question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
ldoatpci
maths
probability
classical-defininition-of-probability
Let A be the event that the absolute difference between two randomly choosen real numbers in the sample space $[0,60]$ is less than or equal to a . If $\mathrm{P}(\mathrm{A})=\frac{11}{36}$, then $\mathrm{a}$ is equal to _______.
[]
null
10
$$ \begin{aligned} &amp; |\mathrm{x}-\mathrm{y}|&lt;\mathrm{a} \Rightarrow-\mathrm{a}&lt;\mathrm{x}-\mathrm{y}&lt;\mathrm{a} \\\\ &amp; \Rightarrow \mathrm{x}-\mathrm{y}&lt;\mathrm{a} \text { and } \mathrm{x}-\mathrm{y}&gt;-\mathrm{a} \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1leeeen4s/b4b3dede-ba28-4c8d-af23-57eb35c25759/f55c2dc0-b1fb-11ed-afd2-4f73ef263f1c/file-1leeeen4t.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1leeeen4s/b4b3dede-ba28-4c8d-af23-57eb35c25759/f55c2dc0-b1fb-11ed-afd2-4f73ef263f1c/file-1leeeen4t.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 31st January Evening Shift Mathematics - Probability Question 52 English Explanation"> <br><br>$$ \begin{aligned} &amp; \mathrm{P}(\mathrm{A})=\frac{\operatorname{ar}(\mathrm{OACDEG})}{(\mathrm{OBDF})} \\\\ &amp; =\frac{\operatorname{ar}(\mathrm{OBDF})-\operatorname{ar}(\mathrm{ABC})-\operatorname{ar}(\mathrm{EFG})}{\operatorname{ar}(\mathrm{OBDF})} \\\\ &amp; \Rightarrow \frac{11}{36}=\frac{(60)^2-\frac{1}{2}(60-\mathrm{a})^2-\frac{1}{2}(60-\mathrm{a})^2}{3600} \\\\ &amp; \Rightarrow 1100=3600-(60-\mathrm{a})^2 \\\\ &amp; \Rightarrow (60-\mathrm{a})^2=2500 \Rightarrow 60-\mathrm{a}=50 \\\\ &amp; \Rightarrow \mathrm{a}=10 \end{aligned} $$
integer
jee-main-2023-online-31st-january-evening-shift
ldr0ncc0
maths
probability
classical-defininition-of-probability
A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is $q$. If $p: q=m: n$, where $m$ and $n$ are coprime, then $m+n$ is equal to :
[]
null
14
<p>$$p = {6 \over {36}} = {1 \over 6}$$</p> <p>$$q = {{{}^6{C_1} \times {}^5{C_1} \times {{4!} \over {3!}}} \over {{6^4}}} = {{120} \over {1296}} = {5 \over {54}}$$</p> <p>$${p \over q} = {{{1 \over 6}} \over {{5 \over {54}}}} = {{54} \over {6 \times 5}} = {9 \over 5} = {m \over n}$$</p> <p>$$m + n = 14$$</p>
integer
jee-main-2023-online-30th-january-evening-shift
1ldr7mspf
maths
probability
classical-defininition-of-probability
<p>If an unbiased die, marked with $$-2,-1,0,1,2,3$$ on its faces, is thrown five times, then the probability that the product of the outcomes is positive, is :</p>
[{"identifier": "A", "content": "$$\\frac{27}{288}$$"}, {"identifier": "B", "content": "$$\\frac{521}{2592}$$"}, {"identifier": "C", "content": "$$\\frac{440}{2592}$$"}, {"identifier": "D", "content": "$$\\frac{881}{2592}$$"}]
["B"]
null
<p>$${}^5{C_0} \times {3^5} = 243$$</p> <p>$${}^5{C_2} \times {2^2} \times {3^3} = 1080$$</p> <p>$${}^5{C_4} \times {2^4}\,.\,3 = 240$$</p> <p>$$\therefore$$ required probability</p> <p>$$ = {{243 + 1080 + 240} \over {6 \times 6 \times 6 \times 6 \times 6}} = {{521} \over {2592}}$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1ldu4fpco
maths
probability
classical-defininition-of-probability
<p>Let N be the sum of the numbers appeared when two fair dice are rolled and let the probability that $$N-2,\sqrt{3N},N+2$$ are in geometric progression be $$\frac{k}{48}$$. Then the value of k is :</p>
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "16"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "4"}]
["D"]
null
$n-2, \sqrt{3 n}, n+2 \rightarrow$ G.P. <br/><br/> $3 n=n^{2}-4$ <br/><br/> $\Rightarrow n^{2}-3 n-4=0$ <br/><br/> $\Rightarrow n=4,-1$ (rejected) <br/><br/> $P(S=4)=\frac{3}{36}=\frac{1}{12}=\frac{4}{48}$ <br/><br/> $\therefore k=4$
mcq
jee-main-2023-online-25th-january-evening-shift
1ldv1kqtg
maths
probability
classical-defininition-of-probability
<p>Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $$S = \left\{ {x \in \mathbb{Z}:x(66 - x) \ge {5 \over 9}M} \right\}$$ and the event $$\mathrm{A = \{ x \in S:x\,is\,a\,multiple\,of\,3\}}$$. Then P(A) is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{1}{3}$$"}, {"identifier": "B", "content": "$$\\frac{1}{5}$$"}, {"identifier": "C", "content": "$$\\frac{7}{22}$$"}, {"identifier": "D", "content": "$$\\frac{15}{44}$$"}]
["A"]
null
$x+y=66$ <br/><br/> $$ \begin{aligned} & \frac{x+y}{2} \geq \sqrt{x y} \\\\ \Rightarrow & 33 \geq \sqrt{x y} \\\\ \Rightarrow & x y \leq 1089 \\\\ \therefore & M=1089 \\\\ S: & x(66-x) \geq \frac{5}{9} \cdot 1089 \\\\ & 66 x-x^{2} \geq 605 \\\\ \Rightarrow & x^{2}-66 x+605 \leq 0 \end{aligned} $$ <br/><br/>$\Rightarrow(x-55)(x-11) \leq 0 ; 11 \leq x \leq 55$ <br/><br/>Therefore $S=\{11,12,13 \ldots 55\} $ <br/><br/>$\Rightarrow n(S)=45$ <br/><br/>Elements of $S$ which are multiple of 3 are <br/><br/>$$ \begin{aligned} & 12+(n-1) 3=54 \Rightarrow 3(n-1)=42 \Rightarrow n=15 \\\\ & n(A)=15 \end{aligned} $$ <br/><br/>$\Rightarrow P(A)=\frac{15}{45}=\frac{1}{3}$
mcq
jee-main-2023-online-25th-january-morning-shift
1ldyaqkkl
maths
probability
classical-defininition-of-probability
<p>Let N denote the number that turns up when a fair die is rolled. If the probability that the system of equations</p> <p>$$x + y + z = 1$$</p> <p>$$2x + \mathrm{N}y + 2z = 2$$</p> <p>$$3x + 3y + \mathrm{N}z = 3$$</p> <p>has unique solution is $${k \over 6}$$, then the sum of value of k and all possible values of N is :</p>
[{"identifier": "A", "content": "18"}, {"identifier": "B", "content": "21"}, {"identifier": "C", "content": "20"}, {"identifier": "D", "content": "19"}]
["C"]
null
For unique solution $\Delta \neq 0$ <br/><br/> i.e. $\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & N & 2 \\ 3 & 3 & N\end{array}\right| \neq 0$ <br/><br/> $\Rightarrow\left(N^{2}-6\right)-(2 N-6)+(6-3 N) \neq 0$ <br/><br/> $\Rightarrow N^{2}-5 N+6 \neq 0$ <br/><br/> $\therefore N \neq 2$ and $N \neq 3$ <br/><br/> $\therefore $ Probability of not getting 2 or 3 in a throw of dice $=\frac{2}{3}$ <br/><br/> As given $\frac{2}{3}=\frac{k}{6} \Rightarrow k=4$ <br/><br/> $\therefore$ Required value $=1+4+5+6+4=20$
mcq
jee-main-2023-online-24th-january-morning-shift
1ldyb4hyp
maths
probability
classical-defininition-of-probability
<p>Let $$\Omega$$ be the sample space and $$\mathrm{A \subseteq \Omega}$$ be an event.</p> <p>Given below are two statements :</p> <p>(S1) : If P(A) = 0, then A = $$\phi$$</p> <p>(S2) : If P(A) = 1, then A = $$\Omega$$</p> <p>Then :</p>
[{"identifier": "A", "content": "both (S1) and (S2) are true"}, {"identifier": "B", "content": "both (S1) and (S2) are false"}, {"identifier": "C", "content": "only (S2) is true"}, {"identifier": "D", "content": "only (S1) is true"}]
["B"]
null
$\Omega=$ sample space<br/><br/> $\mathrm{A}=$ be an event<br/><br/> $ \Omega$ = A wire of length 1 which starts at point 0 and ends at point 1 on the coordinate axis = $[0,1]$<br/><br/> $\mathrm{A}=\left\{\frac{1}{2}\right\}$ = Selecting a point on the wire which is at $\left\{\frac{1} {2}\right\}$ or 0.5 <br/><br/>As wire is an 1-D object so from geometrical probability <br/><br/>$P(A)=\frac{\text { Favourable Length }}{\text { Total Length }}$ <br/><br/>Here total length of wire = 1 unit <br/><br/>and point has zero length so point A at $\left\{\frac{1} {2}\right\}$ or 0.5 has length = 0. <br/><br/>$$ \therefore $$ Favorable length = 0 <br/><br/> $$ \therefore $$ $\mathrm{P}(\mathrm{A})=0 {\text { but }} \mathrm{A} \neq \phi$ <br/><br/>Now $\overline{\mathrm{A}}$ = $[0,1]$ - $\left\{\frac{1} {2}\right\}$ <br/><br/>So, length of $\overline{\mathrm{A}}$ = Length of entire wire - Length of point A = 1 <br/><br/> $$ \therefore $$ $\mathrm{P}(\overline{\mathrm{A}})=1 {\text { but }} \overline{\mathrm{A}} \neq \Omega$.<br/><br/> Then both statements are false. <br/><br/><b>Attention :</b> According to NTA option A is correct. Which is wrong. That is proven here using geometrical probability. <br/><br/><b>Note :</b> <br/><br/>Geometrical probability : <br/><br/>1. For 1-D object, $P(A)=\frac{\text { Favourable Length }}{\text { Total Length }}$ <br/><br/>2. For 2-D object, $P(A)=\frac{\text { Favourable Area }}{\text { Total Area }}$ <br/><br/>3. For 2-D object, $P(A)=\frac{\text { Favourable volume }}{\text { Total volume }}$
mcq
jee-main-2023-online-24th-january-morning-shift
1lgutw8tu
maths
probability
classical-defininition-of-probability
<p>Let $$S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\}$$ be a sample space and $$A=\{M \in S: M$$ is invertible $$\}$$ be an event. Then $$P(A)$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{47}{81}$$"}, {"identifier": "B", "content": "$$\\frac{49}{81}$$"}, {"identifier": "C", "content": "$$\\frac{50}{81}$$"}, {"identifier": "D", "content": "$$\\frac{16}{27}$$"}]
["C"]
null
We have, $S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\}$ <br/><br/>Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in\{0,1,2\}$ <br/><br/>$$ n(s)=3^4=81 $$ <br/><br/>If $A$ is invertible, then $|A| \neq 0$ <br/><br/>Now, if $|A|=0$, then $|M|=0$ <br/><br/>$\therefore a d-b c=0$ or $a d=b c$ <br/><br/><b>Case I :</b> When $a d=b c=0$, then <br/><br/>There are five ways when $a d=0$ i.e., <br/><br/>$(a, d)=(0,0),(0,1),(0,2),(1,0),(2,0)$ <br/><br/>Similarly, there are again five ways, when $b c=0$ <br/><br/>$\therefore$ There are total $5 \times 5=25$ ways, when $a d=b c=0$ <br/><br/><b>Case II :</b> When $a d=b c=1$ <br/><br/>There is only one way, when $a d=b c=1$ <br/><br/>$$ \text { i.e. } \quad a=b=c=d=1 $$ <br/><br/><b>Case III :</b> When $a d=b c=2$ <br/><br/>There are two ways, when $a d=2$, i.e. <br/><br/>$$ (a, d)=(1,2) \text { or }(2,1) $$ <br/><br/>Similarly, there are two ways <br/><br/>when $b c=2$ i.e., $(b, c)=(1,2)$ or $(2,1)$ <br/><br/><b>Case IV :</b> When $a d-b c=4$ <br/><br/>There is only way, when $a d=b c=4$ <br/><br/>$$ \text { i.e., } a=b=c=d=2 $$ <br/><br/>$\therefore$ Total number of ways, when <br/><br/>$$ \begin{aligned} & (\bar{A})=\frac{31}{81}|A|=0 \text { is } 25+1+4+1=31 \\\\ & \text { Hence, } P(A)=1-P(\bar{A})=1-\frac{31}{81}=\frac{50}{81} \end{aligned} $$
mcq
jee-main-2023-online-11th-april-morning-shift
1lgxt6jpu
maths
probability
classical-defininition-of-probability
<p>Let N denote the sum of the numbers obtained when two dice are rolled. If the probability that $${2^N} &lt; N!$$ is $${m \over n}$$, where m and n are coprime, then $$4m-3n$$ is equal to :</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "10"}]
["C"]
null
$N$ denote the sum of the numbers obtained when two dice are rolled. <br/><br/>Such that $2^N < N$! <br/><br/>$$ \text { i.e., } 4 \leq N \leq 12 \text { i.e., } N \in\{4,5,6, \ldots 12\} $$ <br/><br/>Now, $P(N=2)+P(N=3)=\frac{1}{36}+\frac{2}{36}=\frac{3}{36}=\frac{1}{12}$ <br/><br/>So, required probability $=1-\frac{1}{12}=\frac{11}{12}=\frac{m}{n}$ <br/><br/>$$ 4 m-3 n=4 \times 11-3 \times 12=44-36=8 $$
mcq
jee-main-2023-online-10th-april-morning-shift
1lh2ygb1d
maths
probability
classical-defininition-of-probability
<p>Three dice are rolled. If the probability of getting different numbers on the three dice is $$\frac{p}{q}$$, where $$p$$ and $$q$$ are co-prime, then $$q-p$$ is equal to :</p>
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["B"]
null
Total number of outcomes $=6 \times 6 \times 6=216$ <br/><br/>Number of outcomes getting different numbers on the three dice are ${ }^6 P_3=\frac{6 !}{3 !}=120$ <br/><br/>$\therefore$ Required probability $=\frac{120}{216}=\frac{5}{9}$ <br/><br/>$\therefore p=5$ and $q=9$ <br/><br/>$\therefore q-p=9-5=4$
mcq
jee-main-2023-online-6th-april-evening-shift
jaoe38c1lsfkotb7
maths
probability
classical-defininition-of-probability
<p>An integer is chosen at random from the integers $$1,2,3, \ldots, 50$$. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is</p>
[{"identifier": "A", "content": "$$\\frac{8}{25}$$\n"}, {"identifier": "B", "content": "$$\\frac{9}{50}$$\n"}, {"identifier": "C", "content": "$$\\frac{14}{25}$$\n"}, {"identifier": "D", "content": "$$\\frac{21}{50}$$"}]
["D"]
null
<p>Given set $$=\{1,2,3, \ldots \ldots . .50\}$$</p> <p>$$\mathrm{P}(\mathrm{A})=$$ Probability that number is multiple of 4</p> <p>$$\mathrm{P(B)}=$$ Probability that number is multiple of 6</p> <p>$$\mathrm{P}(\mathrm{C})=$$ Probability that number is multiple of 7</p> <p>Now,</p> <p>$$\mathrm{P}(\mathrm{A})=\frac{12}{50}, \mathrm{P}(\mathrm{B})=\frac{8}{50}, \mathrm{P}(\mathrm{C})=\frac{7}{50}$$</p> <p>again</p> <p>$$\begin{aligned} & \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{50}, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\frac{1}{50}, \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{50} \\ & \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0 \end{aligned}$$</p> <p>Thus</p> <p>$$\begin{aligned} P(A & \cup B \cup C)=\frac{12}{50}+\frac{8}{50}+\frac{7}{50}-\frac{4}{50}-\frac{1}{50}-\frac{1}{50}+0 \\ & =\frac{21}{50} \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
1lsgadxd6
maths
probability
classical-defininition-of-probability
<p>Two integers $$x$$ and $$y$$ are chosen with replacement from the set $$\{0,1,2,3, \ldots, 10\}$$. Then the probability that $$|x-y|&gt;5$$, is :</p>
[{"identifier": "A", "content": "$$\\frac{31}{121}$$\n"}, {"identifier": "B", "content": "$$\\frac{60}{121}$$\n"}, {"identifier": "C", "content": "$$\\frac{62}{121}$$\n"}, {"identifier": "D", "content": "$$\\frac{30}{121}$$"}]
["D"]
null
<p>If $$x=0, y=6,7,8,9,10$$</p> <p>If $$x=1, y=7,8,9,10$$</p> <p>If $$x=2, y=8,9,10$$</p> <p>If $$x=3, y=9,10$$</p> <p>If $$x=4, y=10$$</p> <p>If $$x=5, y=$$ no possible value</p> <p>Total possible ways $$=(5+4+3+2+1) \times 2$$</p> <p>$$=30$$</p> <p>Required probability $$=\frac{30}{11 \times 11}=\frac{30}{121}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
luxwcbol
maths
probability
classical-defininition-of-probability
<p>If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $$i^{\text {th }}$$ roll than the number obtained in the $$(i-1)^{\text {th }}$$ roll, $$i=2,3$$, is equal to</p>
[{"identifier": "A", "content": "5/54"}, {"identifier": "B", "content": "2/54"}, {"identifier": "C", "content": "1/54"}, {"identifier": "D", "content": "3/54"}]
["A"]
null
<p>Let's denote the outcomes of the three rolls as $$X_1$$, $$X_2$$, and $$X_3$$, where $$X_i$$ represents the number obtained in the $$i^{\text{th}}$$ roll. We are looking for the probability that:</p> <p>$$X_2 > X_1 \text{ and } X_3 > X_2$$</p> <p>The total number of outcomes when rolling a dice three times is: </p> <p>$$6^3 = 216$$</p> <p>Let's count the favorable outcomes. For each satisfying outcome, we must ensure that both inequalities are adhered to. Consider the possible sequences where every subsequent roll's number is higher than the previous roll's number. These sequences are:</p> <ul> <li>(1, 2, 3)</li> <li>(1, 2, 4)</li> <li>(1, 2, 5)</li> <li>(1, 2, 6)</li> <li>(1, 3, 4)</li> <li>(1, 3, 5)</li> <li>(1, 3, 6)</li> <li>(1, 4, 5)</li> <li>(1, 4, 6)</li> <li>(1, 5, 6)</li> <li>(2, 3, 4)</li> <li>(2, 3, 5)</li> <li>(2, 3, 6)</li> <li>(2, 4, 5)</li> <li>(2, 4, 6)</li> <li>(2, 5, 6)</li> <li>(3, 4, 5)</li> <li>(3, 4, 6)</li> <li>(3, 5, 6)</li> <li>(4, 5, 6)</li> </ul> <p>Clearly, there are 20 such favorable outcomes. Hence, the probability is given by:</p> <p>$$ \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{20}{216} = \frac{5}{54} $$</p> <p>Therefore, the correct option is:</p> <p>Option A: $$\frac{5}{54}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
luy9clq6
maths
probability
classical-defininition-of-probability
<p>Let $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked $$1,2,3,4$$. If the probability that $$a x^2+b x+c=0$$ has all real roots is $$\frac{m}{n}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.</p>
[]
null
19
