 1){x^2} - 4\lambda x + 2 = 0$$<br><br>Here coefficient of x<sup>2</sup> is ($$\lambda $$<sup>2</sup> + 1) which is always positive. So quadratic equation is upward parabola.<br><br><picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264642/exam_images/ubgriloi3sciyx6c5v8t.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266993/exam_images/nimn4csiiz1sk1zxtbdc.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267548/exam_images/p5a65zhnpiheonjz4tbp.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265324/exam_images/tjhjf9qkm4vxoi6n2nwk.webp"><source media="(max-width: 1040px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265329/exam_images/qnfpvne2zajqnb56tkig.webp"><source media="(max-width: 1220px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267176/exam_images/rbxyileicz9fwclti9fe.webp"><source media="(max-width: 1400px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267110/exam_images/ewtlfvgz5wvf04zgzuwf.webp"><source media="(max-width: 1580px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267012/exam_images/mjxsciy8b1tuw0pgypnx.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266183/exam_images/zoc6r8adwxvl4esfzzpb.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 3rd September Evening Slot Mathematics - Quadratic Equation and Inequalities Question 98 English Explanation"></picture><br><br>So, either f(0) &lt; 0 and f(1) &gt; 1<br><br>or f(0) &gt; 0 and f(1) &lt; 0<br><br>$$ \therefore $$ In both those cases,<br><br>f(0) f(1) $$ \le $$ 0<br><br>$$ \Rightarrow $$ 2($$\lambda $$<sup>2</sup> $$-$$ 4$$\lambda $$ + 3) $$ \le $$ 0<br><br>$$ \Rightarrow $$ $$\lambda $$$$ \in $$ [1, 3]<br><br>At $$\lambda $$ = 1 :<br><br>Quadratic equation becomes<br><br>2x<sup>2</sup> $$-$$ 4x + 2 = 0<br><br>$$ \Rightarrow $$ (x $$-$$ 1)<sup>2</sup> = 0<br><br>$$ \Rightarrow $$ x = 1, 1<br><br>As both roots can't lie between (0, 1)<br><br>So, $$\lambda $$ = 1 can't be possible.<br><br>At $$\lambda $$ = 3 :<br><br>10x<sup>2</sup> $$-$$ 12x + 2 = 0<br><br>$$ \Rightarrow $$ 5x<sup>2</sup> $$-$$ 6x + 1 = 0<br><br>$$ \Rightarrow $$ (5x $$-$$ 1) (x $$-$$ 1) = 0<br><br>$$ \Rightarrow $$ x = 1, $${1 \over 5}$$<br><br>In the interval (0, 1) exactly one root $${1 \over 5}$$ present.<br><br>$$ \therefore $$ $$\lambda $$ $$ \in $$ (1, 3]
mcq
jee-main-2020-online-3rd-september-evening-slot
1ldo68yjn
maths
quadratic-equation-and-inequalities
location-of-roots
<p>The number of integral values of k, for which one root of the equation $$2x^2-8x+k=0$$ lies in the interval (1, 2) and its other root lies in the interval (2, 3), is :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "3"}]
["C"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1le5hv330/3bf12c29-312e-4d43-a5a3-c05d3e6a864c/6c2ba9c0-ad16-11ed-8a8c-4d67f5492755/file-1le5hv331.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1le5hv330/3bf12c29-312e-4d43-a5a3-c05d3e6a864c/6c2ba9c0-ad16-11ed-8a8c-4d67f5492755/file-1le5hv331.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 1st February Evening Shift Mathematics - Quadratic Equation and Inequalities Question 39 English Explanation"> <br><br>$$ \begin{aligned} &amp; f(1)&gt;0 \Rightarrow k&gt;6 \\\\ &amp; f(2)&lt;0 \Rightarrow k&lt;8 \\\\ &amp; f(3)&gt;0 \Rightarrow k&gt;6 \\\\ &amp; k \in(6,8) \end{aligned} $$ <br><br>Only 1 integral value of $k$ is 7.
mcq
jee-main-2023-online-1st-february-evening-shift
J4uBIzApDyw2Lggl
maths
quadratic-equation-and-inequalities
modulus-function
Product of real roots of equation $${t^2}{x^2} + \left| x \right| + 9 = 0$$
[{"identifier": "A", "content": "is always positive "}, {"identifier": "B", "content": "is always negative "}, {"identifier": "C", "content": "does not exist"}, {"identifier": "D", "content": "none of these "}]
["A"]
null
Product of real roots $$ = {9 \over {{t^2}}} &gt; 0,\forall \,t\, \in R$$ <br><br>$$\therefore$$ Product of real roots is always positive.