<p>A quadratic equation $$ax^2 + bx + c = 0$$ has real roots if and only if its discriminant is non-negative. The discriminant $$\Delta$$ of the quadratic equation is given by:</p> <p>$$\Delta = b^2 - 4ac$$</p> <p>For the quadratic equation to have all real roots, the discriminant must be non-negative:</p> <p>$$\Delta \geq 0$$</p> <p>That means:</p> <p>$$b^2 - 4ac \geq 0$$</p> <p>Given that $$a, b, c$$ are the outcomes of rolling a fair tetrahedral die, they can each be one of the numbers 1, 2, 3, or 4. Our task is to determine the probability that this condition holds.</p> <p>We need to analyze the cases where $$b^2 \geq 4ac$$.</p> <p>Let’s consider all possible values for $$a$$, $$b$$, and $$c$$, and count how many of them satisfy the condition. Since there are 4 choices for each of the variables, there are a total of $$4 \times 4 \times 4 = 64$$ possible combinations.</p> <p>Now, we count the valid combinations where $$b^2 \geq 4ac$$:</p> <ul> <li>For $$a = 1$$: $$b^2 \geq 4c$$</li> <ul> <li>$$b = 1: 1 \geq 4c \rightarrow \text{(Not possible since } c \ \text{must be } \geq 1 \text{ and not zero)}$$</li> <li>$$b = 2: 4 \geq 4c \rightarrow c \leq 1 \rightarrow c = 1$$ (1 case)</li> <li>$$b = 3: 9 \geq 4c \rightarrow c \leq 2 \rightarrow c = 1 \text{ or } 2$$ (2 cases)</li> <li>$$b = 4: 16 \geq 4c \rightarrow c \leq 4 \rightarrow c = 1, 2, 3, 4$$ (4 cases)</li> </ul> <p>Total for $$a = 1 = 1 + 2 + 4 = 7$$</p> <li>For $$a = 2$$: $$b^2 \geq 8c$$</li> <ul> <li>$$b = 1: 1 \geq 8c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 2: 4 \geq 8c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 3: 9 \geq 8c \rightarrow c \leq 1$$ (1 case)</li> <li>$$b = 4: 16 \geq 8c \rightarrow c \leq 2$$ (2 cases)</li> </ul> <p>Total for $$a = 2 = 1 + 2 = 3$$</p> <li>For $$a = 3$$: $$b^2 \geq 12c$$</li> <ul> <li>$$b = 1: 1 \geq 12c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 2: 4 \geq 12c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 3: 9 \geq 12c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 4: 16 \geq 12c \rightarrow c \leq 1$$ (1 case)</li> </ul> <p>Total for $$a = 3 = 1$$</p> <li>For $$a = 4$$: $$b^2 \geq 16c$$</li> <ul> <li>$$b = 1: 1 \geq 16c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 2: 4 \geq 16c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 3: 9 \geq 16c \rightarrow \text{(Not possible)}$$</li> <li>$$b = 4: 16 \geq 16c \rightarrow c \leq 1$$ (1 case)</li> </ul> <p>Total for $$a = 4 = 1$$</p> </ul> <p>Adding up all the valid cases:</p> <p>$$7 + 3 + 1 + 1 = 12$$</p> <p>The total number of valid combinations is 12 out of 64. Thus, the probability is:</p> <p>$$\frac{12}{64} = \frac{3}{16}$$</p> <p>The value of $$\mathrm{m} = 3$$ and $$\mathrm{n} = 16$$. The sum $$\mathrm{m} + \mathrm{n} = 3 + 16 = 19$$.</p> <p>Hence, the answer is 19.</p>
integer
jee-main-2024-online-9th-april-morning-shift
lv5grw62
maths
probability
classical-defininition-of-probability
<p>Let the sum of two positive integers be 24 . If the probability, that their product is not less than $$\frac{3}{4}$$ times their greatest possible product, is $$\frac{m}{n}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$n$$-$$m$$ equals</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "11"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "8"}]
["A"]
null
<p>Take two numbers as $$a$$ and $$b$$</p> <p>$$a+b=24$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8pero8/601e15c3-bb4a-487e-b3ff-b7b116b4f031/2e363180-1336-11ef-9f8d-838c388c326d/file-1lw8pero9.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8pero8/601e15c3-bb4a-487e-b3ff-b7b116b4f031/2e363180-1336-11ef-9f8d-838c388c326d/file-1lw8pero9.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Probability Question 8 English Explanation"></p> <p>For product to be maximum</p> <p>$$\begin{aligned} &amp; \frac{a+b}{2} \geq \sqrt{a b} \\ &amp; 144&gt;a b \end{aligned}$$</p> <p>Maximum product is 144</p> <p>Now, $$a b \geq \frac{3}{4} \cdot 144=108$$</p> <p>Sample space $$=\{(23,1),(22,2), \ldots\}$$</p> <p>Integer points on line in shaded region</p> <p>$$\begin{aligned} &amp; \{(6,18),(7,17),(8,16), \ldots(18,6)\} \\ &amp; P(E)=\frac{n(E)}{n(S)}=\frac{13}{23}=\frac{m}{n} \Rightarrow n-m=10 \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv7v4fz3
maths
probability
classical-defininition-of-probability
<p>The coefficients $$a, b, c$$ in the quadratic equation $$a x^2+b x+c=0$$ are chosen from the set $$\{1,2,3,4,5,6,7,8\}$$. The probability of this equation having repeated roots is :</p>
[{"identifier": "A", "content": "$$\\frac{1}{128}$$\n"}, {"identifier": "B", "content": "$$\\frac{1}{64}$$\n"}, {"identifier": "C", "content": "$$\\frac{3}{256}$$\n"}, {"identifier": "D", "content": "$$\\frac{3}{128}$$"}]
["B"]
null
<p>Given quadratic equation is</p> <p>$$a x^2+b x+c=0 \text { where } a, b, c \in\{1,2,3, \ldots, 8\}$$</p> <p>For repeated roots,</p> <p>$$\begin{aligned} & b^2-4 a c=0 \\ & \Rightarrow b^2=4 a c \end{aligned}$$</p> <p>$$\Rightarrow a c$$ must be a perfect square</p> <p>$$(a, c) \in\{(1,1),(1,4),(2,2),(2,8),(3,3),(4,1),(4,4),(5,5),(6,6),(7,7),(8,2),(8,8)\}$$</p> <p>Corresponding $$b$$ must lie in set $$\{1,2,3, \ldots 8\}$$</p> <p>$$\begin{aligned} & (a, b, c) \in\{(1,2,1),(1,2,4),(2,4,2),(2,8,8) \\ & (3,6,3),(4,4,1),(4,8,4),(8,8,2)\} \\ & \therefore \text { probability }=\frac{8}{8^3} \\ & =\frac{1}{64} \\ & \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lvb294g8
maths
probability
classical-defininition-of-probability
<p>If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is :</p>
[{"identifier": "A", "content": "$$\\frac{18}{25}$$\n"}, {"identifier": "B", "content": "$$\\frac{12}{25}$$\n"}, {"identifier": "C", "content": "$$\\frac{6}{25}$$\n"}, {"identifier": "D", "content": "$$\\frac{4}{25}$$"}]
["B"]
null
<p>We have 3 letters and 5 addresses, where 3 letters are posted to exactly 2 addresses. First, we will select 2 addresses in $${ }^5 C_2$$ ways.</p> <p>Now, 3 letters can be posted to exactly 2 addresses in 6 ways.</p> <p>$$\begin{aligned} \therefore \text { Probability }=\frac{{ }^5 C_2 \times 6}{5^3} & \\ & =\frac{60}{125}=\frac{12}{25} \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-evening-shift
cR0wVgMAi5qt4x9Q
maths
probability
conditional-probability-and-multiplication-theorem
Two aeroplanes $${\rm I}$$ and $${\rm I}$$$${\rm I}$$ bomb a target in succession. The probabilities of $${\rm I}$$ and $${\rm I}$$$${\rm I}$$ scoring a hit correctly are $$0.3$$ and $$0.2,$$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is :
[{"identifier": "A", "content": "$$0.2$$ "}, {"identifier": "B", "content": "$$0.7$$ "}, {"identifier": "C", "content": "$$0.06$$ "}, {"identifier": "D", "content": "0.32"}]
["D"]
null
<p>The desired probability</p> <p>= (0.7) (0.2) + (0.7) (0.8) (0.7) (0.2) + (0.7) (0.8) (0.7) (0.8) (0.7) (0.2) + .......</p> <p>= 0.14 [1 + (0.56) + (0.56)<sup>2</sup> + .......]</p> <p>= 0.14 $$\left( {{1 \over {1 - 0.56}}} \right) = {{0.14} \over {0.44}} = {7 \over {22}}$$ = 0.32</p>
mcq
aieee-2007
9tucb0kVsi88la1U
maths
probability
conditional-probability-and-multiplication-theorem
It is given that the events $$A$$ and $$B$$ are such that <br/>$$P\left( A \right) = {1 \over 4},P\left( {A|B} \right) = {1 \over 2}$$ and $$P\left( {B|A} \right) = {2 \over 3}.$$ Then $$P(B)$$ is :
[{"identifier": "A", "content": "$${1 \\over 6}$$"}, {"identifier": "B", "content": "$${1 \\over 3}$$"}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${1 \\over 2}$$"}]
["B"]
null
Given that, <br><br>$$P\left( {{A \over B}} \right) = {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $${{P\left( {A \cap B} \right)} \over {P\left( B \right)}}$$ = $${1 \over 2}$$.............. equation (1) <br><br>$$P\left( {{B \over A}} \right) = {2 \over 3}$$ <br><br>$$ \Rightarrow $$ $${{P\left( {A \cap B} \right)} \over {P\left( A \right)}}$$ = $${2 \over 3}$$.............. equation (2) <br><br>Dividing equation (1) by equation (2) we get, <br><br>$${{P\left( A \right)} \over {P\left( B \right)}}$$ = $${3 \over 4}$$ <br><br>$$ \Rightarrow $$ $${P\left( B \right)}$$ = $${4 \over 3}$$ $$ \times $$ $${P\left( A \right)}$$ <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = $${4 \over 3}$$ $$ \times $$ $${1 \over 4}$$ <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = $${1 \over 3}$$ <br><br>$$\therefore$$ Option (B) is correct.
mcq
aieee-2008
UnpNoXVqt1E3GNHO
maths
probability
conditional-probability-and-multiplication-theorem
One ticket is selected at random from $$50$$ tickets numbered $$00, 01, 02, ...., 49.$$ Then the probability that the sum of the digits on the selected ticket is $$8$$, given that the product of these digits is zer, equals :
[{"identifier": "A", "content": "$${1 \\over 7}$$ "}, {"identifier": "B", "content": "$${5 \\over 14}$$"}, {"identifier": "C", "content": "$${1 \\over 50}$$"}, {"identifier": "D", "content": "$${1 \\over 14}$$"}]
["D"]
null
Sample space = {00, 01, 02, 03, ..........49} = 50 tickets <br><br>n(S) = 50 <br><br>n(Sum = 8) = { 08, 17, 26, 35, 44 } = 5 <br><br>n(Product = 0) = { 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30, 40 } = 14 <br><br>$$\therefore$$ Probability when product is 0 = P(Product = 0) = $${14 \over {50}}$$ <br><br>n(Sum = 8 $$ \cap $$ Product = 0) = { 08 } = 1 <br><br>$$\therefore$$ Probability when sum is 8 and product is 0 = P(Sum = 8 $$ \cap $$ Product = 0) = $${1 \over {50}}$$ <br><br>Required probability,<br> $$P\left( {{{Sum = 8} \over {Product = 0}}} \right)$$ <br><br>= $${{P\left( {Sum = 8 \cap Product = 0} \right)} \over {P\left( {Product = 0} \right)}}$$<br> <br>= $${{{1 \over {50}}} \over {{{14} \over {50}}}}$$ <br><br>=$${1 \over {14}}$$ <br><br>$$\therefore$$ Option (D) is correct.
mcq
aieee-2009
29tfdggsNkdMWL3J
maths
probability
conditional-probability-and-multiplication-theorem
If $$C$$ and $$D$$ are two events such that $$C \subset D$$ and $$P\left( D \right) \ne 0,$$ then the correct statement among the following is :
[{"identifier": "A", "content": "$$P\\left( {{C \\over D}} \\right)$$$$ \\ge P\\left( C \\right)$$ "}, {"identifier": "B", "content": "$$P\\left( {{C \\over D}} \\right)$$$$ &lt; P\\left( C \\right)$$ "}, {"identifier": "C", "content": "$$P\\left( {{C \\over D}} \\right)$$$$ = {{P\\left( D \\right)} \\over {P\\left( C \\right)}}$$ "}, {"identifier": "D", "content": "$$P\\left( {{C \\over D}} \\right)$$$$ = P\\left( C \\right)$$ "}]
["A"]
null
Given that $$C \subset D$$ means $$C$$ is present entirely inside $$D$$. Which is shown below. <img class="question-image" src="https://imagex.cdn.examgoal.net/Fyl9Vf0KWiyB0u0XJ/tctGFeitNT0FkdGQUNU4VngNUHo8n/XoAkkZjSps5tTrqaC7VVGN/image.svg" loading="lazy" alt="AIEEE 2011 Mathematics - Probability Question 174 English Explanation 1"> <br><br>$$P\left( {{C \over D}} \right)$$ = $${{P\left( {C \cap D} \right)} \over {P\left( D \right)}}$$ = $${{P\left( C \right)} \over {P\left( D \right)}}$$ <br><br>As $$C \cap D$$ means common part of events C and D which is equal to C. <img class="question-image" src="https://imagex.cdn.examgoal.net/3cwPhLtSMMbYWfmCP/EDmxTKI6c4GYJb2RPfMLqbjGkhNpF/mgqePz0BAb9zmlk9xrkpWi/image.svg" loading="lazy" alt="AIEEE 2011 Mathematics - Probability Question 174 English Explanation 2"> <br><br> $$0 \le P\left( D \right) \le 1$$ <br><br>$$\therefore$$ $${{P\left( C \right)} \over {P\left( D \right)}} \ge P\left( C \right)$$ <br><br><b>Note:</b> Here we are dividing with $${P\left( D \right)}$$ which is $$ \le 1$$ and $$ \ge 0$$, as we know on dividing with a number n in the range $$0 \le n \le 1$$ we get always more than or equal to the original number.
mcq
aieee-2011
DAR08l7NWYHC4QVf
maths
probability
conditional-probability-and-multiplication-theorem
Three numbers are chosen at random without replacement from $$\left\{ {1,2,3,..8} \right\}.$$ The probability that their minimum is $$3,$$ given that their maximum is $$6,$$ is :
[{"identifier": "A", "content": "$${3 \\over 8}$$ "}, {"identifier": "B", "content": "$${1 \\over 5}$$"}, {"identifier": "C", "content": "$${1 \\over 4}$$"}, {"identifier": "D", "content": "$${2 \\over 5}$$"}]
["B"]
null
Given set S = $$\left\{ {1,2,3,..8} \right\}$$ <br><br>Choosing 3 numbers from 8 numbers can be done $${{}^8{C_3}}$$ ways. <br><br>Choosing 3 numbers from 8 numbers while minimum no is 3 can be done $$1 \times {}^5{C_2}$$ ways. <br><br>$$\therefore$$ Probablity P(min = 3) = $${{1 \times {}^5{C_2}} \over {{}^8{C_3}}}\,$$ <br><br>Choosing 3 numbers from 8 numbers while maximum no is 6 can be done $$1 \times {}^5{C_2}$$ ways. <br><br>$$\therefore$$ Probablity P(max = 6) = $${{1 \times {}^5{C_2}} \over {{}^8{C_3}}}\,$$ <br><br>Choosing 3 numbers from 8 numbers while minimum number 3 and maximum no is 6 can be done $$1 \times {}^2{C_1} \times 1$$ ways. <br><br>$$\therefore$$ $$P\left( {\min = 3 \cap \max = 6} \right)$$ = $${{1 \times {}^2{C_1} \times 1} \over {{}^8{C_3}}}$$ <br><br>The probability that their minimum is $$3,$$ given that their maximum is $$6,$$ is : <br>$$P\left( {{{\min = 3} \over {\max = 6}}} \right)$$ <br> <br>= $${{P\left( {\min = 3 \cap \max = 6} \right)} \over {P\left( {\max = 6} \right)}}$$ <br><br>= $${{{{{}^2{C_1}} \over {{}^8{C_3}}}} \over {{{{}^5{C_2}} \over {{}^8{C_3}}}}}$$ <br><br> = $${{{}^2{C_1}} \over {{}^5{C_2}}}$$ <br><br>= $${{1 \over 5}}$$
mcq
aieee-2012
gTCUP1krIS6fyFBA
maths
probability
conditional-probability-and-multiplication-theorem
Let $$A$$ and $$B$$ be two events such that $$P\left( {\overline {A \cup B} } \right) = {1 \over 6},\,P\left( { {A \cap B} } \right) = {1 \over 4}$$ and $$P\left( {\overline A } \right) = {1 \over 4},$$ where $$\overline A $$ stands for the complement of the event $$A$$. Then the events $$A$$ and $$B$$ are :
[{"identifier": "A", "content": "independent but not equally likely. "}, {"identifier": "B", "content": "independent and equally likely. "}, {"identifier": "C", "content": "mutually exclusive and independent."}, {"identifier": "D", "content": "equally likely but not independent."}]
["A"]
null
<p>$$P(\overline {A \cup B} ) = {1 \over 6}$$</p> <p>or, $$1 - P(A \cup B) = {1 \over 6}$$</p> <p>$$\therefore$$ $$P(A \cup B) = 1 - {1 \over 6} = {5 \over 6};$$ $$P(A \cap B) = {1 \over 4}$$; and $$P(\overline A ) = {1 \over 4};$$</p> <p>$$\therefore$$ $$P(A) = 1 - P(\overline A ) = 1 - {1 \over 4} = {3 \over 4}$$</p> <p>We know, $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$</p> <p>or, $${5 \over 6} = {3 \over 4} + P(B) - {1 \over 4}$$</p> <p>or, $$P(B) = {5 \over 6} - {1 \over 2} = {1 \over 3}$$</p> <p>Now, $$P(A)\,.\,P(B) = {3 \over 4}.\,{1 \over 3} = {1 \over 4} = P(A \cap B)$$</p> <p>i.e., events A and B are mutually independent.</p> <p>Since the probability of A and B are different, so they are not equally likely events.</p> <p>Therefore, (A) is the correct option.</p>
mcq
jee-main-2014-offline
IEceFTmzpblWyxmi
maths
probability
conditional-probability-and-multiplication-theorem
Let two fair six-faced dice $$A$$ and $$B$$ be thrown simultaneously. If $${E_1}$$ is the event that die $$A$$ shows up four, $${E_2}$$ is the event that die $$B$$ shows up two and $${E_3}$$ is the event that the sum of numbers on both dice is odd, then which of the following statements is $$NOT$$ true?
[{"identifier": "A", "content": "$${E_1}$$ and $${E_2}$$ are independent."}, {"identifier": "B", "content": "$${E_2}$$ and $${E_3}$$ are independent."}, {"identifier": "C", "content": "$${E_1}$$ and $${E_3}$$ are independent."}, {"identifier": "D", "content": "$${E_1},$$ $${E_2}$$ and $${E_3}$$ are independent."}]
["D"]
null
Total possible outcome with two six faced dice = 6<sup>2</sup> = 36 <br><br>When dice A shows up 4, the possible cases are <br>E<sub>1</sub> = { (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) } = 6 cases <br>$$\therefore$$ $$P\left( {{E_1}} \right) = {6 \over {36}} = {1 \over 6}$$ <br><br> When dice B shows up 2, the possible cases are <br>E<sub>2</sub> = { (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2) } = 6 cases <br><br>$$P\left( {{E_2}} \right) = {6 \over {36}} = {1 \over 6}$$ <br><br>$${E_1} \cap {E_2}$$ = Common in both in E<sub>1</sub> and E<sub>2</sub> = { (4, 2) } <br><br>$$P\left( {{E_1} \cap {E_2}} \right) = {1 \over {36}}$$ <br><br>And $$P\left( {{E_1}} \right)$$.$$P\left( {{E_2}} \right)$$ = $${1 \over 6}$$.$${1 \over 6}$$ = $${1 \over 36}$$ <br><br>$$\therefore$$$$P\left( {{E_1} \cap {E_2}} \right)$$ = $$P\left( {{E_1}} \right)$$.$$P\left( {{E_2}} \right)$$ <br><br>$$\therefore$$ E<sub>1</sub> and E<sub>2</sub> are independent. <br><br>$${E_3}$$ = [ (1, 2), (1, 4), (1, 6), <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2, 1), (2, 3), (2, 5), <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3, 2), (3, 4), (3, 6), <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(4, 1), (4, 3), (4, 5), <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(5, 2), (5, 4), (5, 6), <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(6, 1), (6, 3), (6, 5) ] = 18 cases <br><br>$${E_1} \cap {E_3}$$ = { (4, 1) (4, 3) (4, 5) } = 3 cases <br><br>$$\therefore$$ $$P\left( {{E_1} \cap {E_3}} \right) = {3 \over {36}} = {1 \over {12}}$$ = $${1 \over 6} \times {1 \over 2}$$ = $$P\left( {{E_1}} \right)$$ $$ \times $$ $$P\left( {{E_3}} \right)$$ <br><br>$$\therefore$$ E<sub>1</sub> and E<sub>3</sub> are independent. <br><br>$${E_2} \cap {E_3}$$ = { (1, 2) (3, 2) (5, 2) } = 3 cases <br><br>$$\therefore$$ $$P\left( {{E_2} \cap {E_3}} \right) = {3 \over {36}} = {1 \over {12}}$$ = $${1 \over 6} \times {1 \over 2}$$ = $$P\left( {{E_2}} \right)$$ $$ \times $$ $$P\left( {{E_3}} \right)$$ <br><br>$$\therefore$$ E<sub>2</sub> and E<sub>3</sub> are independent. <br><br>$${E_1} \cap {E_2} \cap {E_3}$$ = 0 <br><br>$$\therefore$$ $$P\left( {{E_1} \cap {E_2} \cap {E_3}} \right)$$ = 0 <br><br>$$P\left( {{E_1}} \right) \times $$ $$P\left( {{E_2}} \right) \times $$$$P\left( {{E_3}} \right)$$ = $${1 \over 6}$$ $$ \times $$ $${1 \over 6}$$ $$ \times $$ $${1 \over 2}$$ = $${1 \over {72}}$$ <br><br>$$\therefore$$ $${E_1},$$ $${E_2}$$ and $${E_3}$$ are not independent. <br><br>$$\therefore$$ Option (D) is correct.
mcq
jee-main-2016-offline
PTFEW83CW5cQQ7CvoX4Zl
maths
probability
conditional-probability-and-multiplication-theorem
If A and B are any two events such that P(A) = $${2 \over 5}$$ and P (A $$ \cap $$ B) = $${3 \over {20}}$$, hen the conditional probability, P(A $$\left| {} \right.$$(A' $$ \cup $$ B')), where A' denotes the complement of A, is equal to :
[{"identifier": "A", "content": "$${1 \\over 4}$$ "}, {"identifier": "B", "content": "$${5 \\over 17}$$"}, {"identifier": "C", "content": "$${8 \\over 17}$$"}, {"identifier": "D", "content": "$${11 \\over 20}$$"}]
["B"]
null
$$P\left( {{A \over {A' \cup B'}}} \right)$$ <br><br>$$ = {{P\left[ {A \cap \left( {A' \cup B'} \right)} \right]} \over {P\left( {A' \cap B'} \right)}}$$ <br><br>$$ = {{P\left[ {\left( {A \cap A'} \right) \cup \left( {A \cap B'} \right)} \right]} \over {P\left( {A \cap B} \right)'}}$$ <br><br>$$\left[ \, \right.$$As&nbsp;&nbsp;&nbsp;$$\left. {\left( {A \cap B} \right)' = A' \cap B'} \right]$$ <br><br>$$ = {{P\left( {A \cap B'} \right)} \over {P\left( {A \cap B} \right)'}}$$ <br><br>As&nbsp;&nbsp;&nbsp;$$A \cap A' = \phi $$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\phi \cup \left( {A \cap B'} \right) = A \cap B'$$ <br><br>$$ = {{P\left( A \right) - P\left( {A \cap B} \right)} \over {1 - P\left( {A \cap B} \right)}}$$ <br><br>$$\left[ \, \right.$$As&nbsp;&nbsp;&nbsp;$$A \cap B' = A - \left( {A \cap B} \right)$$ <br><br>and&nbsp;&nbsp;&nbsp;$$\left. {\left( {A \cap B} \right)' = 1 - \left( {A \cap B} \right)} \right]$$ <br><br>Given&nbsp;&nbsp;$$P\left( A \right) = {2 \over 5}$$ <br><br>and&nbsp;&nbsp;&nbsp;$$P\left( {A \cap B} \right) = {3 \over {20}}$$ <br><br>$$ = {{{2 \over 5} - {3 \over {20}}} \over {1 - {3 \over {20}}}}$$ <br><br>$$ = {{{{8 - 3} \over {20}}} \over {{{17} \over {20}}}}$$ <br><br>$$ = {5 \over {17}}$$
mcq
jee-main-2016-online-9th-april-morning-slot
GzgdjCK46V8fjwqTu9deK
maths
probability
conditional-probability-and-multiplication-theorem
Let E and F be two independent events. The probability that both E and F happen is $${1 \over {12}}$$ and the probability that neither E nor F happens is $${1 \over {2}}$$, then a value of $${{P\left( E \right)} \over {P\left( F \right)}}$$ is :
[{"identifier": "A", "content": "$${4 \\over 3}$$"}, {"identifier": "B", "content": "$${3 \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over 3}$$"}, {"identifier": "D", "content": "$${5 \\over 12}$$"}]
["A"]
null
<p>Let P(E) = x and P(F) = y</p> <p>Now, $$P(E \cap F) = {1 \over {12}}$$</p> <p>$$ \Rightarrow P(E)P(F) = {1 \over {12}}$$</p> <p>$$ \Rightarrow xy = {1 \over {12}}$$</p> <p>Also, $$P(E' \cap F') = {1 \over 2}$$</p> <p>$$ \Rightarrow (1 - P(E))(1 - P(F)) = {1 \over 2}$$</p> <p>$$ \Rightarrow (1 - x)(1 - y) = {1 \over 2}$$</p> <p>$$ \Rightarrow 1 - x - y + xy = {1 \over 2}$$</p> <p>$$ \Rightarrow x + y = 1 + xy - {1 \over 2}$$</p> <p>$$ \Rightarrow x + y = 1 + {1 \over {12}} - {1 \over 2}$$</p> <p>$$ \Rightarrow x + y = {1 \over 2} + {1 \over {12}} = {7 \over {12}}$$ ........ (1)</p> <p>Now,</p> <p>$${(x - y)^2} = {(x + y)^2} - 4xy$$</p> <p>$$ \Rightarrow {(x - y)^2} = {{49} \over {144}} - {1 \over 3} \Rightarrow {{49 - 98} \over {144}} \Rightarrow {1 \over {144}}$$</p> <p>$$ \Rightarrow (x - y) = {1 \over {12}} \Rightarrow x - y = {1 \over 2}$$ ........ (2)</p> <p>From Eqs. (1) and (2), we get</p> <p>$$(x + y)(x - y) = {7 \over {12}} + {1 \over {12}}$$</p> <p>$$ \Rightarrow x = {4 \over {12}};y = {3 \over {12}}$$</p> <p>$$ \Rightarrow {x \over y} = {4 \over 3} = {{P(E)} \over {P(F)}}$$</p>
mcq
jee-main-2017-online-9th-april-morning-slot
QpF3mzdVaPsLYadpaz830
maths
probability
conditional-probability-and-multiplication-theorem
A player X has a biased coin whose probability of showing heads is p and a player Y has a fair coin. They start playing a game with their own coins and play alternately. The player who throws a head first is a winner. If X starts the game, and the probability of winning the game by both the players is equal, then the value of 'p' is :
[{"identifier": "A", "content": "$${1 \\over 5}$$"}, {"identifier": "B", "content": "$${1 \\over 3}$$"}, {"identifier": "C", "content": "$${2 \\over 5}$$"}, {"identifier": "D", "content": "$${1 \\over 4}$$"}]
["B"]
null
P(X getting head) = p <br><br>$$ \therefore $$ P(X getting tail) = 1 - p <br><br>P(Y getting head) = P(Y getting tail) = $${1 \over 2}$$ <br><br>P(X wins) = p + (1 - p)$${1 \over 2}$$p + (1 - p)$${1 \over 2}$$(1 - p)$${1 \over 2}$$p + ... <br><br>= $${p \over {1 - \left( {{{1 - p} \over 2}} \right)}}$$ <br><br>= $${{2p} \over {1 + p}}$$ <br><br>P(Y win) = (1 - p)$${1 \over 2}$$ + (1 - p)$${1 \over 2}$$(1 - p)$${1 \over 2}$$ + ... <br><br>= $$\left( {{{1 - p} \over 2}} \right).{p \over {1 - \left( {{{1 - p} \over 2}} \right)}} = {{1 - p} \over {1 + p}}$$ <br><br>According to question, <br><br>P(X wins) = P(Y wins) <br><br>$$ \therefore $$ $${{2p} \over {1 + p}}$$ = $${{1 - p} \over {1 + p}}$$ <br><br>$$ \Rightarrow $$ 3p = 1 <br><br>$$ \Rightarrow $$ p = $${1 \over 3}$$
mcq
jee-main-2018-online-15th-april-evening-slot
pKPACm03fi1d3b1OacMOk
maths
probability
conditional-probability-and-multiplication-theorem
Let A, B and C be three events, which are pair-wise independent and $$\overrightarrow E $$ denotes the completement of an event E. If $$P\left( {A \cap B \cap C} \right) = 0$$ and $$P\left( C \right) &gt; 0,$$ then $$P\left[ {\left( {\overline A \cap \overline B } \right)\left| C \right.} \right]$$ is equal to :
[{"identifier": "A", "content": "$$P\\left( {\\overline A } \\right) - P\\left( B \\right)$$"}, {"identifier": "B", "content": "$$P\\left( A \\right) + P\\left( {\\overline B } \\right)$$"}, {"identifier": "C", "content": "$$P\\left( {\\overline A } \\right) - P\\left( {\\overline B } \\right)$$"}, {"identifier": "D", "content": "$$P\\left( {\\overline A } \\right) + P\\left( {\\overline B } \\right)$$"}]
["A"]
null
Here, $$P\left( {\overline A \cap \overline B \left| C \right.} \right) = {{P\left( {\overline A \cap \overline B \cap C} \right)} \over {P\left( C \right)}}$$ <br><br>= $${{P\left[ {\left( {\overline {A \cup B} } \right) \cap C} \right]} \over {P\left( C \right)}}$$ <br><br>= $${{P\left[ {C - \left( {A \cup B} \right)} \right]} \over {P\left( C \right)}}$$ <br><br>= $${{P\left( C \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)} \over {P\left( C \right)}}$$ <br><br>= $${{P\left( C \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right)} \over {P\left( C \right)}}$$ ($$ \because $$$$\left. {P\left( {A \cap B \cap C} \right) = 0} \right)$$ <br><br>= $${{P\left( C \right) - P\left( A \right).P(C) - P\left( B \right).P(C)} \over {P\left( C \right)}}$$ <br><br>[$$ \because $$ A, B and C are independent events] <br><br>= 1 - P(A) - P(B) <br><br>= $$P\left( {\overline A } \right)$$ - P(B) or $$P\left( {\overline B } \right)$$ - P(A)
mcq
jee-main-2018-online-16th-april-morning-slot
YsZBablbi4cftZyZiVjNo
maths
probability
conditional-probability-and-multiplication-theorem
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is :
[{"identifier": "A", "content": "$${{21} \\over {49}}$$"}, {"identifier": "B", "content": "$${{27} \\over {49}}$$"}, {"identifier": "C", "content": "$${{26} \\over {49}}$$"}, {"identifier": "D", "content": "$${{32} \\over {49}}$$"}]
["D"]
null
5 Red and 2 green balls <br><br>P(one red ball) = $${5 \over 7}$$ <br><br>P(one green ball) = $${2 \over 7}$$ <br><br><b>Case I : </b> <br><br>If drawn ball is green than a red ball is added <br><br>$$\left( {\matrix{ {6{\mathop{\rm Re}\nolimits} d} \cr {1\,Green} \cr } } \right)$$ P (red ball) = $${6 \over 7}$$ <br><br><b>Case II : </b> <br><br>If drawn ball is red than a green ball is added <br><br>$$\left( {\matrix{ {4{\mathop{\rm Re}\nolimits} d} \cr {3\,Green} \cr } } \right)$$ P (red ball) = $${4 \over 7}$$ <br><br>P (2<sup>nd</sup> red ball) = $${5 \over 7}$$ $$ \times {4 \over 7} + {2 \over 7} \times {6 \over 7}$$ = $${{32} \over {49}}$$
mcq
jee-main-2019-online-9th-january-evening-slot
bvonEScgOPynV9McufeFA
maths
probability
conditional-probability-and-multiplication-theorem
An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on them is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered 1, 2, 3, ……, 9 is randomly picked and the number on the card is noted. The probability that the noted number is either 7 or 8 is :
[{"identifier": "A", "content": "$${{19} \\over {36}}$$"}, {"identifier": "B", "content": "$${{15} \\over {72}}$$"}, {"identifier": "C", "content": "$${{13} \\over {36}}$$"}, {"identifier": "D", "content": "$${{19} \\over {72}}$$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265335/exam_images/oszgg4ddvwq2jkpn9psx.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Morning Slot Mathematics - Probability Question 153 English Explanation"> <br>$$P\left( A \right) = {1 \over 2} \times {{11} \over {36}} + {1 \over 2} \times {2 \over 9} = {{19} \over {72}}$$
mcq
jee-main-2019-online-10th-january-morning-slot
8U4m3K6A2fQNMMmrULIuQ
maths
probability
conditional-probability-and-multiplication-theorem
Two integers are selected at random from the set {1, 2, ...., 11}. Given that the sum of selected numbers is even, the conditional probability that both the numbers are even is :
[{"identifier": "A", "content": "$${2 \\over 5}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${7 \\over 10}$$"}, {"identifier": "D", "content": "$${3 \\over 5}$$"}]
["A"]
null
Since sum of two numbers is even so either both are odd or both are even. Hence number of elements in reduced samples space = <sup>5</sup>C<sub>2</sub> + <sup>6</sup>C<sub>2</sub> <br><br>So, required probability = $${{{}^5{C_2}} \over {{}^5{C_2} + {}^6{C_2}}}$$ = $${2 \over 5}$$
mcq
jee-main-2019-online-11th-january-morning-slot
zrFBvUWrqtdjgdeYy5zha
maths
probability
conditional-probability-and-multiplication-theorem
Let A and B be two non-null events such that A $$ \subset $$ B . Then, which of the following statements is always correct?
[{"identifier": "A", "content": "P(A|B) = 1"}, {"identifier": "B", "content": "P(A|B) = P(B) \u2013 P(A)"}, {"identifier": "C", "content": "P(A|B) $$ \\le $$ P(A)\n"}, {"identifier": "D", "content": "P(A|B) $$ \\ge $$ P(A)\n"}]
["D"]
null
$$P\left( {{A \over B}} \right) = {{P\left( {A \cap B} \right)} \over {P\left( B \right)}}$$ <br><br>As A $$ \subset $$ B, <br><br>then P(A$$ \cap $$B) = P(A) <br><br>$$ \therefore $$ $$P\left( {{A \over B}} \right) = {{P\left( A \right)} \over {P\left( B \right)}}$$ <br><br>As P(B) $$ \le $$ 1 <br><br>$$ \therefore $$ $${{P\left( A \right)} \over {P\left( B \right)}}$$ $$ \ge $$ P(A)
mcq
jee-main-2019-online-8th-april-morning-slot
FtUibW67JlXKrCLOmU18hoxe66ijvwpbb2e
maths
probability
conditional-probability-and-multiplication-theorem
Four persons can hit a target correctly with probabilities $${1 \over 2}$$, $${1 \over 3}$$, $${1 \over 4}$$ and $${1 \over 8}$$ respectively. if all hit at the target independently, then the probability that the target would be hit, is :
[{"identifier": "A", "content": "$${{25} \\over {32}}$$"}, {"identifier": "B", "content": "$${{25} \\over {192}}$$"}, {"identifier": "C", "content": "$${{1} \\over {192}}$$"}, {"identifier": "D", "content": "$${{7} \\over {32}}$$"}]
["A"]
null
Let four persons are A, B, C and D. <br><br>Probablity of hitting a target by them, <br><br>P(A) = $${1 \over 2}$$ <br><br>P(B) = $${1 \over 3}$$ <br><br>P(C) = $${1 \over 4}$$ <br><br>P(D) = $${1 \over 8}$$ <br><br>Probablity of hitting target atleast once = 1 - Probablity of not hitting by anybody <br><br>P(Hit) = 1 - $$P\left( {\overline A \cap \overline B \cap \overline C \cap \overline D } \right)$$ <br><br>= 1 - $$P\left( {\overline A } \right).P\left( {\overline B } \right).P\left( {\overline C } \right).P\left( {\overline D } \right)$$ <br><br>= 1 - $${1 \over 2}.{2 \over 3}.{3 \over 4}.{7 \over 8}$$ <br><br>= $${{25} \over {32}}$$
mcq
jee-main-2019-online-9th-april-morning-slot
0lS1ulEsuyoAXjx4Pr3rsa0w2w9jwxkwc5u
maths
probability
conditional-probability-and-multiplication-theorem
Assume that each born child is equally likely to be a boy or a girl. If two families have two children each, then the conditional probability that all children are girls given that at least two are girls is :
[{"identifier": "A", "content": "$${1 \\over {10}}$$"}, {"identifier": "B", "content": "$${1 \\over {17}}$$"}, {"identifier": "C", "content": "$${1 \\over {11}}$$"}, {"identifier": "D", "content": "$${1 \\over {12}}$$"}]
["C"]
null
A = At least two girls<br><br> B = All girls<br><br> $$P\left( {{B \over A}} \right) = {{P\left( {B \cap A} \right)} \over {P\left( A \right)}}$$<br><br> $$ \Rightarrow {{P(B)} \over {P(A)}} = {{{{\left( {{1 \over 4}} \right)}^2}} \over {1 - {}^4{C_0}{{\left( {{1 \over 2}} \right)}^4} - {}^4{C_1}{{\left( {{1 \over 2}} \right)}^4}}}$$<br><br> $$ \Rightarrow {1 \over {16 - 1 - 4}} = {1 \over {11}}$$
mcq
jee-main-2019-online-10th-april-morning-slot
WIVZ5wahzNzL3rDRF2jgy2xukfajvp4w
maths
probability
conditional-probability-and-multiplication-theorem
In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws total a of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six. The game stops as soon as either of the players wins. The probability of A winning the game is :
[{"identifier": "A", "content": "$${5 \\over {6}}$$"}, {"identifier": "B", "content": "$${5 \\over {31}}$$"}, {"identifier": "C", "content": "$${31 \\over {61}}$$"}, {"identifier": "D", "content": "$${30 \\over {61}}$$"}]
["D"]
null
Sum total 6 = {(1,5)(2,4)(3,3)(4,2)(5,1)} <br><br>$$P(6) = {5 \over 36}$$ <br><br>Sum total 7 = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)} <br><br>$$\,P(7) = {6 \over {36}}$$ = $${1 \over 6}$$ <br><br>Game ends and A wins if A throws 6 in 1<sup>st</sup> throw or A don’t throw 6 in 1<sup>st</sup> throw, B don’t throw 7 in 1<sup>st</sup> throw and then A throw 6 in his 2 <sup>nd</sup> chance and so on. <br><br>P(A) = A + $$\overline A \overline B A$$ + $$\overline A \overline B \overline A \overline B A$$ <br><br>= $${5 \over {36}} + \left( {{{31} \over {36}}} \right)\left( {{{30} \over {36}}} \right)\left( {{5 \over {36}}} \right) + $$ ..... $$\infty $$ <br><br>= $${{{5 \over {36}}} \over {1 - \left( {{{31} \over {36}}} \right)\left( {{{30} \over {36}}} \right)}}$$ <br><br>= $${{5 \times 36} \over {36 \times 36 - 31 \times 30}}$$ <br><br>= $${30 \over {61}}$$
mcq
jee-main-2020-online-4th-september-evening-slot
1YfQyWb3UUUTNEknDmjgy2xukezeh1np
maths
probability
conditional-probability-and-multiplication-theorem
Let E<sup>C</sup> denote the complement of an event E. Let E<sub>1</sub> , E<sub>2</sub> and E<sub>3</sub> be any pairwise independent events with P(E<sub>1</sub>) &gt; 0 <br/><br>and P(E<sub>1</sub> $$ \cap $$ E<sub>2</sub> $$ \cap $$ E<sub>3</sub>) = 0. <br/><br>Then P($$E_2^C \cap E_3^C/{E_1}$$) is equal to :</br></br>
[{"identifier": "A", "content": "$$P\\left( {E_3^C} \\right)$$ - P(E<sub>2</sub>)"}, {"identifier": "B", "content": "$$P\\left( {E_2^C} \\right)$$ + P(E<sub>3</sub>)"}, {"identifier": "C", "content": "$$P\\left( {E_3^C} \\right)$$ - $$P\\left( {E_2^C} \\right)$$"}, {"identifier": "D", "content": "P(E<sub>3</sub>) - $$P\\left( {E_2^C} \\right)$$"}]
["A"]
null
Given E<sub>1</sub> , E<sub>2</sub> , E<sub>3</sub> are pairwise indepedent events <br><br>so P(E<sub>1</sub> $$ \cap $$ E<sub>2</sub> ) = P(E<sub>1</sub> ).P(E<sub>2</sub> ) <br><br>and P(E<sub>2</sub> $$ \cap $$ E<sub>3</sub> ) = P(E<sub>2</sub> ).P(E<sub>3</sub> ) <br><br>and P(E<sub>3</sub> $$ \cap $$ E<sub>1</sub> ) = P(E<sub>3</sub> ).P(E<sub>1</sub> ) <br><br>and P(E<sub>1</sub> $$ \cap $$ E<sub>2</sub> $$ \cap $$ E<sub>3</sub>) = 0 <br><br>Now $$P\left( {{{E_2^C \cap E_3^C} \over {{E_1}}}} \right)$$<br><br> $$ = {{P\left[ {{E_1} \cap \left( {E_2^C \cap E_3^C} \right)} \right]} \over {P\left( {{E_1}} \right)}}$$<br><br> $$ = {{P\left( {{E_1}} \right) - \left[ {P\left( {{E_1} \cap {E_2}} \right) + P\left( {{E_1} \cap {E_3}} \right) - P\left( {{E_1} \cap {E_2} \cap {E_3}} \right)} \right]} \over {P\left( {{E_1}} \right)}}$$<br><br> $$ = {{P\left( {{E_1}} \right) - P\left( {{E_1}} \right).P\left( {{E_2}} \right) - P\left( {{E_1}} \right).P\left( {{E_3}} \right) - 0} \over {P\left( {{E_1}} \right)}}$$<br><br> $$ = 1 - P\left( {{E_2}} \right) - P\left( {{E_3}} \right)$$<br><br> $$ = 1 - P\left( {{E_3}} \right) - P\left( {{E_2}} \right)$$<br><br> $$ = P\left( {E_3^C} \right) - P\left( {{E_2}} \right)$$
mcq
jee-main-2020-online-2nd-september-evening-slot
wcFmUM2A9VVSs7CPqj7k9k2k5gz74fk
maths
probability
conditional-probability-and-multiplication-theorem
Let A and B be two independent events such that<br/> P(A) = $${1 \over 3}$$ and P(B) = $${1 \over 6}$$.<br/> Then, which of the following is TRUE?