mcq
aieee-2002
YCu5If6M2eZmxcua
maths
quadratic-equation-and-inequalities
modulus-function
The number of real solutions of the equation $${x^2} - 3\left| x \right| + 2 = 0$$ is
[{"identifier": "A", "content": "3 "}, {"identifier": "B", "content": "2 "}, {"identifier": "C", "content": "4 "}, {"identifier": "D", "content": "1 "}]
["C"]
null
$${x^2} - 3\left| x \right| + 2 = 0$$ <br><br>$$ \Rightarrow {\left| x \right|^2} - 3\left| x \right| + 2 = 0$$ <br><br>$$\left( {\left| x \right| - 2} \right)\left( {\left| x \right| - 1} \right) = 0$$ <br><br>$$\left| x \right| = 1,2$$ or $$x = \pm 1, \pm 2$$ <br><br>$$\therefore$$ No. of solution $$=4$$
mcq
aieee-2003
8zfNJ8kRVBDzRMei
maths
quadratic-equation-and-inequalities
modulus-function
Let S = { $$x$$ $$ \in $$ R : $$x$$ $$ \ge $$ 0 and <br/><br/>$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$}. Then S
[{"identifier": "A", "content": "contains exactly four elements"}, {"identifier": "B", "content": "is an empty set"}, {"identifier": "C", "content": "contains exactly one element"}, {"identifier": "D", "content": "contains exactly two elements"}]
["D"]
null
Given, <br><br>$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$ <br><br><b><u>Case 1</u> :</b> <br><br>When $$\sqrt x - 3 \ge 0,$$ then equation becomes <br><br>$$2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,2\sqrt x - 6 + x - 6\sqrt x + 6 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,x\, - 4\sqrt x = 0$$ <br><br>$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 4} \right) = 0$$ <br><br>$$\therefore\,\,\,$$ $$\sqrt x = 0,4$$ <br><br>but as $$\sqrt x - 3 \ge 0$$ or $$\sqrt x \ge 3$$ then $$\sqrt x \ne 0$$ <br><br>$$\therefore\,\,\,$$ $$\sqrt x = 4$$ value is possible. <br><br><b><u>Case 2</u> :</b> <br><br>When $$\sqrt x - 3 &lt; 0$$ or $$\sqrt x &lt; 3.$$ There equation becomes <br><br>$$ - 2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,\, - 2\sqrt x + 6 + x - 6\sqrt x + 6 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,x - 8\sqrt x + 12 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,x - 6\sqrt x - 2\sqrt x + 12 = 0$$ <br><br>$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 6} \right) - 2\left( {\sqrt x - 6} \right) = 0$$ <br><br>$$ \Rightarrow \,\,\,\,\left( {\sqrt x - 2} \right)\left( {\sqrt x - 6} \right) = 0$$ <br><br>$$\therefore\,\,\,$$ $$\sqrt x = 2,6$$ <br><br>as $$\sqrt x &lt; 3$$ so $$\sqrt x \ne 6$$ <br><br>$$\therefore\,\,\,$$ $$\sqrt x = 2$$ is possible. <br><br>So, total possible value of $$\sqrt x = 2,4$$ <br><br>or for x possible values are 4, 16. <br><br>$$\therefore\,\,\,$$ Set S contains exactly two elements 4 and 16.