[{"identifier": "A", "content": "$$P\\left( {{A \\over {A \\cup B}}} \\right) = {1 \\over 4}$$"}, {"identifier": "B", "content": "$$P\\left( {{A \\over B}} \\right) = {2 \\over 3}$$"}, {"identifier": "C", "content": "$$P\\left( {{{A'} \\over {B'}}} \\right) = {1 \\over 3}$$"}, {"identifier": "D", "content": "$$P\\left( {{A \\over {B'}}} \\right) = {1 \\over 3}$$"}]
["D"]
null
Given P(A) = $${1 \over 3}$$ and P(B) = $${1 \over 6}$$ <br><br>A and B are independent <br><br>So P(A$$ \cap $$B) = $${1 \over 3} \times {1 \over 6}$$ = $${1 \over {18}}$$ <br><br>P(A$$ \cup $$B) = P(A) + P(B) – P(A $$ \cap $$ B) <br><br>= $${1 \over 3}$$ + $${1 \over 6}$$ - $${1 \over {18}}$$ <br><br>= $${4 \over 9}$$ <br><br>$$P\left( {{A \over {B'}}} \right)$$ <br><br>= $${{P\left( {A \cap B'} \right)} \over {P\left( {B'} \right)}}$$ <br><br>= $${{P\left( A \right) - P\left( {A \cap B} \right)} \over {1 - P\left( B \right)}}$$ <br><br>= $${{{1 \over 3} - {1 \over {18}}} \over {1 - {1 \over 6}}}$$ = $${{1 \over 3}}$$
mcq
jee-main-2020-online-8th-january-morning-slot
bsMRfGHLGyb32Fe3n2jgy2xukezlxh5x
maths
probability
conditional-probability-and-multiplication-theorem
A dice is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is :
[{"identifier": "A", "content": "$${1 \\over 8}$$"}, {"identifier": "B", "content": "$${1 \\over 9}$$"}, {"identifier": "C", "content": "$${1 \\over 4}$$"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["B"]
null
Let A is the event for getting score a multiple of 4. <br><br>So, A = { (1, 3), (3, 1), (2, 2), (2, 6), (6, 2), (3, 5), (5, 3), (4, 4), (6, 6) } = 09 <br><br>n(A) = 9 <br><br>B : Score of 4 has appeared at least once. <br><br>B = {(4, 4)} <br><br>So, Required probability = $${1 \over 9}$$
mcq
jee-main-2020-online-3rd-september-morning-slot
aXHQRXYYpHINc0geBR1kls3ppy8
maths
probability
conditional-probability-and-multiplication-theorem
When a missile is fired from a ship, the probability that it is intercepted is $${1 \over 3}$$ and the probability that the missile hits the target, given that it is not intercepted, is $${3 \over 4}$$. If three missiles are fired independently from the ship, then the probability that all three hit the target, is :
[{"identifier": "A", "content": "$${3 \\over 4}$$"}, {"identifier": "B", "content": "$${3 \\over 8}$$"}, {"identifier": "C", "content": "$${1 \\over 27}$$"}, {"identifier": "D", "content": "$${1 \\over 8}$$"}]
["D"]
null
Probability of not getting intercepted = $${2 \over 3}$$<br><br>When it is not intercepted, probability of missile hitting target = $${3 \over 4}$$<br><br>$$\therefore$$ So when such 3 missiles launched then P (all 3 hitting the target) <br><br>= $${\left( {{2 \over 3} \times {3 \over 4}} \right)} $$ $$ \times $$ $${\left( {{2 \over 3} \times {3 \over 4}} \right)} $$ $$ \times $$ $${\left( {{2 \over 3} \times {3 \over 4}} \right)} $$ <br><br>$$= {1 \over 8}$$
mcq
jee-main-2021-online-25th-february-morning-slot
lNV17llKqZw6mSaHaj1kmhz6wk9
maths
probability
conditional-probability-and-multiplication-theorem
A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
[{"identifier": "A", "content": "$${{39} \\over {50}}$$"}, {"identifier": "B", "content": "$${{3} \\over {4}}$$"}, {"identifier": "C", "content": "$${{22} \\over {425}}$$"}, {"identifier": "D", "content": "$${{52} \\over {867}}$$"}]
["A"]
null
Consider the events, <br><br>E<sub>1</sub> = missing card is spade <br><br>E<sub>2</sub> = missing card is not a spade <br><br>A = Two spade cards are drawn <br><br>$$P\left( {{E_1}} \right) = {1 \over 4}$$ <br>$$P\left( {{E_2}} \right) = {3 \over 4}$$ <br><br>$$P\left( {{A \over {{E_1}}}} \right) = {{{}^{12}{C_2}} \over {{}^{51}{C_2}}}$$ <br><br>$$P\left( {{A \over {{E_2}}}} \right) = {{{}^{13}{C_2}} \over {{}^{51}{C_2}}}$$ <br><br>$$P\left( {{{{E_2}} \over A}} \right) = {{P\left( {{A \over {{E_2}}}} \right).P\left( {{E_2}} \right)} \over {P\left( {{A \over {{E_1}}}} \right).P\left( {{E_1}} \right) + P\left( {{A \over {{E_2}}}} \right).P\left( {{E_2}} \right)}}$$ <br><br>$$ = {{{{{}^{13}{C_2}} \over {{}^{51}{C_2}}}.{3 \over 4}} \over {{{{}^{12}{C_2}} \over {{}^{51}{C_2}}}.{1 \over 4} + {{{}^{13}{C_2}} \over {{}^{51}{C_2}}}.{3 \over 4}}}$$ <br><br>= $${{39} \over {50}}$$
mcq
jee-main-2021-online-16th-march-morning-shift
1ktbbtchx
maths
probability
conditional-probability-and-multiplication-theorem
Let A and B be independent events such that P(A) = p, P(B) = 2p. The largest value of p, for which P (exactly one of A, B occurs) = $${5 \over 9}$$, is :
[{"identifier": "A", "content": "$${1 \\over 3}$$"}, {"identifier": "B", "content": "$${2 \\over 9}$$"}, {"identifier": "C", "content": "$${4 \\over 9}$$"}, {"identifier": "D", "content": "$${5 \\over 12}$$"}]
["D"]
null
P (Exactly one of A or B)<br><br>$$ = P\left( {A \cap \overline B } \right) + \left( {\overline A \cap B} \right) = {5 \over 9}$$<br><br>$$ = P(A)P(\overline B ) + P(\overline A )P(B) = {5 \over 9}$$<br><br>$$ \Rightarrow P(A)(1 - P(B)) + (1 - P(A))P(B) = {5 \over 9}$$<br><br>$$ \Rightarrow p(1 - 2p) + (1 - p)2p = {5 \over 9}$$<br><br>$$ \Rightarrow 36{p^2} - 27p + 5 = 0$$<br><br>$$ \Rightarrow p = {1 \over 3}$$ or $${5 \over {12}}$$<br><br>$${p_{\max }} = {5 \over {12}}$$
mcq
jee-main-2021-online-26th-august-morning-shift
1ktd01kjf
maths
probability
conditional-probability-and-multiplication-theorem
A fair die is tossed until six is obtained on it. Let x be the number of required tosses, then the conditional probability P(x $$\ge$$ 5 | x &gt; 2) is :
[{"identifier": "A", "content": "$${{125} \\over {216}}$$"}, {"identifier": "B", "content": "$${{11} \\over {36}}$$"}, {"identifier": "C", "content": "$${{5} \\over {6}}$$"}, {"identifier": "D", "content": "$${{25} \\over {36}}$$"}]
["D"]
null
P(x $$\ge$$ 5 | x &gt; 2) = $${{P(x \ge 5)} \over {P(x &gt; 2)}}$$<br><br>= $${{{{\left( {{5 \over 6}} \right)}^4}.{1 \over 6} + {{\left( {{5 \over 6}} \right)}^5}.{1 \over 6} + ....... + \infty } \over {{{\left( {{5 \over 6}} \right)}^2}.{1 \over 6} + {{\left( {{5 \over 6}} \right)}^3}.{1 \over 6} + ...... + \infty }}$$<br><br>=$${{{{{{\left( {{5 \over 6}} \right)}^4}.{1 \over 5}} \over {1 - {5 \over 6}}}} \over {{{{{\left( {{5 \over 6}} \right)}^2}.{1 \over 6}} \over {1 - {5 \over 6}}}}} = {\left( {{5 \over 6}} \right)^2} = {{25} \over {36}}$$
mcq
jee-main-2021-online-26th-august-evening-shift
1ktend64o
maths
probability
conditional-probability-and-multiplication-theorem
When a certain biased die is rolled, a particular face occurs with probability $${1 \over 6} - x$$ and its opposite face occurs with probability $${1 \over 6} + x$$. All other faces occur with probability $${1 \over 6}$$. Note that opposite faces sum to 7 in any die. If 0 &lt; x &lt; $${1 \over 6}$$, and the probability of obtaining total sum = 7, when such a die is rolled twice, is $${13 \over 96}$$, then the value of x is :
[{"identifier": "A", "content": "$${1 \\over 16}$$"}, {"identifier": "B", "content": "$${1 \\over 8}$$"}, {"identifier": "C", "content": "$${1 \\over 9}$$"}, {"identifier": "D", "content": "$${1 \\over 12}$$"}]
["B"]
null
Probability of obtaining total sum 7 = probability of getting opposite faces.<br><br>Probability of getting opposite faces<br><br>$$ = 2\left[ {\left( {{1 \over 6} - x} \right)\left( {{1 \over 6} + x} \right) + {1 \over 6} \times {1 \over 6} + {1 \over 6} \times {1 \over 6}} \right]$$<br><br>$$ \Rightarrow 2\left[ {\left( {{1 \over 6} - x} \right)\left( {{1 \over 6} + x} \right) + {1 \over 6} \times {1 \over 6} + {1 \over 6} \times {1 \over 6}} \right] = {{13} \over {96}}$$ (given)<br><br>$$ \Rightarrow $$ $$x = {1 \over 8}$$
mcq
jee-main-2021-online-27th-august-morning-shift
1ktit2n77
maths
probability
conditional-probability-and-multiplication-theorem
An electric instrument consists of two units. Each unit must function independently for the instrument to operate. The probability that the first unit functions is 0.9 and that of the second unit is 0.8. The instrument is switched on and it fails to operate. If the probability that only the first unit failed and second unit is functioning is p, then 98 p is equal to _____________.
[]
null
28
I<sub>1</sub> = first unit is functioning<br><br>I<sub>2</sub> = second unit is functioning<br><br>P(I<sub>1</sub>) = 0.9, P(I<sub>2</sub>) = 0.8<br><br>P($$\overline {{I_1}} $$) = 0.1, P($$\overline {{I_2}} $$) = 0.2<br><br>$$P = {{0.8 \times 0.1} \over {0.1 \times 0.2 + 0.9 \times 0.2 + 0.1 \times 0.8}} = {8 \over {28}}$$<br><br>$$98P = {8 \over {28}} \times 98 = 28$$
integer
jee-main-2021-online-31st-august-morning-shift
1l5aie7xz
maths
probability
conditional-probability-and-multiplication-theorem
<p>Let E<sub>1</sub> and E<sub>2</sub> be two events such that the conditional probabilities $$P({E_1}|{E_2}) = {1 \over 2}$$, $$P({E_2}|{E_1}) = {3 \over 4}$$ and $$P({E_1} \cap {E_2}) = {1 \over 8}$$. Then :</p>
[{"identifier": "A", "content": "$$P({E_1} \\cap {E_2}) = P({E_1})\\,.\\,P({E_2})$$"}, {"identifier": "B", "content": "$$P(E{'_1} \\cap E{'_2}) = P(E{'_1})\\,.\\,P(E{_2})$$"}, {"identifier": "C", "content": "$$P({E_1} \\cap E{'_2}) = P({E_1})\\,.\\,P({E_2})$$"}, {"identifier": "D", "content": "$$P(E{'_1} \\cap {E_2}) = P({E_1})\\,.\\,P({E_2})$$"}]
["C"]
null
<p>$$P\left( {{{{E_1}} \over {{E_2}}}} \right) = {1 \over 2} \Rightarrow {{P({E_1} \cap {E_2})} \over {P({E_2})}} = {1 \over 2}$$</p> <p>$$P\left( {{{{E_2}} \over {{E_1}}}} \right) = {3 \over 4} \Rightarrow {{P({E_2} \cap {E_1})} \over {P({E_1})}} = {3 \over 4}$$</p> <p>$$P({E_1} \cap {E_2}) = {1 \over 8}$$</p> <p>$$P({E_2}) = {1 \over 4},\,P({E_1}) = {1 \over 6}$$</p> <p>(A) $$P({E_1} \cap {E_2}) = {1 \over 8}$$ and $$P({E_1})\,.\,P({E_2}) = {1 \over {24}}$$</p> <p>$$ \Rightarrow P({E_1} \cap {E_2}) \ne P({E_1})\,.\,P({E_2})$$</p> <p>(B) $$P(E{'_1} \cap E{'_2}) = 1 - P({E_1} \cup {E_2})$$</p> <p>$$ = 1 - \left[ {{1 \over 4} + {1 \over 6} - {1 \over 8}} \right] = {{17} \over {24}}$$</p> <p>$$P(E{'_1}) = {3 \over 4} \Rightarrow P(E{'_1})P({E_2}) = {3 \over {24}}$$</p> <p>$$ \Rightarrow P(E{'_1} \cap E{'_2}) \ne P(E{'_1})\,.\,P({E_2})$$</p> <p>(C) $$P({E_1} \cap E{'_2}) = P({E_1}) - P({E_1} \cap {E_2})$$</p> <p>$$ = {1 \over 6} - {1 \over 8} = {1 \over {24}}$$</p> <p>$$P({E_1})\,.\,P({E_2}) = {1 \over {24}}$$</p> <p>$$ \Rightarrow P({E_1} \cap E{'_2}) = P({E_1})\,.\,P({E_2})$$</p> <p>(D) $$P(E{'_1} \cap {E_2}) = P({E_2}) - P({E_1} \cap {E_2})$$</p> <p>$$ = {1 \over 4} - {1 \over 8} = {1 \over 8}$$</p> <p>$$P({E_1})P({E_2}) = {1 \over {24}}$$</p> <p>$$ \Rightarrow P(E{'_1} \cap {E_2}) \ne P({E_1})\,.\,P({E_2})$$</p>
mcq
jee-main-2022-online-25th-june-morning-shift
1l6f12wqy
maths
probability
conditional-probability-and-multiplication-theorem
<p>If $$A$$ and $$B$$ are two events such that $$P(A)=\frac{1}{3}, P(B)=\frac{1}{5}$$ and $$P(A \cup B)=\frac{1}{2}$$, then $$P\left(A \mid B^{\prime}\right)+P\left(B \mid A^{\prime}\right)$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{3}{4}$$"}, {"identifier": "B", "content": "$$\\frac{5}{8}$$"}, {"identifier": "C", "content": "$$\\frac{5}{4}$$"}, {"identifier": "D", "content": "$$\\frac{7}{8}$$"}]
["B"]
null
<p>$$P(A) = {1 \over 3},\,P(B) = {1 \over 5}$$ and $$P\left( {A \cup B} \right) = {1 \over 2}$$</p> <p>$$\therefore$$ $$P\left( {A \cap B} \right) = {1 \over 3} + {1 \over 5} - {1 \over 2} = {1 \over {30}}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7buiqub/55e764a3-4414-4eff-841a-7ce0120a8c5f/1bed5420-25ff-11ed-9c74-c5a04899a045/file-1l7buiquc.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7buiqub/55e764a3-4414-4eff-841a-7ce0120a8c5f/1bed5420-25ff-11ed-9c74-c5a04899a045/file-1l7buiquc.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 25th July Evening Shift Mathematics - Probability Question 66 English Explanation"></p> <p>Now, $$P\left( {A|B'} \right) + P\left( {B|A'} \right) = {{P\left( {A \cap B'} \right)} \over {P\left( {B'} \right)}} + {{P\left( {B \cap A'} \right)} \over {P\left( {A'} \right)}}$$</p> <p>$$ = {{{9 \over {30}}} \over {{4 \over 5}}} + {{{5 \over {30}}} \over {{2 \over 3}}} = {5 \over 8}$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6m5ors7
maths
probability
conditional-probability-and-multiplication-theorem
<p>Out of $$60 \%$$ female and $$40 \%$$ male candidates appearing in an exam, $$60 \%$$ candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability, that the chosen candidate is a female, is :</p>
[{"identifier": "A", "content": "$$\\frac{2}{3}$$"}, {"identifier": "B", "content": "$$\\frac{11}{16}$$"}, {"identifier": "C", "content": "$$\\frac{23}{32}$$"}, {"identifier": "D", "content": "$$\\frac{13}{16}$$"}]
["A"]
null
<p>P (Female) $$ = {{60} \over {100}} = {3 \over 5}$$</p> <p>P (Male) $$ = {2 \over 5}$$</p> <p>P (Female/Qualified) $$ = {{40} \over {60}} = {2 \over 3}$$</p> <p>P (Male/qualified) $$ = {{20} \over {60}} = {1 \over 3}$$</p>
mcq
jee-main-2022-online-28th-july-morning-shift
1l6no0j1z
maths
probability
conditional-probability-and-multiplication-theorem
<p>Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be two events such that $$P(B \mid A)=\frac{2}{5}, P(A \mid B)=\frac{1}{7}$$ and $$P(A \cap B)=\frac{1}{9} \cdot$$ Consider</p> <p>(S1) $$P\left(A^{\prime} \cup B\right)=\frac{5}{6}$$,</p> <p>(S2) $$P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{18}$$</p> <p>Then :</p>
[{"identifier": "A", "content": "Both (S1) and (S2) are true"}, {"identifier": "B", "content": "Both (S1) and (S2) are false"}, {"identifier": "C", "content": "Only (S1) is true"}, {"identifier": "D", "content": "Only (S2) is true"}]
["A"]
null
<p>$$P(A/B) = {1 \over 7} \Rightarrow {{P(A \cap B)} \over {P(B)}} = {1 \over 7}$$</p> <p>$$ \Rightarrow P(B) = {7 \over 9}$$</p> <p>$$P(B/A) = {2 \over 5} \Rightarrow {{P(A \cap B)} \over {P(A)}} = {2 \over 5}$$</p> <p>$$P(A) = {5 \over 2}\,.\,{1 \over 9} = {5 \over {18}}$$</p> <p>$$S2:P(A' \cap B') = {1 \over {18}}$$</p> <p>$$S1:$$ and $$P(A' \cup B) = {1 \over 9} + {6 \over 9} + {1 \over {18}} = {5 \over 6}.$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift
1ldu5z45j
maths
probability
conditional-probability-and-multiplication-theorem
<p>25% of the population are smokers. A smoker has 27 times more chances to develop lung cancer than a non smoker. A person is diagnosed with lung cancer and the probability that this person is a smoker is $$\frac{k}{10}%$$. Then the value of k is __________.</p>
[]
null
9
Probability of a person being smoker $=\frac{1}{4}$ <br/><br/> Probability of a person being non-smoker $=\frac{3}{4}$ <br/><br/> $P\left(\frac{\text { Person is smoker }}{\text { Person diagonsed with cancer }}\right)=\frac{\frac{1}{4} \cdot 27 P}{\frac{1}{4} \cdot 27 P+\frac{3 P}{4}}$ <br/><br/> $=\frac{9}{10}=\frac{k}{10}$ <br/><br/> $\Rightarrow k=9$
integer
jee-main-2023-online-25th-january-evening-shift
1lgzyazug
maths
probability
conditional-probability-and-multiplication-theorem
<p>In a bolt factory, machines $$A, B$$ and $$C$$ manufacture respectively $$20 \%, 30 \%$$ and $$50 \%$$ of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine $$C$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{2}{7}$$"}, {"identifier": "B", "content": "$$\\frac{9}{28}$$"}, {"identifier": "C", "content": "$$\\frac{5}{14}$$"}, {"identifier": "D", "content": "$$\\frac{3}{7}$$"}]
["C"]
null
Given : $P(A)=\frac{20}{100}=\frac{2}{10}$ <br/><br/>$$ P(B)=\frac{30}{100}=\frac{3}{10} $$ <br/><br/>$$ P(C)=\frac{50}{100}=\frac{5}{10} $$ <br/><br/>Let $\mathrm{E} \rightarrow$ Event that the bolt is defective. <br/><br/>$$ \text { So, } P(E / A)=\frac{3}{100}, $$ <br/><br/>$$P\left(\frac{E}{B}\right)=\frac{4}{100}, P\left(\frac{E}{C}\right)=\frac{2}{100} $$ <br/><br/>So, $\mathrm{P}(\mathrm{C} / \mathrm{E})$ <br/><br/>$$ \begin{aligned} & =\frac{P\left(\frac{E}{C}\right) \times P(C)}{P\left(\frac{E}{A}\right) \times P(A)+P\left(\frac{E}{B}\right) \times P(B)+P\left(\frac{E}{C}\right) \times P(C)} \\\\ & =\frac{\frac{5}{10} \times \frac{2}{100}}{\frac{3}{100} \times \frac{2}{10}+\frac{4}{100} \times \frac{3}{10}+\frac{2}{100} \times \frac{5}{10}} \\\\ & =\frac{10}{6+12+10}=\frac{10}{28}=\frac{5}{14} \end{aligned} $$
mcq
jee-main-2023-online-8th-april-morning-shift
lsamdflq
maths
probability
conditional-probability-and-multiplication-theorem
Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
[{"identifier": "A", "content": "$\\frac{9}{35}$"}, {"identifier": "B", "content": "$\\frac{3}{35}$"}, {"identifier": "C", "content": "$\\frac{24}{35}$"}, {"identifier": "D", "content": "$\\frac{18}{35}$"}]
["D"]
null
<p>We are given that the probability of Ajay not appearing in the JEE exam is $\mathrm{p}=\frac{2}{7}$, and the probability that both Ajay and Vijay will appear in the exam is $\mathrm{q}=\frac{1}{5}$.</p> <p>We are asked to find the probability that Ajay will appear in the exam and Vijay will not. Let's denote this probability as $\mathrm{r}$.</p> <p>To find $\mathrm{r}$, we need to use the concept of complementary events. The probability that Ajay will appear in the exam is the complement of the probability that he will not appear. So,</p> <p>$$ P(\text{Ajay appears}) = 1 - P(\text{Ajay does not appear}) = 1 - \mathrm{p} = 1 - \frac{2}{7} = \frac{5}{7}. $$</p> <p>The event that both Ajay and Vijay appear in the exam is independent of the event that only Ajay appears (and Vijay does not). Therefore, we can express the probability that only Ajay will appear (and Vijay will not) as the difference of Ajay appearing minus both Ajay and Vijay appearing, because the probability of both appearing ($\mathrm{q}$) is included in the probability of Ajay appearing:</p> <p>$$ \mathrm{r} = P(\text{Ajay appears}) - P(\text{Both Ajay and Vijay appear}) = \frac{5}{7} - \frac{1}{5}. $$</p> <p>To subtract these two fractions, we need a common denominator, which would be $35$ in this case. So,</p> <p>$$ \mathrm{r} = \frac{5}{7} \cdot \frac{5}{5} - \frac{1}{5} \cdot \frac{7}{7} = \frac{25}{35} - \frac{7}{35} = \frac{25 - 7}{35} = \frac{18}{35}. $$</p> <p>Therefore, the probability that Ajay will appear in the exam and Vijay will not appear is $\mathrm{r} = \frac{18}{35}$, which corresponds to Option D.</p>
mcq
jee-main-2024-online-1st-february-evening-shift
lsblkyym
maths
probability
conditional-probability-and-multiplication-theorem
A fair die is tossed repeatedly until a six is obtained. Let $X$ denote the number of tosses required and let <br/><br/>$a=P(X=3), b=P(X \geqslant 3)$ and $c=P(X \geqslant 6 \mid X&gt;3)$. Then $\frac{b+c}{a}$ is equal to __________.
[]
null
12
<p>To solve this problem, we need to compute the probabilities $a$, $b$, and $c$, and then plug those values into the expression $\frac{b+c}{a}$.</p> <p>Let's begin by defining each of the variables:</p> <ul> <li>$a = P(X=3)$: This is the probability that the first six appears on the third toss.</li> <li>$b = P(X \geqslant 3)$: This is the probability that the first six appears on the third toss or later.</li> <li>$c = P(X \geqslant 6 \mid X>3)$: This is the probability that the first six appears on the sixth toss or later, given that it has not appeared in the first three tosses.</li> </ul> <p>Since we're dealing with a fair die, each side has an equal probability of $\frac{1}{6}$ of landing face up. Let's find the probabilities step by step:</p> <p><strong>Calculating $a$:</strong></p> <p> <p>The probability of rolling anything other than a six is $\frac{5}{6}$. So for the first six to show up exactly on the third roll, the sequence of rolls must be NN6, where N is anything but a six (i.e., the results of the first two rolls). Thus,</p> <p>$a = P(X=3) = \left(\frac{5}{6}\right) \cdot \left(\frac{5}{6}\right) \cdot \left(\frac{1}{6}\right)$</p> </p> <p><strong>Calculating $b$:</strong></p> <p> <p>For the first six to appear on the third roll or later, we can think of two cases: when the first six appears on the third roll (which we've already calculated, $a$), and when it appears after the third roll. To combine these probabilities, we can use the fact that $P(X \geqslant 3) = 1 - P(X < 3)$, where $P(X < 3)$ is the probability that the first six appears on either the first or the second roll. So we calculate the latter first:</p> <p>$ P(X < 3) = P(X=1) + P(X=2) $</p> <p>$ P(X < 3) = \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \cdot \left(\frac{1}{6}\right) $</p> <p>Thus,</p> <p>$ b = P(X \geqslant 3) = 1 - P(X < 3) = 1 - \left[ \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \cdot \left(\frac{1}{6}\right) \right] $</p> </p> <p><strong>Calculating $c$:</strong></p> <p> <p>This is the probability that the first six appears on or after the sixth roll, given that it hasn't appeared in the first three rolls. Since $X>3$, the first three outcomes must not be a six, which occurs with probability $\left(\frac{5}{6}\right)^3$. The subsequent outcomes until (and including) the fifth roll also must not be a six. So,</p> <p>$c = P(X \geqslant 6 \mid X>3) = \left(\frac{5}{6}\right)^2$</p> <p>Notice here, we did not include the probability of rolling a six, because we are looking for the probability that we have not yet rolled a six after the fifth roll.</p> </p> <p>Now we can calculate $a$, $b$, and $c$:</p> <p> <p>$a = \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}$</p> <p>$b = 1 - \left[ \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)\cdot\left(\frac{1}{6}\right) \right]$</p> <p>$c = \left(\frac{5}{6}\right)^2$</p> <p>Now we'll substitute to find $\frac{b+c}{a}$:</p> <p>$\frac{b+c}{a} = \frac{1 - \left[ \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)\cdot\left(\frac{1}{6}\right) \right] + \left(\frac{5}{6}\right)^2}{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}}$</p> </p> <p>Simplifying the numerator:</p> <p> <p>$1 - \left[ \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)\cdot\left(\frac{1}{6}\right) \right] + \left(\frac{5}{6}\right)^2$</p> <p>$= 1 - \left[\frac{1}{6} + \frac{5}{36}\right] + \frac{25}{36}$</p> <p>$= 1 - \left[\frac{6}{36} + \frac{5}{36}\right] + \frac{25}{36}$</p> <p>$= 1 - \frac{11}{36} + \frac{25}{36}$</p> <p>$= \frac{36}{36} - \frac{11}{36} + \frac{25}{36}$</p> <p>$= \frac{50}{36}$</p> <p>Now, substitute this back into the expression and solve:</p> <p>$\frac{b+c}{a} = \frac{\frac{50}{36}}{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}}$</p> <p>$\frac{b+c}{a} = \frac{50}{36} \cdot \frac{6}{\left(\frac{5}{6}\right)^2}$</p> <p>$\frac{b+c}{a} = \frac{50 \cdot 6}{25}$</p> <p>$\frac{b+c}{a} = \frac{300}{25}$</p> <p>$\frac{b+c}{a} = 12$</p> <p>Therefore, $\frac{b+c}{a} = 12$.</p></p> <p></p>
integer
jee-main-2024-online-27th-january-morning-shift
jaoe38c1lse58eei
maths
probability
conditional-probability-and-multiplication-theorem
<p>Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after each drawing. Then the probability, that first drawn marble is red and second drawn marble is white, is</p>
[{"identifier": "A", "content": "$$\\frac{4}{25}$$\n"}, {"identifier": "B", "content": "$$\\frac{2}{3}$$\n"}, {"identifier": "C", "content": "$$\\frac{2}{25}$$\n"}, {"identifier": "D", "content": "$$\\frac{4}{75}$$"}]
["D"]
null
<p>To solve this problem, we need to calculate the probability of two independent events occurring in succession: the first marble drawn is red, and the second marble drawn is white. Since the drawing is with replacement, the number of marbles of each color remains the same for both draws.</p> <p>The total number of marbles in the box is the sum of red, white, blue, and orange marbles:</p> $$ \text{Total marbles} = 10 (\text{red}) + 30 (\text{white}) + 20 (\text{blue}) + 15 (\text{orange}) = 75. $$ <p>The probability of drawing a red marble in the first draw is the number of red marbles divided by the total number of marbles:</p> $$ P(\text{First is red}) = \frac{10}{75}. $$ <p>Since the marble is replaced, the probability of drawing a white marble in the second draw remains as the number of white marbles divided by the total number of marbles:</p> $$ P(\text{Second is white}) = \frac{30}{75}. $$ <p>The probability of both independent events occurring in succession (drawing a red marble first and then a white marble) is the product of their individual probabilities:</p> $$ P(\text{First is red and second is white}) = P(\text{First is red}) \times P(\text{Second is white}) = \frac{10}{75} \times \frac{30}{75}. $$ <p>Now, let's calculate this probability:</p> <p>$$ P(\text{First is red and second is white}) = \frac{10 \times 30}{75 \times 75} = \frac{300}{5625}= \frac{4}{75}. $$</p> <p>Therefore, the correct answer is</p> Option D $$\frac{4}{75}.$$
mcq
jee-main-2024-online-31st-january-morning-shift
jaoe38c1lseygjua
maths
probability
conditional-probability-and-multiplication-theorem
<p>A fair die is thrown until 2 appears. Then the probability, that 2 appears in even number of throws, is</p>
[{"identifier": "A", "content": "$$\\frac{5}{11}$$\n"}, {"identifier": "B", "content": "$$\\frac{5}{6}$$\n"}, {"identifier": "C", "content": "$$\\frac{1}{6}$$\n"}, {"identifier": "D", "content": "$$\\frac{6}{11}$$"}]
["A"]
null
<p>Required probability $$=$$</p> <p>$$\begin{aligned} & \frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6}\right)^3 \times \frac{1}{6}+\left(\frac{5}{6}\right)^5 \times \frac{1}{6}+\ldots . . \\ & =\frac{1}{6} \times \frac{\frac{5}{6}}{1-\frac{25}{36}}=\frac{5}{11} \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
8pKDwjndu91hVdqw
maths
probability
permutation-and-combination-based-problem
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is :
[{"identifier": "A", "content": "$${2 \\over 7}$$"}, {"identifier": "B", "content": "$${1 \\over 21}$$"}, {"identifier": "C", "content": "$${1 \\over 23}$$"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["A"]
null
Out of nine balls three balls can be chosen = $${}^9{C_3}$$ ways <br><br>$$\therefore$$ Sample space = $${}^9{C_3}$$ = $${{9!} \over {3!6!}}$$ = $${{9 \times 8 \times 7} \over 6}$$ = 84 <br><br>According to the question, all three ball should be different. So out of 3 red balls 1 is chosen and out of 4 blue 1 is chosen and out of 2 green 1 is chosen. <br><br>$$\therefore$$ Total cases = $${}^3{C_1} \times {}^4{C_1} \times {}^2{C_1}$$ = 3 $$ \times $$ 4 $$ \times $$ 2 = 24 <br><br>$$\therefore$$ Probability = $${{24} \over {84}}$$ = $${{2} \over {7}}$$
mcq
aieee-2010
m6SF5Xwnm5L4nJ2s
maths
probability
permutation-and-combination-based-problem
Four numbers are chosen at random (without replacement) from the set $$\left\{ {1,2,3,....20} \right\}.$$ <br/><br/><b>Statement - 1:</b> The probability that the chosen numbers when arranged in some order will form an AP is $${1 \over {85}}.$$ <p><b>Statement - 2:</b> If the four chosen numbers form an AP, then the set of all possible values of common difference is $$\left( { \pm 1, \pm 2, \pm 3, \pm 4, \pm 5} \right).$$</p>
[{"identifier": "A", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is <b>not</b> a correct explanation for Statement - 1."}, {"identifier": "B", "content": "Statement - 1 is true, Statement - 2 is false."}, {"identifier": "C", "content": "Statement - 1 is false, Statement -2 is true."}, {"identifier": "D", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1."}]
["B"]
null
Four numbers can be chosen $${}^{20}{C_4}$$ ways. <br><br>When common difference d = 1 then the possible sets are (1, 2, 3, 4) (2, 3, 4, 5) (3, 4, 5, 6) ................. (17, 18, 19, 20) = 17 sets <br>So when d = 1 then 17 different AP's are possible with 4 numbers. <br><br>Now let's create a table of all possible sets - <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;border-color:#999;} .tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:#999;color:#444;background-color:#F7FDFA;} .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:#999;color:#fff;background-color:#26ADE4;} .tg .tg-s6z2{text-align:center} .tg .tg-baqh{text-align:center;vertical-align:top} .tg .tg-wyy1{background-color:#26ade4;text-align:center} </style> <table class="tg"> <tbody><tr> <th class="tg-wyy1">Common <br>Difference<br>(d)</th> <th class="tg-wyy1">Possible Sets </th> <th class="tg-wyy1">No of AP</th> </tr> <tr> <td class="tg-s6z2">d = 1</td> <td class="tg-s6z2">(1, 2, 3, 4) (2, 3, 4, 5) (3, 4, 5, 6) ................. (17, 18, 19, 20)</td> <td class="tg-s6z2">17</td> </tr> <tr> <td class="tg-s6z2">d = 2</td> <td class="tg-s6z2">(1, 3, 5, 7) (2, 4, 6, 8) (3, 5, 7, 9) ................. (14, 16, 18, 20)</td> <td class="tg-s6z2">14</td> </tr> <tr> <td class="tg-s6z2">d = 3</td> <td class="tg-s6z2">(1, 4, 7, 10) (2, 5, 8, 11) (3, 6, 9, 12) ................. (11, 14, 17, 20)</td> <td class="tg-s6z2">11</td> </tr> <tr> <td class="tg-baqh">d = 4</td> <td class="tg-baqh">(1, 5, 9, 13) (2, 6, 10, 14) (3, 7, 11, 15) ................. (8, 12, 16, 20)</td> <td class="tg-baqh">8</td> </tr> <tr> <td class="tg-baqh">d = 5</td> <td class="tg-baqh">(1, 6, 11, 16) (2, 7, 12, 17) (3, 8, 13, 18) (4, 9, 14, 19) (5, 10, 15, 20)</td> <td class="tg-baqh">5</td> </tr> <tr> <td class="tg-baqh">d = 6</td> <td class="tg-baqh">(1, 7, 13, 19) (2, 8, 14, 20)</td> <td class="tg-baqh">2</td> </tr> </tbody></table> <br><br>$$\therefore$$ Total no of AP = 17 + 14 + 11 + 8 + 5 + 2 = 57 <br><br>$$\therefore$$ Required probability = $${{57} \over {{}^{20}{C_4}}}$$ = $${1 \over {85}}$$ <br><br>$$\therefore$$ <b>Statement - 1:</b> is true. <br><br>$$\therefore$$ <b>Statement - 2:</b> is false as common difference can also be $$ \pm 6$$.
mcq
aieee-2010
v0MDihlczrEKxer8
maths
probability
permutation-and-combination-based-problem
If $$12$$ different balls are to be placed in $$3$$ identical boxes, then the probability that one of the boxes contains exactly $$3$$ balls is :
[{"identifier": "A", "content": "$$220{\\left( {{1 \\over 3}} \\right)^{12}}$$ "}, {"identifier": "B", "content": "$$22{\\left( {{1 \\over 3}} \\right)^{11}}$$"}, {"identifier": "C", "content": "$${{55} \\over 3}{\\left( {{2 \\over 3}} \\right)^{11}}$$ "}, {"identifier": "D", "content": "$$55{\\left( {{2 \\over 3}} \\right)^{10}}$$"}]
["C"]
null
1<sup>st</sup> ball can go any of the 3 boxes. So total choices for 1<sup>st</sup> ball = 3 <br><br>2<sup>nd</sup> ball can also go any of the 3 boxes. So total choices for 2<sup>nd</sup> ball = 3 <br>. <br>. <br>. <br>. <br>12<sup>th</sup> ball can go any of the 3 boxes. So total choices for 12<sup>th</sup> ball = 3 <br><br>Total choices for all 12 balls = $$3 \times $$$$3 \times $$$$3 \times $$.................12 times = 3<sup>12</sup>. <br><br>Now question says choose 3 balls from 12 balls. So no of ways = $${}^{12}{C_3}$$ ways. <br>And then put it in a box. No of ways we can put = $${}^{12}{C_3} \times 1$$ ways. <br><br>Now we have 9 balls left and we have to put those 9 balls in the remaining 2 boxes. <br><br>Each ball can go to any of the 2 boxes, so for each ball there is 2 choices. <br><br>$$\therefore$$ Total ways for 9 balls = 2<sup>9</sup> <br><br>$$\therefore$$ Total ways we can put those 12 balls in the boxes = $${}^{12}{C_3} \times 1 \times {2^9}$$ <br><br>$$\therefore$$ Required probability = $${{{}^{12}{C_3} \times 1 \times {2^9}} \over {{3^{12}}}}$$ = $${{55} \over 3}{\left( {{2 \over 3}} \right)^{11}}$$ <br><br>So option (C) is correct.
mcq
jee-main-2015-offline
hb12DaeYWQTsDI7quf0Na
maths
probability
permutation-and-combination-based-problem
From a group of 10 men and 5 women, four member committees are to be formed each of which must contain at least one woman. Then the probability for these committees to have more women than men, is :
[{"identifier": "A", "content": "$${{21} \\over {220}}$$ "}, {"identifier": "B", "content": "$${{3} \\over {11}}$$ "}, {"identifier": "C", "content": "$${{1} \\over {11}}$$ "}, {"identifier": "D", "content": "$${{2} \\over {23}}$$ "}]
["C"]
null
<p>The number of ways to form a committee having at least one woman is</p> <p>$$ = {}^5{C_1} \times {}^{10}{C_3} + {}^5{C_2} \times {}^{10}{C_2} + {}^5{C_3} \times {}^{10}{C_1} + {}^5{C_4}$$</p> <p>$$ = {{5!} \over {4!}} \times {{10!} \over {7! \times 3!}} + {{5!} \over {2!3!}} \times {{10!} \over {8!2!}} + {{5!} \over {3!2!}} \times {{10!} \over {9!1!}} + {{5!} \over {4!}}$$</p> <p>$$ = 5 \times {{10 \times 9 \times 8} \over {3 \times 2}} + {{5 \times 4} \over {2 \times 1}} \times {{10 \times 9} \over 2} + {{5 \times 4} \over {2 \times 1}} \times 10 + 5$$</p> <p>$$ = 600 + 450 + 100 + 5 = 1155$$</p> <p>The number of ways to form a committee having more women than men is</p> <p>$${}^5{C_2} \times {}^{10}{C_2} + {}^5{C_4} = {{5!} \over {6!2!}} \times {{10!} \over {9!}} + {{5!} \over {4!}}$$</p> <p>$$ = 10 \times 10 + 5 = 105$$</p> <p>Therefore, the probability for the committees to have more women than men is</p> <p>$${{105} \over {1155}} = {1 \over {11}}$$</p>
mcq
jee-main-2017-online-9th-april-morning-slot
NAV5RgX2pFLPU0hYcWpBO
maths
probability
permutation-and-combination-based-problem
Two different families A and B are blessed with equal numbe of children. There are 3 tickets to be distributed amongst the children of these families so that no child gets more than one ticket. If the probability that all the tickets go to the children of the family B is $${1 \over {12}},$$ then the number of children in each family is :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "6"}]
["C"]
null
Let the number of children in each family be x. <br><br>Thus the total number of children in both the families are 2x <br><br>Now, it is given that 3 tickets are distributed amongst the children of these two families. <br><br>Thus, the probability that all the three tickets go to the children in family B <br><br>= $${{{}^x{C_3}} \over {{}^{2x}{C_3}}}$$ = $${1 \over {12}}$$ <br><br>$$ \Rightarrow $$ $$\,\,\,$$ $${{x\left( {x - 1} \right)\left( {x - 2} \right)} \over {2x\left( {2x - 1} \right)\left( {2x - 2} \right)}}$$ = $${1 \over {12}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{\left( {x - 2} \right)} \over {\left( {2x - 1} \right)}}$$ = $${1 \over 6}$$ <br><br>Thus, the number of children in each family is 5.