mcq
jee-main-2018-offline
GucnZdzvR3MFEr855XuFJ
maths
quadratic-equation-and-inequalities
modulus-function
The sum of the solutions of the equation <br/> $$\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0$$<br/> (x &gt; 0) is equal to:
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "10"}]
["D"]
null
<b>Case 1 :</b> When $$\sqrt x \ge 2$$ <br><br>then $$\left| {\sqrt x - 2} \right| = \sqrt x - 2$$ <br><br>$$ \therefore $$ The given equation becomes, <br><br>$$\left( {\sqrt x - 2} \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0 <br><br>$$ \Rightarrow $$ $$\left( {\sqrt x - 2} \right)$$ + $$x - 4\sqrt x $$ + 2 = 0 <br><br>$$ \Rightarrow $$ $$x - 3\sqrt x $$ = 0 <br><br>$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 3} \right)$$ = 0 <br><br>$$ \therefore $$ $$\sqrt x $$ = 0 or 3 <br><br>$$\sqrt x $$ = 0 is not possible as $$\sqrt x \ge 2$$. <br><br>So, $$\sqrt x $$ = 3 <br><br>or $$x$$ = 9 <br><br><b>Case 2 :</b> When $$\sqrt x &lt; 2$$ <br><br>then $$\left| {\sqrt x - 2} \right| = $$$$ - \left( {\sqrt x - 2} \right)$$ = $$2 - \sqrt x $$ <br><br>$$ \therefore $$ The given equation becomes, <br><br>$$\left( {2 - \sqrt x } \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0 <br><br>$$ \Rightarrow $$ $${2 - \sqrt x }$$ + $$x - 4\sqrt x $$ + 2 = 0 <br><br>$$ \Rightarrow $$ $$x - 5\sqrt x + 4$$ = 0 <br><br>$$ \Rightarrow $$ $$x - 4\sqrt x - \sqrt x + 4$$ = 0 <br><br>$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 4} \right)$$$$-\left( {\sqrt x - 4} \right)$$ = 0 <br><br>$$ \Rightarrow $$ $$\left( {\sqrt x - 4} \right)$$$$\left( {\sqrt x - 1} \right)$$ = 0 <br><br>$$ \therefore $$ $$\sqrt x $$ = 4 or 1 <br><br>$$\sqrt x $$ = 4 is not possible as $$\sqrt x &lt; 2$$. <br><br>$$ \therefore $$ $$\sqrt x $$ = 1 <br><br>or $$x$$ = 1 <br><br>So, Sum of all solutions = 9 + 1 = 10
mcq
jee-main-2019-online-8th-april-morning-slot
ZaQAnwZJq0uaay0nM43rsa0w2w9jx1ywhvd
maths
quadratic-equation-and-inequalities
modulus-function
The number of real roots of the equation <br/> 5 + |2<sup>x</sup> – 1| = 2<sup>x</sup> (2<sup>x</sup> – 2) is
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "4"}]
["B"]
null
When 2<sup>x</sup> $$ \ge $$ 1 <br><br> 5 + 2<sup>x</sup> –1 = 2<sup>x</sup> (2<sup>x</sup> – 2) <br><br> Let 2x = t <br><br> $$ \Rightarrow $$5 + t – 1 = t (t – 2) <br><br> $$ \Rightarrow $$ t = 4, – 1(rejected) <br><br> $$ \Rightarrow $$ 2x = 4 <br><br> $$ \Rightarrow $$ x = 2 <br><br> Now when 2<sup>x</sup> &lt; 1 <br><br> 5 + 1 – 2<sup>x</sup> = 2<sup>x</sup> (2<sup>x</sup> – 2)<br><br> Let 2<sup>x</sup> = t <br><br> $$ \Rightarrow $$ 5 + 1 – t = t (t – 2) <br><br> $$ \Rightarrow $$ 0 = t<sup>2</sup> – t – 6 <br><br> $$ \Rightarrow $$ 0 = (t – 3) (t – 2) <br><br> $$ \Rightarrow $$ t = 3, – 2 <br><br> 2<sup>x</sup> = 3, 2<sup>x</sup> = – 2 (rejected)<br><br> $$ \therefore $$ Only one real roots.
mcq
jee-main-2019-online-10th-april-evening-slot
tLULgaIgrnpDTGKEEF7k9k2k5hk1kck
maths
quadratic-equation-and-inequalities
modulus-function
Let S be the set of all real roots of the equation,<br/> 3<sup>x</sup>(3<sup>x</sup> – 1) + 2 = |3<sup>x</sup> – 1| + |3<sup>x</sup> – 2|. Then S :
[{"identifier": "A", "content": "contains exactly two elements."}, {"identifier": "B", "content": "is an empty set."}, {"identifier": "C", "content": "is a singleton."}, {"identifier": "D", "content": "contains at least four elements."}]
["C"]
null
Let 3<sup>x</sup> = t ; t $$&gt;$$ 0 <br><br>t(t – 1) + 2 = |t – 1| + |t – 2| <br><br>t<sup>2</sup> – t + 2 = |t – 1| + |t – 2| <br><br><b>Case-I</b> : t $$&lt;$$ 1 <br><br>t<sup>2</sup> – t + 2 = 1 – t + 2 – t <br><br>$$ \Rightarrow $$ t<sup>2</sup> + 2 = 3 – t <br><br>$$ \Rightarrow $$ t<sup>2</sup> + t – 1 = 0 <br><br>$$ \Rightarrow $$ t = $${{ - 1 \pm \sqrt 5 } \over 2}$$ <br><br>$$ \Rightarrow $$ t = $${{\sqrt 5 - 1} \over 2}$$ [ As t $$&gt;$$ 0] <br><br><b>Case-II</b> : 1 $$ \le $$ t $$&lt;$$ 2 <br><br>$$ \Rightarrow $$ t<sup>2</sup> – t + 2 = t – 1 + 2 – t <br><br>$$ \Rightarrow $$ t<sup>2</sup> – t + 1 = 0 <br><br>D $$&lt;$$ 0 so no real solution. <br><br><b>Case-III</b> : t $$ \ge $$ 2 <br><br>$$ \Rightarrow $$ t<sup>2</sup> – t + 2 = t – 1 + t – 2 <br><br>$$ \Rightarrow $$ t<sup>2</sup> – 3t - 5 = 0 <br><br>$$ \Rightarrow $$ D $$&lt;$$ 0 so no real solution.