mcq
jee-main-2018-online-16th-april-morning-slot
miWACwbOxOgzdWPOMnhck
maths
probability
permutation-and-combination-based-problem
Let  S = {1, 2, . . . . . ., 20}. A subset B of S is said to be "nice", if the sum of the elements of B is 203. Then the probability that a randonly chosen subset of S is "nice" is :
[{"identifier": "A", "content": "$${5 \\over {{2^{20}}}}$$"}, {"identifier": "B", "content": "$${7 \\over {{2^{20}}}}$$"}, {"identifier": "C", "content": "$${4 \\over {{2^{20}}}}$$"}, {"identifier": "D", "content": "$${6 \\over {{2^{20}}}}$$"}]
["A"]
null
<p>We can solve this problem by counting the number of "nice" subsets in the set S = {1, 2, $\ldots$, 20 }, and then dividing that number by the total number of possible subsets of S.</p> <p>The sum of all elements in S is :</p> <p>1 + 2 + $\ldots$ + 20 = $\frac{{20 \times 21}}{2}$ = 210</p> <p>Since a "nice" subset must sum to 203, the elements not in the subset must sum to 210 - 203 = 7.</p> <p>Now we need to find the ways to make the sum of 7 using the elements of S. The combinations are :</p> <ol> <li>1. 7</li> <li>2. 1 + 6</li> <li>3. 2 + 5</li> <li>4. 3 + 4</li> <li>5. 1 + 2 + 4</li> <li>6. 1 + 3 + 3(This doesn't work since 3 is repeated)</li> <li>7. 2 + 2 + 3(This doesn't work since 2 is repeated)</li> </ol> <p>So, there are 5 "nice" subsets.</p> <p>Since the set S has 20 elements, there are $2^{20}$ possible subsets (including the empty set and the set itself). The probability of randomly choosing a "nice" subset is therefore : <br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263858/exam_images/lnhcuunfwlwjtih9updz.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 11th January Evening Slot Mathematics - Probability Question 150 English Explanation"></p>
mcq
jee-main-2019-online-11th-january-evening-slot
ZjWD3HbNe8roavEsKs3rsa0w2w9jx6gohcx
maths
probability
permutation-and-combination-based-problem
If three of the six vertices of a regular hexagon are chosen at random, then the probability that the triangle formed with these chosen vertices is equilateral is :
[{"identifier": "A", "content": "$${1 \\over {10}}$$"}, {"identifier": "B", "content": "$${3 \\over {10}}$$"}, {"identifier": "C", "content": "$${3 \\over {20}}$$"}, {"identifier": "D", "content": "$${1 \\over {5}}$$"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263722/exam_images/n4gew2oz06txcsbjoxw5.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Morning Slot Mathematics - Probability Question 139 English Explanation"><br> Choosing vertices of a regular hexagon alternate, here A<sub>1</sub>, A<sub>3</sub>, A<sub>5</sub> or A<sub>2</sub>, A<sub>4</sub>, A<sub>6</sub> will result in an equilateral triangle.<br><br> Hence the required probability = $${2 \over {{}^6{C_3}}}$$ = $${1 \over {10}}$$
mcq
jee-main-2019-online-12th-april-morning-slot
izhPmlaiTmaj8SvcuP7k9k2k5khcyom
maths
probability
permutation-and-combination-based-problem
If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is :
[{"identifier": "A", "content": "$${{965} \\over {{2^{11}}}}$$"}, {"identifier": "B", "content": "$${{965} \\over {{2^{10}}}}$$"}, {"identifier": "C", "content": "$${{945} \\over {{2^{11}}}}$$"}, {"identifier": "D", "content": "$${{945} \\over {{2^{10}}}}$$"}]
["D"]
null
Total ways of distribution = 4<sup>10</sup> = 2<sup>20</sup> <br><br>Number of ways selecting two boxes out of four = <sup>4</sup>C<sub>2</sub> <br><br>Then number of ways selecting 5 balls out of 10 = <sup>10</sup>C<sub>5</sub> <br><br>Then no of ways of distributing 5 balls into two groups of 2 balls and 3 balls = <sup>5</sup>C<sub>3</sub>.2! <br><br>Then number of ways to distributing remaining balls into two boxes = 2<sup>5</sup> <br><br>Number of ways placing exactly 2 and 3 balls in two of these boxes <br><br>= <sup>4</sup>C<sub>2</sub> $$ \times $$ <sup>10</sup>C<sub>5</sub> $$ \times $$ <sup>5</sup>C<sub>3</sub>.2! $$ \times $$ 2<sup>5</sup> <br><br>= $${{{{6.252.10.2.2}^5}} \over {{2^{20}}}}$$ <br><br>= $${{945} \over {{2^{10}}}}$$
mcq
jee-main-2020-online-9th-january-evening-slot
D78VhXLXjBEt1DRB79jgy2xukf49fh2z
maths
probability
permutation-and-combination-based-problem
The probability that a randomly chosen 5-digit number is made from exactly two digits is :
[{"identifier": "A", "content": "$${{150} \\over {{{10}^4}}}$$"}, {"identifier": "B", "content": "$${{134} \\over {{{10}^4}}}$$"}, {"identifier": "C", "content": "$${{121} \\over {{{10}^4}}}$$"}, {"identifier": "D", "content": "$${{135} \\over {{{10}^4}}}$$"}]
["D"]
null
Sample space = 9 $$ \times $$ 10<sup>4</sup><br><br>Case - I<br><br>Out of exactly two digits selected one is zero then favourable cases = $${}^9{C_1}({2^4} - 1)$$<br><br>Case - II<br><br>Both selected digits are non-zero then favourable cases = $${}^9{C_2}({2^5} - 2)$$<br><br>Probability = $${{9({2^4} - 1) + {{9.8} \over 2}({2^5} - 2)} \over {9 \times {{10}^4}}}$$<br><br>$$ = {{15 + 120} \over {{{10}^4}}} = {{135} \over {{{10}^4}}}$$
mcq
jee-main-2020-online-3rd-september-evening-slot
2gXd4NRSYBvLj2D1oajgy2xukfuvqwpi
maths
probability
permutation-and-combination-based-problem
Out of 11 consecutive natural numbers if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference, is :
[{"identifier": "A", "content": "$${{10} \\over {99}}$$"}, {"identifier": "B", "content": "$${{5} \\over {33}}$$"}, {"identifier": "C", "content": "$${{15} \\over {101}}$$"}, {"identifier": "D", "content": "$${{5} \\over {101}}$$"}]
["B"]
null
Out of 11 consecutive natural numbers either 6 even and 5 odd numbers or 5 even and 6 odd numbers. <br><br>Let, E = Even <br>O = Odd <br><br><b>Case-1 :</b> <br><br>E, O, E, O, E, O, E, O, E, O, E <br><br>2b = a + c $$ \Rightarrow $$ Even <br><br>$$ \Rightarrow $$ Both a and c should be either even or odd. <br><br>P = $${{{}^6{C_2} + {}^5{C_2}} \over {{}^{11}{C_3}}}$$ = $${5 \over {33}}$$ <br><br><b>Case -2 :</b> <br><br>O, E, O, E, O, E, O, E, O, E, O <br><br>P = $${{{}^5{C_2} + {}^6{C_2}} \over {{}^{11}{C_3}}}$$ = $${5 \over {33}}$$ <br><br>Total probability = $${1 \over 2} \times {5 \over {33}}$$ + $${1 \over 2} \times {5 \over {33}}$$ = $${5 \over {33}}$$
mcq
jee-main-2020-online-6th-september-morning-slot
JvSQmAt1Odx2wCs08v1klrlyrob
maths
probability
permutation-and-combination-based-problem
The probability that two randomly selected subsets of the set {1, 2, 3, 4, 5} have exactly two elements in their intersection, is :
[{"identifier": "A", "content": "$${{135} \\over {{2^9}}}$$"}, {"identifier": "B", "content": "$${{65} \\over {{2^8}}}$$"}, {"identifier": "C", "content": "$${{65} \\over {{2^7}}}$$"}, {"identifier": "D", "content": "$${{35} \\over {{2^7}}}$$"}]
["A"]
null
Given, set P = {1, 2, 3, 4, 5}<br/><br/>Let the two subsets be A and B<br/><br/>Then, n (A $$\cap$$ B) = 2 (as given in question) <br/><br/>We can choose two elements from set P in <sup>5</sup>C<sub>2</sub> ways. <br/><br/>After choosing two common elements for set A and B, each of remaining three elements from set P have three choice (1) It can go to set A (2) It can go to set B (3) It don't go to any sets it stays at set P. <br/><br/>$$ \therefore $$ Total ways for the three elements = 3 $$ \times $$ 3 $$ \times $$ 3 = 3<sup>3</sup> <br/><br/>$$\therefore$$ Required probability = $${{{}^5{C_2} \times {3^3}} \over {\left( {{2^5}} \right)\left( {{2^5}} \right)}}$$ = $${{{}^5{C_2} \times {3^3}} \over {{4^5}}} = {{10 \times 27} \over {{2^{10}}}} = {{135} \over {{2^9}}}$$
mcq
jee-main-2021-online-24th-february-evening-slot
BKJKsH0G7if3cZd50d1klt7nltg
maths
probability
permutation-and-combination-based-problem
Let A be a set of all 4-digit natural numbers whose exactly one digit is 7. Then the probability that a randomly chosen element of A leaves remainder 2 when divided by 5 is :
[{"identifier": "A", "content": "$${2 \\over 9}$$"}, {"identifier": "B", "content": "$${1 \\over 5}$$"}, {"identifier": "C", "content": "$${122 \\over 297}$$"}, {"identifier": "D", "content": "$${97 \\over 297}$$"}]
["D"]
null
n(s) = n(when 7 appears on thousands place)<br><br>+ n (7 does not appear on thousands place)<br><br>= 9 $$\times$$ 9 $$\times$$ 9 + 8 $$\times$$ 9 $$\times$$ 9 $$\times$$ 3<br><br>= 33 $$\times$$ 9 $$\times$$ 9<br><br>n(E) = n(last digit 7 &amp; 7 appears once)<br><br>+n(last digit 2 when 7 appears once)<br><br>= 8 $$\times$$ 9 $$\times$$ 9 + (3 $$\times$$ 9 $$\times$$ 9 - 2 $$\times$$ 9)<br><br>$$\therefore$$ $$P(E) = {{8 \times 9 \times 9 + 9 \times 25} \over {33 \times 9 \times 9}} = {{97} \over {297}}$$
mcq
jee-main-2021-online-25th-february-evening-slot
GJ1zE8RkCmDVd30zIh1kluxtvqr
maths
probability
permutation-and-combination-based-problem
A seven digit number is formed using digits 3, 3, 4, 4, 4, 5, 5. The probability, that number so formed is divisible by 2, is :
[{"identifier": "A", "content": "$${1 \\over 7}$$"}, {"identifier": "B", "content": "$${4 \\over 7}$$"}, {"identifier": "C", "content": "$${6 \\over 7}$$"}, {"identifier": "D", "content": "$${3 \\over 7}$$"}]
["D"]
null
Digits = 3, 3, 4, 4, 4, 5, 5<br><br>Total 7 digit numbers = $${{7!} \over {2!2!3!}}$$<br><br>Number of 7 digit number divisible by 2 $$ \Rightarrow $$ last digit = 4<br><br> <picture><source media="(max-width: 2210px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263557/exam_images/xuvtn4gwslaitxll4yp9.webp"><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265492/exam_images/au3xqinyxld1l4hjeaso.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265171/exam_images/eeu2lwysmlvu3odhfdrs.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263836/exam_images/y9lzr2tj3abwsbodp1cx.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264537/exam_images/vvir1mxtzvslxg81ywvk.webp"><source media="(max-width: 1040px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266451/exam_images/q2kwdgywrif048t1trat.webp"><source media="(max-width: 1220px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264077/exam_images/yc1gwgxjzvxqymummtib.webp"><source media="(max-width: 1400px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263429/exam_images/b0bzozhagttkkdhav7tl.webp"><source media="(max-width: 1580px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264423/exam_images/ousq7k6cfagspu8jzhgh.webp"><source media="(max-width: 1760px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264587/exam_images/gsxhokydxfh9u8o35bsr.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266109/exam_images/qg9czmccpl9q9jom4wds.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Evening Shift Mathematics - Probability Question 112 English Explanation"></picture> <br><br>Now 7 digit numbers which are divisible by 2 = $${{6!} \over {2!2!2!}}$$<br><br>Required probability = $${{{{6!} \over {2!2!2!}}} \over {{{7!} \over {3!2!2!}}}} = {3 \over 7}$$
mcq
jee-main-2021-online-26th-february-evening-slot
1krpzjgtr
maths
probability
permutation-and-combination-based-problem
Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is :
[{"identifier": "A", "content": "$${1 \\over {66}}$$"}, {"identifier": "B", "content": "$${1 \\over {11}}$$"}, {"identifier": "C", "content": "$${1 \\over {9}}$$"}, {"identifier": "D", "content": "$${2 \\over {11}}$$"}]
["B"]
null
AAEIIMNNOTX<br><br>----------------M----------------<br><br>Total words with M at fourth Place = $${{10!} \over {2!2!2!}}$$<br><br>Total words = $${{11!} \over {2!2!2!}}$$<br><br>Required probability = $${{10!} \over {11!}}$$ = $${{1} \over {11}}$$
mcq
jee-main-2021-online-20th-july-morning-shift
1krtcgdaz
maths
probability
permutation-and-combination-based-problem
Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2 $$\times$$ 2 matrices. The probability that such formed matrix have all different entries and are non-singular, is :
[{"identifier": "A", "content": "$${{45} \\over {162}}$$"}, {"identifier": "B", "content": "$${{21} \\over {81}}$$"}, {"identifier": "C", "content": "$${{22} \\over {81}}$$"}, {"identifier": "D", "content": "$${{43} \\over {162}}$$"}]
["D"]
null
$$A = \left| {\matrix{ a &amp; b \cr c &amp; d \cr } } \right|$$<br><br>| A | = ad $$-$$ bc<br><br>Total case = 6<sup>4</sup><br><br>For non-singular matrix | A | $$\ne$$ 0 $$\Rightarrow$$ ad $$-$$ bc $$\ne$$ 0<br><br>$$\Rightarrow$$ ad $$\ne$$ bc<br><br>And a, b, c, d are all different numbers in the set {1, 2, 3, 4, 5, 6}<br><br>Now for ad = bc<br><br>(i) 6 $$\times$$ 1 = 2 $$\times$$ 3<br><br>$$\Rightarrow$$ $$\left. \matrix{ a = 6,b = 2,c = 3,d = 1 \hfill \cr or\,a = 1,b = 2,c = 3,d = 6 \hfill \cr : \hfill \cr : \hfill \cr} \right\}$$ 8 each cases<br><br>(ii) 6 $$\times$$ 2 = 3 $$\times$$ 4<br><br>$$\Rightarrow$$ $$\left. \matrix{ a = 6,b = 3,c = 4,d = 2 \hfill \cr or\,a = 2,b = 3,c = 4,d = 6 \hfill \cr : \hfill \cr : \hfill \cr} \right\}$$ 8 such cases<br><br>favourable cases<br><br>= $$^6C_4 \times 4! - 16$$<br><br>required probability <br><br>$$ = {{{^6C_4 \times 4!} - 16} \over {{6^4}}} = {{43} \over {162}}$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krw0yts1
maths
probability
permutation-and-combination-based-problem
Let 9 distinct balls be distributed among 4 boxes, B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub> and B<sub>4</sub>. If the probability than B<sub>3</sub> contains exactly 3 balls is $$k{\left( {{3 \over 4}} \right)^9}$$ then k lies in the set :
[{"identifier": "A", "content": "{x $$\\in$$ R : |x $$-$$ 3| &lt; 1}"}, {"identifier": "B", "content": "{x $$\\in$$ R : |x $$-$$ 2| $$\\le$$ 1}"}, {"identifier": "C", "content": "{x $$\\in$$ R : |x $$-$$ 1| &lt; 1}"}, {"identifier": "D", "content": "{x $$\\in$$ R : |x $$-$$ 5| $$\\le$$ 1}"}]
["A"]
null
Required probability = $${{{}^9{C_3}{{.3}^6}} \over {{4^9}}}$$<br><br>$$ = {{{}^9{C_3}} \over {27}}.{\left( {{3 \over 4}} \right)^9}$$<br><br>$$ = {{28} \over 9}.{\left( {{3 \over 4}} \right)^9} \Rightarrow k = {{28} \over 9}$$<br><br>Which satisfies $$\left| {x - 3} \right| &lt; 1$$
mcq
jee-main-2021-online-25th-july-morning-shift
1ktk4uzqz
maths
probability
permutation-and-combination-based-problem
Let S = {1, 2, 3, 4, 5, 6}. Then the probability that a randomly chosen onto function g from S to S satisfies g(3) = 2g(1) is :
[{"identifier": "A", "content": "$${1 \\over {10}}$$"}, {"identifier": "B", "content": "$${1 \\over {15}}$$"}, {"identifier": "C", "content": "$${1 \\over {5}}$$"}, {"identifier": "D", "content": "$${1 \\over {30}}$$"}]
["A"]
null
g(3) = 2g(1) can be defined in 3 ways<br><br>number of onto functions in this condition = 3 $$\times$$ 4!<br><br>Total number of onto functions = 6!<br><br>Required probability = $${{3 \times 4!} \over {6!}} = {1 \over {10}}$$
mcq
jee-main-2021-online-31st-august-evening-shift
1kto2k0k0
maths
probability
permutation-and-combination-based-problem
Two squares are chosen at random on a chessboard (see figure). The probability that they have a side in common is :<br/><br/><img src=""/>
[{"identifier": "A", "content": "$${2 \\over 7}$$"}, {"identifier": "B", "content": "$${1 \\over 18}$$"}, {"identifier": "C", "content": "$${1 \\over 7}$$"}, {"identifier": "D", "content": "$${1 \\over 9}$$"}]
["B"]
null
Total ways of choosing square = $${}^{64}{C_2}$$<br><br>$$ = {{64 \times 63} \over {2 \times 1}} = 32 \times 63$$<br><br>ways of choosing two squares having common side = 2 (7 $$\times$$ 8) = 112<br><br>Required probability $$ = {{112} \over {32 \times 63}} = {{16} \over {32 \times 9}} = {1 \over {18}}$$.<br><br>Ans. (b)
mcq
jee-main-2021-online-1st-september-evening-shift
1l544hp5b
maths
probability
permutation-and-combination-based-problem
<p>The probability that a randomly chosen 2 $$\times$$ 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to :</p>
[{"identifier": "A", "content": "$${{133} \\over {{{10}^4}}}$$"}, {"identifier": "B", "content": "$${{18} \\over {{{10}^3}}}$$"}, {"identifier": "C", "content": "$${{19} \\over {{{10}^3}}}$$"}, {"identifier": "D", "content": "$${{271} \\over {{{10}^4}}}$$"}]
["C"]
null
<p>First 10 prime numbers are</p> <p>={2, 3, 5, 7, 11, 13, 17, 19, 23, 29}</p> <p>Let A is a 2 $$\times$$ 2 matrix,</p> <p>$$A = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$</p> <p>Given that matrix A is singular.</p> <p>$$\therefore$$ | A | = 0</p> <p>$$ \Rightarrow \left| {\matrix{ a & b \cr c & d \cr } } \right| = 0$$</p> <p>$$ \Rightarrow ad = bc$$</p> <p>Case I :</p> <p>ad = bc condition satisfy when a = b = c = d.</p> <p>For ex when a = 2, b = 2, c = 2, d = 2, then ad = bc satisfy.</p> <p>Now there are 10 prime numbers.</p> <p>We can choose any one of the 10 prime number in $${}^{10}C_{1}$$ = 10 ways and put them in the four positions of the matrix and matrix will be singular.</p> <p>$$\therefore$$ In this case, total favorable case = 10</p> <p>Case 2 :</p> <p>ad = bc condition satisfies when</p> <p>(1)</p> <p>a = 2, d - 3 then</p> <p>(a) b = 2, c = 3</p> <p>(b) b = 3, c = 2</p> <p>or</p> <p>a = 3, d = 2 then</p> <p>(a) b = 2, c = 3</p> <p>(b) b = 3, c = 2</p> <p>So you can see for two different prime number for a and d there are 4 possible value of b and c which satisfy ad = bc condition.</p> <p>Two different values of a and d can be chosen from 10 prime numbers = $${}^{10}C_{2}$$ ways</p> <p>And for each combination of a and d there are 4 possible values of b and c.</p> <p>$$\therefore$$ Total possible values = $${}^{10}C_{2}$$ $$\times$$ 4</p> <p>From case I and case II total possible values of 10 prime numbers which satisfy ad = bc condition</p> <p>= 10 + $${}^{10}C_{2}$$ $$\times$$ 4</p> <p>For sample space,</p> <p>Number of ways to fill element a of matrix A = chose any prime number among 10 available prime number = $${}^{10}C_{1}$$ ways</p> <p>Similarly,</p> <p>For element b of matrix A = $${}^{10}C_{1}$$ ways</p> <p>For element c of matrix A = $${}^{10}C_{1}$$ ways</p> <p>For element d of matrix A = $${}^{10}C_{1}$$ ways</p> <p>$$\therefore$$ Sample space = $${}^{10}C_{1}$$ $$\times$$ $${}^{10}C_{1}$$ $$\times$$ $${}^{10}C_{1}$$ $$\times$$ $${}^{10}C_{1}$$ = 10<sup>4</sup></p> <p>$$\therefore$$ Probability $$ = {{10 + {{}^{10}C_{2}} \times 4} \over {{{10}^4}}}$$</p> <p>$$ = {{10 + 180} \over {{{10}^4}}}$$</p> <p>$$ = {{190} \over {{{10}^4}}}$$</p> <p>$$ = {{19} \over {{{10}^3}}}$$</p>
mcq
jee-main-2022-online-29th-june-morning-shift
1l55iov0n
maths
probability
permutation-and-combination-based-problem
<p>The probability that a randomly chosen one-one function from the set {a, b, c, d} to the set {1, 2, 3, 4, 5} satisfies f(a) + 2f(b) $$-$$ f(c) = f(d) is :</p>
[{"identifier": "A", "content": "$${1 \\over {24}}$$"}, {"identifier": "B", "content": "$${1 \\over {40}}$$"}, {"identifier": "C", "content": "$${1 \\over {30}}$$"}, {"identifier": "D", "content": "$${1 \\over {20}}$$"}]
["D"]
null
Number of one-one function from $\{a, b, c, d\}$ to set $\{1,2,3,4,5\}$ is ${ }^{5} P_{4}=120 n(s)$. <br/><br/> The required possible set of value (f(a), $f(b), f(c), f(d))$ such that $f(a)+2 f(b)-f(c)=f(d)$ are $(5,3,2,1),(5,1,2,3),(4,1,3,5),(3,1,4,5)$, $(5,4,3,2)$ and $(3,4,5,2)$ <br/><br/> $\therefore n(E)=6$ <br/><br/> $\therefore $ Required probability $=\frac{n(E)}{n(S)}=\frac{6}{120}=\frac{1}{20}$
mcq
jee-main-2022-online-28th-june-evening-shift
1l57onrrd
maths
probability
permutation-and-combination-based-problem
<p>Five numbers $${x_1},{x_2},{x_3},{x_4},{x_5}$$ are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order $$({x_1} &lt; {x_2} &lt; {x_3} &lt; {x_4} &lt; {x_5})$$. The probability that $${x_2} = 7$$ and $${x_4} = 11$$ is :</p>
[{"identifier": "A", "content": "$${1 \\over {136}}$$"}, {"identifier": "B", "content": "$${1 \\over {72}}$$"}, {"identifier": "C", "content": "$${1 \\over {68}}$$"}, {"identifier": "D", "content": "$${1 \\over {34}}$$"}]
["C"]
null
No. of ways to select and arrange $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4, \mathrm{x}_5$ from $1,2,3$.......18<br/><br/> $$ \begin{aligned} & \mathrm{n}(\mathrm{s})={ }^{18} \mathrm{C}_5 \\\\ & \begin{array}{lllll} x_1 & \underset{7}{\left(x_2\right)} & x_3 & \underset{11}{\left(x_4\right)} & x_5 \end{array} \\\\ & \mathrm{n}(\mathrm{E})={ }^6 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1 \times{ }^7 \mathrm{C}_1 \\\\ & P(E)=\frac{6 \times 3 \times 7}{{ }^{18} C_5} \\\\ & \frac{1}{17 \times 4}=\frac{1}{68} \\\\ \end{aligned} $$
mcq
jee-main-2022-online-27th-june-morning-shift
1l58h8xsg
maths
probability
permutation-and-combination-based-problem
<p>If the probability that a randomly chosen 6-digit number formed by using digits 1 and 8 only is a multiple of 21 is p, then 96 p is equal to _______________.</p>
[]
null
33
<p>Total number of numbers from given</p> <p>Condition = n(s) = 2<sup>6</sup>.</p> <p>Every required number is of the form</p> <p>A = 7 . (10<sup>a<sub>1</sub></sup> + 10<sup>a<sub>2</sub></sup> + 10<sup>a<sub>3</sub></sup> + .......) + 111111</p> <p>Here 111111 is always divisible by 21.</p> <p>$$\therefore$$ If A is divisible by 21 then</p> <p>10<sup>a<sub>1</sub></sup> + 10<sup>a<sub>2</sub></sup> + 10<sup>a<sub>3</sub></sup> + ....... must be divisible by 3.</p> <p>For this we have <sup>6</sup>C<sub>0</sub> + <sup>6</sup>C<sub>3</sub> + <sup>6</sup>C<sub>6</sub> cases are there</p> <p>$$\therefore$$ n(E) = <sup>6</sup>C<sub>0</sub> + <sup>6</sup>C<sub>3</sub> + <sup>6</sup>C<sub>6</sub> = 22</p> <p>$$\therefore$$ Required probability = $${{22} \over {{2^6}}} = p$$</p> <p>$$\therefore$$ $${{11} \over {32}} = p$$</p> <p>$$\therefore$$ $$96p = 33$$</p>
integer
jee-main-2022-online-26th-june-evening-shift
1ldsuemqy
maths
probability
permutation-and-combination-based-problem
<p>Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct T-shirt is :</p>
[{"identifier": "A", "content": "$$\\frac{1}{6}$$"}, {"identifier": "B", "content": "$$\\frac{2}{15}$$"}, {"identifier": "C", "content": "$$\\frac{5}{24}$$"}, {"identifier": "D", "content": "0.08"}]
["D"]
null
Required probability $=1-\frac{D_{(15)}+{ }^{15} C_1 \cdot D_{(14)}+{ }^{15} C_2 D_{(13)}}{15 !}$ <br/><br/>Taking $\mathrm{D}_{(15)}$ as $\frac{15 !}{e}$ <br/><br/>$\mathrm{D}_{(14)}$ as $\frac{14 \text { ! }}{e}$ <br/><br/>$\mathrm{D}_{(13)}$ as $\frac{13 \text { ! }}{e}$ <br/><br/>$$ \text { We get, } \text { Required probability } = 1-\left(\frac{\frac{15 !}{e}+15 \cdot \frac{14 !}{e}+\frac{15 \times 14}{2} \times \frac{13 !}{e}}{15 !}\right) $$ <br/><br/>$$ =1-\left(\frac{1}{e}+\frac{1}{e}+\frac{1}{2 e}\right)=1-\frac{5}{2 e} \approx .08 $$
mcq
jee-main-2023-online-29th-january-morning-shift
jaoe38c1lscn159w
maths
probability
permutation-and-combination-based-problem
<p>An urn contains 6 white and 9 black balls. Two successive draws of 4 balls are made without replacement. The probability, that the first draw gives all white balls and the second draw gives all black balls, is :</p>
[{"identifier": "A", "content": "$$\\frac{3}{256}$$"}, {"identifier": "B", "content": "$$\\frac{5}{256}$$"}, {"identifier": "C", "content": "$$\\frac{3}{715}$$"}, {"identifier": "D", "content": "$$\\frac{5}{715}$$"}]
["C"]
null
<p>$$\frac{{ }^6 \mathrm{C}_4}{{ }^{15} \mathrm{C}_4} \times \frac{{ }^9 \mathrm{C}_4}{{ }^{11} \mathrm{C}_4}=\frac{3}{715}$$</p> <p>Hence option (3) is correct.</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsd3atnw
maths
probability
permutation-and-combination-based-problem
<p>A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is</p>
[{"identifier": "A", "content": "$$\\frac{1}{9}$$"}, {"identifier": "B", "content": "$$\\frac{2}{9}$$"}, {"identifier": "C", "content": "$$\\frac{1}{27}$$"}, {"identifier": "D", "content": "$$\\frac{2}{27}$$"}]
["B"]
null
<p>To solve this problem, we need to first determine the probability of getting a head (H) and the probability of getting a tail (T).</p> <p>Since a head is twice as likely to occur as a tail, we can denote the probability of getting a tail as $$ P(T) = p $$ and the probability of getting a head as $$ P(H) = 2p $$.</p> <p>These probabilities must sum to 1 because those are the only two possible outcomes for each coin toss : <br/><br/>$$ P(H) + P(T) = 1 $$ <br/><br/>$$ 2p + p = 1 $$ <br/><br/>$$ 3p = 1 $$ <br/><br/>$$ p = \frac{1}{3} $$</p> <p>Therefore, the probability of getting a tail (T) is $$ P(T) = \frac{1}{3} $$ and the probability of getting a head (H) is $$ P(H) = 2 \times \frac{1}{3} = \frac{2}{3} $$.</p> <p>Now to find the probability of getting two tails and one head, we need to consider the different sequences in which this can occur. There are three unique sequences: TTH, THT, and HTT.</p> <p>The probability of each sequence is found by multiplying the probabilities of each individual event since each coin toss is independent: <br/><br/>$$ P(TTH) = P(T) \times P(T) \times P(H) = \left(\frac{1}{3}\right)^2 \times \frac{2}{3} = \frac{1}{9} \times \frac{2}{3} = \frac{2}{27} $$ <br/><br/>$$ P(THT) = P(T) \times P(H) \times P(T) = \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{2}{27} $$ <br/><br/>$$ P(HTT) = P(H) \times P(T) \times P(T) = \frac{2}{3} \times \left(\frac{1}{3}\right)^2 = \frac{2}{27} $$</p> <p>The overall probability of getting two tails and one head in any order is the sum of these individual probabilities : <br/><br/>$$ P(2T1H) = P(TTH) + P(THT) + P(HTT) = \frac{2}{27} + \frac{2}{27} + \frac{2}{27} = \frac{6}{27} $$</p> <p>Simplifying this expression gives us: $$ P(2T1H) = \frac{6}{27} = \frac{2}{9} $$</p> <p>Therefore, the correct answer is : <br/><br/>Option B : $$\frac{2}{9}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
lv9s209z
maths
probability
permutation-and-combination-based-problem
<p>The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :</p>
[{"identifier": "A", "content": "38"}, {"identifier": "B", "content": "76"}, {"identifier": "C", "content": "57"}, {"identifier": "D", "content": "19"}]
["A"]
null
<p>Equation is $$a x^2+b x+c=0$$</p> <p>$$\mathrm{D}>0$$ [for roots to be real & distinct]</p> <p>$$\Rightarrow b^2-4 a c>0$$</p> <p>For $$b<2$$ no value of $$a$$ & $$c$$ are possible</p> <p>$$\begin{aligned} & \text { For } b=3 \Rightarrow a c<\frac{9}{4} \\ & (a, c) \in\{(1,1),(1,2),(2,1)\} \Rightarrow 3 \text { cases } \end{aligned}$$</p> <p>For $$b=4 \Rightarrow a c<4$$</p> <p>$$(a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3)\} \Rightarrow 5 \text { cases }$$</p> <p>For $$b=5 \Rightarrow a c<\frac{25}{4}$$</p> <p>$$\begin{aligned} & (a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2), \\ & (4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6), \\ & (6,1)\}=14 \text { cases } \end{aligned}$$</p> <p>For $$b=6 \Rightarrow a c<9$$</p> <p>$$\begin{aligned} & (a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2), \\ & (4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6), \\ & (6,1),(2,4),(4,2)\}=16 \text { cases } \end{aligned}$$</p> <p>Total cases $$=3+5+14+16=38$$ cases</p> <p>$$\Rightarrow$$ Probability, $$p=\frac{38}{216}$$</p> <p>$$\Rightarrow 216 p=38$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
uiR8NU8AS1zaGHd3
maths
probability
probability-distribution-of-a-random-variable
A random variable $$X$$ has Poisson distribution with mean $$2$$. <br/>Then $$P\left( {X &gt; 1.5} \right)$$ equals :
[{"identifier": "A", "content": "$${2 \\over {{e^2}}}$$ "}, {"identifier": "B", "content": "$$0$$"}, {"identifier": "C", "content": "$$1 - {3 \\over {{e^2}}}$$ "}, {"identifier": "D", "content": "$${3 \\over {{e^2}}}$$ "}]
["C"]
null
<p>In a position distribution,</p> <p>$$P(X = r) = {{{e^{ - \lambda }}{\lambda ^r}} \over {r!}}$$ ($$\lambda$$ = mean).</p> <p>Now, $$P(X = r > 1.5) = P(2) + P(3) + $$ ..... $$\infty$$</p> <p>$$ = 1 - \{ P(0) + P(1)\} $$</p> <p>$$ = 1 - \left( {{e^{ - 2}} + {{{e^{ - 2}} \times 2} \over 1}} \right) = 1 - {3 \over {{e^2}}}$$</p>
mcq
aieee-2005
ZjpgMVecKoOHSSxa
maths
probability
probability-distribution-of-a-random-variable
At a telephone enquiry system the number of phone cells regarding relevant enquiry follow Poisson distribution with an average of $$5$$ phone calls during $$10$$ minute time intervals. The probability that there is at the most one phone call during a $$10$$-minute time period is :
[{"identifier": "A", "content": "$${6 \\over {{5^e}}}$$ "}, {"identifier": "B", "content": "$${5 \\over 6}$$ "}, {"identifier": "C", "content": "$${6 \\over 55}$$"}, {"identifier": "D", "content": "$${6 \\over {{e^5}}}$$ "}]
["D"]
null
<p>Required probability</p> <p>$$ = P(X = 0) + P(X = 1)$$</p> <p>$$ = {{{e^{ - 5}}} \over {0!}}{5^0} + {{{e^{ - 5}}} \over {1!}}{5^1}$$</p> <p>$$ = {e^{ - 5}} + 5{e^{ - 5}}$$</p> <p>$$ = {6 \over {{e^5}}}$$</p>
mcq
aieee-2006
P6xO9hto9apIDYTTsa3rsa0w2w9jxayoap3
maths
probability
probability-distribution-of-a-random-variable
A person throws two fair dice. He wins Rs. 15 for throwing a doublet (same numbers on the two dice), wins Rs. 12 when the throw results in the sum of 9, and loses Rs. 6 for any other outcome on the throw. Then the expected gain/loss (in Rs.) of the person is :
[{"identifier": "A", "content": "$${1 \\over 4}$$ loss"}, {"identifier": "B", "content": "$${1 \\over 2}$$ gain"}, {"identifier": "C", "content": "$${1 \\over 2}$$ loss"}, {"identifier": "D", "content": "2 gain"}]
["C"]
null
When two dice are thrown then sample space will {(1, 1), (2, 2) ....... (6, 6)} contain total 36 elements number of cases.<br><br> Then the expectation will be $${6 \over {36}} \times 15 \times {4 \over {36}} \times 12 - {{26} \over {36}} \times 6$$<br><br> $${{90 + 48 - 156} \over {36}} = - {1 \over 2}$$ = $$ {1 \over 2}$$ loss
mcq
jee-main-2019-online-12th-april-evening-slot
FxEzwiF0BbebQgJ2yf7k9k2k5e2z1s8
maths
probability
probability-distribution-of-a-random-variable
An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value of k when k consecutive heads are obtained for k = 3, 4, 5, otherwise X takes the value -1. Then the expected value of X, is :
[{"identifier": "A", "content": "$$ - {3 \\over {16}}$$"}, {"identifier": "B", "content": "$$ - {1 \\over 8}$$"}, {"identifier": "C", "content": "$${1 \\over 8}$$"}, {"identifier": "D", "content": "$${3 \\over {16}}$$"}]
["C"]
null
Number of ways 3 consecutive heads can appers <br><br>(1) HHHT_ <br><br>(2) _THHH <br><br>(3) THHHT <br><br>$$ \therefore $$ Probablity of getting 3 consecutive heads <br><br>= $${2 \over {32}}$$ + $${2 \over {32}}$$ + $${1 \over {32}}$$ = $${5 \over {32}}$$ <br><br>Number of ways 4 consecutive heads can appers <br><br>(1) HHHHT <br><br>(2) THHHH <br><br>$$ \therefore $$ Probablity of getting 4 consecutive heads <br><br>= $${1 \over {32}}$$ + $${1 \over {32}}$$ = $${2 \over {32}}$$ <br><br>Number of ways 5 consecutive heads can appers <br><br>(1) HHHHH <br><br>$$ \therefore $$ Probablity of getting 5 consecutive heads <br><br>= $${1 \over {32}}$$ <br><br>Now Probablity of getting 0, 1, and 2 consecutive heads <br><br>= 1 - $$\left( {{5 \over {32}} + {2 \over {32}} + {1 \over {32}}} \right)$$ = $${{{24} \over {32}}}$$ <br><br>Now, Expectation <br><br>= (-1) $$ \times $$ $${{{24} \over {32}}}$$ + 3 $$ \times $$ $${{{5} \over {32}}}$$ + 4 $$ \times $$ $${{{2} \over {32}}}$$ + 5 $$ \times $$ $${{{1} \over {32}}}$$ <br><br>= $${1 \over 8}$$
mcq
jee-main-2020-online-7th-january-morning-slot
F1meBFGPVyGyNy1nKL7k9k2k5kh288t
maths
probability
probability-distribution-of-a-random-variable
A random variable X has the following probability distribution :<br/><br/> <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;width:100%} .tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:black;} .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:black;} .tg .tg-baqh{text-align:center;vertical-align:top} .tg .tg-wa1i{font-weight:bold;text-align:center;vertical-align:middle} .tg .tg-nrix{text-align:center;vertical-align:middle} </style> <table class="tg"> <tbody><tr> <th class="tg-wa1i">X:</th> <th class="tg-nrix">1</th> <th class="tg-baqh">2</th> <th class="tg-baqh">3</th> <th class="tg-baqh">4</th> <th class="tg-baqh">5</th> </tr> <tr> <td class="tg-wa1i">P(X):</td> <td class="tg-nrix">K<sup>2</sup></td> <td class="tg-baqh">2K</td> <td class="tg-baqh">K</td> <td class="tg-baqh">2K</td> <td class="tg-baqh">5K<sup>2</sup></td> </tr> </tbody></table><br/> Then P(X &gt; 2) is equal to :
[{"identifier": "A", "content": "$${1 \\over {6}}$$"}, {"identifier": "B", "content": "$${7 \\over {12}}$$"}, {"identifier": "C", "content": "$${1 \\over {36}}$$"}, {"identifier": "D", "content": "$${23 \\over {36}}$$"}]
["D"]
null
$$\sum\limits_{i = 1}^5 {P(X)} $$ = 1 <br><br>$$ \Rightarrow $$ K<sup>2</sup> + 2K + K + 2K + 5K<sup>2</sup> = 1 <br><br>$$ \Rightarrow $$ 6K<sup>2</sup> + 5K – 1 = 0 <br><br>$$ \Rightarrow $$ (6K - 1)(k + 1) = 0 <br><br>$$ \Rightarrow $$ K = $${1 \over 6}$$ and K = -1(rejected) <br><br>$$ \therefore $$ P(X $$ &gt; $$ 2) <br><br>= K + 2K + 5K<sup>2</sup> <br><br>= $${1 \over 6} + {2 \over 6} + {5 \over {36}}$$ <br><br>= $${{23} \over {36}}$$
mcq
jee-main-2020-online-9th-january-evening-slot
1krzncxyp
maths
probability
probability-distribution-of-a-random-variable
Let X be a random variable such that the probability function of a distribution is given by $$P(X = 0) = {1 \over 2},P(X = j) = {1 \over {{3^j}}}(j = 1,2,3,...,\infty )$$. Then the mean of the distribution and P(X is positive and even) respectively are :
[{"identifier": "A", "content": "$${3 \\over 8}$$ and $${1 \\over 8}$$"}, {"identifier": "B", "content": "$${3 \\over 4}$$ and $${1 \\over 8}$$"}, {"identifier": "C", "content": "$${3 \\over 4}$$ and $${1 \\over 9}$$"}, {"identifier": "D", "content": "$${3 \\over 4}$$ and $${1 \\over 16}$$"}]
["B"]
null
Mean = $$\sum {{X_i}{P_i}} = \sum\limits_{r = 0}^\infty {r.{1 \over {{3^r}}} = {3 \over 4}} $$<br><br>P(X is even) $$ = {1 \over {{3^2}}} + {1 \over {{3^4}}} + ...\infty $$<br><br>$$ = {{{1 \over 9}} \over {1 - {1 \over 9}}} = {{1/9} \over {8/9}} = {1 \over 8}$$
mcq
jee-main-2021-online-25th-july-evening-shift
1ktgohohi
maths
probability
probability-distribution-of-a-random-variable
The probability distribution of random variable X is given by :<br/><br/><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-0lax{text-align:left;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-0lax">X</th> <th class="tg-0lax">1</th> <th class="tg-0lax">2</th> <th class="tg-0lax">3</th> <th class="tg-0lax">4</th> <th class="tg-0lax">5</th> </tr> </thead> <tbody> <tr> <td class="tg-0lax">P(X)</td> <td class="tg-0lax">K</td> <td class="tg-0lax">2K</td> <td class="tg-0lax">2K</td> <td class="tg-0lax">3K</td> <td class="tg-0lax">K</td> </tr> </tbody> </table><br/><br/>Let p = P(1 &lt; X &lt; 4 | X &lt; 3). If 5p = $$\lambda$$K, then $$\lambda$$ equal to ___________.
[]
null
30
$$\sum {P(X) = 1 \Rightarrow k + 2k + 3} k + k = 1$$<br><br>$$ \Rightarrow k = {1 \over 9}$$<br><br>Now, $$p = P\left( {{{kx &lt; 4} \over {X &lt; 3}}} \right) = {{P(X = 2)} \over {P(X &lt; 3)}} = {{{{2k} \over {9k}}} \over {{k \over {9k}} + {{2k} \over {9k}}}} = {2 \over 3}$$<br><br>$$ \Rightarrow p = {2 \over 3}$$<br><br>Now, $$5p = \lambda k$$<br><br>$$ \Rightarrow (5)\left( {{2 \over 3}} \right) = \lambda (1/9)$$<br><br>$$ \Rightarrow \lambda = 30$$
integer
jee-main-2021-online-27th-august-evening-shift
1ktoapaky
maths
probability
probability-distribution-of-a-random-variable
Let X be a random variable with distribution.<br/><br/><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-baqh">x</th> <th class="tg-baqh">$$ - $$2</th> <th class="tg-baqh">$$ - $$1</th> <th class="tg-baqh">3</th> <th class="tg-baqh">4</th> <th class="tg-baqh">6</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">P(X = x)</td> <td class="tg-baqh">$${1 \over 5}$$</td> <td class="tg-baqh">a</td> <td class="tg-baqh">$${1 \over 3}$$</td> <td class="tg-baqh">$${1 \over 5}$$</td> <td class="tg-baqh">b</td> </tr> </tbody> </table><br/><br/>If the mean of X is 2.3 and variance of X is $$\sigma$$<sup>2</sup>, then 100 $$\sigma$$<sup>2</sup> is equal to :
[]
null
781
<table class="tg"> <thead> <tr> <th class="tg-baqh">x</th> <th class="tg-baqh">$$ - $$2</th> <th class="tg-baqh">$$ - $$1</th> <th class="tg-baqh">3</th> <th class="tg-baqh">4</th> <th class="tg-baqh">6</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">P(X = x)</td> <td class="tg-baqh">$${1 \over 5}$$</td> <td class="tg-baqh">a</td> <td class="tg-baqh">$${1 \over 3}$$</td> <td class="tg-baqh">$${1 \over 5}$$</td> <td class="tg-baqh">b</td> </tr> </tbody> </table><br><br>$$\overline X $$ = 2.3<br><br>$$-$$a + 6b = $${9 \over {10}}$$ ..... (1)<br><br>$$\sum {{P_i} = {1 \over 5} + a + {1 \over 3} + {1 \over 5} + b = 1} $$<br><br>$$a + b = {4 \over {15}}$$ .... (2)<br><br>From equation (1) and (2)<br><br>$$a = {1 \over {10}},b = {1 \over 6}$$<br><br>$${\sigma ^2} = \sum {{p_i}x_i^2 - {{(\overline X )}^2}} $$<br><br>$${1 \over 5}(4) + a(1) + {1 \over 3}(9) + {1 \over 5}(16) + b(36) - {(2.3)^2}$$<br><br>$$ = {4 \over 5} + a + 3 + {{16} \over 5} + 36b - {(2.3)^2}$$<br><br>$$ = 4 + a + 3 + 36b - {(2.3)^2}$$<br><br>$$ = 7 + a + 36b - {(2.3)^2}$$<br><br>$$ = 7 + {1 \over {10}} + 6 - {(2.3)^2}$$<br><br>$$ = 13 + {1 \over {10}} - {\left( {{{23} \over {10}}} \right)^2}$$<br><br>$$ = {{131} \over {10}} - {\left( {{{23} \over {10}}} \right)^2}$$<br><br>$$ = {{1310 - {{(23)}^2}} \over {100}}$$<br><br>$$ = {{1310 - 529} \over {100}}$$<br><br>$${\sigma ^2} = {{781} \over {100}}$$<br><br>$$100{\sigma ^2} = 781$$
integer
jee-main-2021-online-1st-september-evening-shift
1l59kq3cf
maths
probability
probability-distribution-of-a-random-variable
<p>A biased die is marked with numbers 2, 4, 8, 16, 32, 32 on its faces and the probability of getting a face with mark n is $${1 \over n}$$. If the die is thrown thrice, then the probability, that the sum of the numbers obtained is 48, is :</p>