mcq
jee-main-2020-online-8th-january-evening-slot
RcJaa2kkStUK6mm6FBjgy2xukfg6wcxg
maths
quadratic-equation-and-inequalities
modulus-function
The product of the roots of the <br/>equation 9x<sup>2</sup> - 18|x| + 5 = 0 is :
[{"identifier": "A", "content": "$${{5} \\over {9}}$$"}, {"identifier": "B", "content": "$${{5} \\over {27}}$$"}, {"identifier": "C", "content": "$${{25} \\over {81}}$$"}, {"identifier": "D", "content": "$${{25} \\over {9}}$$"}]
["C"]
null
$$9{x^2} - 18\left| x \right| + 5 = 0$$<br><br>$$ \Rightarrow $$ $$9{x^2} - 15\left| x \right| - 3\left| x \right| + 5 = 0$$ ($$ \because $$ x<sup>2</sup> = $${\left| x \right|^2}$$)<br><br>$$ \Rightarrow $$ $$3\left| x \right|(3\left| x \right| - 5) - (3\left| x \right| - 5) = 0$$<br><br>$$ \Rightarrow $$$$\left| x \right| = {1 \over 3},\,{5 \over 3}$$<br><br>$$ \Rightarrow $$ $$x = \pm {1 \over 3}, \pm \,{5 \over 3}$$<br><br>$$ \therefore $$ Product of roots <br><br>= $$\left( \frac{1}{3} \right) \left( -\frac{1}{3} \right) \left( \frac{5}{3} \right) \left( -\frac{5}{3} \right) $$ = $${{25} \over {81}}$$
mcq
jee-main-2020-online-5th-september-morning-slot
YmhKJLqLfmHUC0KJZD1klrmwr0o
maths
quadratic-equation-and-inequalities
modulus-function
The number of the real roots of the equation $${(x + 1)^2} + |x - 5| = {{27} \over 4}$$ is ________.
[]
null
2
When $$x &gt; 5$$<br><br>$${(x + 1)^2} + (x - 5) = {{27} \over 4}$$<br><br>$$ \Rightarrow {x^2} + 3x - 4 = {{27} \over 4}$$<br><br>$$ \Rightarrow {x^2} + 3x - {{43} \over 4} = 0$$<br><br>$$ \Rightarrow 4{x^2} + 12x - 43 = 0$$<br><br>$$x = {{ - 12 \pm \sqrt {144 + 688} } \over 8}$$<br><br>$$x = {{ - 12 \pm \sqrt {832} } \over 8} = {{ - 12 \pm 28.8} \over 8}$$<br><br>$$ = {{ - 3 + 7.2} \over 2}$$<br><br>$$ = {{ - 3 + 7.2} \over 2},{{ - 3 - 7.2} \over 2}$$ <br><br>= 2.1, -5.1 [ both are rejected as x should be &gt; 5 ] <br><br>(Therefore no solution)<br><br>For $$x \le 5$$<br><br>$${(x + 1)^2} - (x - 5) = {{27} \over 4}$$<br><br>$${x^2} + x + 6 - {{27} \over 4} = 0$$<br><br>$$4{x^2} + 4x - 3 = 0$$<br><br>$$x = {{ - 4 \pm \sqrt {16 + 48} } \over 8}$$<br><br>$$x = {{ - 4 \pm 8} \over 8} \Rightarrow x = - {{12} \over 8},{4 \over 8}$$<br><br>$$ \therefore $$ So, the equation have two real roots.
integer
jee-main-2021-online-24th-february-evening-slot
1krzn03g8
maths
quadratic-equation-and-inequalities
modulus-function
The number of real solutions of the equation, x<sup>2</sup> $$-$$ |x| $$-$$ 12 = 0 is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "4"}]
["A"]
null
|x|<sup>2</sup> $$-$$ |x| $$-$$ 12 = 0<br><br>$$ \Rightarrow $$ (|x| + 3)(|x| $$-$$ 4) = 0<br><br>$$ \Rightarrow $$ |x| = 4 <br><br>$$\Rightarrow$$ x = $$\pm$$4
mcq
jee-main-2021-online-25th-july-evening-shift