[{"identifier": "A", "content": "$${7 \\over {{2^{11}}}}$$"}, {"identifier": "B", "content": "$${7 \\over {{2^{12}}}}$$"}, {"identifier": "C", "content": "$${3 \\over {{2^{10}}}}$$"}, {"identifier": "D", "content": "$${{13} \\over {{2^{12}}}}$$"}]
["D"]
null
<p>There are only two ways to get sum 48, which are (32, 8, 8) and (16, 16, 16)</p> <p>So, required probability</p> <p>$$ = 3\left( {{2 \over {32}}\,.\,{1 \over 8}\,.\,{1 \over 8}} \right) + \left( {{1 \over {16}}\,.\,{1 \over {16}}\,.\,{1 \over {16}}} \right)$$</p> <p>$$ = {3 \over {{2^{10}}}} + {1 \over {{2^{12}}}}$$</p> <p>$$ = {{13} \over {{2^{12}}}}$$</p>
mcq
jee-main-2022-online-25th-june-evening-shift
1l5babc18
maths
probability
probability-distribution-of-a-random-variable
<p>A random variable X has the following probability distribution :</p> <p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 374px"> <colgroup> <col style="width: 96px"/> <col style="width: 53px"/> <col style="width: 54px"/> <col style="width: 55px"/> <col style="width: 57px"/> <col style="width: 59px"/> </colgroup> <thead> <tr> <th class="tg-c3ow">X</th> <th class="tg-c3ow">0</th> <th class="tg-c3ow">1</th> <th class="tg-c3ow">2</th> <th class="tg-c3ow">3</th> <th class="tg-c3ow">4</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">P(X)</td> <td class="tg-c3ow">k</td> <td class="tg-c3ow">2k</td> <td class="tg-c3ow">4k</td> <td class="tg-c3ow">6k</td> <td class="tg-c3ow">8k</td> </tr> </tbody> </table></p> <p>The value of P(1 &lt; X &lt; 4 | X $$\le$$ 2) is equal to :</p>
[{"identifier": "A", "content": "$${4 \\over 7}$$"}, {"identifier": "B", "content": "$${2 \\over 3}$$"}, {"identifier": "C", "content": "$${3 \\over 7}$$"}, {"identifier": "D", "content": "$${4 \\over 5}$$"}]
["A"]
null
<p>$$\because$$ x is a random variable</p> <p>$$\therefore$$ $$k + 2k + 4k + 6k + 8k = 1$$</p> <p>$$\therefore$$ $$k = {1 \over {21}}$$</p> <p>Now, $$P(1 < x < 4\,|\,x \le 2) = {{4k} \over {7k}} = {4 \over 7}$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l5w1mu8i
maths
probability
probability-distribution-of-a-random-variable
<p>The probability distribution of X is :</p> <p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 451px"> <colgroup> <col style="width: 55px"/> <col style="width: 89px"/> <col style="width: 94px"/> <col style="width: 104px"/> <col style="width: 109px"/> </colgroup> <thead> <tr> <th class="tg-baqh">X</th> <th class="tg-baqh">0</th> <th class="tg-baqh">1</th> <th class="tg-baqh">2</th> <th class="tg-baqh">3</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">P(X)</td> <td class="tg-baqh">$${{1 - d} \over 4}$$</td> <td class="tg-baqh">$${{1 + 2d} \over 4}$$</td> <td class="tg-baqh">$${{1 - 4d} \over 4}$$</td> <td class="tg-baqh">$${{1 + 3d} \over 4}$$</td> </tr> </tbody> </table></p> <p>For the minimum possible value of d, sixty times the mean of X is equal to _______________.</p>
[]
null
75
<p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 298px"> <colgroup> <col style="width: 48px"> <col style="width: 59px"> <col style="width: 60px"> <col style="width: 63px"> <col style="width: 68px"> </colgroup> <thead> <tr> <th class="tg-baqh">X</th> <th class="tg-baqh">0</th> <th class="tg-baqh">1</th> <th class="tg-baqh">2</th> <th class="tg-baqh">3</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">$$P(x)$$</td> <td class="tg-baqh">$${{1 - d} \over 4}$$</td> <td class="tg-baqh">$${{1 + 2d} \over 4}$$</td> <td class="tg-baqh">$${{1 - 4d} \over 4}$$</td> <td class="tg-baqh">$${{1 + 3d} \over 4}$$</td> </tr> </tbody> </table></p> <p>We know, $$0 \le P(x) \le 1$$</p> <p>$$\therefore$$ $$0 \le {{1 - d} \over 4} \le 1$$</p> <p>$$ \Rightarrow 0 \le 1 - d \le 4$$</p> <p>$$ \Rightarrow - 1 \le - d \le 3$$</p> <p>$$ \Rightarrow 1 \ge d \ge - 3$$</p> <p>Also,</p> <p>$$0 \le {{1 + 2d} \over 4} \le 1$$</p> <p>$$ \Rightarrow 0 \le 1 + 2d \le 4$$</p> <p>$$ \Rightarrow - 1 \le 2d \le 3$$</p> <p>$$ \Rightarrow - {1 \over 2} \le d \le {3 \over 2}$$</p> <p>Also,</p> <p>$$0 \le {{1 - 4d} \over 4} \le 1$$</p> <p>$$ \Rightarrow 0 \le 1 - 4d \le 4$$</p> <p>$$ \Rightarrow - 1 \le - 4d \le 3$$</p> <p>$$ \Rightarrow 1 \ge 4d \ge - 3$$</p> <p>$$ \Rightarrow {1 \over 4} \ge d \ge - {3 \over 4}$$</p> <p>And,</p> <p>$$0 \le {{1 + 3d} \over 4} \le 1$$</p> <p>$$ \Rightarrow 0 \le 1 + 3d \le 4$$</p> <p>$$ \Rightarrow - 1 \le 3d \le 3$$</p> <p>$$ \Rightarrow - {1 \over 3} \le d \le 1$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l6dn1sg2/70ac6607-e35b-496d-816f-33268be95f9a/3e6d8930-132f-11ed-941a-4dd6502f33e3/file-1l6dn1sg3.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l6dn1sg2/70ac6607-e35b-496d-816f-33268be95f9a/3e6d8930-132f-11ed-941a-4dd6502f33e3/file-1l6dn1sg3.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Probability Question 69 English Explanation"></p> <p>Common range is $$ = - {1 \over 3}$$ to $${1 \over 4}$$</p> <p>$$\therefore$$ $$d\, \in \left[ { - {1 \over 3},{1 \over 4}} \right]$$</p> <p>$$\therefore$$ Minimum value of $$d = - {1 \over 3}$$</p> <p>We know, mean</p> <p>$$E(x) = \sum {x\,.\,P(x)} $$</p> <p>$$ = 0 \times {{1 - d} \over 4} + 1 \times {{1 + 2d} \over 4} + 2 \times {{1 - 4d} \over 4} + 3 \times {{1 + 3d} \over 4}$$</p> <p>$$ = {{1 + 2d + 2 - 8d + 3 + 9d} \over 4}$$</p> <p>$$ = {{6 + 3d} \over 4}$$</p> <p>For $$d = - {1 \over 3}$$, $$E(x) = {{6 + 3 \times - {1 \over 3}} \over 4} = {5 \over 4}$$</p> <p>$$\therefore$$ $$60E(x) = 60 \times {5 \over 4} = 75$$</p>
integer
jee-main-2022-online-30th-june-morning-shift
1l6kkv5he
maths
probability
probability-distribution-of-a-random-variable
<p>A six faced die is biased such that</p> <p>$$3 \times \mathrm{P}($$a prime number$$)\,=6 \times \mathrm{P}($$a composite number$$)\,=2 \times \mathrm{P}(1)$$.</p> <p>Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :</p>
[{"identifier": "A", "content": "$$\\frac{3}{11}$$"}, {"identifier": "B", "content": "$$\\frac{5}{11}$$"}, {"identifier": "C", "content": "$$\\frac{7}{11}$$"}, {"identifier": "D", "content": "$$\\frac{8}{11}$$"}]
["D"]
null
<p>Let P(a prime number) = $$\alpha$$</p> <p>P(a composite number) = $$\beta$$</p> <p>and P(1) = $$\gamma$$</p> <p>$$\because$$ $$3\alpha = 6\beta = 2\gamma = k$$ (say)</p> <p>and $$3\alpha + 2\beta + \gamma = 1$$</p> <p>$$ \Rightarrow k + {k \over 3} + {k \over 2} = 1 \Rightarrow k = {6 \over {11}}$$</p> <p>Mean = np where n = 2</p> <p>and p = probability of getting perfect square</p> <p>$$ = P(1) + P(4) = {k \over 2} + {k \over 6} = {4 \over {11}}$$</p> <p>So, mean $$ = 2\,.\,\left( {{4 \over {11}}} \right) = {8 \over {11}}$$</p>
mcq
jee-main-2022-online-27th-july-evening-shift
1l6npi0xr
maths
probability
probability-distribution-of-a-random-variable
<p>A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let $$\mathrm{X}$$ be the number of white balls, among the drawn balls. If $$\sigma^{2}$$ is the variance of $$\mathrm{X}$$, then $$100 \sigma^{2}$$ is equal to ________.</p>
[]
null
57
<p>$$X = $$ Number of white ball drawn</p> <p>$$P(X = 0) = {{{}^6{C_3}} \over {{}^{10}{C_3}}} = {1 \over 6}$$</p> <p>$$P(X = 1) = {{{}^6{C_2} \times {}^4{C_1}} \over {{}^{10}{C_3}}} = {1 \over 2},$$</p> <p>$$P(X = 2) = {{{}^6{C_1} \times {}^4{C_2}} \over {{}^{10}{C_3}}} = {3 \over {10}}$$</p> <p>and $$P(X = 3) = {{{}^6{C_0} \times {}^4{C_3}} \over {{}^{10}{C_3}}} = {1 \over {30}}$$</p> <p>Variance $$ = {\sigma ^2} = \sum {{P_i}X_i^2 - {{\left( {\sum {{P_i}{X_i}} } \right)}^2}} $$</p> <p>$${\sigma ^2} = {1 \over 2} + {{12} \over {10}} + {3 \over {10}} - {\left( {{1 \over 2} + {6 \over {10}} + {1 \over {10}}} \right)^2}$$</p> <p>$$ = {{56} \over {100}}$$</p> <p>$$100{\sigma ^2} = 56.$$</p>
integer
jee-main-2022-online-28th-july-evening-shift
1ldsey88d
maths
probability
probability-distribution-of-a-random-variable
<p>Let $$\mathrm{S} = \{ {w_1},{w_2},......\} $$ be the sample space associated to a random experiment. Let $$P({w_n}) = {{P({w_{n - 1}})} \over 2},n \ge 2$$. Let $$A = \{ 2k + 3l:k,l \in N\} $$ and $$B = \{ {w_n}:n \in A\} $$. Then P(B) is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{3}{32}$$"}, {"identifier": "B", "content": "$$\\frac{1}{32}$$"}, {"identifier": "C", "content": "$$\\frac{1}{16}$$"}, {"identifier": "D", "content": "$$\\frac{3}{64}$$"}]
["D"]
null
<p>$$P({w_1}) + {{P({w_1})} \over 2} + {{P({w_1})} \over {{2^2}}}\, + \,..... = 1$$</p> <p>$$\therefore$$ $$P({w_1}) = {1 \over 2}$$</p> <p>Hence, $$P({w_n}) = {1 \over {{2^n}}}$$</p> <p>Every number except 1, 2, 3, 4, 6 is representable in the form</p> <p>$$2k + 3l$$ where $$k,l \in N$$.</p> <p>$$\therefore$$ $$P(B) = 1 - P({w_1}) - P({w_2}) - P({w_3}) - P({w_4}) - P({w_6})$$</p> <p>$$ = {3 \over {64}}$$</p>
mcq
jee-main-2023-online-29th-january-evening-shift
1lgpxw3jh
maths
probability
probability-distribution-of-a-random-variable
<p> A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occur. If $$\mathrm{X}$$ denotes the number of tosses of the coin, then the mean of $$\mathrm{X}$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{81}{64}$$"}, {"identifier": "B", "content": "$$\\frac{37}{16}$$"}, {"identifier": "C", "content": "$$\\frac{21}{16}$$"}, {"identifier": "D", "content": "$$\\frac{15}{16}$$"}]
["C"]
null
The given probabilities for getting a head (H) and a tail (T) are as follows: <br/><br/>$$ P(H) = \frac{3}{4}, \quad P(T) = \frac{1}{4} $$ <br/><br/>The random variable X can take the values 1, 2, or 3. These correspond to the following events: <br/><br/>- X = 1 : A head is obtained on the first toss. This happens with probability $P(H) = \frac{3}{4}$. <br/><br/>- X = 2 : A tail is obtained on the first toss and a head on the second. This happens with probability $P(T)P(H) = \frac{1}{4} \times \frac{3}{4}$. <br/><br/>- X = 3 : Either two tails and then a head are obtained, or three tails are obtained. <br/> This happens with probability $P(T)P(T)P(H) + P(T)P(T)P(T) = \left(\frac{1}{4}\right)^2 \times \frac{3}{4} + \left(\frac{1}{4}\right)^3$. <br/><br/>Now, we calculate the mean (expected value) of X: <br/><br/>$$ \begin{aligned} E(X) & = 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3) \\\\ & = 1 \cdot \frac{3}{4} + 2 \cdot \left(\frac{1}{4} \times \frac{3}{4}\right) + 3 \cdot \left[\left(\frac{1}{4}\right)^2 \times \frac{3}{4} + \left(\frac{1}{4}\right)^3\right] \\\\ & = \frac{3}{4} + \frac{3}{8} + 3 \cdot \left(\frac{1}{64} + \frac{3}{64}\right) \\\\ & = \frac{3}{4} + \frac{3}{8} + \frac{3}{16} \\\\ & = 3 \cdot \left(\frac{7}{16}\right) \\\\ & = \frac{21}{16}. \end{aligned} $$
mcq
jee-main-2023-online-13th-april-morning-shift
1lgre62ht
maths
probability
probability-distribution-of-a-random-variable
<p>Two dice A and B are rolled. Let the numbers obtained on A and B be $$\alpha$$ and $$\beta$$ respectively. If the variance of $$\alpha-\beta$$ is $$\frac{p}{q}$$, where $$p$$ and $$q$$ are co-prime, then the sum of the positive divisors of $$p$$ is equal to :</p>
[{"identifier": "A", "content": "48"}, {"identifier": "B", "content": "31"}, {"identifier": "C", "content": "72"}, {"identifier": "D", "content": "36"}]
["A"]
null
$$ \begin{array}{|c|l|c|} \hline \alpha-\beta & {\text { Case }} & \mathbf{P} \\ \hline 5 & (6,1) & 1 / 36 \\ \hline 4 & (6,2)(5,1) & 2 / 36 \\ \hline 3 & (6,3)(5,2)(4,1) & 3 / 36 \\ \hline 2 & (6,4)(5,3)(4,3)(3,1) & 4 / 36 \\ \hline 1 & (6,5)(5,4)(4,3)(3,2)(2,1) & 5 / 36 \\ \hline 0 & (6,6)(5,5) \ldots \ldots(1,1) & 6 / 36 \\ \hline-1 & ----- & 5 / 36 \\ \hline-2 & -----& 4 / 36 \\ \hline-3 & ----- & 3 / 36 \\ \hline-4 & (2,6)(1,5) & 2 / 36 \\ \hline-5 & (1,6) & 1 / 36 \\ \hline \end{array} $$ <br/><br/> $$E[X^2] = \sum\limits_{i=-5}^{5} (x_i)^2 P(x_i)$$ <br/><br/>Substituting the values from table : <br/><br/>$$E[X^2] = 2\left[\frac{25}{36}+\frac{32}{36}+\frac{27}{36}+\frac{16}{36}+\frac{5}{36}\right] = \frac{105}{18} = \frac{35}{6}$$ <br/><br/>Next, we calculate the expected value of the differences. The expected value is calculated as the sum of the products of each outcome and its corresponding probability. Given that the table is symmetric around 0, the expected value is 0. <br/><br/>$$E[X] = \sum\limits_{i=-5}^{5} x_i P(x_i) = 0$$ <br/><br/>Now, we can calculate the variance, which is the expected value of the squared differences minus the square of the expected value of the differences : <br/><br/>$$Var[X] = E[X^2] - (E[X])^2 = \frac{35}{6} - 0^2 = \frac{35}{6}$$ <br/><br/>Here, $$p = 35$$ and $$q = 6$$, and they are co-prime. <br/><br/>The positive divisors of 35 are 1, 5, 7, and 35. The sum of these divisors is $$1 + 5 + 7 + 35 = 48$$.
mcq
jee-main-2023-online-12th-april-morning-shift
1lgrgkm6x
maths
probability
probability-distribution-of-a-random-variable
<p>A fair $$n(n &gt; 1)$$ faces die is rolled repeatedly until a number less than $$n$$ appears. If the mean of the number of tosses required is $$\frac{n}{9}$$, then $$n$$ is equal to ____________.</p>
[]
null
10
In this case, the success is defined as getting a number less than $n$ when rolling an $n$-sided die. The probability of success, $p$, in each roll is then $(n-1)/n$, and the probability of failure, $q = 1 - p$, is $1/n$. <br/><br/>$$ \text { Mean }=\sum\limits_{i=1}^{\infty} p_i x_i=1 \cdot \frac{n-1}{n}+\frac{2}{n} \cdot\left(\frac{n-1}{n}\right)+\frac{3}{n^2}\left(\frac{n-1}{n}\right)+\ldots $$ <br/><br/>$$ \frac{n}{9}=\left(1-\frac{1}{n}\right) S $$ ......(1) <br/><br/>where <br/><br/>$$ \begin{aligned} & S=1+\frac{2}{n}+\frac{3}{n^2}+\frac{4}{n^3}+\ldots \\\\ & \frac{1}{n} S=\frac{1}{n}+\frac{2}{n^2}+\frac{3}{n^3}+\ldots \\\\ & ----------------\\\\ & \left(1-\frac{1}{n}\right) S=1+\frac{1}{n}+\frac{1}{n^2}+\frac{1}{n^3}+\ldots \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow \left(1-\frac{1}{n}\right) S=\frac{1}{1-\frac{1}{n}} \\\\ & \Rightarrow \frac{n}{9}=\left(1-\frac{1}{n}\right) \times \frac{1}{\left(1-\frac{1}{n}\right)^2}=\frac{n}{n-1} \end{aligned} $$ <br/><br/>$$ \Rightarrow $$ n = 10
integer
jee-main-2023-online-12th-april-morning-shift
1lgsw8nze
maths
probability
probability-distribution-of-a-random-variable
<p>Let the probability of getting head for a biased coin be $$\frac{1}{4}$$. It is tossed repeatedly until a head appears. Let $$\mathrm{N}$$ be the number of tosses required. If the probability that the equation $$64 \mathrm{x}^{2}+5 \mathrm{Nx}+1=0$$ has no real root is $$\frac{\mathrm{p}}{\mathrm{q}}$$, where $$\mathrm{p}$$ and $$\mathrm{q}$$ are coprime, then $$q-p$$ is equal to ________.</p>
[]
null
27
We have the quadratic equation $64x^2 + 5Nx + 1 = 0$. For it to have no real roots, the discriminant ($b^2 - 4ac$) should be less than 0. Here, $a = 64$, $b = 5N$, and $c = 1$. <br/><br/>This gives us : <br/><br/>$(5N)^2 - 4\times64\times1 < 0$ <br/><br/>$\Rightarrow 25N^2 < 256$ <br/><br/>$\Rightarrow N^2 < \frac{256}{25}$ <br/><br/>$\Rightarrow N < \sqrt{\frac{256}{25}} = \frac{16}{5}$ <br/><br/>Since $N$ must be an integer (as it represents the number of tosses), the possible values of $N$ are 1, 2, or 3. <br/><br/>The probability of getting the first head on the $n$-th toss (given the probability of getting a head is $1/4$) is given by the geometric distribution formula, $(1 - p)^{n-1}\times p$. <br/><br/>So, the probability for our specific values of $N$ is: <br/><br/>$P(N=1) = (1 - 1/4)^{1-1}\times(1/4) = 1/4$ <br/><br/>$P(N=2) = (1 - 1/4)^{2-1}\times(1/4) = 3/4 \times 1/4 = 3/16$ <br/><br/>$P(N=3) = (1 - 1/4)^{3-1}\times(1/4) = (3/4)^2 \times 1/4 = 9/64$ <br/><br/>Therefore, the total probability (p/q) is : <br/><br/>$p/q = P(N=1) + P(N=2) + P(N=3)$ <br/><br/>$= 1/4 + 3/16 + 9/64$ <br/><br/>$= 16/64 + 12/64 + 9/64$ <br/><br/>$= 37/64$ <br/><br/>So, $p = 37$, $q = 64$ and $q-p = 64 - 37 = 27$. <br/><br/>Therefore, $q-p$ is equal to $27$.
integer
jee-main-2023-online-11th-april-evening-shift
1lgyl9ba2
maths
probability
probability-distribution-of-a-random-variable
<p>If the probability that the random variable $$\mathrm{X}$$ takes values $$x$$ is given by $$\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1) 3^{-x}, x=0,1,2,3, \ldots$$, where $$\mathrm{k}$$ is a constant, then $$\mathrm{P}(\mathrm{X} \geq 2)$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{7}{18}$$"}, {"identifier": "B", "content": "$$\\frac{20}{27}$$"}, {"identifier": "C", "content": "$$\\frac{7}{27}$$"}, {"identifier": "D", "content": "$$\\frac{11}{18}$$"}]
["C"]
null
As, we know that sum of all the probabilities $=1$ <br/><br/>$$ \begin{aligned} & \text { So, } \sum_{x=1}^{\infty} \mathrm{P}(\mathrm{X}=x)=1 \\\\ & \Rightarrow k\left[1+2 \cdot 3^{-1}+3 \cdot 3^{-2}+\ldots . \infty\right]=1 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \text { Let } S=1+\frac{2}{3}+\frac{3}{3^2}+\ldots .+\infty \\\\ & \Rightarrow \frac{S}{3}=0+\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\ldots .+\infty \end{aligned} $$ <br/><br/>On subtracting, we get <br/><br/>$$ \begin{aligned} & \frac{2 S}{3}=1+\frac{1}{3}+\frac{1}{3^2}+\ldots .+\infty \\\\ & \Rightarrow \frac{2 S}{3}=\frac{1}{1-\frac{1}{3}}=\frac{1}{\frac{2}{3}} \\\\ & \Rightarrow \frac{2 S}{3}=\frac{3}{2} \\\\ & \Rightarrow S=\frac{9}{4} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \text { So, } k \times \frac{9}{4}=1 \Rightarrow k=\frac{4}{9} \\\\ & \text { Now, } \mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{P}(\mathrm{X}<2) \\\\ & =1-\mathrm{P}(\mathrm{X}=0)-\mathrm{P}(\mathrm{X}=1) \\\\ & =1-\frac{4}{9}(1)-\frac{4}{9} \times \frac{2}{3} \\\\ & =1-\frac{4}{9}-\frac{8}{27}=\frac{27-12-8}{27}=\frac{7}{27} \end{aligned} $$
mcq
jee-main-2023-online-8th-april-evening-shift
jaoe38c1lse553je
maths
probability
probability-distribution-of-a-random-variable
<p>Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable $$x$$ to be the number of rotten apples in a draw of two apples, the variance of $$x$$ is</p>
[{"identifier": "A", "content": "$$\\frac{57}{153}$$\n"}, {"identifier": "B", "content": "$$\\frac{40}{153}$$\n"}, {"identifier": "C", "content": "$$\\frac{37}{153}$$\n"}, {"identifier": "D", "content": "$$\\frac{47}{153}$$"}]
["B"]
null
<p>3 bad apples, 15 good apples.</p> <p>Let $$\mathrm{X}$$ be no of bad apples</p> <p>$$\begin{aligned} & \text { Then } \mathrm{P}(\mathrm{X}=0)=\frac{{ }^{15} \mathrm{C}_2}{{ }^{18} \mathrm{C}_2}=\frac{105}{153} \\ & \mathrm{P}(\mathrm{X}=1)=\frac{{ }^3 \mathrm{C}_1 \times{ }^{15} \mathrm{C}_1}{{ }^{18} \mathrm{C}_2}=\frac{45}{153} \\ & \mathrm{P}(\mathrm{X}=2)=\frac{{ }^3 \mathrm{C}_2}{{ }^{18} \mathrm{C}_2}=\frac{3}{153} \\ & \mathrm{E}(\mathrm{X})=0 \times \frac{105}{153}+1 \times \frac{45}{153}+2 \times \frac{3}{153}=\frac{51}{153} \\ & =\frac{1}{3} \\ & \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^2\right)-(\mathrm{E}(\mathrm{X}))^2 \\ & =0 \times \frac{105}{153}+1 \times \frac{45}{153}+4 \times \frac{3}{153}-\left(\frac{1}{3}\right)^2 \\ & =\frac{57}{153}-\frac{1}{9}=\frac{40}{153} \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-morning-shift